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X-ray transform

X-ray transform for f ∈ Cc(R
n):

If (x , θ) =

∫ ∞

−∞

f (x + tθ) dt, x ∈ R
n, θ ∈ Sn−1.

Inverse problem: Recover f from its X-ray transform If .

◮ coincides with Radon transform if n = 2, first inversion
formula by Radon (1917)

◮ basis for medical imaging methods CT and PET

◮ Cormack, Hounsfield (1979): Nobel prize in medicine for
development of CT



X-ray transform

We will consider more general ray transforms that may involve

◮ weight factors

◮ integration over more general families of curves

◮ integration of tensor fields



Weighted transforms

Ray transform with attenuation a ∈ Cc(R
n):

I af (x , θ) =

∫ ∞

−∞

f (x+tθ)e
∫
∞

0
a(x+tθ+sθ)ds dt, x ∈ R

n, θ ∈ Sn−1.

Arises in the imaging method SPECT and in inverse transport
with attenuation:

Xu + au = −f

where Xu(x , θ) = θ · ∇xu(x , θ) is the geodesic vector field.

Injectivity (n = 2): Arbuzov-Bukhgeim-Kazantsev (1998).



Boundary rigidity

Travel time tomography: recover the sound speed of Earth
from travel times of earthquakes.



Boundary rigidity

Model the Earth as a compact Riemannian manifold (M , g)
with boundary. A scalar sound speed c(x) corresponds to

g(x) =
1

c(x)2
dx2.

A general metric g corresponds to anisotropic sound speed.

Inverse problem: determine the metric g from travel times
dg (x , y ) for x , y ∈ ∂M .

By coordinate invariance can only recover g up to isometry.
Easy counterexamples: region of low velocity, hemisphere.



Boundary rigidity

Definition
A compact manifold (M , g) with boundary is simple if any two
points are joined by a unique geodesic depending smoothly on
the endpoints, and ∂M is strictly convex.

Conjecture (Michél 1981)
A simple manifold (M , g) is determined by dg up to isometry.

◮ Herglotz (1905), Wiechert (1905): recover c(r) if

d

dr

(
r

c(r)

)

> 0

◮ Pestov-Uhlmann (2005): recover g on simple surfaces



Geodesic ray transform

Let (M , g) be compact with smooth boundary. Linearizing
g 7→ dg in a fixed conformal class leads to the ray transform

If (x , v ) =

∫ τ(x ,v)

0

f (γ(t, x , v )) dt

where x ∈ ∂M and v ∈ SxM = {v ∈ TxM ; |v | = 1}.

Here γ(t, x , v ) is the geodesic starting from point x in
direction v , and τ(x , v ) is the time when γ exits M . We
assume that (M , g) is nontrapping, i.e. τ is always finite.



Tensor tomography

Applications of tomography for m-tensors:

◮ m = 0: deformation boundary rigidity in a conformal
class, seismic and ultrasound imaging

◮ m = 1: Doppler ultrasound tomography

◮ m = 2: deformation boundary rigidity

◮ m = 4: travel time tomography in elastic media



Tensor tomography

Let f = fi1···im dx
i1 ⊗ · · · ⊗ dx im be a symmetric m-tensor in M .

Define f (x , v ) = fi1···im(x)v
i1 · · · v im . The ray transform of f is

Imf (x , v ) =

∫ τ(x ,v)

0

f (ϕt(x , v )) dt, x ∈ ∂M , v ∈ SxM ,

where ϕt is the geodesic flow,

ϕt(x , v ) = (γ(t, x , v ), γ̇(t, x , v )).

In coordinates

Imf (x , v ) =

∫ τ(x ,v)

0

fi1···im(γ(t))γ̇
i1(t) · · · γ̇ im(t) dt.



Tensor tomography

Recall the Helmholtz decomposition of F : Rn → Rn,

F = F s +∇h, ∇ · F s = 0.

