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Preliminaries

The inverse conductivity (diffusion) problem

The model: X ⊂ R
n bounded domain, n ≥ 2.

∇ · (γ∇u) ≡
∑n

i,j=1 ∂i

(
γ ij∂ju

)
= 0

u|∂X = g (prescribed)

Λγ(g) := ν · γ∇u|∂X (Dirichlet-to Neumann)

Hγ(g) = ∇u · γ∇u (power density)

X

γ is uniformly elliptic.

• Calderón’s problem:
Does Λγ determine γ

uniquely ? stably ?

[Calderón ’80]

• Power density problem:
Does Hγ determine γ

uniquely ? stably ?

Application: EIT or OT
coupled with acoustic waves.
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Preliminaries

Derivation of power densities - 1/2

By ultrasound modulation

focused wave "on"

∇ · (σ(1 + εc)∇uε) = 0

X

uε|∂X = g

Mε = σ(1 + εc) ∂uε
∂n

|∂X

c = δ(x − x0)

Physical focusing

[Ammari et al. ’08]

Synthetic focusing

[Kuchment-Kunyansky ’10]

[Bal-Bonnetier-M.-Triki ’11]

Small perturbation model:
(Mε−M0)

ε
gives an approximation of ∇u0 · γ∇u0 at x0.

3 / 19



Preliminaries

Derivation of power densities - 2/2

By thermoelastic effects (Impedance-Acoustic CT)

X

4: waves are measured at ∂X by ultrasound transducers

∂tp|t=0 = 0

p|t=0 = ΓHγ [g ]

1
v2s

∂2p

∂t2
− ∆p = 0

3: the energy absorbed generates elastic waves

∇ · (γ∇u) = 0

2: currents are generated inside the domain

u|∂X = g(x)δ(t)
1: voltage is prescribed at ∂X

One reconstructs ΓHγ = Γ∇u · γ∇u over X (Γ: Grüneisen coefficient)

[Gebauer-Scherzer ’09] 4 / 19



Preliminaries

Power density measurements - References

Resolution of the power density problem:

2D isotropic [Capdeboscq et al. ’09].

2D-3D isotropic linearized [Kuchment-Kunyansky ’11].

2D-3D isotropic [Bal-Bonnetier-M.-Triki,IPI ’12].

n-D isotropic and measurements of the form
Hij = σ2α∇ui · ∇uj [M.-Bal,IPI ’12].

2D anisotropic: reconstruction formulas, stability and
numerical implementation [M.-Bal,IP ’12].

Pseudodifferential calculus on the linearized isotropic case
[Kuchment-Steinhauer,’12].

n-D anisotropic [M., Ph.D. thesis ’12]
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Preliminaries

Power density measurements - References

The zero-Laplacian problem: Reconstruct a scalar conductivity
γ from knowledge of one power density H = γ|∇u|2. This yields
the non-linear PDE

∇ · (H|∇u|−2∇u) = 0 (X ), u|∂X = g .

Hyperbolic equation nicknamed the zero-Laplacian.

References:

Newton-based numerical methods to recover (u, γ)
[Ammari et al. ’08, Gebauer-Scherzer ’09].

Theoretical work on the Cauchy problem [Bal ’11].
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Preliminaries

Resolution - Overview

Problem: Reconstruct γ from Hij = ∇ui · γ∇uj with

∇ · γ∇ui = 0 (X ), ui |∂X = gi , 1 ≤ i ≤ m.

Decompose γ = (det γ)
1
n γ̃ with det γ̃ = 1.

We accept redundancies of data (no limitation on m a priori).

Outline:

Local reconstruction algorithms (and their conditions of
validity)

of det γ from known anisotropic structure γ̃

of the anisotropic structure γ̃

Global questions:

study of admissible boundary conditions
study of reconstructible tensors
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Local reconstructions

Scalar factor

The frame approach, local reconstruction of det γ

Differential geometric setup: Euclidean metric and connection ∇.

Frame condition: Let n conductivity solutions such that

(∇u1, . . . ,∇un) is a frame over some Ω ⊂ X .

Def: A := γ
1
2 = (detA)

1
n Ã with det Ã = 1. Set Si := A∇ui .

Data is Hij = ∇ui · γ∇uj = Si · Sj and Si solves:

∇·(ÃSi ) = −F ·ÃSi , d(Ã−1Si )
[ = F [∧(Ã−1Si )

[, F := ∇ log(detA)
1
n .

