The Microlocal Analysis of some X-ray transforms in Electron Tomography (ET)

Todd Quinto Joint work with Raluca Felea (lines), Hans Rullgård (curvilinear model)

Tufts University http://equinto.math.tufts.edu

Gunther Uhlmann Birthday Conference, June 19, 2012 (Partial support from U.S. NSF and Wenner Gren Stiftelserna)

Intro

f is the scattering potential of an object. γ is a line or curve over which electrons travel.

The X-ray Transform:

ET Data ~
$$\mathcal{P}f(\gamma) := \int_{\boldsymbol{x}\in\gamma} f(\boldsymbol{x}) d\boldsymbol{s}$$

Intro

f is the scattering potential of an object. γ is a line or curve over which electrons travel.

The X-ray Transform:

ET Data ~
$$\mathcal{P}f(\gamma) := \int_{\boldsymbol{x}\in\gamma} f(\boldsymbol{x}) ds$$

The Goal: Recover a picture of the object including molecule shapes from ET data over a finite number of lines or curves.

Practical Issues:

 Dose is small leading to noisy data (a few hundred e⁻ counts per pixel)!

Practical Issues:

- Dose is small leading to noisy data (a few hundred e⁻ counts per pixel)!
- For small fields of view (~ 300 nm), narrow electron beams travel along lines so the math is known.

Practical Issues:

- Dose is small leading to noisy data (a few hundred e⁻ counts per pixel)!
- For small fields of view (~ 300 nm), narrow electron beams travel along lines so the math is known. However, data are from a limited range of directions that image only a small region of interest.

Practical Issues:

- Dose is small leading to noisy data (a few hundred e⁻ counts per pixel)!
- For small fields of view (~ 300 nm), narrow electron beams travel along lines so the math is known. However, data are from a limited range of directions that image only a small region of interest.
- For larger fields of view (\sim 8,000 nm), the electron beams need to be wider

Practical Issues:

- Dose is small leading to noisy data (a few hundred e⁻ counts per pixel)!
- For small fields of view (~ 300 nm), narrow electron beams travel along lines so the math is known. However, data are from a limited range of directions that image only a small region of interest.
- For larger fields of view (~ 8,000 nm), the electron beams need to be wider and electrons far from the central axis travel over helix-like curves, not lines [A. Lawrence et al.].

The Admissible Case for Lines in \mathbb{R}^3

The model: the X-ray transform over lines

 Ξ is a three-dimensional manifold of lines, a *line complex*.

The model: the X-ray transform over lines

- Ξ is a three-dimensional manifold of lines, a *line complex*.
- For $x \in \mathbb{R}^3$ let S_x be the cone of lines in the complex through x:

 $S_{\mathbf{X}} = \bigcup \{\ell \in \Xi \, \big| \, \mathbf{X} \in \ell \}$

The model: the X-ray transform over lines

 Ξ is a three-dimensional manifold of lines, a *line complex*.

For $\mathbf{x} \in \mathbb{R}^3$ let $S_{\mathbf{x}}$ be the cone of lines in the complex through \mathbf{x} :

 $S_{\boldsymbol{x}} = \bigcup \{\ell \in \Xi \, \big| \, \boldsymbol{x} \in \ell \}$

Definition (Cone Condition (Admissible Line Complex))

 Ξ satisfies the *Cone Condition* if for all $\ell \in \Xi$ and any two points \mathbf{x}_0 and \mathbf{x}_1 in ℓ , the cones $S_{\mathbf{x}_0}$ and $S_{\mathbf{x}_1}$ have the same tangent plane along ℓ .

[Gelfand and coauthors, Guillemin, Greenleaf, Uhlmann, Boman, Q, Finch, Katsevich, Sharafutdinov, and many others]

They wrote a series of beautiful articles using sophisticated microlocal analysis to understand admissible complexes, Ξ , of geodesics on manifolds.

The associated X-ray transform \mathcal{P} is an elliptic Fourier integral operator associated to a certain canonical relation $\Gamma = (N^*(Z))' \setminus \mathbf{0}$ [Guillemin].

They wrote a series of beautiful articles using sophisticated microlocal analysis to understand admissible complexes, Ξ , of geodesics on manifolds.

The associated X-ray transform \mathcal{P} is an elliptic Fourier integral operator associated to a certain canonical relation $\Gamma = (N^*(Z))' \setminus \mathbf{0}$ [Guillemin].

[GU 1989]: If Γ satisfies a curvature condition, then $\mathcal{P}^*\mathcal{P}$ is a singular Fourier integral operator in $I^{(-1),0}(\Delta, \Gamma_{\Sigma})$ where Γ_{Σ} is a flow-out from the diagonal, Δ .

So, $\mathcal{P}^*\mathcal{P}(f)$ can have added singularities (compared to *f*) because of Γ_{Σ} .

They wrote a series of beautiful articles using sophisticated microlocal analysis to understand admissible complexes, Ξ , of geodesics on manifolds.

The associated X-ray transform \mathcal{P} is an elliptic Fourier integral operator associated to a certain canonical relation $\Gamma = (N^*(Z))' \setminus \mathbf{0}$ [Guillemin].

[GU 1989]: If Γ satisfies a curvature condition, then $\mathcal{P}^*\mathcal{P}$ is a singular Fourier integral operator in $I^{(-1),0}(\Delta, \Gamma_{\Sigma})$ where Γ_{Σ} is a flow-out from the diagonal, Δ .

So, $\mathcal{P}^*\mathcal{P}(f)$ can have added singularities (compared to *f*) because of Γ_{Σ} .

