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The Model of Electron Tomography (ET) and the Goal

Intro

f is the scattering potential of an object.
γ is a line or curve over which electrons travel.

The X-ray Transform:

ET Data „ Pf pγq :“

ż

xPγ
f pxqds

The Goal: Recover a picture of the object including molecule
shapes from ET data over a finite number of lines or curves.
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Single Particle ET

Data Acquisition: Take multiple micrographs (ET images) of a
prepared sample of particles by moving the sample in relation
to the electron beam.

Practical Issues:

Dose is small leading to noisy data (a few hundred e´

counts per pixel)!
For small fields of view („ 300 nm), narrow electron beams
travel along lines so the math is known. However, data are
from a limited range of directions that image only a small
region of interest.
For larger fields of view („ 8,000 nm), the electron beams
need to be wider and electrons far from the central axis
travel over helix-like curves, not lines [A. Lawrence et al.].
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The Admissible Case for Lines in R3

The model: the X-ray transform over lines
Ξ is a three-dimensional manifold of lines, a line complex.
For x P R3 let Sx be the cone of lines in the complex through x :

Sx “
ď

t` P Ξ
ˇ

ˇx P `u

Definition (Cone Condition (Admissible Line Complex))
Ξ satisfies the Cone Condition if for all ` P Ξ and any two points
x0 and x1 in `, the cones Sx0 and Sx1 have the same tangent
plane along `.

[Gelfand and coauthors, Guillemin, Greenleaf, Uhlmann,
Boman, Q, Finch, Katsevich, Sharafutdinov, and many others]
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[Greenleaf and Uhlmann 1989+]

They wrote a series of beautiful articles using sophisticated
microlocal analysis to understand admissible complexes, Ξ, of
geodesics on manifolds.
The associated X-ray transform P is an elliptic Fourier integral
operator associated to a certain canonical relation
Γ “ pN˚pZ qq1z0 [Guillemin].
[GU 1989]: If Γ satisfies a curvature condition, then P˚P is a
singular Fourier integral operator in Ip´1q,0p∆, ΓΣq where ΓΣ is a
flow-out from the diagonal, ∆.
So, P˚Ppf q can have added singularities (compared to f )
because of ΓΣ.
Applications of microlocal analysis in tomography and
radar: Ambartsoumian, Antoniano, Cheney, deHoop, Felea,
Finch, Greenleaf, Guillemin, Krishnan, Lan, Nolan, Q, Stefanov,
Uhlmann, and many others.
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Small field of view ET: Lines parallel a curve on S2

θ :sa,brÑ S2 a smooth, regular curve. C “ θpsa,br q
For any x P R3,

Sx “ tx ` sθptq
ˇ

ˇs P R, t Psa,br u

is a cone and the complex of lines with directions parallel C is
admissible.

Hypothesis (Curvature Conditions)

Let θ :sa,brÑ S2 be a smooth regular curve. Let
βptq “ θptq ˆ θ1ptq. We assume the following curvature
conditions
(a) @t Psa,br , θ2ptq ¨ θptq ‰ 0.
(b) @t Psa,br , β1ptq ‰ 0.
(c) The curve t ÞÑ βptq is simple.
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Examples

Single Axis Tilt ET: This complex is admissible but does not
satisfy the curvature conditions so [GU 1989] does not apply.

Conical Tilt ET: The sample is slanted an angle of α P p0, π{2q
to the horizontal and rotated in the plane of the sample.

Ccone “ tθptq :“ pcospαq, sinpαq cosptq, sinpαq sinptqq
ˇ

ˇt P r0,2πsu.

is a latitude circle
In the coordinate system of the specimen, conical tilt data are
over lines in the complex of lines parallel Ccone.

