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Preliminaries

The inverse conductivity (diffusion) problem

The model: X C R” bounded domain, n > 2.

ulox = g (prescribed) e Calderén’s problem:
Does A, determine v
uniquely ? stably ?

V- (yWVu) =327, 0 (ijaju) =0 [Calderén ’80]

| Power density problem:

Does H., determine ~y
uniquely ? stably ?

o (

g) = Vu-~vVu (power density)

Application: EIT or OT

Ay (g) == v - vVu|sx (Dirichlet-to Neumann) COUpIed with acoustic waves.

v is uniformly elliptic.
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Preliminaries

Derivation of power densities - 1/2

By ultrasound modulation

focusediaveon” e ok Physical focusing

[Ammari et al. ’08]

V - (o(14e)Vue) =0

Synthetic focusing

[Kuchment-Kunyansky ’10]

uelox =& [Bal-Bonnetier-M.-Triki ’11]

r\ M = o(1 + ec) Ole

o lax

Small perturbation model:
(Mc—=My)
€

gives an approximation of Vug - vVug at xp.
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Preliminaries

Derivation of power densities - 2/2

By thermoelastic effects (Impedance-Acoustic CT)

1: voltage is prescribed at X
ulox = g(x)d(t)

2: currents are generated inside the domsin
V. (yVu)=0

3: the energy absorbed generates elastic waves

1 8% _ Ap — N
ple—o = Mgl
Otple=0 =0

4: waves are measured at 9X by ultrasound transducers

One reconstructs 'H., = Vu - yVu over X (I': Griineisen coefficient)

[Gebauer-Scherzer ’09] 4/19



Preliminaries

Power density measurements - References

Resolution of the power density problem:

@ 2D isotropic [Capdeboscq et al. ’09].

@ 2D-3D isotropic linearized [Kuchment-Kunyansky ’11].
@ 2D-3D isotropic [Bal-Bonnetier-M.-Triki,IPI ’12].
o

n-D isotropic and measurements of the form
Hj = 0°“Vu; - Vuj [M.-Bal,IPI *12].

@ 2D anisotropic: reconstruction formulas, stability and
numerical implementation [M.-Bal,IP ’12].

@ Pseudodifferential calculus on the linearized isotropic case
[Kuchment-Steinhauer,’12].

@ n-D anisotropic [M., Ph.D. thesis ’12]
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Preliminaries

Power density measurements - References

The zero-Laplacian problem: Reconstruct a scalar conductivity
7 from knowledge of one power density H = |V u[2. This yields
the non-linear PDE

V- (H|Vul?Vu)=0 (X), ulox =g

Hyperbolic equation nicknamed the zero-Laplacian.
References:

@ Newton-based numerical methods to recover (u,~)

[Ammari et al. °’08, Gebauer-Scherzer ’09].

@ Theoretical work on the Cauchy problem [Bal ’11].
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Preliminaries

Resolution - Overview

Problem: Reconstruct v from Hj; = Vu; - vVu; with
V-Vui=0 (X), vulox=gi, 1<i<m.

Decompose v = (det 'y)%'"y with detdy = 1.
We accept redundancies of data (no limitation on m a priori).

Outline:

@ Local reconstruction algorithms (and their conditions of
validity)

o of dety from known anisotropic structure 4
@ of the anisotropic structure 4

@ Global questions:

o study of admissible boundary conditions
o study of reconstructible tensors
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Local reconstructions

Scalar factor

The frame approach, local reconstruction of det

Differential geometric setup: Euclidean metric and connection V.

Frame condition: Let n conductivity solutions such that

(Vui,...,Vuy) is a frame over some Q C X.

1~
n

Alwith det A= 1. Set S; := AVu;.
’ Data is Hjj = Vuj -yVu; = §; - 5; ‘ and S; solves:

Def: | A =42 = (det A)

V(AS) = —F-AS;, d(A'S) = FPA(A'S;))?, F :=Vlog(det A)n.

1
n|H|2
the behavior of the dual frame to (A~1S;,..., A"1S,).

We first derive | F =

(V(|H|%H"f) : Z\s,-) A~1S;| by studying

Legend: known data, unknown, anisotropic structure (known here).
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Local reconstructions

Scalar factor

Local reconstruction of det
A first-order quasi-linear system is then derived for the frame S

VS = HqufP(V;\qu,- -55) S @ (A1),  where
V55,5 Sp = ASq - VHip + ASp - VHig — AS; - VHpg + 2HpqF - AS; — 2HgiF - AS,
— A;(Sq,Sp) - Si — A;(Si,Sp) - Sq + A3(Sq, Si) - Sp-

In short,
VS = S8i(S, A dA H,dH), 1<i<n,
where S; is Lipschitz w.r.t. (51,...,5,). Then,
V logdety = F(S, A, H, dH).

» Overdetermined PDEs, solvable for S and log det~ over Q C X
via ODE’s along any characteristic curves.
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Local reconstructions

Scalar factor

Local reconstruction of det

Theorem (Uniqueness and Lipschitz stability in W1>°(Q))

Over Q C X where the frame condition is satisfied, det~y is
uniquely determined up to a (multiplicative) constant. Moreover,

|| log dety — log det v/ || wr < g0+ C(I|H — H' | wr.e + [|A— A|| ),

where gq is the error commited at some xg € €.

