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X-ray transform

X-ray transform for f € C.(R"):

If(x,0) = / F(x+t0)dt, xcR"6e S

oo

Inverse problem: Recover f from its X-ray transform /f.

» coincides with Radon transform if n = 2, first inversion
formula by Radon (1917)

» basis for medical imaging methods CT and PET

» Cormack, Hounsfield (1979): Nobel prize in medicine for
development of CT



X-ray transform

We will consider more general ray transforms that may involve

» weight factors
» integration over more general families of curves

» integration of tensor fields



Weighted transforms

Ray transform with attenuation a € C.(R"):

12°f(x,0) = / f(x+th)elo” 2bcttots)ds gp e R" g e S

oo

Arises in the imaging method SPECT and in inverse transport

with attenuation:
Xu+au=—f

where Xu(x,0) = 6 - V,u(x, 0) is the geodesic vector field.

Injectivity (n = 2): Arbuzov-Bukhgeim-Kazantsev (1998).



Boundary rigidity

Travel time tomography: recover the sound speed of Earth
from travel times of earthquakes.

E.Q. Focus

Low Velocity Core




Boundary rigidity

Model the Earth as a compact Riemannian manifold (M, g)
with boundary. A scalar sound speed c(x) corresponds to

A general metric g corresponds to anisotropic sound speed.

Inverse problem: determine the metric g from travel times
dg(x, y) for x,y € OM.

By coordinate invariance can only recover g up to isometry.
Easy counterexamples: region of low velocity, hemisphere.



Boundary rigidity

Definition

A compact manifold (M, g) with boundary is simple if any two
points are joined by a unique geodesic depending smoothly on
the endpoints, and OM is strictly convex.

Conjecture (Michél 1981)
A simple manifold (M, g) is determined by d, up to isometry.

» Herglotz (1905), Wiechert (1905): recover c(r) if

() >0

» Pestov-Uhlmann (2005): recover g on simple surfaces



Geodesic ray transform

Let (M, g) be compact with smooth boundary. Linearizing
g — dg in a fixed conformal class leads to the ray transform

T(x,v)
If(x,v) = / f(vy(t,x,v))dt
0

where x ¢ OM and v € S;M = {v € T,M; |v| = 1}.

Here ~(t, x, v) is the geodesic starting from point x in
direction v, and 7(x, v) is the time when v exits M. We
assume that (M, g) is nontrapping, i.e. T is always finite.



Tensor tomography

Applications of tomography for m-tensors:

» m = 0: deformation boundary rigidity in a conformal
class, seismic and ultrasound imaging

» m = 1: Doppler ultrasound tomography
» m = 2: deformation boundary rigidity

» m = 4: travel time tomography in elastic media



Tensor tomography

Let f =f;.., dx" ® - -+ ® dx'™ be a symmetric m-tensor in M.

Define f(x,v) = f,. ,m( Jvit .- vim_ The ray transform of f is

(x,v)
Inf(x,v) = / f(pe(x,v))dt, xeOM,ve S5M,
0

where ¢, is the geodesic flow,

SDt(Xa V) = (V(t’X’ V)a ;Y(t’X’ V))

In coordinates

7(x,v) ) )
Inf (3, ) = / froin (1(£)3(8) -5 (1) .



Tensor tomography

Recall the Helmholtz decomposition of F : R" — R”,
F=F +Vh V- -F°=0.
Any symmetric m-tensor f admits a solenoidal decomposition
f=F +dh, 6f =0, hlgy=0

where h is a symmetric (m — 1)-tensor, d = oV is the inner
derivative (o is symmetrization), and § = d* is divergence.

By fundamental theorem of calculus, /,(dh) = 0 if h|am = 0.
I is said to be s-injective if it is injective on solenoidal tensors.



Tensor tomography

Conjecture (Pestov-Sharafutdinov 1988)
If (M, g) is simple, then I, is s-injective for any m > 0.

Positive results on simple manifolds:

>

>

>

Mukhometov (1977): m =0
Anikonov (1978): m=1
Pestov-Sharafutdinov (1988): m > 2, negative curvature

Sharafutdinov-Skokan-Uhlmann (2005): m > 2, recovery
of singularities

Stefanov-Uhlmann (2005): m = 2, simple real-analytic g
Sharafutdinov (2007): m = 2, simple 2D manifolds



Tensor tomography

Theorem (Paternain-S-Uhlmann 2011)

If (M, g) is a simple surface, then I, is s-injective for any m.

More generally:

Theorem (Paternain-S-Uhlmann 2011)

Let (M, g) be a nontrapping surface with convex boundary,
and assume that ly and I, are s-injective and I is surjective.
Then |, is s-injective for m > 2.



Wave equation

Let Q C R” bounded domain, g € C(Q).
(02— A+ q)u=0in Q x [0, T], u(0)=0d,u(0)=0.
Boundary measurements
NP uloaxio, 1 — Ouloaxio,T)-

Inverse problem: recover g from /\qHyP.

» scattering measurements related to X-ray transform
(Lax-Phillips, ...)

» recover X-ray transform of g from /\qHyP by geometrical
optics solutions (Rakesh-Symes 1988)



Anisotropic Calderén problem

Medical imaging, Electrical Impedance Tomography:

Agu=0 in M,
u=f on OM.

