
Introduction
Adiabatic limits and operators

Harmonic forms and localization
Racetracks

Adiabatic limits and eigenvalues
Gunther Uhlmann’s 60th birthday meeting

Richard Melrose

Department of Mathematics
Massachusetts Institute of Technology

22 June, 2012

Richard Melrose UC Irvine 2012



Introduction
Adiabatic limits and operators

Harmonic forms and localization
Racetracks

Outline
1 Adiabatic limits and operators

Adiabatic metrics
Adiabatic operators
Adiabatic normal operator
Invertibility
Eigenvalues

2 Harmonic forms and localization
Leray-Serre
Boundary case
Localization
Extensions

3 Racetracks
Adiabatic structure
Boundary conditions

Richard Melrose UC Irvine 2012



Introduction
Adiabatic limits and operators

Harmonic forms and localization
Racetracks

I have not really worked on inverse problems since Gunther and
I last collaborated in a project on backscattering. So I thought I
would describe some results on adiabatic limits in various
settings and finish with some related questions

Basic structure of an adiabatic problem
Inversion of operators
Spectrum of adiabatic operators
An adiabatic inverse problem
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First, let me remind you of a core inverse problem – one that I
am would very much like to solve or see solved. This is Kac’s
problem.

Problem

Do the Dirichlet (and/or Neumann) eigenvalues for a (smooth)
bounded strictly convex domain in the plane determine the
domain?

If one drops the smoothness and convexity assumptions
then there are counterexamples (but very rigid ones)
Unfortunately I have nothing new to say about this problem!
You should talk to Hamid Hezari and Steve Zelditch about
their recent work on perturbation of ellipses
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The notion of an adiabatic limit in Physics really arose in
thermodynamics but the use of the term in differential
analysis/geometry follows a paper by Witten
Witten discusses the adiabatic limit of the eta invariant for
a manifold fibred over a circle
More generally one can think of a fibre bundle

Z M

φ
��

B.

(1)

For compact manifolds this is the same notion as a
submersion, i.e. just a smooth map with surjective
differential from each point of the domain.
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The inverse image of a small neighbourhood U of each
point in B under φ : M −→ B is diffeomorphic to the
product Z × U for a fixed compact manifold Z with smooth
transitions between overlaps.
Thus M comes equipped with an exhaustion by disjoint
smooth fibres looking like Z
One can give M an ‘adiabatic’ metric, meaning a family of
metrics depending on a parameter ε of the form

g + ε−2φ∗h (2)

Here g is some metric (maybe only strictly positive on the
fibres) on M and h is a metric on the base, B.
Thus a fixed tangent vector on M becomes ‘long’ in the
base direction as ε ↓ 0
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Near a point of M there are coordinates z along the fibres
and y in the base – these are constant on the fibres
The vector fields of ‘bounded length’ with respect to an
adiabatic metric are then the combinations of ∂zj and ε∂yl .

Commutators of these behave sensibly so one can form
‘adiabatic differential operators’ as locally looking like

P =
∑

|α|+|β|≤m

pα,β(ε, z, y)∂αz (ε∂y )β. (3)

Adiabatic ellipticity means that the polynomial

pm =
∑

|α|+|β|=m

pα,β(ε, z, y)ζαηβ (4)

should have no real zeros.
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The symbol here is defined for all ε ≥ 0
There is an adiabatic model operator well defined at ε = 0,
given locally by

A(P) =
∑

|α|+|β|≤m

pα,β(0, z, y)∂αz ζ
β (5)

This is a family of operator on the fibres with conormal
parameters from the base
Notice that this is like a partial semiclassical limit with
non-commutativity remaining along the fibres.
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A relatively easy result is

Theorem

If P is an elliptic adiabatic operator and A(P) is invertible (for all
values of the parameters) then P is invertible for small ε > 0.

This invertibility comes with precise uniformity down to
ε = 0.

Richard Melrose UC Irvine 2012



Introduction
Adiabatic limits and operators

Harmonic forms and localization
Racetracks

Adiabatic metrics
Adiabatic operators
Adiabatic normal operator
Invertibility
Eigenvalues

The Laplacian, ∆, for any adiabatic metric is an example of
an elliptic adiabatic family
A(∆) = ∆Zb + |ζ|2b.
Thus the Theorem above applies to ∆− z for z /∈ [0,∞)

If one thinks about the eigenvalues of Laplacian for an
adiabatic metric one can be guided to some extent by the
product case for which the eigenvalues are

M = Z × B, g = gZ + ε−2hB

∆g = ∆Z + ε2∆B

λ(∆g) = λj(Z ) + ε2λk (B)

(6)
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In general of course this does not make sense, since the
λj(Zb) will be functions on B, which parameterizes the
fibres, and the λk (B) do not make sense at all since there
is no obvious base operator.
The product case is a reasonable guide provided there is a
λj which is constant – independent of b ∈ B.
Generally there are no such constant eigenvalues
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One such case that Rafe Mazzeo and I looked at some
years ago is the Laplacian on forms – for which A(P) is
generally not invertible at ζ = 0.
We considered what happens to the Hodge cohomology –
the harmonic forms – on M as ε ↓ 0.
The dimension of the harmonic forms of fixed degree is
independent of ε, being the corresponding Betti number.