Applications of microlocal analysis in tomography and radar: Ambartsoumian, Antoniano, Cheney, deHoop, Felea, Finch, Greenleaf, Guillemin, Krishnan, Lan, Nolan, Q, Stefanov, Uhlmann, and many others.

Small field of view ET: Lines parallel a curve on S^2

 θ :] $a, b[\rightarrow S^2$ a smooth, regular curve. $C = \theta(]a, b[)$ For any $x \in \mathbb{R}^3$,

 $S_{\mathbf{x}} = \{ \mathbf{x} + \mathbf{s}\theta(t) \, \big| \, \mathbf{s} \in \mathbb{R}, t \in]a, b[\}$

is a cone and the complex of lines with directions parallel C is admissible.

Small field of view ET: Lines parallel a curve on S^2

 θ :] $a, b[\rightarrow S^2$ a smooth, regular curve. $C = \theta(]a, b[)$ For any $x \in \mathbb{R}^3$,

 $S_{\mathbf{x}} = \{ \mathbf{x} + \mathbf{s}\theta(t) \, \big| \, \mathbf{s} \in \mathbb{R}, t \in]\mathbf{a}, \mathbf{b}[\}$

is a cone and the complex of lines with directions parallel C is admissible.

・ロット (雪) (日) (日)

Hypothesis (Curvature Conditions)

Let θ :]a, b[\rightarrow S² be a smooth regular curve. Let $\beta(t) = \theta(t) \times \theta'(t)$. We assume the following curvature conditions

(a)
$$\forall t \in]a, b[, \theta''(t) \cdot \theta(t) \neq 0.$$

(b)
$$\forall t \in]a, b[, \beta'(t) \neq \mathbf{0}.$$

(c) The curve $t \mapsto \beta(t)$ is simple.

Single Axis Tilt ET: This complex is admissible but *does not* satisfy the curvature conditions so [GU 1989] does not apply.

Single Axis Tilt ET: This complex is admissible but *does not* satisfy the curvature conditions so [GU 1989] does not apply.

Conical Tilt ET: The sample is slanted an angle of $\alpha \in (0, \pi/2)$ to the horizontal and rotated in the plane of the sample.

 $C_{\text{cone}} = \{\theta(t) := (\cos(\alpha), \sin(\alpha)\cos(t), \sin(\alpha)\sin(t)) \, | \, t \in [0, 2\pi] \}.$

is a latitude circle

Single Axis Tilt ET: This complex is admissible but *does not* satisfy the curvature conditions so [GU 1989] does not apply.

Conical Tilt ET: The sample is slanted an angle of $\alpha \in (0, \pi/2)$ to the horizontal and rotated in the plane of the sample.

 $C_{\text{cone}} = \{\theta(t) := (\cos(\alpha), \sin(\alpha)\cos(t), \sin(\alpha)\sin(t)) | t \in [0, 2\pi] \}.$

is a latitude circle

In the coordinate system of the specimen, conical tilt data are over lines in the complex of lines parallel C_{cone} .

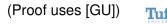
For $\mathbf{x} \in \mathbb{R}^3$, $S_{\mathbf{x}}$ is the circular cone with vertex \mathbf{x} with opening angle α with vertical axis.

This complex satisfies the cone condition and the curvature conditions and [GU 1989] does apply.

Theorem (Microlocal Regularity Theorem [FeQu 2011])

Assume the smooth regular curve $C \subset S^2$ satisfies the curvature conditions, and let \mathcal{P} be the associated X-ray transform with a smooth nowhere zero measure. Let D be the second order derivative on the detector plane in the θ' direction. Then $\mathcal{L} = \mathcal{P}^* D \mathcal{P}$ is in $I^{0,1}(\Delta, \Gamma_{\Sigma})$ where $\Gamma_{\Sigma} = \{(\mathbf{y}, \xi, \mathbf{x}, \xi) | (\mathbf{y}, \xi) \in N^*(S_{\mathbf{x}})\}.$ Therefore the wavefront set above \mathbf{x}

$$\mathrm{WF}(\mathcal{L}(f))_{\mathbf{X}} \subset (\mathrm{WF}(f)_{\mathbf{X}} \cap \mathcal{V}_{\mathbf{X}}) \cup \mathcal{A}(f)_{\mathbf{X}}$$



A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

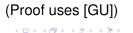
Theorem (Microlocal Regularity Theorem [FeQu 2011])

Assume the smooth regular curve $C \subset S^2$ satisfies the curvature conditions, and let \mathcal{P} be the associated X-ray transform with a smooth nowhere zero measure. Let D be the second order derivative on the detector plane in the θ' direction. Then $\mathcal{L} = \mathcal{P}^* D \mathcal{P}$ is in $I^{0,1}(\Delta, \Gamma_{\Sigma})$ where $\Gamma_{\Sigma} = \{(\mathbf{y}, \xi, \mathbf{x}, \xi) | (\mathbf{y}, \xi) \in N^*(S_{\mathbf{x}})\}.$ Therefore the wavefront set above \mathbf{x}

 $WF(\mathcal{L}(f))_{\mathbf{X}} \subset (WF(f)_{\mathbf{X}} \cap \mathcal{V}_{\mathbf{X}}) \cup \mathcal{A}(f)_{\mathbf{X}}$

where $\mathcal{V}_{\mathbf{x}}$ is the set of visible singularities (normals to lines through \mathbf{x}),

Therefore $\mathcal{L}(f)$ can show visible singularities of f.