[Capdeboscq et al. ’09], [Bal-Bonnetier-M.-Triki, ’12],
[M.-Bal, IP ’12], [M.-Bal, IPI ’12]

» Well-posed problem if the anisotropy is known.
» No loss of derivative/resolution on |7|.
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Local reconstructions

Anisotropic structure

Anisotropy reconstruction - derivation - 1/2

Goal: Reconstruct 4 from enough functionals H;; = Vu; - yVu;.

e Start from a frame of conductivity solutions (Vuy,...,Vu,) and
consider an additional solution v.

e Key fact: the decomposition of AVv in the basis (51,...,55) is
known from the power densities:

AVv = 1;S;,  with p;(H) known.
e Using V- (AS;) = 0 and d(A™S;)” = 0, we obtain
Zi-ASi=0 and Z'A(AT'S) =0, Z =Vu.
Writing Z = [Z3] . ..|Z,], this is equivalent to ((A,B) :=tr (ABT))

(AS,Z) =0 and (AS,ZHQ) =0, Qe A,(R).

Thisis 1+ r(n— ’g—l) linear constraints on AS, where r = rank Z.

Equations: V- (vVu;) =0 (X),

ulox = gi, A= 7%, S = AVu;
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Local reconstructions

Anisotropic structure

Anisotropy reconstruction - derivation - 2/2

e Hyperplane condition: Assume that (vi,...,v) are so that

Z(1ys -+ () yield n?> — 1 independent constraints on AS.

e Reconstruct B = AS via a generalization of the cross-product
in M,(R).

e Reconstruct ¥ = A2 = BH BT, then S = ,?7%5 (then det~y).

Theorem (Uniqueness and stability for ¥)

Over Q2 C X where the frame condition and the hyperplane
condition are satisfied, 7 is uniquely determined, with stability

15 =4l (e) < CIIH = H' | wioo(x)-
[M.-Bal, IP ’12] in 2D.

» Explicit reconstruction. Loss of one derivative on 7.
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Local reconstructions
Anisotropic structure

Anisotropy reconstruction - remark

In the linearized case, one full-rank matrix Z (i.e. one well-chosen
additional solution) yields a Fredholm inversion (requires the
inversion of a strongly coupled elliptic system whose invertibility
cannot always be established), although this is only 1 + "(" )
constraints.

[Bal-M.-Guo ’12], in progress.
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Admissible sets - the frame condition

Question: How to fulfill the frame condition globally ?
e Admissibility sets g;", m > n:

® (g1,---,8m) € G if one can cover X with open sets Q,, with
a frame made of Vu;'s on each €.

@ expressible in terms of continuous functionals of the data
Vu; - yVu;.
» dety is reconstructible if GI' # () for some m > n.

e Patching local ODE-based reconstructions:

Vlogdety = F(S, H, dH, /Z),

VS: = Si(S, H, dH, A, dA), / [2
1<i<n. '
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Admissible sets and global reconstruction schemes

Admissible sets - the hyperplane condition

Question: How to fulfill the hyperplane condition globally ?

e The admissibility sets AT (g) for g € (O
@ g provides a support basis throughout X.

o (h1,...,h) € AT’E(g) if the hyperplane condition (expressible
in terms of Hj; and dHj;) is satisfied throughout X.

» 7 is reconstructible if Ai,"’g(g) # () for some £ > 1.
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Admissible sets - Properties

Properties of G, m > n and Aff’e(g):

e They are open for the topology of C?(0X)
e BC's that work for 7 also work for Cl-close perturbations of 7.
e 7 is reconstructible if and only if W, := [%DDW“"T} oW lis

reconstructible, with W : X — W(X) a diffeomorphism.

Reconstructibility results:

o If v =1,, then {u; = x;}7_; provides a support basis and
{vi= %(Xf - xj2+1) J";ll allow to reconstruct the anisotropic

structure.
o If v = ol,, with ¢ smooth, the CGO'’s provide a support basis to
reconstruct . [Bal et. al,’12] [M.-Bal, ’12]

e As in [Bal-Uhlmann, ’12], we expect a reconstructibility result

based on the Runge approximation for C! conductivities.
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Admissible sets and global reconstruction schemes

A word about the two-dimensional case

e Reconstruction of det~:

The frame condition can easily be satisfied globally as soon as
two boundary conditions form a homeomorphism of X onto its
image. [Alessandrini-Nesi ’01]

e Reconstruction of 4: [M.-Bal, IP ’12]

10
HiiHx» — H122 det(Vui, Vip)
Y=Vioeg—————2= =Vliog ———=~.
v g HxHzz — H223 v o8 det(Vuz, VU3)

F=UX-Y)TIXXT + vy, J=1[9,

With B.C. (g1, g2, &3) chosen linearly independent, the set where
Y vanishes (i.e. non reconstructible points) has empty interior.
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Conclusion

Concluding remarks

Inverse conductivity from power densities:
o Explicit reconstruction algorithms under qualitative
hypotheses, making the problem injective.
@ Stability:
e No loss of scales for dety.
e Loss of one derivative for 7.
@ Some cases where the hypotheses are valid:

o Near isotropic smooth or anisotropic constant tensors.
o Push-forwards and C!-perturbations of the above.

» Practical benefits: Resolution improvements (compared to
boundary measurements) and access to anisotropic information.
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Conclusion

Extensions of results

@ Generalization to lower regularity v € L*° or degenerate
cases 7
o Potential applications of the method presented to other
hybrid inverse problems
e CDII, MREIT: H = |’}/VU| [Nachman et al.,’10,’11]
e OT with absorption: H = Vu-yVu + o,u?, u solves
-V - (yVu) + o,u = 0, reconstruct (y,0,) ?
e Systems: elastography with internal measurements.
o Adding the coupling coefficient (%, < I'H,): is T
reconstructible from enough functionals ?
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