Active exterior cloaking

Fernando Guevara Vasquez University of Utah

June 18 2012 Conference in honor of Gunther Uhlmann, UC Irvine

Collaborators

Graeme W. Milton (University of Utah) Daniel Onofrei (University of Houston)

Fernando Guevara Vasquez,

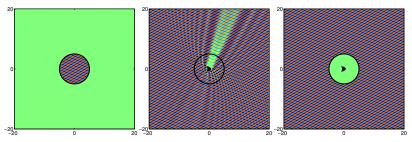
Cloaking types

Interior/Exterior: Is the object hidden inside or outside a device? Passive/Active: Are sources needed to cloak?

- Passive Interior
 - Transformation based cloaking: Leonhardt; Cummer, Pendry, Schurig, Smith; Greenleaf, Kurylev, Lassas, Uhlmann; Farhat, Enoch, Guenneau; Kohn, Onofrei, Shen, Vogelius, Weinstein; Cai, Chettiar, Kildishev, Shalaev; ...
 - Plasmonic cloaking: Alù, Engheta.
- Passive Exterior
 - Anomalous resonances: McPhedran, Milton, Nicorovici.
 - Complementary media: Lai, Chen, Zhang, Chan.
 - Plasmonic cloaking: Alù, Engheta, ...
- Active Interior: Miller
- Active Exterior:
 - Onofrei, Ren: integral equation framework
 - This work: (Laplace and) Helmholtz equations.

$\begin{array}{l} \text{Helmholtz equation} \\ \Delta \mathfrak{u} + k^2 \mathfrak{u} = 0 \end{array}$

Active interior cloaking



Proposed by Miller 2001, but well known in acoustics since the 60s (Malyuzhinets; Jessel and Mangiante;...)

Green's identity

Let D be a domain in \mathbb{R}^d (d = 2 or 3) with Lipschitz boundary.

$$\begin{split} \mathfrak{u}_d(\mathbf{x}) &= \int_{\partial D} \mathsf{d}S_{\mathbf{y}} \{-(\mathbf{n}(\mathbf{y}) \cdot \nabla_{\mathbf{y}} \mathfrak{u}_i(\mathbf{y})) \mathsf{G}(\mathbf{x}, \mathbf{y}) + \mathfrak{u}_i(\mathbf{y}) \mathbf{n}(\mathbf{y}) \cdot \nabla_{\mathbf{y}} \mathsf{G}(\mathbf{x}, \mathbf{y})\} \\ &= \begin{cases} -\mathfrak{u}_i(\mathbf{x}), & \text{if } \mathbf{x} \in D \\ 0, & \text{otherwise,} \end{cases} \end{split}$$

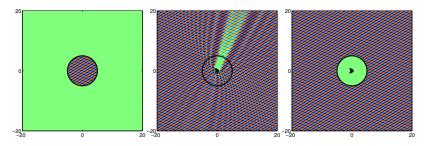
where the Green's function for the Helmholtz equation is

$$G(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{\mathrm{i}}{4} H_0^{(1)} \left(\mathbf{k} | \mathbf{x} - \mathbf{y} | \right) & \text{in 2D} \\ \\ \frac{e^{\mathrm{i} \mathbf{k} | \mathbf{x} - \mathbf{y} |}}{4\pi | \mathbf{x} - \mathbf{y} |} & \text{in 3D} \end{cases}$$

 \rightsquigarrow we get a single and double layer potential on ∂D so that

•
$$u_i + u_d = 0$$
 in D

•
$$\mathfrak{u}_d = 0$$
 in $\mathbb{R}^d \setminus D$.



- With Green's identities: The object is completely surrounded by the cloak.
- To get exterior cloaking: replace the single and double layer potential in Green's identities by a few devices.

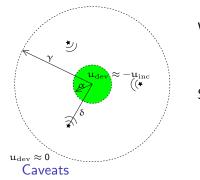
Devices' field $u_{de\nu}$ must satisfy Helmholtz equation with Sommerfeld radiation condition. For point-like devices located at positions x_j :

$$u_d(\mathbf{x}) = \sum_{j=1}^{n_{dev}} \sum_{m=-\infty}^{\infty} b_{j,m} V_m(\mathbf{x} - \mathbf{x}_j),$$

where the radiating solutions to the Helmholtz equation are

$$V_m(\mathbf{x}) \equiv H_m^{(1)}(k |\mathbf{x}|) \exp[im \arg(\mathbf{x})].$$

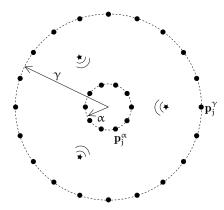
Designing devices that mimic Green's identities