We first derive F =
1

n|H|
1
2

(
∇(|H|

1
2H ij) · ÃSi

)
Ã−1Sj by studying

the behavior of the dual frame to (Ã−1S1, . . . , Ã
−1Sn).

Legend: known data, unknown, anisotropic structure (known here).
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Local reconstructions

Scalar factor

Local reconstruction of det γ

A first-order quasi-linear system is then derived for the frame S

∇Si = HkqH jp(∇
ÃSq

Si · Sp) Sj ⊗ (Ã−1Sk )
[, where

2∇
ÃSq

Si · Sp = ÃSq · ∇Hip + ÃSp · ∇Hiq − ÃSi · ∇Hpq + 2HpqF · ÃSi − 2HqiF · ÃSp

−A
Ã
(Sq , Sp) · Si −A

Ã
(Si , Sp) · Sq +A

Ã
(Sq , Si ) · Sp .

In short,

∇Si = Si (S , Ã, dÃ,H, dH), 1 ≤ i ≤ n,

where Si is Lipschitz w.r.t. (S1, . . . , Sn). Then,

∇ log det γ = F(S , Ã,H, dH).

I Overdetermined PDEs, solvable for S and log det γ over Ω ⊂ X
via ODE’s along any characteristic curves.
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Local reconstructions

Scalar factor

Local reconstruction of det γ

Theorem (Uniqueness and Lipschitz stability in W 1,∞(Ω))

Over Ω ⊂ X where the frame condition is satisfied, det γ is
uniquely determined up to a (multiplicative) constant. Moreover,

‖ log det γ − log det γ′‖W 1,∞ ≤ ε0 + C (‖H − H ′‖W 1,∞ + ‖Ã− Ã′‖W 1,∞),

where ε0 is the error commited at some x0 ∈ Ω.

[Capdeboscq et al. ’09], [Bal-Bonnetier-M.-Triki, ’12],

[M.-Bal, IP ’12], [M.-Bal, IPI ’12]

I Well-posed problem if the anisotropy is known.
I No loss of derivative/resolution on |γ|.
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Local reconstructions

Anisotropic structure

Anisotropy reconstruction - derivation - 1/2

Goal: Reconstruct γ̃ from enough functionals Hij = ∇ui · γ∇uj .

• Start from a frame of conductivity solutions (∇u1, . . . ,∇un) and
consider an additional solution v .

• Key fact: the decomposition of A∇v in the basis (S1, . . . , Sn) is
known from the power densities:

A∇v = µiSi , with µi (H) known.

• Using ∇ · (ASi ) = 0 and d(A−1Si )
[ = 0, we obtain

Zi · ÃSi = 0 and Z [
i ∧ (Ã−1Si )

[ = 0, Zi = ∇µi .

Writing Z = [Z1| . . . |Zn], this is equivalent to (〈A,B〉 := tr (ABT ))

〈ÃS ,Z 〉 = 0 and 〈ÃS ,ZHΩ〉 = 0, Ω ∈ An(R).

This is 1+ r(n− r+1
2 ) linear constraints on ÃS , where r = rank Z .

Equations: ∇ · (γ∇ui ) = 0 (X ), ui |∂X = gi , A := γ
1
2 , Si = A∇ui
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Local reconstructions

Anisotropic structure

Anisotropy reconstruction - derivation - 2/2

• Hyperplane condition: Assume that (v1, . . . , v`) are so that

Z(1), . . . ,Z(`) yield n2 − 1 independent constraints on ÃS .

• Reconstruct B = ÃS via a generalization of the cross-product
inMn(R).

• Reconstruct γ̃ = Ã2 = BH−1BT , then S = γ̃−
1
2B (then det γ).

Theorem (Uniqueness and stability for γ̃)

Over Ω ⊂ X where the frame condition and the hyperplane
condition are satisfied, γ̃ is uniquely determined, with stability

‖γ̃ − γ̃′‖L∞(Ω) ≤ C‖H − H ′‖W 1,∞(X ).

[M.-Bal, IP ’12] in 2D.