Theorem (Microlocal Regularity Theorem [FeQu 2011])

Assume the smooth regular curve $C \subset S^2$ satisfies the curvature conditions, and let \mathcal{P} be the associated X-ray transform with a smooth nowhere zero measure. Let D be the second order derivative on the detector plane in the θ' direction. Then $\mathcal{L} = \mathcal{P}^* D \mathcal{P}$ is in $I^{0,1}(\Delta, \Gamma_{\Sigma})$ where $\Gamma_{\Sigma} = \{(\mathbf{y}, \xi, \mathbf{x}, \xi) | (\mathbf{y}, \xi) \in N^*(S_{\mathbf{x}})\}.$ Therefore the wavefront set above \mathbf{x}

 $WF(\mathcal{L}(f))_{\mathbf{X}} \subset (WF(f)_{\mathbf{X}} \cap \mathcal{V}_{\mathbf{X}}) \cup \mathcal{A}(f)_{\mathbf{X}}$

where $\mathcal{V}_{\mathbf{x}}$ is the set of visible singularities (normals to lines through \mathbf{x}), and $\mathcal{A}(f)_{\mathbf{x}} = \{(\mathbf{x}, \xi) | \exists \mathbf{y} \in S_{\mathbf{x}} \text{ such that } (\mathbf{y}, \xi) \in (N^*(S_{\mathbf{x}}) \cap WF(f))\}.$

Therefore $\mathcal{L}(f)$ can show visible singularities of f. However, $\mathcal{L}(f)$ can add *(or mask)* singularities at **x** coming from other covectors in WF(f) conormal to S_x . (Proof uses [GU])

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

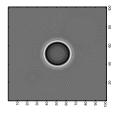
Morals

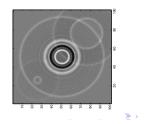
- Since L ∈ I^{0,1}(Δ, Γ_Σ), the added singularities will be one degree weaker in Sobolev scale than if D were an arbitrary differential operator since, in general, L would be in I^{1,0}.
- This algorithm has been tested on electron microscope data for single axis tilt [QO 2008, QSO 2009].

Cross-section of reconstructions from conical tilt data of several balls [QBC 2008]. Note decreased strength of added singularities when using D instead of Δ .

Reconstruction using D

Reconstruction using Δ





Large Field of View ET: The Curvilinear X-ray Transform

The curvilinear paths: For each tilt angle $t \in]a, b[$, electron paths are inverse images of the smooth fiber map

$$\boldsymbol{p}_t: \mathbb{R}^3 \to \mathbb{R}^2, \ \boldsymbol{p}_t(\boldsymbol{x}) = \boldsymbol{y}$$

y is on the detector plane.

Curves: $(t, \mathbf{y}) \in Y =]a, b[\times \mathbb{R}^2 \qquad \gamma_{t,\mathbf{y}} = \mathbf{p}_t^{-1}(\{\mathbf{y}\}) \cong a$ line. Curvilinear X-ray Transform: $\mathcal{P}_{\mathbf{p}}f(t, \mathbf{y}) = \int_{\mathbf{x} \in \gamma_{t,\mathbf{y}}} f(x) ds$

Large Field of View ET: The Curvilinear X-ray Transform

The curvilinear paths: For each tilt angle $t \in]a, b[$, electron paths are inverse images of the smooth fiber map

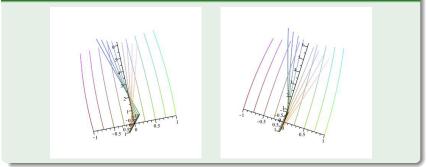
$$\boldsymbol{p}_t: \mathbb{R}^3 \to \mathbb{R}^2, \ \boldsymbol{p}_t(\boldsymbol{x}) = \boldsymbol{y}$$

y is on the detector plane.

Curves: $(t, \mathbf{y}) \in Y =]a, b[\times \mathbb{R}^2$ $\gamma_{t,\mathbf{y}} = \mathbf{p}_t^{-1}(\{\mathbf{y}\}) \cong a$ line. Curvilinear X-ray Transform: $\mathcal{P}_{\mathbf{p}}f(t, \mathbf{y}) = \int_{\mathbf{x}\in\gamma_{t,\mathbf{y}}} f(x)ds$ Backprojection Operator: $\mathcal{P}_{\mathbf{p}}^*g(\mathbf{x}) = \int_{t\in]a,b[} g(t, \mathbf{p}_t(\mathbf{x})) dt$, which is the integral over all curves through \mathbf{x} (as $\mathbf{x} \in \gamma_{t,\mathbf{y}}$)

which is the integral over all curves through \mathbf{x} (as $\mathbf{x} \in \gamma_{t,\mathbf{p}_{t}(\mathbf{x})}$) If the curve doesn't join up at *a* and *b*, one multiplies by a cut off function near the ends of]a, b[.

Example (Helical Electron Paths With Pitch 20 π)



Single-axis tilt data geometry, multi-axis tilt ET and conical tilt ET over curves fit into our model.