We need: (a) $u_{dev}(\mathbf{x}) \approx -u_{inc}(\mathbf{x})$ for $|\mathbf{x}| \leq \alpha$ (b) $u_{dev}(\mathbf{x}) \approx 0$ for $|\mathbf{x}| \geq \gamma$ Since $u_{tot} = u_i + u_d + u_{scat}$, (a) $\Rightarrow u_{tot}(\mathbf{x}) \approx 0$ for $|\mathbf{x}| \leq \alpha$ (b) $\Rightarrow u_{tot}(\mathbf{x}) \approx u_{inc}(\mathbf{x})$ for $|\mathbf{x}| \geq \gamma$

- We need to know the incident field in advance, from e.g. sensors.
- Information from sensors needs to travel faster than incident field (OK for acoustics. For electromagnetics: periodicity?)
- Need very accurate reproduction of incident field (OK in controlled environments like MRI?)

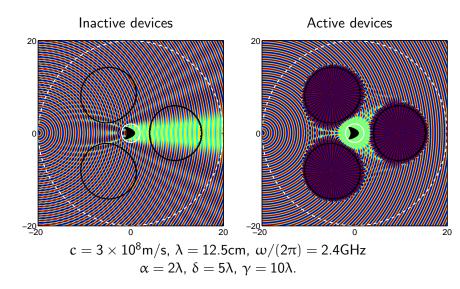
Finding the coefficients numerically



 $\begin{array}{l} (a') \ u_{dev}(x) \approx -u_{inc}(x) \ \text{for} \ |x| = \alpha \\ (b') \ u_{dev}(x) \approx 0 \qquad \qquad \text{for} \ |x| = \gamma \\ \text{Construct matrices } \mathbf{A}, \mathbf{B} \ \text{s.t.} \\ \mathbf{Ab} = [u_{dev}(\mathbf{p}_1^{\alpha}), \ldots, u_{dev}(\mathbf{p}_{N^{\alpha}}^{\alpha})]^{\mathsf{T}}, \\ \mathbf{Bb} = [u_{dev}(\mathbf{p}_1^{\gamma}), \ldots, u_{dev}(\mathbf{p}_{N^{\gamma}}^{\gamma})]^{\mathsf{T}}, \\ \text{where } \mathbf{b} \in \mathbb{C}^{(2M+1)D} \\ \equiv \ \text{device coefficients.} \end{array}$

$$\begin{split} \text{1. Find } \mathbf{b}_0 &= \text{argmin } \|\mathbf{A}\mathbf{b} + u_{\text{inc}}(|\mathbf{x}| = |\alpha|)\|_2^2 \text{ (enforce (a'))} \\ \text{2. Find } \mathbf{b}_* &= \underset{\mathbf{A}\mathbf{b} = \mathbf{A}\mathbf{b}_0}{\text{argmin }} \|\mathbf{B}\mathbf{b}\|_2^2 \text{ (enforce (b'))} \end{split}$$

Cloaking for one single frequency



Fernando Guevara Vasquez,

Scattering reduction

 $c=3 imes 10^8 m/s, \, \lambda_0=12.5 cm, \, \omega/(2\pi)\in [1.2,3.6] GHz$

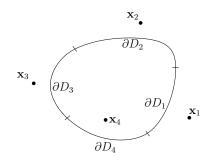
Fernando Guevara Vasquez,

Devices for many frequencies (pulse)

By superposition principle: sum device fields for many ω to get cloaking in a bandwidth (i.e. in the time domain).

Fernando Guevara Vasquez,

Green cloak devices idea



Idea The contribution of portion ∂D_j to the single and double layer potentials in Green's formula is replaced by a multipolar source located at $x_j \notin \partial D$.

Graf's addition formula

The Green's function $G(\mathbf{x},\mathbf{y})$ can be written as a superposition of sources located at \mathbf{x}_{i} :

$$\begin{split} \mathsf{G}(\mathbf{x},\mathbf{y}) &= \frac{\mathsf{i}}{4}\mathsf{H}_0^{(1)}(\mathsf{k}\left|\mathbf{x}-\mathbf{x}_j-(\mathbf{y}-\mathbf{x}_j)\right|) \\ &= \frac{\mathsf{i}}{4}\sum_{m=-\infty}^{\infty}\mathsf{V}_m(\mathbf{x}-\mathbf{x}_j)\overline{\mathsf{U}_m(\mathbf{y}-\mathbf{x}_j)}, \end{split}$$

where the entire cylindrical waves are

 $U_m(x) \equiv J_m(k \left| x \right|) \text{exp}[\text{im} \, \text{arg}(x)]$

and the sum converges uniformly in compact subsets of $\left|\mathbf{x}-\mathbf{x}_{j}\right|>\left|\mathbf{y}-\mathbf{x}_{j}\right|.$