For x P R3, Sx is the circular cone with vertex x with opening
angle α with vertical axis.
This complex satisfies the cone condition and the curvature
conditions and [GU 1989] does apply.
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Theorem (Microlocal Regularity Theorem [FeQu 2011])

Assume the smooth regular curve C Ă S2 satisfies the
curvature conditions, and let P be the associated X-ray
transform with a smooth nowhere zero measure. Let D be the
second order derivative on the detector plane in the θ1 direction.
Then L “ P˚DP is in I0,1p∆, ΓΣq where
ΓΣ “ tpy , ξ,x , ξq

ˇ

ˇpy , ξq P N˚pSxqu.
Therefore the wavefront set above x

WFpLpf qqx Ă pWFpf qx X Vxq YApf qx

where Vx is the set of visible singularities (normals to lines
through x), and
Apf qx “ tpx , ξq

ˇ

ˇDy P Sx such that py , ξq P pN˚pSxq XWFpf qqu.

Therefore Lpf q can show visible singularities of f .
However, Lpf q can add (or mask) singularities at x coming from
other covectors in WFpf q conormal to Sx . (Proof uses [GU])
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Morals

Since L P I0,1p∆, ΓΣq, the added singularities will be one
degree weaker in Sobolev scale than if D were an arbitrary
differential operator since, in general, L would be in I1,0.
This algorithm has been tested on electron microscope
data for single axis tilt [QO 2008, QSO 2009].

Cross-section of reconstructions from conical tilt data of several
balls [QBC 2008]. Note decreased strength of added
singularities when using D instead of ∆.

Reconstruction using D
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Large Field of View ET: The Curvilinear X-ray
Transform

The curvilinear paths: For each tilt angle t Psa,br , electron
paths are inverse images of the smooth fiber map

pt : R3 Ñ R2, ptpxq “ y

y is on the detector plane.
Curves: pt ,yq P Y “sa,br ˆR2 γt ,y “ pt

´1ptyuq – a line.

Curvilinear X-ray Transform: Ppf pt ,yq “
ż

xPγt,y

f pxqds

Backprojection Operator: P˚p gpxq “
ż

tPsa,br
g pt ,ptpxqqdt ,

which is the integral over all curves through x (as x P γt ,pt pxq)
If the curve doesn’t join up at a and b, one multiplies by a cut off function near
the ends of sa, br .
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Example (Helical Electron Paths With Pitch 20π)

Single-axis tilt data geometry, multi-axis tilt ET and conical tilt
ET over curves fit into our model.



Regularity Assumptions:

(Bx and Bt are gradients)

1 For each t Psa,br , the curves γt ,y are smooth, unbounded,
and don’t intersect. px , tq ÞÑ ptpxq P R2 is a C8 map. Fixing t , pt is
a fiber map in x with fibers diffeomorphic to lines. Therefore, Bx ptpxq
has maximal rank (two).

2 Curves move differently at different points as t changes.
@pt , yq P Y and x0 and x1 in γt,y , if x1 ‰ x0, then Btptpx0q ‰ Btptpx1q.

3 The curves wiggle enough as t changes. The 4ˆ 3 matrix
ˆ

Bx ptpxq
BtBx ptpxq

˙

has maximal rank (three). Geometric Meaning



Our Reconstruction Operator Adds Singularities

Lpf q “ P˚p DPpf where D is a 2nd order PDO

Using the composition calculus of FIO “essentially”

Lpf qpxq „ D1P˚pPpf “ D1
ż

Sx

f WdA

for some singular weight W and ΨDO D1 where

Sx “
ď

tPsa,br

γt ,pt pxq is the “cone” of curves through x

Thus, singularities of f that are normal to Sx could appear as
added singularities in the reconstruction Lf pxq (as in the
admissible case).



Our Reconstruction Operator Adds Singularities

Lpf q “ P˚p DPpf where D is a 2nd order PDO

Using the composition calculus of FIO “essentially”

Lpf qpxq „ D1P˚pPpf “ D1
ż

Sx

f WdA

for some singular weight W and ΨDO D1 where

Sx “
ď

tPsa,br

γt ,pt pxq is the “cone” of curves through x

Thus, singularities of f that are normal to Sx could appear as
added singularities in the reconstruction Lf pxq (as in the
admissible case).