$(\partial_{\mathbf{x}} \text{ and } \partial_t \text{ are gradients})$

- For each $t \in]a, b[$, the curves $\gamma_{t,y}$ are smooth, unbounded, and don't intersect. $(x, t) \mapsto p_t(x) \in \mathbb{R}^2$ is a C^{∞} map. Fixing t, p_t is a fiber map in x with fibers diffeomorphic to lines. Therefore, $\partial_x p_t(x)$ has maximal rank (two).
- Curves move differently at different points as *t* changes. $\forall (t, y) \in Y \text{ and } \mathbf{x}_0 \text{ and } \mathbf{x}_1 \text{ in } \gamma_{t,y}, \text{ if } \mathbf{x}_1 \neq \mathbf{x}_0, \text{ then } \partial_t \mathbf{p}_t(\mathbf{x}_0) \neq \partial_t \mathbf{p}_t(\mathbf{x}_1).$
- **3** The curves wiggle enough as *t* changes. The 4 × 3 matrix $\begin{pmatrix} \partial_{\mathbf{x}} \mathbf{p}_t(\mathbf{x}) \\ \partial_t \partial_{\mathbf{x}} \mathbf{p}_t(\mathbf{x}) \end{pmatrix}$ has maximal rank (three). Geometric Meaning

 $\mathcal{L}(f) = \mathcal{P}_{p}^{*}D\mathcal{P}_{p}f$ where *D* is a 2^{*nd*} order PDO

Using the composition calculus of FIO "essentially"

$$\mathcal{L}(f)(\boldsymbol{x}) \sim D' \mathcal{P}_{\boldsymbol{p}}^* \mathcal{P}_{\boldsymbol{p}} f = D' \int_{\mathcal{S}_{\boldsymbol{x}}} f W dA$$

for some singular weight W and Ψ DO D' where

$$S_{\mathbf{x}} = \bigcup_{t \in]a,b[} \gamma_{t,\mathbf{p}_{t}(\mathbf{x})}$$
 is the "cone" of curves through \mathbf{x}

 $\mathcal{L}(f) = \mathcal{P}_{p}^{*}D\mathcal{P}_{p}f$ where *D* is a 2^{*nd*} order PDO

Using the composition calculus of FIO "essentially"

$$\mathcal{L}(f)(\boldsymbol{x}) \sim D' \mathcal{P}_{\boldsymbol{p}}^* \mathcal{P}_{\boldsymbol{p}} f = D' \int_{\mathcal{S}_{\boldsymbol{x}}} f W dA$$

for some singular weight W and $\Psi DO D'$ where

$$S_{\mathbf{x}} = \bigcup_{t \in]a,b[} \gamma_{t,\mathbf{p}_{t}(\mathbf{x})}$$
 is the "cone" of curves through \mathbf{x}

Thus, singularities of *f* that are normal to S_x could appear as **added** singularities in the reconstruction $\mathcal{L}f(\mathbf{x})$ (as in the admissible case).

Theorem (Microlocal Regularity Theorem, [QR 2012])

Let \mathcal{P}_p satisfy our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^3)$. Let D be a differential operator on \mathbb{R}^2 acting on **y**. Then, the wavefront set at **x**

 $(WF(\mathcal{L}(f)))_{\mathbf{X}} \subset (WF(f) \cap \mathcal{V}_{\mathbf{X}}) \cup \mathcal{A}_{\mathbf{X}}$

Proof uses Hörmander-Sato Lemma. [Stefanov-Uhlmann (magnetic geodesics), Greenleaf and Uhlmann, Guillemin, Krishnan, Palamodov...]

Theorem (Microlocal Regularity Theorem, [QR 2012])

Let $\mathcal{P}_{\mathbf{p}}$ satisfy our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^3)$. Let D be a differential operator on \mathbb{R}^2 acting on \mathbf{y} . Then, the wavefront set at \mathbf{x}

 $(WF(\mathcal{L}(f)))_{\mathbf{X}} \subset (WF(f) \cap \mathcal{V}_{\mathbf{X}}) \cup \mathcal{A}_{\mathbf{X}}$

where $\mathcal{V}_{\mathbf{x}}$ is the set of visible singularities (normals to curves through \mathbf{x}),

• Our algorithm can accurately show visible singularities of *f*.

Proof uses Hörmander-Sato Lemma. [Stefanov-Uhlmann (magnetic geodesics), Greenleaf and Uhlmann, Guillemin, Krishnan, Palamodov...]

Theorem (Microlocal Regularity Theorem, [QR 2012])

Let $\mathcal{P}_{\mathbf{p}}$ satisfy our assumptions. Let $f \in \mathcal{E}'(\mathbb{R}^3)$. Let D be a differential operator on \mathbb{R}^2 acting on \mathbf{y} . Then, the wavefront set at \mathbf{x}

 $(WF(\mathcal{L}(f)))_{\mathbf{X}} \subset (WF(f) \cap \mathcal{V}_{\mathbf{X}}) \cup \mathcal{A}_{\mathbf{X}}$

where $\mathcal{V}_{\mathbf{x}}$ is the set of visible singularities (normals to curves through \mathbf{x}), and $\mathcal{A}_{\mathbf{x}}$ is a set of added singularities above \mathbf{x} coming from singularities of f that are \perp to $S_{\mathbf{x}}$.

- Our algorithm can accurately show visible singularities of f.
- However, any backprojection algorithm can add (or mask) singularities to the reconstruction from singularities of f normal to S_x at points far from x. This is because

 $\blacksquare_L : C \to T^*(Y) \text{ is not Injective } \square_L \text{ is not an immersion }$

Proof uses Hörmander-Sato Lemma. [Stefanov-Uhlmann (magnetic geodesics), Greenleaf and Uhlmann, Guillemin, Krishnan, Palamodov...]

・ロト ・四ト ・ヨト ・ヨト

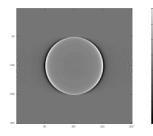
Helical data with Pitch 20π

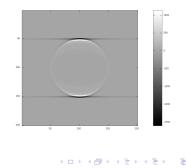
As in the admissible case, the choice of derivative can decrease the effect of the added singularities. However, here, it deceases only *nearby* added singularities!

Reconstruction of one ball. 70 angles in $[0, \pi]$. x_1 axis is vertical.