Any symmetric m-tensor f admits a solenoidal decomposition

f = f s + dh, δf s = 0, h|∂M = 0

where h is a symmetric (m − 1)-tensor, d = σ∇ is the inner
derivative (σ is symmetrization), and δ = d∗ is divergence.

By fundamental theorem of calculus, Im(dh) = 0 if h|∂M = 0.
Im is said to be s-injective if it is injective on solenoidal tensors.



Tensor tomography

Conjecture (Pestov-Sharafutdinov 1988)
If (M , g) is simple, then Im is s-injective for any m ≥ 0.

Positive results on simple manifolds:

◮ Mukhometov (1977): m = 0

◮ Anikonov (1978): m = 1

◮ Pestov-Sharafutdinov (1988): m ≥ 2, negative curvature

◮ Sharafutdinov-Skokan-Uhlmann (2005): m ≥ 2, recovery
of singularities

◮ Stefanov-Uhlmann (2005): m = 2, simple real-analytic g

◮ Sharafutdinov (2007): m = 2, simple 2D manifolds



Tensor tomography

Theorem (Paternain-S-Uhlmann 2011)
If (M , g) is a simple surface, then Im is s-injective for any m.

More generally:

Theorem (Paternain-S-Uhlmann 2011)
Let (M , g) be a nontrapping surface with convex boundary,

and assume that I0 and I1 are s-injective and I ∗0 is surjective.

Then Im is s-injective for m ≥ 2.



Wave equation

Let Ω ⊂ Rn bounded domain, q ∈ C (Ω).

(∂2
t −∆+ q)u = 0 in Ω× [0,T ], u(0) = ∂tu(0) = 0.

Boundary measurements

ΛHyp
q : u|∂Ω×[0,T ] 7→ ∂νu|∂Ω×[0,T ].

Inverse problem: recover q from ΛHyp
q .

◮ scattering measurements related to X-ray transform
(Lax-Phillips, . . . )

◮ recover X-ray transform of q from ΛHyp
q by geometrical

optics solutions (Rakesh-Symes 1988)



Anisotropic Calderón problem

Medical imaging, Electrical Impedance Tomography:

{
∆gu = 0 in M ,

u = f on ∂M .

Here g models the electrical resistivity of the domain M , and
∆g is the Laplace-Beltrami operator. Boundary measurements

Λg : f 7→ ∂νu|∂M .

Inverse problem: given Λg , determine g up to isometry.

Known in 2D (Nachman, Lassas-Uhlmann), open in 3D.



Anisotropic Calderón problem

Dos Santos-Kenig-S-Uhlmann (2009): complex geometrical
optics solutions

∆gu = 0 in M , u = eτx1(v + r), τ ≫ 1.

Need that (M , g) ⊂⊂ (R×M0, g) where (M0, g0) is compact
with boundary, and g is conformal to e ⊕ g0.

Here v is related to a high frequency quasimode on (M0, g0).
Concentration on geodesics allows to use Fourier transform in
the Euclidean part R and attenuated geodesic ray transform in
(M0, g0).



Transport equation

Let (M , g) be a simple surface, and suppose that f is an
m-tensor on M with Imf = 0. Want to show that f = dh.

The function

u(x , v ) =

∫ τ(x ,v)

0

f (ϕt(x , v )) dt, (x , v ) ∈ SM

solves the transport equation

Xu = −f in SM , u|∂(SM) = 0.

Here Xu(x , v ) = ∂
∂t
u(ϕt(x , v ))|t=0 is the geodesic vector field.

Enough to show that u = 0.



Second order equation

Isothermal coordinates allow to identify

SM = {(x , θ) ; x ∈ D, θ ∈ [0, 2π)}.

The vertical vector field on SM is V = ∂
∂θ
. Want to show

{
Xu = −f

u|∂(SM) = 0
=⇒ u = 0.

If f is a 0-tensor, f = f (x), then Vf = 0. Enough to show

{
VXu = 0

u|∂(SM) = 0
=⇒ u = 0.



Second order equation

Need a uniqueness result for P = VX , where

P = e−λ ∂

∂θ

(

cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ h(x , θ)

∂

∂θ

)

.

