The inverse conductivity problem with power densities in dimension $n \ge 2$

François Monard Guillaume Bal

Dept. of Applied Physics and Applied Mathematics, Columbia University.

June 19th, 2012 UC Irvine Conference in honor of Gunther Uhlmann

Outline

1 Preliminaries

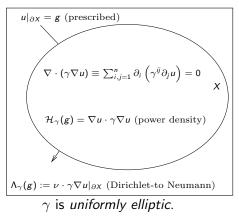
2 Local reconstructions

- Scalar factor
- Anisotropic structure

3 Admissible sets and global reconstruction schemes

The inverse conductivity (diffusion) problem

<u>The model</u>: $X \subset \mathbb{R}^n$ bounded domain, $n \geq 2$.



• Calderón's problem: Does Λ_{γ} determine γ uniquely ? stably ?

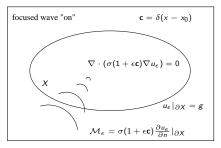
```
[Calderón '80]
```

• Power density problem: Does \mathcal{H}_{γ} determine γ uniquely ? stably ?

Application: EIT or OT coupled with acoustic waves.

Derivation of power densities - 1/2

By ultrasound modulation



Physical focusing

[Ammari et al. '08]

Synthetic focusing

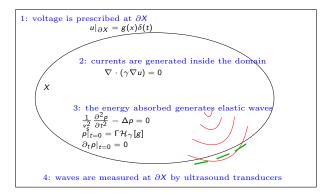
[Kuchment-Kunyansky '10] [Bal-Bonnetier-M.-Triki '11]

Small perturbation model:

 $\frac{(\mathcal{M}_{\epsilon}-\mathcal{M}_{0})}{\epsilon}$ gives an approximation of $\nabla u_{0} \cdot \gamma \nabla u_{0}$ at x_{0} .

Derivation of power densities - 2/2

By thermoelastic effects (Impedance-Acoustic CT)



One reconstructs $\Gamma \mathcal{H}_{\gamma} = \Gamma \nabla u \cdot \gamma \nabla u$ over X (Γ : Grüneisen coefficient) [Gebauer-Scherzer '09]

Power density measurements - References

Resolution of the power density problem:

- 2D isotropic [Capdeboscq et al. '09].
- 2D-3D isotropic linearized [Kuchment-Kunyansky '11].
- 2D-3D isotropic [Bal-Bonnetier-M.-Triki, IPI '12].
- *n*-D isotropic and measurements of the form $H_{ij} = \sigma^{2\alpha} \nabla u_i \cdot \nabla u_j$ [M.-Bal, IPI '12].
- 2D anisotropic: reconstruction formulas, stability and numerical implementation [M.-Bal, IP '12].
- Pseudodifferential calculus on the linearized isotropic case [Kuchment-Steinhauer,'12].
- n-D anisotropic [M., Ph.D. thesis '12]

Power density measurements - References

The zero-Laplacian problem: Reconstruct a scalar conductivity γ from knowledge of **one** power density $H = \gamma |\nabla u|^2$. This yields the non-linear PDE

$$abla \cdot (H|\nabla u|^{-2}\nabla u) = 0 \quad (X), \quad u|_{\partial X} = g.$$

Hyperbolic equation nicknamed the zero-Laplacian.

References:

- Newton-based numerical methods to recover (u, γ) [Ammari et al. '08, Gebauer-Scherzer '09].
- Theoretical work on the Cauchy problem [Bal '11].

Resolution - Overview

<u>Problem</u>: Reconstruct γ from $H_{ij} = \nabla u_i \cdot \gamma \nabla u_j$ with

$$abla \cdot \gamma
abla u_i = 0$$
 (X), $u_i|_{\partial X} = g_i$, $1 \le i \le m$.

Decompose $\gamma = (\det \gamma)^{\frac{1}{n}} \tilde{\gamma}$ with $\det \tilde{\gamma} = 1$.

We accept *redundancies* of data (no limitation on *m* a priori).