Derivative in good direction

Derivative \perp good direction





Summary

• For admissible complexes:

- Greenleaf and Uhlmann's theory shows what singularities are added.
- Choosing the right differential operator can decrease the strength of added singularities. This is behind the improved local algorithms for cone beam CT [Katsevich, Anastasio, Wang] and slant hole SPECT/conical tilt ET [QBC, QÖ]. A first order ΨDO was suggested for cone beam CT in [FLU].

Summary

• For admissible complexes:

- Greenleaf and Uhlmann's theory shows what singularities are added.
- Choosing the right differential operator can decrease the strength of added singularities. This is behind the improved local algorithms for cone beam CT [Katsevich, Anastasio, Wang] and slant hole SPECT/conical tilt ET [QBC, QÖ]. A first order ΨDO was suggested for cone beam CT in [FLU].

• For curved paths:

- No inversion algorithm exists in general. Our algorithm is local, shows boundaries, and easy to implement.
- Added singularities are intrinsic to any backprojection algorithm for this data.

Summary

• For admissible complexes:

- Greenleaf and Uhlmann's theory shows what singularities are added.
- Choosing the right differential operator can decrease the strength of added singularities. This is behind the improved local algorithms for cone beam CT [Katsevich, Anastasio, Wang] and slant hole SPECT/conical tilt ET [QBC, QÖ]. A first order ΨDO was suggested for cone beam CT in [FLU].

• For curved paths:

- No inversion algorithm exists in general. Our algorithm is local, shows boundaries, and easy to implement.
- Added singularities are intrinsic to any backprojection algorithm for this data.
- In general, the good differential operator decreases *nearby* singularities but not all singularities (because far-away added singularities are in directions that don't get annihilated by it).

HAPPY BIRTHDAY, GUNTHER! Thanks for the beautiful math!

ъ

Z and *X* are open subsets of \mathbb{R}^n :

$$F(f)(\boldsymbol{z}) = \int_{\boldsymbol{x} \in \boldsymbol{X}, \omega \in \mathbb{R}^n} e^{i\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)} p(\boldsymbol{z}, \boldsymbol{x}, \omega) f(\boldsymbol{x}) d\boldsymbol{x} d\omega$$

Z and *X* are open subsets of \mathbb{R}^n :

$$F(f)(\boldsymbol{z}) = \int_{\boldsymbol{x} \in X, \omega \in \mathbb{R}^n} e^{i\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)} p(\boldsymbol{z}, \boldsymbol{x}, \omega) f(\boldsymbol{x}) dx d\omega$$

Phase Function: $\phi(\mathbf{z}, \mathbf{x}, \omega)$ (e.g.,) linear in ω , smooth.

Z and *X* are open subsets of \mathbb{R}^n :

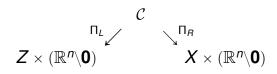
$$F(f)(\boldsymbol{z}) = \int_{\boldsymbol{x} \in \boldsymbol{X}, \omega \in \mathbb{R}^n} e^{i\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)} p(\boldsymbol{z}, \boldsymbol{x}, \omega) f(\boldsymbol{x}) d\boldsymbol{x} d\omega$$

Phase Function: $\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)$ (e.g.,) linear in ω , smooth. Amplitude: $p(\boldsymbol{z}, \boldsymbol{x}, \omega)$ increases like $(1 + \|\omega\|)^s$ (order $\sim s$).

Z and X are open subsets of \mathbb{R}^n :

$$F(f)(\boldsymbol{z}) = \int_{\boldsymbol{x} \in \boldsymbol{X}, \omega \in \mathbb{R}^n} e^{i\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)} p(\boldsymbol{z}, \boldsymbol{x}, \omega) f(\boldsymbol{x}) d\boldsymbol{x} d\omega$$

Phase Function: $\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)$ (e.g.,) linear in ω , smooth. Amplitude: $p(\boldsymbol{z}, \boldsymbol{x}, \omega)$ increases like $(1 + ||\omega||)^s$ (order $\sim s$). Canonical Relation: $C = \{(\boldsymbol{z}, \partial_{\boldsymbol{z}}\phi(\boldsymbol{z}, \boldsymbol{x}, \omega); \boldsymbol{x}, -\partial_{\boldsymbol{x}}\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)) | \partial_{\omega}\phi(\boldsymbol{z}, \boldsymbol{x}, \omega) = 0\}$

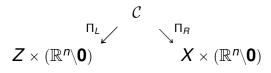


Z and *X* are open subsets of \mathbb{R}^n :

$$F(f)(\boldsymbol{z}) = \int_{\boldsymbol{x} \in \boldsymbol{X}, \omega \in \mathbb{R}^n} e^{i\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)} p(\boldsymbol{z}, \boldsymbol{x}, \omega) f(\boldsymbol{x}) d\boldsymbol{x} d\omega$$

Phase Function: $\phi(\boldsymbol{z}, \boldsymbol{x}, \omega)$ (e.g.,) linear in ω , smooth. Amplitude: $p(\boldsymbol{z}, \boldsymbol{x}, \omega)$ increases like $(1 + \|\omega\|)^s$ (order $\sim s$). Canonical Relation:

 $\mathcal{C} = \{ (\mathbf{Z}, \partial_{\mathbf{Z}} \phi(\mathbf{Z}, \mathbf{X}, \omega); \mathbf{X}, -\partial_{\mathbf{X}} \phi(\mathbf{Z}, \mathbf{X}, \omega)) | \partial_{\omega} \phi(\mathbf{Z}, \mathbf{X}, \omega) = \mathbf{0} \}$