Use summation formula to "move" monopoles and dipoles from a portion of the boundary to the corresponding $\mathbf{x}_{\mathbf{j}}.$

Fernando Guevara Vasquez,

Green cloak devices

The device field

$$u_d(\mathbf{x}) = \sum_{j=1}^{n_{dev}} \sum_{m=-\infty}^{\infty} b_{j,m} V_m(\mathbf{x} - \mathbf{x}_j),$$

with

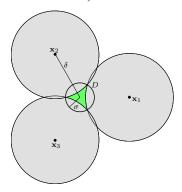
$$\begin{split} b_{j,m} &= \int_{\partial D_j} dS_{\mathbf{y}} \{ (-\mathbf{n}(\mathbf{y}) \cdot \nabla_{\mathbf{y}} \mathbf{u}_i(\mathbf{y})) \, \overline{\mathbf{u}_m(\mathbf{y} - \mathbf{x}_j)} \\ &+ \mathbf{u}_i(\mathbf{y}) \mathbf{n}(\mathbf{y}) \cdot \nabla_{\mathbf{y}} \overline{\mathbf{u}_m(\mathbf{y} - \mathbf{x}_j)} \} \end{split}$$

converges (uniformly in compact subsets) outside of the region

$$R = \bigcup_{l=1}^{n_{dev}} B\left(\mathbf{x}_l, \sup_{\mathbf{y} \in \partial D_l} |\mathbf{y} - \mathbf{x}_l| \right).$$

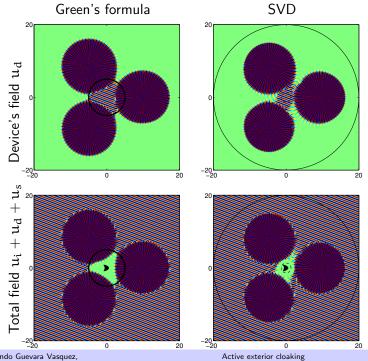
A specific configuration

With $D = B(0, \sigma)$ and devices $|\mathbf{x}_i| = \delta$:



- Gray disks have radius: $r(\sigma,\delta)=((\sigma-\delta/2)^2+3\delta^2/4)^{1/2}.$
- Largest disk in cloaked region radius: $r_{eff}(\sigma, \delta) = \delta r(\sigma, \delta)$.
- Largest cloaked region ($\sigma^* = \delta/2$): $r_{eff}^*(\delta) = (1 - \sqrt{3}/2)\delta \approx 0.13\delta.$

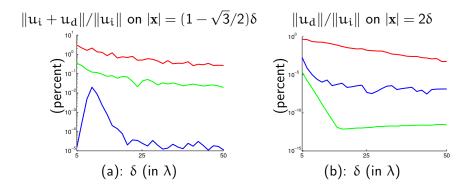
Fernando Guevara Vasquez,



Fernando Guevara Vasquez,

17/28

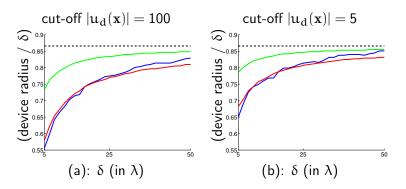
Cloak performance



- blue: SVD method with $M(\delta)$ terms
- red: Green's identity method with $M(\delta)$ terms
- green: Green's identity method with $2M(\delta)$ terms

Fernando Guevara Vasquez,

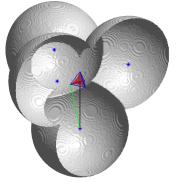
Size of the "throats"

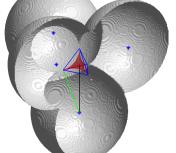


Estimated device radius relative to δ for different values of δ .