Outline:

- Local reconstruction algorithms (and their conditions of validity)
 - of $\det \gamma$ from known anisotropic structure $\tilde{\gamma}$
 - $\bullet\,$ of the anisotropic structure $\tilde{\gamma}$
- Global questions:
 - study of admissible boundary conditions
 - study of **reconstructible tensors**

Outline

Preliminaries

2 Local reconstructions

- Scalar factor
- Anisotropic structure

3 Admissible sets and global reconstruction schemes

Scalar factor

The frame approach, local reconstruction of $\det \gamma$

Differential geometric setup: Euclidean metric and connection $\overline{\nabla}$. Frame condition: Let *n* conductivity solutions such that $(\nabla u_1, \ldots, \nabla u_n)$ is a **frame** over some $\Omega \subset X$. $\underline{\mathsf{Def:}} \left| A := \gamma^{\frac{1}{2}} = (\det A)^{\frac{1}{n}} \widetilde{A} \right| \text{ with } \det \widetilde{A} = 1. \text{ Set } S_i := A \nabla u_i.$ Data is $H_{ij} = \nabla u_i \cdot \gamma \nabla u_j = S_i \cdot S_j$ and S_i solves: $\nabla \cdot (\widetilde{A}S_i) = -F \cdot \widetilde{A}S_i, \quad d(\widetilde{A}^{-1}S_i)^{\flat} = F^{\flat} \wedge (\widetilde{A}^{-1}S_i)^{\flat}, \quad F := \nabla \log(\det A)^{\frac{1}{n}}.$ We first derive $\left| F = \frac{1}{n|H|^{\frac{1}{2}}} \left(\nabla (|H|^{\frac{1}{2}}H^{ij}) \cdot \widetilde{A}S_i \right) \widetilde{A}^{-1}S_j \right|$ by studying

the behavior of the dual frame to $(\widetilde{A}^{-1}S_1, \ldots, \widetilde{A}^{-1}S_n)$.

Legend: known data, unknown, anisotropic structure (known here).

Scalar factor

Local reconstruction of $\det \gamma$

A first-order quasi-linear system is then derived for the frame S

$$\begin{split} \overline{\nabla}S_{i} &= H^{kq}H^{jp}(\overline{\nabla}_{\widetilde{A}S_{q}}S_{i}\cdot S_{p}) \ S_{j} \otimes (\widetilde{A}^{-1}S_{k})^{\flat}, \quad \text{where} \\ 2\overline{\nabla}_{\widetilde{A}S_{q}}S_{i}\cdot S_{p} &= \widetilde{A}S_{q}\cdot \nabla H_{ip} + \widetilde{A}S_{p}\cdot \nabla H_{iq} - \widetilde{A}S_{i}\cdot \nabla H_{pq} + 2H_{pq}F\cdot \widetilde{A}S_{i} - 2H_{qi}F\cdot \widetilde{A}S_{p} \\ &- \mathcal{A}_{\overline{A}}(S_{q}, S_{p})\cdot S_{i} - \mathcal{A}_{\overline{A}}(S_{i}, S_{p})\cdot S_{q} + \mathcal{A}_{\overline{A}}(S_{q}, S_{i})\cdot S_{p}. \end{split}$$

In short,

$$\overline{\nabla}S_i = S_i(S, \widetilde{A}, d\widetilde{A}, H, dH), \quad 1 \leq i \leq n,$$

where S_i is **Lipschitz** w.r.t. (S_1, \ldots, S_n) . Then,

$$\nabla \log \det \gamma = \mathcal{F}(S, \widetilde{A}, H, dH).$$

► Overdetermined PDEs, solvable for S and log det γ over Ω ⊂ X via ODE's along any characteristic curves.

Scalar factor

Local reconstruction of det γ

Theorem (Uniqueness and Lipschitz stability in $W^{1,\infty}(\Omega)$)

Over $\Omega \subset X$ where the frame condition is satisfied, det γ is **uniquely** determined up to a (multiplicative) constant. Moreover,

$$\|\log \det \gamma - \log \det \gamma'\|_{W^{1,\infty}} \leq \varepsilon_0 + C(\|H - H'\|_{W^{1,\infty}} + \|\widetilde{A} - \widetilde{A}'\|_{W^{1,\infty}}),$$

where ε_0 is the error committed at some $x_0 \in \Omega$.

[Capdeboscq et al. '09], [Bal-Bonnetier-M.-Triki, '12], [M.-Bal, IP '12], [M.-Bal, IPI '12]

▶ Well-posed problem if the anisotropy is known.
 ▶ No loss of derivative/resolution on |γ|.