WF relation: WF(F(f)) $\subset \Pi_L \left(\Pi_R^{-1}(WF(f)) \right)$. What it means: FIO change singularities in specific ways determined by the geometry of C.

$$P(f)(\boldsymbol{z}) = \int e^{i(\boldsymbol{z}-\boldsymbol{x})\cdot\boldsymbol{\omega}} p(\boldsymbol{z},\boldsymbol{x},\boldsymbol{\omega}) f(\boldsymbol{x}) d\boldsymbol{x} d\boldsymbol{\omega}$$

$$P(f)(\boldsymbol{z}) = \int e^{i(\boldsymbol{z}-\boldsymbol{x})\cdot\boldsymbol{\omega}} p(\boldsymbol{z},\boldsymbol{x},\boldsymbol{\omega}) f(\boldsymbol{x}) d\boldsymbol{x} d\boldsymbol{\omega}$$

Phase Function: $\phi(\mathbf{z}, \mathbf{x}, \omega) = (\mathbf{z} - \mathbf{x}) \cdot \omega$ is linear in ω , smooth.

$$P(f)(\boldsymbol{z}) = \int e^{i(\boldsymbol{z}-\boldsymbol{x})\cdot\boldsymbol{\omega}} p(\boldsymbol{z},\boldsymbol{x},\boldsymbol{\omega}) f(\boldsymbol{x}) d\boldsymbol{x} d\boldsymbol{\omega}$$

Phase Function: $\phi(\boldsymbol{z}, \boldsymbol{x}, \omega) = (\boldsymbol{z} - \boldsymbol{x}) \cdot \omega$ is linear in ω , smooth. Amplitude: $p(\boldsymbol{z}, \boldsymbol{x}, \omega)$ increases like $(1 + \|\omega\|)^s$ (order $\sim s$).

$$P(f)(\boldsymbol{z}) = \int \boldsymbol{e}^{i(\boldsymbol{z}-\boldsymbol{x})\cdot\boldsymbol{\omega}} p(\boldsymbol{z},\boldsymbol{x},\boldsymbol{\omega}) f(\boldsymbol{x}) d\boldsymbol{x} d\boldsymbol{\omega}$$

Phase Function: $\phi(\mathbf{z}, \mathbf{x}, \omega) = (\mathbf{z} - \mathbf{x}) \cdot \omega$ is linear in ω , smooth. Amplitude: $p(\mathbf{z}, \mathbf{x}, \omega)$ increases like $(1 + \|\omega\|)^s$ (order $\sim s$). Canonical Relation:

$$C = \{ \boldsymbol{z}, \partial_{\boldsymbol{z}} \phi(\boldsymbol{z}, \boldsymbol{x}, \omega); \boldsymbol{x}, -\partial_{\boldsymbol{x}} \phi(\boldsymbol{z}, \boldsymbol{x}, \omega)) | \partial_{\omega} \phi(\boldsymbol{z}, \boldsymbol{x}, \omega) = \boldsymbol{0} \}$$

= $\{ (\boldsymbol{z}, \omega, \boldsymbol{z}, \omega) | \boldsymbol{z} \in \mathbb{R}^{n}, \omega \in \mathbb{R}^{n} \setminus \boldsymbol{0} \}$ = Diagonal
$$C$$
$$C$$
$$X \times (\mathbb{R}^{n} \setminus \boldsymbol{0})$$
$$X \times (\mathbb{R}^{n} \setminus \boldsymbol{0})$$

ヘロア 人間 アメ 回ア 人 回ア

$$P(f)(\boldsymbol{z}) = \int \boldsymbol{e}^{i(\boldsymbol{z}-\boldsymbol{x})\cdot\boldsymbol{\omega}} p(\boldsymbol{z},\boldsymbol{x},\boldsymbol{\omega}) f(\boldsymbol{x}) d\boldsymbol{x} d\boldsymbol{\omega}$$

Phase Function: $\phi(\mathbf{z}, \mathbf{x}, \omega) = (\mathbf{z} - \mathbf{x}) \cdot \omega$ is linear in ω , smooth. Amplitude: $p(\mathbf{z}, \mathbf{x}, \omega)$ increases like $(1 + \|\omega\|)^s$ (order $\sim s$). Canonical Relation:

 $C = \{ \boldsymbol{z}, \partial_{\boldsymbol{z}} \phi(\boldsymbol{z}, \boldsymbol{x}, \omega); \boldsymbol{x}, -\partial_{\boldsymbol{x}} \phi(\boldsymbol{z}, \boldsymbol{x}, \omega)) | \partial_{\omega} \phi(\boldsymbol{z}, \boldsymbol{x}, \omega) = \boldsymbol{0} \}$ = $\{ (\boldsymbol{z}, \omega, \boldsymbol{z}, \omega) | \boldsymbol{z} \in \mathbb{R}^{n}, \omega \in \mathbb{R}^{n} \backslash \boldsymbol{0} \}$ = Diagonal

$$\begin{array}{ccc} & \mathcal{C} & \\ & & \mathbf{\mathcal{T}}_{R} \\ \mathbf{\mathcal{X}} \times (\mathbb{R}^{n} \mathbf{0}) & \mathbf{\mathcal{X}} \times (\mathbb{R}^{n} \mathbf{0}) \end{array}$$

WF relation: WF(P(f)) $\subset \Pi_L \left(\Pi_R^{-1}(WF(f)) \right) = WF(f)$. What it means: Ψ DO do not move wavefront set.

• Then
$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \\ \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}_0) \end{pmatrix}$$
 has rank two.