I Explicit reconstruction. Loss of one derivative on γ̃.
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Local reconstructions

Anisotropic structure

Anisotropy reconstruction - remark

In the linearized case, one full-rank matrix Z (i.e. one well-chosen
additional solution) yields a Fredholm inversion (requires the
inversion of a strongly coupled elliptic system whose invertibility
cannot always be established), although this is only 1 + n(n−1)

2
constraints.
[Bal-M.-Guo ’12], in progress.
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Admissible sets and global reconstruction schemes

Admissible sets - the frame condition

Question: How to fulfill the frame condition globally ?

• Admissibility sets Gmγ ,m ≥ n:

(g1, . . . , gm) ∈ G
m
γ if one can cover X with open sets Ωp with

a frame made of ∇ui ’s on each Ωp.
expressible in terms of continuous functionals of the data
∇ui · γ∇uj .

I det γ is reconstructible if Gmγ 6= ∅ for some m ≥ n.

• Patching local ODE-based reconstructions:

∇log det γ = F(S ,H, dH, Ã),

∇Si = Si (S ,H, dH, Ã, dÃ),

1 ≤ i ≤ n.
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Admissible sets and global reconstruction schemes

Admissible sets - the hyperplane condition

Question: How to fulfill the hyperplane condition globally ?

• The admissibility sets Am,`
γ (g) for g ∈ Gmγ :

g provides a support basis throughout X .

(h1, . . . , h`) ∈ A
m,`
γ (g) if the hyperplane condition (expressible

in terms of Hij and dHij) is satisfied throughout X .

I γ̃ is reconstructible if Am,`
γ (g) 6= ∅ for some ` ≥ 1.
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Admissible sets and global reconstruction schemes

Admissible sets - Properties

Properties of Gmγ ,m ≥ n and Am,`
γ (g):

• They are open for the topology of C2(∂X )

• BC’s that work for γ also work for C1-close perturbations of γ.

• γ is reconstructible if and only if Ψ?γ :=
[
DΨ γ DΨT

| detDΨ|

]
◦Ψ−1 is

reconstructible, with Ψ : X → Ψ(X ) a diffeomorphism.

Reconstructibility results:

• If γ = In, then {ui = xi}
n
i=1 provides a support basis and

{vj =
1
2(x

2
j − x2j+1)}

n−1
j=1 allow to reconstruct the anisotropic

structure.

• If γ = σIn with σ smooth, the CGO’s provide a support basis to
reconstruct σ. [Bal et. al,’12] [M.-Bal, ’12]

• As in [Bal-Uhlmann, ’12], we expect a reconstructibility result
based on the Runge approximation for C1 conductivities.
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Admissible sets and global reconstruction schemes

A word about the two-dimensional case

• Reconstruction of det γ:

The frame condition can easily be satisfied globally as soon as
two boundary conditions form a homeomorphism of ∂X onto its
image. [Alessandrini-Nesi ’01]

• Reconstruction of γ̃: [M.-Bal, IP ’12]

γ̃ = (JX · Y )−1
J(XXT + YY

T )J, J =
[

0 −1
1 0

]

,

Y = ∇ log
H11H22 − H2

12

H22H33 − H2
23

= ∇ log
det(∇u1,∇u2)

det(∇u2,∇u3)
.

With B.C. (g1, g2, g3) chosen linearly independent, the set where
Y vanishes (i.e. non reconstructible points) has empty interior.
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Conclusion

Concluding remarks

Inverse conductivity from power densities:

Explicit reconstruction algorithms under qualitative
hypotheses, making the problem injective.

Stability:

• No loss of scales for det γ.
• Loss of one derivative for γ̃.

Some cases where the hypotheses are valid:

Near isotropic smooth or anisotropic constant tensors.
Push-forwards and C 1-perturbations of the above.

I Practical benefits: Resolution improvements (compared to
boundary measurements) and access to anisotropic information.
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Conclusion

Extensions of results

Generalization to lower regularity γ ∈ L∞ or degenerate
cases ?

Potential applications of the method presented to other
hybrid inverse problems

• CDII, MREIT: H = |γ∇u| [Nachman et al.,’10,’11]

• OT with absorption: H = ∇u · γ∇u + σau
2, u solves

−∇ · (γ∇u) + σau = 0, reconstruct (γ, σa) ?
• Systems: elastography with internal measurements.

Adding the coupling coefficient (Hγ ← ΓHγ): is Γ
reconstructible from enough functionals ?
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