Anisotropic structure

Anisotropy reconstruction - derivation - 1/2

<u>Goal</u>: Reconstruct $\tilde{\gamma}$ from enough functionals $H_{ij} = \nabla u_i \cdot \gamma \nabla u_j$.

- Start from a frame of conductivity solutions $(\nabla u_1, \ldots, \nabla u_n)$ and consider an **additional solution** v.
- Key fact: the decomposition of $A\nabla v$ in the basis (S_1, \ldots, S_n) is known from the power densities:

 $A \nabla v = \mu_i S_i$, with $\mu_i(H)$ known.

• Using $\nabla \cdot (AS_i) = 0$ and $d(A^{-1}S_i)^{\flat} = 0$, we obtain

$$Z_i\cdot \widetilde{A}S_i=0$$
 and $Z_i^{\flat}\wedge (\widetilde{A}^{-1}S_i)^{\flat}=0,$ $Z_i=
abla \mu_i.$

Writing $Z = [Z_1 | \dots | Z_n]$, this is equivalent to $(\langle A, B \rangle := tr (AB^T))$

$$\langle \widetilde{A}S, Z
angle = 0 \quad ext{ and } \quad \langle \widetilde{A}S, ZH\Omega
angle = 0, \quad \Omega \in A_n(\mathbb{R}).$$

This is $1 + r(n - \frac{r+1}{2})$ linear constraints on $\widetilde{A}S$, where $r = \operatorname{rank} Z$. Equations: $\nabla \cdot (\gamma \nabla u_i) = 0$ (X), $u_i|_{\partial X} = g_i$, $A := \gamma^{\frac{1}{2}}$, $S_i = A \nabla u_i$ Anisotropic structure

Anisotropy reconstruction - derivation - 2/2

• Hyperplane condition: Assume that (v_1,\ldots,v_ℓ) are so that

 $Z_{(1)}, \ldots, Z_{(\ell)}$ yield $n^2 - 1$ independent constraints on AS.

- Reconstruct $B = \widetilde{A}S$ via a generalization of the **cross-product** in $\mathcal{M}_n(\mathbb{R})$.
- Reconstruct $\tilde{\gamma} = \tilde{A}^2 = BH^{-1}B^T$, then $S = \tilde{\gamma}^{-\frac{1}{2}}B$ (then det γ).

Theorem (Uniqueness and stability for $ilde{\gamma}$)

Over $\Omega \subset X$ where the frame condition and the hyperplane condition are satisfied, $\tilde{\gamma}$ is uniquely determined, with stability

$$\|\tilde{\gamma}-\tilde{\gamma}'\|_{L^{\infty}(\Omega)}\leq C\|H-H'\|_{W^{1,\infty}(X)}.$$

[M.-Bal, IP '12] in 2D.

Explicit reconstruction. Loss of **one derivative** on $\tilde{\gamma}$.

Anisotropic structure

Anisotropy reconstruction - remark

In the linearized case, **one** full-rank matrix Z (i.e. **one** well-chosen additional solution) yields a Fredholm inversion (requires the inversion of a strongly coupled elliptic system whose invertibility cannot always be established), although this is only $1 + \frac{n(n-1)}{2}$ constraints.

[Bal-M.-Guo '12], in progress.

Outline

- Scalar factor
- Anisotropic structure

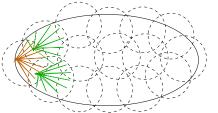
3 Admissible sets and global reconstruction schemes

Admissible sets - the frame condition

Question: How to fulfill the frame condition globally ?

- Admissibility sets $\mathcal{G}_{\gamma}^{m}, m \geq n$:
 - $(g_1, \ldots, g_m) \in \mathcal{G}_{\gamma}^{m'}$ if one can cover X with open sets Ω_p with a frame made of ∇u_i 's on each Ω_p .
 - expressible in terms of continuous functionals of the data $\nabla u_i \cdot \gamma \nabla u_j$.
 - det γ is *reconstructible* if $\mathcal{G}_{\gamma}^{m} \neq \emptyset$ for some $m \geq n$.
- Patching local ODE-based reconstructions:

 $\overline{\nabla} \log \det \gamma = \mathcal{F}(S, H, dH, \widetilde{A}),$ $\overline{\nabla} S_i = S_i(S, H, dH, \widetilde{A}, d\widetilde{A}),$ $1 \le i \le n.$



14/19

Admissible sets - the hyperplane condition

Question: How to fulfill the hyperplane condition globally ?

