Gunther 60

Inverse Source Problem

Collaborators:
Steve Kusiak
Roland Griesmaier
Martin Hanke

John Sylvester - U W
Forward Source Problem

\[(\Delta + k^2) u^+ = f \text{ in } \mathbb{R}^n\]

Theorem \[\exists! \text{ outgoing } u^+\]

For \(k \in \mathbb{C}^+ \)
\[\hat{u} = \frac{\hat{f}(\xi)}{k^2 - \xi^2}\]

For \(k \in \mathbb{R} \)
\[\hat{u} = \lim_{\varepsilon \to 0} \frac{\hat{f}(\xi)}{(k+i\varepsilon)^2 - \xi^2}\]

Outgoing \(\Longleftrightarrow\) Sommerfeld Radiation Condition

\(\Longleftrightarrow\) Fourier Transform \((t \leftrightarrow k)\) in time
of solution to the wave equation
that vanishes in the past
Far Field = Restricted Fourier Transform

\[(\Delta + k^2)u = F \quad [\text{compactly supported}]\]

\[u = \frac{\hat{F}(\xi)}{(k + i\alpha)^2 - \xi^2}\]

as \(r \to \infty \)

\[u \sim \frac{e^{ikn}}{(kn)^{\frac{1}{2}}} \hat{u}(\Omega) = \frac{e^{ikn}}{(kn)^{\frac{1}{2}}} \hat{F}(k\Omega)\]

Rellich's Lemma: If \(u \) decays faster than \(\frac{1}{r^{\gamma_2}} \) at \(\infty \), \(u = 0 \) outside \(\text{ch}(\text{supp} F) \).

Unique Continuation: \(u = 0 \) on \(\text{supp}_\infty F \)

\(\text{supp}_\infty F = \text{unbounded connected component of } \mathbb{R}^2 \setminus (\text{supp} F) \)
The Inverse Source Problem
\((\Delta + k^2) u^+ = f\)

Linear but Non-Uniqueness

Non-Radiating Sources \(f \mapsto \Phi\) has a big kernel

NR Volume Sources \([F \in L^2(\text{compact set})]\)

\(f \in \text{NR} \iff f = (\Delta + k^2) \Phi_{oo}\)

\(\Phi_{oo}\) means \(H^2_0(\text{compact set})\)

Proof

\((\Delta + k^2) \Phi_{oo} = 0 \quad \text{on} \quad \{\varphi^2 = k^2\}\)

\(\Rightarrow\) Rellich + unique continuation \(\Rightarrow u^+ = \Phi_{oo}\)
Free Sources

Corollary Every source supported in \(\Omega \) has a unique equivalent \(\Omega \)-Free source.

Equivalent sources radiate the same far field
A free source satisfies \((\Delta + k^2) F = 0\) in \(\Omega \)

Proof Solve the clamped plate equation

\[
(N^2 + \Delta + k^2)^2 \Phi_{oo} = (\Delta + k^2) \Phi
\]

\[
\Phi = f - (\Delta + k^2) \Phi_{oo} \text{ is equivalent to } F \text{ and } (\Delta + k^2) F = 0
\]

Pseudo Inverse The unique free source is also the source with minimal \(L^2(\Omega) \) norm
Criticisms of the Ω-Free Source

1. We need to start by choosing Ω.

2. No matter how small the support of the true source is, the support of the free source is all of Ω.

3. But it does have the smallest L^2-norm.
The L^2-norm of the Free Source

$$(\Delta + k^2) u^+ = F \quad (\Delta + k^2) \varphi^0 = 0$$

$$\varphi^0 = \sum_{n=0}^{\infty} \frac{J_n(kr)}{n!} e^{in\theta}$$

Standard Far Field Calculation

$$\int_{\mathbb{R}^n} f n^0 = \int_{\mathbb{R}^n} \left(\Delta + k^2 \right) u^+ \varphi^0 = \lim_{R \to \infty} \int_{B_R} \left(\Delta + k^2 \right) u^+ \varphi^0$$

$$= \lim_{R \to \infty} \int_{\partial B_R} \frac{\partial u^+}{\partial n} \varphi^0 - u^+ \frac{\partial \varphi^0}{\partial n} = \int_{S^2} u^+ \varphi^0 ds$$