Theorem (Microlocal Regularity Theorem, [QR 2012])

Let Pp satisfy our assumptions. Let f P E 1pR3q. Let D be a
differential operator on R2 acting on y . Then, the wavefront set
at x

pWFpLpf qqqxĂ pWFpf q X Vxq YAx

where Vx is the set of visible singularities (normals to curves
through x), and Ax is a set of added singularities above x
coming from singularities of f that are K to Sx .

Our algorithm can accurately show visible singularities of f .

However, any backprojection algorithm can add (or mask)
singularities to the reconstruction from singularities of f
normal to Sx at points far from x . This is because

ΠL : C Ñ T ˚pY q is not Injective ΠL is not an immersion

Proof uses Hörmander-Sato Lemma. [Stefanov-Uhlmann (magnetic
geodesics), Greenleaf and Uhlmann, Guillemin, Krishnan, Palamodov...]
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Helical data with Pitch 20π

As in the admissible case, the choice of derivative can
decrease the effect of the added singularities. However, here, it
deceases only nearby added singularities!

Reconstruction of one ball. 70 angles in r0, πs. x1 axis is
vertical.

Derivative in good direction Derivative K good direction



Summary

For admissible complexes:
Greenleaf and Uhlmann’s theory shows what singularities
are added.
Choosing the right differential operator can decrease the
strength of added singularities. This is behind the improved
local algorithms for cone beam CT [Katsevich, Anastasio,
Wang] and slant hole SPECT/conical tilt ET [QBC, QÖ]. A
first order ΨDO was suggested for cone beam CT in [FLU].

For curved paths:
No inversion algorithm exists in general. Our algorithm is
local, shows boundaries, and easy to implement.
Added singularities are intrinsic to any backprojection
algorithm for this data.
In general, the good differential operator decreases nearby
singularities but not all singularities (because far-away
added singularities are in directions that don’t get
annihilated by it).

HAPPY BIRTHDAY, GUNTHER! Thanks for the beautiful
math!



Summary

For admissible complexes:
Greenleaf and Uhlmann’s theory shows what singularities
are added.
Choosing the right differential operator can decrease the
strength of added singularities. This is behind the improved
local algorithms for cone beam CT [Katsevich, Anastasio,
Wang] and slant hole SPECT/conical tilt ET [QBC, QÖ]. A
first order ΨDO was suggested for cone beam CT in [FLU].

For curved paths:
No inversion algorithm exists in general. Our algorithm is
local, shows boundaries, and easy to implement.
Added singularities are intrinsic to any backprojection
algorithm for this data.
In general, the good differential operator decreases nearby
singularities but not all singularities (because far-away
added singularities are in directions that don’t get
annihilated by it).

HAPPY BIRTHDAY, GUNTHER! Thanks for the beautiful
math!



Summary

For admissible complexes:
Greenleaf and Uhlmann’s theory shows what singularities
are added.
Choosing the right differential operator can decrease the
strength of added singularities. This is behind the improved
local algorithms for cone beam CT [Katsevich, Anastasio,
Wang] and slant hole SPECT/conical tilt ET [QBC, QÖ]. A
first order ΨDO was suggested for cone beam CT in [FLU].

For curved paths:
No inversion algorithm exists in general. Our algorithm is
local, shows boundaries, and easy to implement.
Added singularities are intrinsic to any backprojection
algorithm for this data.
In general, the good differential operator decreases nearby
singularities but not all singularities (because far-away
added singularities are in directions that don’t get
annihilated by it).

HAPPY BIRTHDAY, GUNTHER! Thanks for the beautiful
math!