Here g models the electrical resistivity of the domain M, and
A, is the Laplace-Beltrami operator. Boundary measurements

/\g f = a,,u|a/w.

Inverse problem: given A,, determine g up to isometry.

Known in 2D (Nachman, Lassas-Uhlmann), open in 3D.



Anisotropic Calderén problem

Dos Santos-Kenig-S-Uhlmann (2009): complex geometrical
optics solutions

Agu=0inM, u=e"(v+r), 7> 1.

Need that (M, g) CC (R x My, g) where (My, go) is compact
with boundary, and g is conformal to e & go.

Here v is related to a high frequency quasimode on (My, go).
Concentration on geodesics allows to use Fourier transform in
the Euclidean part R and attenuated geodesic ray transform in

(Mmgo)-



Transport equation

Let (M, g) be a simple surface, and suppose that f is an
m-tensor on M with /,f = 0. Want to show that f = dh.

The function

(x,v)
u(x,v) = / f(pe(x,v))dt, (x,v)e SM
0
solves the transport equation
Xu=—f in SM, u|ysm) = 0.

Here Xu(x, v) = Zu(e(x, v))|e—o is the geodesic vector field.
Enough to show that u = 0.



Second order equation

Isothermal coordinates allow to identify
SM = {(x,0); xeD, § € [0,27)}.

The vertical vector field on SM is V = %. Want to show

{ Xu=—f
= u=0.
ulasmy =0

If f is a O-tensor, f = f(x), then Vf = 0. Enough to show

{ VXu=0
— u=0.

ulasmy =0



Second order equation

Need a uniqueness result for P = VX, where

NEZ, 9, 9, 0
P=e" 86’ (cos@a—x1 +S|n68—x2 + h(x, 0)8«9)

Facts about P:
» second order operator on 3D manifold SM
» has multiple characteristics

» P + W has compactly supported solutions for some first
order perturbation W

» subelliptic estimate ||u|| g1 (smy < C||Pul| 2(smy



Uniqueness

Pestov identity in L?(SM) inner product when u|ssp) = O:
1Pull* = [|Aul|* + ||Bul|* + (i[A, Blu, u)
where P= A+ B, A*= A, B* = B.

Computing the commutator gives (with K the Gaussian
curvature of (M, g))

[Pull* = || XVul|* — (K Vs, Vir) +[| Xu]*

VT
>0 on simple manifolds

Thus Pu = 0 implies u = 0, showing injectivity of /.



Tensor tomography

Let Xu = —f in SM, u|ysmy = 0 where f is an m-tensor.
Interpret u and f as sections of trivial bundle E = SM x C, get

DYu=—f
where DY = d is the flat connection.

This equation has gauge group via multiplication by functions
c on M (preserves m-tensors). Gauge equivalent equations

D%(cu) = —cf

where DA =d + A and A= —cldc.



Tensor tomography

Pestov identity with a connection (in L>(SM) norms):

V(X +A)ull* = [[(X + A) Vul|* = (KVur, Vi) + [|(X + A)u]]®
+ (xFaVu, u)

Here x is Hodge star and
FaA=dA+ANA
is the curvature of the connection DA = d + A.

If the curvature xF4 and the expression (Vu, u) have suitable
signs, gain a positive term in the energy estimate.



Tensor tomography

Problem: if D# is gauge equivalent to D°, then F4y = Fy = 0.

Need a generalized gauge transformation that arranges a sign
for Fa. This breaks the m-tensor structure of the equation,
but is manageable if the gauge transform is holomorphic.

Fourier analysis in 6 (Guillemin-Kazhdan 1978):

Lz(SM): é Hk, u= f: Uy

k=—o0 k=—00

where Hy is the eigenspace of —iV with eigenvalue k. A
function u € L?(SM) is holomorphic if u, = 0 for k < 0.



Tensor tomography

Theorem (Holomorphic gauge transformation)

If A is a 1-form on a simple surface, there is a holomorphic
w € C*(SM) such that X + A=¢e"oXoe ™.

Related to injectivity of attenuated ray transform on simple
surfaces (S-Uhlmann 2011).



Tensor tomography
Let f =) )", fx be an m-tensor, and let
Xu = —f, u|5(5M) =0.

Choose a primitive ¢ of the volume form w, of (M, g), so
dy = wg. Let s > 0 be large, let A; = —isp, and choose a
holomorphic w with X + A; = e*” o X o e™*".

The equation becomes
(X +As)(e™u) = —e™f,  e™ulpsmy = 0.

Here the curvature of As has a sign and one has information
on Fourier coefficients of e f. The Pestov identity with
connection allows to control Fourier coefficients of e u,
eventually proving s-injectivity of /,,.



Relation to Carleman estimates

Pestov identity with connection As resembles a Carleman
estimate:

2 ull 2 S Nle™ X (€7 ) 2y

Positivity comes from Im (w)! This is enough to
» absorb large attenuation (even for systems)
» absorb error terms coming from m-tensors
This may not be enough to
» localize in space

» absorb error terms coming from curvature of M



Open questions

Conjecture

I is s-injective on simple manifolds when dim(M) > 3 and
m> 2.

Conjecture

I is s-injective on any compact nontrapping manifold with
strictly convex boundary.