If $\varphi^0 = e^{i n \theta}$ then $\varphi^0 = J_n(kr) e^{i n \theta}$, so

If $u^+ = e^{i n \theta}$ then $F_{\text{free}} = \frac{J_n(kr) e^{i n \theta}}{\|J_n(kr)\|_2(L^2(\mathbb{R}))} \cdot \chi_{S^2}$
The \mathcal{S}_L-free source (which has minimal L^2 norm)

$$f = \sum f_n e^{in\theta} \frac{J_n(kr)}{||J_n(kr)||_{L^2}}$$

radiates

$$\sum f_n e^{in\theta}$$

$$||f|| = \sum \frac{|f_n|}{||J_n(kr)||_{L^2}}$$

For $\mathcal{S} = \mathcal{B}_R(0)$, $||f||_{L^2}^2 = \sum \frac{|f_n|^2}{||J_n(kr)||_{L^2}^2}$

\[
\|
\| J_n \|_{L^2(B_r)}^2
\]
Test for finding supp f

Theorem

\[\exists f \text{ supported in } B_{r}(0) \iff \| f_{n} \|^2 \leq \frac{\| f_{n}(x) \|^2_{L^{2}(B_{r}(0))}}{\| J_{n}(x) \|^2_{L^{2}(B_{r}(0))}} \text{ converges} \]

Translation

\[f^{p} := f(x - p) \Rightarrow \tilde{f}^{p}(\xi) = e^{2\pi i p \cdot \xi} \tilde{f}(\xi) \]

\[|\tilde{f}| \leq |f^{p}| \leq e^{\| p \|^2} \]

Theorem

\[\exists f \text{ supported in } B_{r}(p) \iff \| f_{n} \|^2 \leq \frac{\| f_{n}(x) \|^2_{L^{2}(B_{r}(p))}}{\| J_{n}(x) \|^2_{L^{2}(B_{r}(p))}} \text{ converges} \]
Combining the Two Tests

Ω carries 1 if ∀ε > 0 ∃ F such that

\[\text{supp } F \subset \text{N}_{\epsilon}\]
\[|F| = \delta \]

Question: If Ω₁ and Ω₂ each carry 1, does \((\Omega_1 \cap \Omega_2) \) carry 1?

In general, No. If Ω₁ and Ω₂ are convex, Yes.
Finding Branch Cuts
(An analogy)

\[\sqrt{z(z-1)} = \sqrt{1-\frac{1}{z^2}} \sim z - \frac{1}{2z} \ldots \text{as } z \to \infty \]

\[(\Delta + k^2) u = f\]

\[\overline{\omega}u = [u]dz|_{\gamma_i} \]

for any \(\gamma \) which joins \(0 \) and \(1 \)

1. Any curve with the correct endpoints carries the far field.

2. Once \(\gamma \) is fixed, \(f \) is unique (as long as \(\mathcal{C} \setminus \gamma \) is connected)

3. \(\gamma_1 \cap \gamma_2 \) doesn't carry the far field
exists convex branch cut Σ_3

and $\Sigma_3 \subseteq$ convex hull of any other Σ

$\Sigma_3 =$ smallest convex set that carries the "far field"
Lemma

If \(\Omega_1 \) carries \(\lambda \) and \(\Omega_2 \) carries \(\lambda \), then \(\Omega_1 \cap \Omega_2 \) carries \(\lambda \)

\[(\Delta + \kappa^2) u_1 = F_1 \quad (\Delta + \kappa^2) u_2 = F_2 \]