Fourier Integral Operators

Z and X are open subsets of Rn:

F pf qpzq “
ż

xPX ,ωPRn
eiφpz,x ,ωqppz ,x , ωqf pxqdx dω

Phase Function: φpz ,x , ωq (e.g.,) linear in ω, smooth.
Amplitude: ppz ,x , ωq increases like p1` }ω}qs (order „ s).
Canonical Relation:
C “ tpz , Bzφpz ,x , ωq; x ,´Bxφpz ,x , ωqq|Bωφpz ,x , ωq “ 0u

C
ΠLÖ Œ

ΠR

Z ˆ pRnz0q X ˆ pRnz0q

WF relation: WFpF pf qq Ă ΠL

´

Π´1
R pWFpf qq

¯

.
What it means: FIO change singularities in specific ways
determined by the geometry of C.
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Pseudodifferential operators (ΨDOs)

Ppf qpzq “
ż

eipz´xq¨ωppz ,x , ωqf pxqdx dω

Phase Function: φpz ,x , ωq “ pz ´ xq ¨ ω is linear in ω, smooth.
Amplitude: ppz ,x , ωq increases like p1` }ω}qs (order „ s).
Canonical Relation:

C “ tz , Bzφpz ,x , ωq; x ,´Bxφpz ,x , ωqq|Bωφpz ,x , ωq “ 0u
“ tpz , ω, z , ωq

ˇ

ˇz P Rn, ω P Rnz0u “ Diagonal

C
ΠLÖ Œ

ΠR

X ˆ pRnz0q X ˆ pRnz0q

WF relation: WFpPpf qq Ă ΠL

´

Π´1
R pWFpf qq

¯

“ WFpf q.
What it means: ΨDO do not move wavefront set.
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If the rank assumption doesn’t hold:

Then
ˆ

Bxptpxq
BtBxptpx0q

˙

has rank two.

span Bxptpxq is the normal plane to γt ,pt pxq at x .

If the rank is two, then span
`

BtBxptpxq
˘

is a subset of the
normal plane, span

`

Bxptpxq
˘

.

So, the normal plane doesn’t “change” as t is changed
infinitesimally.

From data Ppf , one sees only covectors conormal to γt ,pt pxq at
x .
Moral: Infinitesimally, one does not see a full three-dimensional
set of cotangent vectors at x from the data p . .

"
q.
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Theorem (QR 2012)

ΠL is not injective. Let pt ,yq P Y and η P R2z0. Covectors in C
map to the same point under ΠL iff they are of the form
λj :“ pt ,ptpx jq,´η ¨ Btptpx jqdt ` η ¨ dy ; x j , η ¨ Bxptpx jqdxq for
j “ 0,1, where

ptpx0q “ ptpx1q (1)
η ¨ pBtptpx0q ´ Btptpx1qq “ 0. (2)

Remark
Condition (1) means that x0 and x1 both lie on the same curve,
γt ,pt px0q

.
Condition (2) means that η is perpendicular to
Btptpx0q ´ Btptpx1q. In all cases, for all x0 and x1 in γt ,pt px0q

there are covectors for which this condition holds.
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Theorem (QR 2012)
ΠL is not an immersion. Let

λ :“ pt ,ptpxq,´η ¨ Btptpxqdt ` η ¨ dy ; x , η ¨ Bxptpxqdxq P C.

ΠL is not an immersion at λ iff

η ¨ BtBxptpxq P span pBxptpxqq . (3)

For each pt ,xq there is a one-dimensional set of such covectors
λ.

Proof.
This follows from the expression for ΠL : C Ñ T ˚Y and that
ˆ

Bxptpxq
BtBxptpxq

˙

is assumed to have maximal rank (three) and Bxpt

has maximal rank (two).
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Description of Dpt ,xq

For each pt ,yq and x P γt ,y , we choose a unit tangent vector v
to γt ,y at x and we let

η0 “
`

BtBxptpxqv
˘t D “ Dpt ,yq “ pBη0q

2

where D operates on the y coordinate.
The covectors above pt ,ptpxq,xq

λ :“ pt ,ptpxq,´η ¨ Btptpxqdt ` η ¨ dy ; x , η ¨ Bxptpxqdxq P C.

on which ΠL is not an injective immersion are those for which η
satisfies

η ¨ BtBxptpxq P span pBxptpxqq .

Since Bxptpxqv “ 0, for such η, pη ¨ BtBxptpxqqv “ 0 ,so
η ¨ pBtBxptpxqvq “ 0 , and so η K η0. Back
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