Facts about P:

◮ second order operator on 3D manifold SM

◮ has multiple characteristics

◮ P +W has compactly supported solutions for some first
order perturbation W

◮ subelliptic estimate ‖u‖H1(SM) ≤ C‖Pu‖L2(SM)



Uniqueness

Pestov identity in L2(SM) inner product when u|∂(SM) = 0:

‖Pu‖2 = ‖Au‖2 + ‖Bu‖2 + (i [A,B]u, u)

where P = A+ iB , A∗ = A, B∗ = B .

Computing the commutator gives (with K the Gaussian
curvature of (M , g))

‖Pu‖2 = ‖XVu‖2 − (KVu,Vu)
︸ ︷︷ ︸

≥0 on simple manifolds

+‖Xu‖2

Thus Pu = 0 implies u = 0, showing injectivity of I0.



Tensor tomography

Let Xu = −f in SM , u|∂(SM) = 0 where f is an m-tensor.
Interpret u and f as sections of trivial bundle E = SM ×C, get

D0
Xu = −f

where D0
X = d is the flat connection.

This equation has gauge group via multiplication by functions
c on M (preserves m-tensors). Gauge equivalent equations

DA
X (cu) = −cf

where DA = d + A and A = −c−1dc.



Tensor tomography

Pestov identity with a connection (in L2(SM) norms):

‖V (X +A)u‖2 = ‖(X +A)Vu‖2 − (KVu,Vu)+ ‖(X +A)u‖2

+ (∗FAVu, u)

Here ∗ is Hodge star and

FA = dA+ A ∧ A

is the curvature of the connection DA = d + A.

If the curvature ∗FA and the expression (Vu, u) have suitable
signs, gain a positive term in the energy estimate.



Tensor tomography

Problem: if DA is gauge equivalent to D0, then FA = F0 = 0.

Need a generalized gauge transformation that arranges a sign
for FA. This breaks the m-tensor structure of the equation,
but is manageable if the gauge transform is holomorphic.

Fourier analysis in θ (Guillemin-Kazhdan 1978):

L2(SM) =

∞⊕

k=−∞

Hk , u =

∞∑

k=−∞

uk

where Hk is the eigenspace of −iV with eigenvalue k. A
function u ∈ L2(SM) is holomorphic if uk = 0 for k < 0.



Tensor tomography

Theorem (Holomorphic gauge transformation)
If A is a 1-form on a simple surface, there is a holomorphic

w ∈ C∞(SM) such that X + A = ew ◦ X ◦ e−w .

Related to injectivity of attenuated ray transform on simple
surfaces (S-Uhlmann 2011).



Tensor tomography

Let f =
∑m

k=−m fk be an m-tensor, and let

Xu = −f , u|∂(SM) = 0.

Choose a primitive ϕ of the volume form ωg of (M , g), so
dϕ = ωg . Let s > 0 be large, let As = −isϕ, and choose a
holomorphic w with X + As = esw ◦ X ◦ e−sw .

The equation becomes

(X + As)(e
swu) = −esw f , eswu|∂(SM) = 0.

Here the curvature of As has a sign and one has information
on Fourier coefficients of esw f . The Pestov identity with
connection allows to control Fourier coefficients of eswu,
eventually proving s-injectivity of Im.



Relation to Carleman estimates

Pestov identity with connection As resembles a Carleman
estimate:

s1/2‖u‖
L2x Ḣ

1/2
θ

. ‖eswX (e−swu)‖L2x Ḣ1
θ
.

Positivity comes from Im (w)! This is enough to

◮ absorb large attenuation (even for systems)

◮ absorb error terms coming from m-tensors

This may not be enough to

◮ localize in space

◮ absorb error terms coming from curvature of M



Open questions

Conjecture
Im is s-injective on simple manifolds when dim(M) ≥ 3 and
m ≥ 2.

Conjecture
Im is s-injective on any compact nontrapping manifold with
strictly convex boundary.