Rellich's Lemma and Unique Continuation guarantee that

\[u_1 \equiv u_2 \quad \text{on} \quad (\mathbb{R}^n \setminus \Omega_1) \cap (\mathbb{R}^n \setminus \Omega_2) \]

so that

\[\nu^i := \begin{cases}
 a u_1 & \text{on} \quad \mathbb{R}^n \setminus \Omega_1 \\
 a u_2 & \text{on} \quad \mathbb{R}^n \setminus \Omega_2 \\
 0 & \text{on} \quad \Omega_1 \cap \Omega_2 \end{cases} \]

is well-defined and

\[F_3 := (\Delta + \kappa^2) \nu^i \quad \text{is supported in} \quad \mathbb{R}^n \setminus (\Omega_1 \cap \Omega_2) \]
Theorem
Every Far Field [with a compactly supported source] has a unique minimal convex carrier.

Theorem
Every Far Field [with a compactly supported source] has a unique minimal WSCS carrier.

Union of Well Separated Convex Sets -

distance between > diameter of any component convex components

Proof
Define $\text{csupp} = \bigcap \Omega \text{ such that } \Omega \text{ carries a convex }$

Does it carry the Far Field?
Lemma plus compactness says yes.
Unions of Well Separated Convex Sets [compact]

Satisfy

1. Closed under intersection
2. $\mathbb{R}^n \setminus (S_1 \cup S_2)$ connected

which guarantees some lemma.

Moral: It makes theoretical sense to look for collections of sources that are small compared to the distance between them.
How small is the c-support of a far field

\[f = \chi_{\text{Ellipses}} \]

\[f = \chi_{\text{Box}} \]

\[f = \chi_{\text{Point}} \]

\[f = \chi_{\text{Sum of Points}} \]

\[c\text{-support} = \text{Point} \]

\[c\text{-support} = \text{Convex Hull} \]

\[\text{UWSCE-support} = \text{Union of Points} \]

\[c\text{-support} = \text{Box} \quad \left[\text{because of } f \right] \]

\[c\text{-support} = \text{Box} \quad \text{if Taylor Expansion of } \Phi \text{ at corners starts with harmonic poly} \]

\[c\text{-support} = \text{Line connecting Foci} \]
Wavelength - Distinguishing well-separated Sources

Point Sources

\[\hat{\delta}_o = 1 \]

\[\hat{\delta}_R = e^{i k R \cos \theta} \]

I can distinguish them reliably if the cosine of the angle between them < 1

\[\frac{\hat{\delta}_o \cdot \hat{\delta}_R}{\sqrt{||\delta_o|| \cdot ||\delta_R||}} = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{i k R \cos \theta}{\sqrt{2\pi}}} = J_0(kR) < 1 \]

Since \[|J_0(kR)| < \frac{1}{\sqrt{kR}} \], \(kR < 1 \) suffices.

They need to be more than a wavelength apart.

Increasing \(k \) increases well-posedness.
Distinguishing Bigger Sources

\[\Theta(\theta) = \text{Far Field carried by } B_1 \]
\[\phi(\theta) = \text{Far Field carried by } B_2 \]

Theorem

Conclusion

\[\int \sum_{\theta} \frac{d\theta}{\| \Delta \| \cdot \| \beta \|} \leq \text{const. } \frac{kr^2}{R} \]

But

\[\text{Span} \{ a_i \} \text{ is dense and Span} \{ B_j \} \text{ is dense} \]

Hypothesis

\[\frac{\| \phi_i \|_2^2}{\| \Delta \|_2^2} \leq M \]
\[\frac{\| \phi_j \|_2^2}{\| \beta \|_2^2} \leq M \]

\[M = \text{Power/sensitivity ratio} \]

Ratio of transmitted power necessary to generate received power
For $R > 3r$, \[\frac{\text{d}n R \text{d} \omega}{\| \mathbf{n} \| \cdot \| \mathbf{b} \|} \leq \text{const.} \frac{kra^2}{R} \]

and for $\frac{kra}{R}$ small, it can be that big.