Theorem

For any adiabatic metric there is a smooth basis, uj(ε) of
harmonic forms, down to ε = 0.
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The limits uj(0) of these smooth forms consist of harmonic
forms on the fibres Zb which ‘depend in a harmonic way’
on the base variables.
However, not all such forms occur as the limits of truly
harmonic forms.
Which harmonic sections occur in the limit can be worked
out from the Taylor series in ε
This construction implements the Leray-Serre spectral
sequence for the cohomology of the total space.
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I want to emphasize here that it is very significant that the
fibre Laplacians have smoothly varying null space – the
harmonic forms on Z (for varying metrics)
Suppose one considers a fibration with fibres which are
manifolds with boundary, thus M is also a manifold with
boundary
For an adiabatic metric consider the Laplacian on M with
Dirichlet boundary conditions
Then the fibre Laplacians are invertible and (a small
extension) of the Theorem above shows that ∆ is uniformly
invertible down to ε = 0
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What then happens to the eigenvalues of ∆ as ε ↓ 0?

The lowest fibre eigenvalue for λ1(Zb) is simple and hence
smooth in b.
As ε ↓ 0 the lowest eigenvalues of ∆ are close to
I = infb∈B λ1(Zb) and concentrate above the point or points
in B where this is assumed.
If all the minima are non-degenerate the lowest eigenvalue
corresponds to a rescaled harmonic oscillator in the base
variable near each of these points and are of the form

I + ε2tj + O(ε3)
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If we pass from the realm of manifolds with boundary to those
with corners there is a natural weakening of the notion of a
fibration to a b-fibration.

Picture!
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These sorts of considerations can be extended to somewhat
more singular settings.

1 The fibration with singular fibres given by a Morse function
on a compact manifold – there is an extension of Witten’s
theorem on the eta invariant to this case (a question of M.
Atiyah)

2 Gluing constructions corresponding to blowing up points in
manifolds – for instance the construction of kähler metrics
with constant scalar curvature (with M. Singer)

3 The eigenvalues of planar triangles as functions on the
moduli space – so corresponding to all collapse modes
(with D. Grieser)
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Now, let me come back to the planar domain problem I
mentioned at the beginning.
Let’s replace the domain by an adiabatic one, or if you like
a race track or a wave guide:

Ωε = {(x , y) ∈ R2; R(θ)− ε ≤ r ≤ R(θ)}. (7)

Here 0 < R ∈ C∞(S) is a smooth function which is periodic
of period 2π and r , θ are standard polar coordinates. So
this domain need not be strictly convex, but is certainly
star-shaped around the origin.
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To make this look like an adiabatic problem, we can
introduce polar coordinates and then rescale, to get
coordinates (t , θ) where

t =
R(θ)− r

ε
∈ [0,1]. (8)

Since we have rescaled it, the t variable, forming the fibre,
is being shrunk while the base variable, θ ∈ S, is of fixed
size.
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The adiabatic vector fields can now be seen

∂r = −1
ε
∂t , ∂θ = ∂θ +

R′

ε
∂t . (9)

Thus the Euclidean Laplacian becomes an elliptic
adiabatic operator

(∂2
x + ∂2

y ) = ε−2P(ε, t , θ, ε∂t , ∂θ) (10)

We can then ask – what can we recover from knowledge of
the eigenvalues for small ε?
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Clearly we need to add boundary conditions.
The Dirichlet condition will mean that

minλ(∆D) > Cε−2, C > 0 (11)

and in particular the family is invertible.
The Neumann condition lead to small eigenvalues.
Perhaps unfortunately the leading terms here are very
simple:

λk (∆D) = ck2 + εF (ε, k)

where c is fixed.
Question: Is the problem behind the small eigenvalues for
the Neumann problem integrable – are there invariants
which can be recovered from them?
In particular of course can one recover R (up to rotation)
from these small eigenvalues?
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Instead of scaling the domain one could force the width to
be constant in the sense that one could look at the region

{z ∈ R2; d(z,C) ≤ ε}

where C is the fixed bounding curve.
What happens to the eigenvalues then?
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Best wishes Gunther for many more years and theorems!
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