• Then
$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \\ \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x_0}) \end{pmatrix}$$
 has rank two.

• span $\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})$ is the normal plane to $\gamma_{t, \boldsymbol{p}_t(\boldsymbol{x})}$ at \boldsymbol{x} .

• Then
$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \\ \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}_0) \end{pmatrix}$$
 has rank two.

- span $\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})$ is the normal plane to $\gamma_{t, \boldsymbol{p}_t(\boldsymbol{x})}$ at \boldsymbol{x} .
- If the rank is two, then span (∂_t∂_xp_t(x)) is a subset of the normal plane, span (∂_xp_t(x)).

• Then
$$\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \\ \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}_0) \end{pmatrix}$$
 has rank two.

• span $\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})$ is the normal plane to $\gamma_{t, \boldsymbol{p}_t(\boldsymbol{x})}$ at \boldsymbol{x} .

- If the rank is two, then span (∂_t∂_xp_t(x)) is a subset of the normal plane, span (∂_xp_t(x)).
- So, the normal plane doesn't "change" as *t* is changed infinitesimally.

From data $\mathcal{P}_{p}f$, one sees only covectors conormal to $\gamma_{t,p_{t}(x)}$ at **x**.

Moral: Infinitesimally, one does not see a full three-dimensional set of cotangent vectors at \boldsymbol{x} from the data ($\underline{\ \ }$).

▶ Back

 Π_L is not injective. Let $(t, \mathbf{y}) \in \mathbf{Y}$ and $\eta \in \mathbb{R}^2 \setminus \mathbf{0}$. Covectors in C map to the same point under Π_L iff they are of the form $\lambda_j := (t, \mathbf{p}_t(\mathbf{x}_j), -\eta \cdot \partial_t \mathbf{p}_t(\mathbf{x}_j) d\mathbf{t} + \eta \cdot d\mathbf{y}; \mathbf{x}_j, \eta \cdot \partial_{\mathbf{x}} \mathbf{p}_t(\mathbf{x}_j) d\mathbf{x})$ for j = 0, 1, where

$$\boldsymbol{p}_t(\boldsymbol{x}_0) = \boldsymbol{p}_t(\boldsymbol{x}_1) \tag{1}$$

$$\eta \cdot (\partial_t \boldsymbol{p}_t(\boldsymbol{x}_0) - \partial_t \boldsymbol{p}_t(\boldsymbol{x}_1)) = \boldsymbol{0}.$$
(2)

Condition (2) means that η is perpendicular to $\partial_t \boldsymbol{p}_t(\boldsymbol{x}_0) - \partial_t \boldsymbol{p}_t(\boldsymbol{x}_1)$. In all cases, for all \boldsymbol{x}_0 and \boldsymbol{x}_1 in $\gamma_{t,\boldsymbol{p}_t}(\boldsymbol{x}_0)$ there are covectors for which this condition holds.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

 Π_L is not injective. Let $(t, \mathbf{y}) \in \mathbf{Y}$ and $\eta \in \mathbb{R}^2 \setminus \mathbf{0}$. Covectors in C map to the same point under Π_L iff they are of the form $\lambda_j := (t, \mathbf{p}_t(\mathbf{x}_j), -\eta \cdot \partial_t \mathbf{p}_t(\mathbf{x}_j) d\mathbf{t} + \eta \cdot d\mathbf{y}; \mathbf{x}_j, \eta \cdot \partial_{\mathbf{x}} \mathbf{p}_t(\mathbf{x}_j) d\mathbf{x})$ for j = 0, 1, where

$$\boldsymbol{p}_t(\boldsymbol{x}_0) = \boldsymbol{p}_t(\boldsymbol{x}_1) \tag{1}$$

$$\eta \cdot (\partial_t \boldsymbol{p}_t(\boldsymbol{x}_0) - \partial_t \boldsymbol{p}_t(\boldsymbol{x}_1)) = \boldsymbol{0}.$$

Remark

Condition (1) means that \boldsymbol{x}_0 and \boldsymbol{x}_1 both lie on the same curve, $\gamma_{t, \boldsymbol{p}_t(\boldsymbol{x}_0)}$.

(2)

 Π_L is not injective. Let $(t, \mathbf{y}) \in \mathbf{Y}$ and $\eta \in \mathbb{R}^2 \setminus \mathbf{0}$. Covectors in C map to the same point under Π_L iff they are of the form $\lambda_j := (t, \mathbf{p}_t(\mathbf{x}_j), -\eta \cdot \partial_t \mathbf{p}_t(\mathbf{x}_j) d\mathbf{t} + \eta \cdot d\mathbf{y}; \mathbf{x}_j, \eta \cdot \partial_{\mathbf{x}} \mathbf{p}_t(\mathbf{x}_j) d\mathbf{x})$ for j = 0, 1, where

$$\boldsymbol{p}_t(\boldsymbol{x}_0) = \boldsymbol{p}_t(\boldsymbol{x}_1) \tag{1}$$

$$\eta \cdot (\partial_t \boldsymbol{\rho}_t(\boldsymbol{x}_0) - \partial_t \boldsymbol{\rho}_t(\boldsymbol{x}_1)) = \boldsymbol{0}.$$

Remark

Condition (1) means that x_0 and x_1 both lie on the same curve,

 $\gamma_{t, p_t(x_0)}$. Condition (2) means that η is perpendicular to $\partial_t p_t(x_0) - \partial_t p_t(x_1)$. In all cases, for all x_0 and x_1 in $\gamma_{t, p_t(x_0)}$ there are covectors for which this condition holds.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

 Π_L is not an immersion. Let

 $\lambda := (t, \boldsymbol{p}_t(\boldsymbol{x}), -\eta \cdot \partial_t \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{dt} + \eta \cdot \boldsymbol{dy}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{dx}) \in \mathcal{C}.$

 Π_L is not an immersion at λ iff

$$\eta \cdot \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})\right).$$
(3)

For each (t, \mathbf{x}) there is a one-dimensional set of such covectors λ .