Corollary If you fix the geometry, and increase k, well-posedness get worse.

Worst Case

The far fields that are the most similar are the far fields of approximate plane waves perpendicular to the line connecting the centers.
Happy Birthday Gunther!!

I wish you many future collaborators
No more tenants!!
Some Examples to Illustrate the Need For Convexity

We expect minimal carriers to be small sets.

Theorem IF S carries d, then S carries d

\[\{0\} \quad \text{inside} \quad N_S(\Omega)\]

Replace u^+ by αu^+

and replace F by $(\Delta + k^2)(\alpha u^+)$
Thin Sources (Double and Single Layers)

A thin source is defined if:
1. \(f \in H^{s}(\mathbb{R}) \) for \(s > -2 \).
2. The measure \((\text{supp} f) = 0 \) and compact.

Theorem
A thin source is NR \(\iff f = \mathcal{C} \psi_{0} \) [linear span]

\(\psi_{0} \) is a free wave \((\Delta + k^{2}) \psi_{0} = 0 \) in \(\mathbb{R}^{2} \) and \(\psi_{0} \in L^{2}(\mathbb{R}^{2}) \)

\[\mathcal{C} \psi_{0} \bigg|_{\partial \Omega} = \frac{\partial \psi_{0}}{\partial n} \sigma_{\partial \Omega} + \psi_{0} \delta_{\partial \Omega} \] [Cauchy Data restricted to boundary of \(\Omega \)]

\[\langle \phi, \mathcal{C} \psi_{0} \rangle_{\mathbb{L}^{2}(\Omega)} = \int_{\Omega} \psi_{0} (\Delta + k^{2}) \phi \] [For any bounded open set \(\Omega \) and \(\psi_{0} \in L^{2}(\mathbb{R}^{2}) \)]
A thin source is \(NR \iff f = C_0 e^{\alpha z} \)

\[\text{Proof} \]

\[u^\pm = 0 \]

Start with \(N^0 \) from

Define \(u = \int_{N^0} \) inside \(\Omega \)

\[(\Delta + k^2) u^\pm = C_0 e^{\alpha z} \]

\[(\Delta + k^2) u^+ = 0 \] Rellich Lemma

\[u^+ = 0 \] Unique Continuation

\[\text{Rellich Lemma} \]

\[(\Delta + k^2) u^+ = 0 \] here

\[\int_{\partial \Omega} u^+ = 0 \]

\[\int_{\partial \Omega} u^+ = 0 \] so \(f = 0 \) here

\[\frac{\partial u^+}{\partial z} = \text{limit from inside here} \]
A arcs don't contain boundaries.

An arc is a thin source with support \mathcal{R} such that $\mathbb{R}^n \setminus \mathcal{R}$ is connected. \mathcal{S} is not empty.

Theorem

A non-radiating thin source supported on an arc is zero.

Proof

Corollary

Arcs are minimal carriers.

If support of a thin source is an arc, then no subset of the arc carries the same far field.
Example \[\mathcal{N} = \text{Free Set} \]

\[\mathcal{N}_1 \cup \mathcal{N}_2 = \Omega \]

\[\mathcal{N}_0 \]

\[\mathcal{N}_1 \cup \mathcal{N}_0 + \mathcal{N}_2 \] is Non-Radiating

\[\mathcal{N}_2 \]

\[\mathcal{N}_0 \] and \[\mathcal{N}_2 \] are equivalent

Both are arcs - so they are minimal

Moral

There is no unique minimal carrier

But

\[\mathcal{F}_3 \] is the unique smallest convex set that carried the Far Field
Example \(\gamma^0 \) is non-radiating \(R = \sigma_1 \cup \sigma_2 \)

\(\gamma^0 \) and \(-\gamma^0\) radiate the same far field but only \(\gamma_1 \) is well-separated.