- The admissibility sets $\mathcal{A}_{\gamma}^{m,\ell}(\mathbf{g})$ for $\mathbf{g} \in \mathcal{G}_{\gamma}^{m}$:
 - g provides a *support basis* throughout X.
 - $(h_1, \ldots, h_\ell) \in \mathcal{A}_{\gamma}^{m,\ell}(\mathbf{g})$ if the hyperplane condition (expressible in terms of H_{ij} and dH_{ij}) is satisfied throughout X.

• $\tilde{\gamma}$ is *reconstructible* if $\mathcal{A}_{\gamma}^{m,\ell}(\mathbf{g}) \neq \emptyset$ for some $\ell \geq 1$.

Admissible sets - Properties

Properties of $\mathcal{G}_{\gamma}^{m}, m \geq n$ and $\mathcal{A}_{\gamma}^{m,\ell}(\mathbf{g})$:

- They are open for the topology of $\mathcal{C}^2(\partial X)$
- BC's that work for γ also work for C^1 -close perturbations of γ .
- γ is reconstructible if and only if $\Psi_{\star}\gamma := \left[\frac{D\Psi \ \gamma \ D\Psi^{\intercal}}{|\det D\Psi|}\right] \circ \Psi^{-1}$ is reconstructible, with $\Psi: X \to \Psi(X)$ a diffeomorphism.

Reconstructibility results:

• If $\gamma = \mathbb{I}_n$, then $\{u_i = x_i\}_{i=1}^n$ provides a support basis and $\{v_j = \frac{1}{2}(x_j^2 - x_{j+1}^2)\}_{j=1}^{n-1}$ allow to reconstruct the anisotropic structure.

• If $\gamma = \sigma \mathbb{I}_n$ with σ smooth, the CGO's provide a support basis to reconstruct σ . [Bal et. al,'12] [M.-Bal, '12]

• As in [Bal-Uhlmann, '12], we expect a reconstructibility result based on the Runge approximation for C^1 conductivities.

A word about the two-dimensional case

• Reconstruction of det γ :

The **frame condition** can easily be satisfied globally as soon as two boundary conditions form a homeomorphism of ∂X onto its image. [Alessandrini-Nesi '01]

• Reconstruction of $\tilde{\gamma}$: [M.-Bal, IP '12]

$$\begin{split} \tilde{\gamma} &= (JX \cdot Y)^{-1} J(XX^T + YY^T) J, \quad J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \\ Y &= \nabla \log \frac{H_{11}H_{22} - H_{12}^2}{H_{22}H_{33} - H_{23}^2} = \nabla \log \frac{\det(\nabla u_1, \nabla u_2)}{\det(\nabla u_2, \nabla u_3)}. \end{split}$$

With B.C. (g_1, g_2, g_3) chosen linearly independent, the set where Y vanishes (i.e. non reconstructible points) has **empty interior**.

Concluding remarks

Inverse conductivity from power densities:

- Explicit reconstruction algorithms under qualitative hypotheses, making the problem injective.
- Stability:
 - **No loss** of scales for det γ .
 - Loss of one derivative for γ̃.
- Some cases where the hypotheses are valid:
 - Near isotropic smooth or anisotropic constant tensors.
 - Push-forwards and C^1 -perturbations of the above.

► Practical benefits: **Resolution improvements** (compared to boundary measurements) and access to **anisotropic information**.

Extensions of results

- Generalization to lower regularity γ ∈ L[∞] or degenerate cases ?
- **Potential applications** of the method presented to other hybrid inverse problems
 - CDII, MREIT: $\mathcal{H} = |\gamma \nabla u|$ [Nachman et al., '10, '11]
 - OT with absorption: $\mathcal{H} = \nabla u \cdot \gamma \nabla u + \sigma_a u^2$, *u* solves $-\nabla \cdot (\gamma \nabla u) + \sigma_a u = 0$, reconstruct (γ, σ_a) ?
 - Systems: elastography with internal measurements.
- Adding the coupling coefficient (H_γ ← ΓH_γ): is Γ reconstructible from enough functionals ?