 Π_L is not an immersion. Let

 $\lambda := (t, \boldsymbol{p}_t(\boldsymbol{x}), -\eta \cdot \partial_t \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{dt} + \eta \cdot \boldsymbol{dy}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{dx}) \in \mathcal{C}.$

 Π_L is not an immersion at λ iff

$$\eta \cdot \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})\right).$$
(3)

For each (t, \mathbf{x}) there is a one-dimensional set of such covectors λ .

Proof.

This follows from the expression for $\Pi_L : \mathcal{C} \to T^* Y$ and that $\begin{pmatrix} \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \\ \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \end{pmatrix}$ is assumed to have maximal rank (three) and $\partial_{\boldsymbol{x}} \boldsymbol{p}_t$ has maximal rank (two).

・ロット (雪) (日) (日)

Description of $D(t, \mathbf{x})$

For each (t, y) and $x \in \gamma_{t,y}$, we choose a unit tangent vector v to $\gamma_{t,y}$ at x and we let

$$\eta_0 = \left(\partial_t \partial_{\boldsymbol{x}} \boldsymbol{\rho}_t(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad \boldsymbol{D} = \boldsymbol{D}(t, \boldsymbol{y}) = \left(\partial_{\eta_0}\right)^2$$

where *D* operates on the *y* coordinate.

For each (t, y) and $x \in \gamma_{t,y}$, we choose a unit tangent vector v to $\gamma_{t,y}$ at x and we let

$$\eta_0 = \left(\partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad \boldsymbol{D} = \boldsymbol{D}(t, \boldsymbol{y}) = \left(\partial_{\eta_0}\right)^2$$

where *D* operates on the *y* coordinate. The covectors above $(t, p_t(x), x)$

$$\lambda := (t, \boldsymbol{p}_t(\boldsymbol{x}), -\eta \cdot \partial_t \boldsymbol{p}_t(\boldsymbol{x}) dt + \eta \cdot d\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) d\boldsymbol{x}) \in \mathcal{C}.$$

on which Π_L is not an injective immersion are those for which η satisfies

$$\eta \cdot \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})\right).$$

・ロン ・聞と ・ 聞と ・ 聞と

э

For each (t, y) and $x \in \gamma_{t,y}$, we choose a unit tangent vector v to $\gamma_{t,y}$ at x and we let

$$\eta_0 = \left(\partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad \boldsymbol{D} = \boldsymbol{D}(t, \boldsymbol{y}) = \left(\partial_{\eta_0}\right)^2$$

where *D* operates on the *y* coordinate. The covectors above $(t, p_t(x), x)$

$$\lambda := (t, \boldsymbol{\rho}_t(\boldsymbol{x}), -\eta \cdot \partial_t \boldsymbol{\rho}_t(\boldsymbol{x}) dt + \eta \cdot d\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{\rho}_t(\boldsymbol{x}) d\boldsymbol{x}) \in \mathcal{C}.$$

on which Π_L is not an injective immersion are those for which η satisfies

$$\eta \cdot \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})\right).$$

Since $\partial_{\boldsymbol{x}}\boldsymbol{p}_t(\boldsymbol{x})\boldsymbol{v} = \boldsymbol{0}$, for such η , $(\eta \cdot \partial_t \partial_{\boldsymbol{x}}\boldsymbol{p}_t(\boldsymbol{x}))\boldsymbol{v} = \boldsymbol{0}$,

For each (t, y) and $x \in \gamma_{t,y}$, we choose a unit tangent vector v to $\gamma_{t,y}$ at x and we let

$$\eta_0 = \left(\partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \boldsymbol{v}\right)^t \qquad \boldsymbol{D} = \boldsymbol{D}(t, \boldsymbol{y}) = \left(\partial_{\eta_0}\right)^2$$

where *D* operates on the *y* coordinate. The covectors above $(t, p_t(x), x)$

$$\lambda := (t, \boldsymbol{\rho}_t(\boldsymbol{x}), -\eta \cdot \partial_t \boldsymbol{\rho}_t(\boldsymbol{x}) dt + \eta \cdot d\boldsymbol{y}; \boldsymbol{x}, \eta \cdot \partial_{\boldsymbol{x}} \boldsymbol{\rho}_t(\boldsymbol{x}) d\boldsymbol{x}) \in \mathcal{C}.$$

on which Π_L is not an injective immersion are those for which η satisfies

$$\eta \cdot \partial_t \partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x}) \in \operatorname{span}\left(\partial_{\boldsymbol{x}} \boldsymbol{p}_t(\boldsymbol{x})\right).$$

Since $\partial_{\boldsymbol{x}}\boldsymbol{p}_{t}(\boldsymbol{x})\boldsymbol{v} = \boldsymbol{0}$, for such η , $(\eta \cdot \partial_{t}\partial_{\boldsymbol{x}}\boldsymbol{p}_{t}(\boldsymbol{x}))\boldsymbol{v} = \boldsymbol{0}$, so $\eta \cdot (\partial_{t}\partial_{\boldsymbol{x}}\boldsymbol{p}_{t}(\boldsymbol{x})\boldsymbol{v}) = \boldsymbol{0}$, and so $\eta \perp \eta_{0}$. Back