Cloaking for Helmholtz equation in 3D

With D =tetrahedron inscribed in B(0, σ), devices $|\mathbf{x}_i| = \delta$:



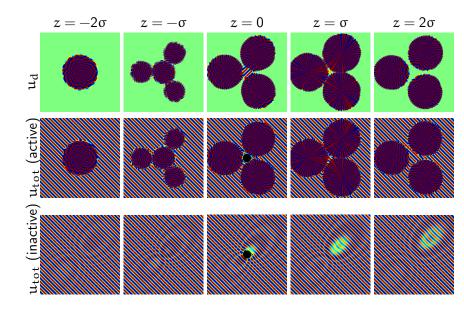


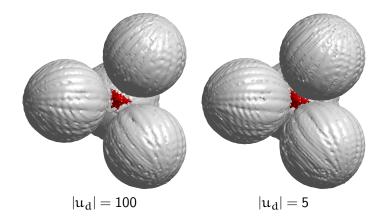
(a) suboptimal, $\sigma = \delta/5$

(b) optimal, $\sigma = \delta/3$

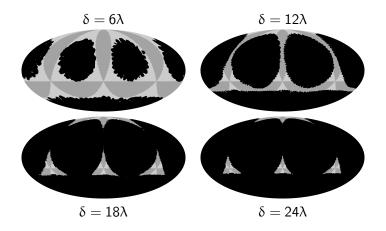
- Radius of gray balls: $r(\sigma, \delta) = \left(\left(\sigma \frac{\delta}{3}\right)^2 + \frac{8}{9}\delta^2\right)^{\frac{1}{2}}$. (green)
- Largest ball in cloaked region: $r_{eff}(\sigma, \delta) = \delta r(\sigma, \delta)$. (red)

Largest cloaked region: $r_{eff}^* = \left(1 - \frac{2\sqrt{2}}{3}\right)\delta \approx 0.057\delta.$ Fernando Guevara Vasquez.





Contours of $|u_d|$ (gray) and $|u_d+u_i|=10^{-2}$ (red).



Cross-section of level set $|u_d| \ge 10^2$ (black) and of the region R (shades of gray) on the sphere $|\mathbf{x}| = \sigma$ for the optimal $\sigma = \delta/3$.

Main ingredients for Helmholtz 3D active cloaking

- Green's identity: mono- and dipole density on ∂D reproduces incident field u_i in D.
- Device Ansatz:

$$u_d(\mathbf{x}) = \sum_{l=1}^{n_{dev}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} b_{l,n,m} V_n^m(\mathbf{x} - \mathbf{x}_l).$$

• Movable source: (Graf's Identity)

$$G(\mathbf{x},\mathbf{y}) = \text{ linear combination of } V_n^m(\mathbf{x}-\mathbf{x}_l).$$

Main ingredients for Maxwell active cloaking

- Stratton-Chu Formula: magnetic and electric dipole density on ∂D reproduces incident field E_i, H_i in D.
- Device Ansatz:

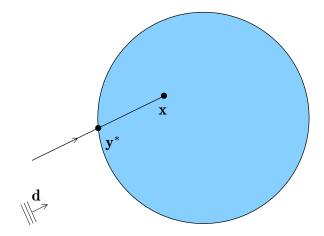
$$\begin{split} \mathsf{E}_{d}(\mathbf{x}) &= \sum_{l=1}^{n_{dev}} \sum_{n=1}^{\infty} \sum_{m=-n}^{n} a_{l,n,m} \nabla \times ((\mathbf{x} - \mathbf{x}_{l}) V_{n}^{m}(\mathbf{x} - \mathbf{x}_{l})) \\ &+ b_{l,n,m} \nabla \times \nabla \times ((\mathbf{x} - \mathbf{x}_{l}) V_{n}^{m}(\mathbf{x} - \mathbf{x}_{l})) \end{split}$$

• Movable source: (vector addition theorem)

$$\begin{split} G(\mathbf{x},\mathbf{y})\mathbf{p} &= \text{linear combination of} \\ \nabla \times ((\mathbf{x}-\mathbf{x}_l)V_n^m(\mathbf{x}-\mathbf{x}_l)), \\ \nabla \times \nabla \times ((\mathbf{x}-\mathbf{x}_l)V_n^m(\mathbf{x}-\mathbf{x}_l)), \text{ and} \\ \nabla V_n^m(\mathbf{x}-\mathbf{x}_l). \end{split}$$

Directionality with stationary phase method

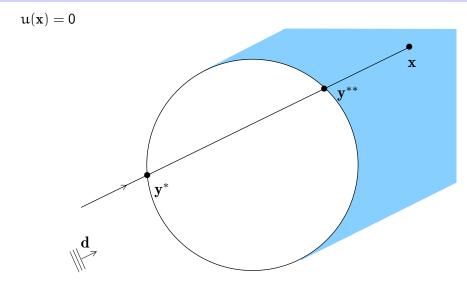
 $\mathfrak{u}(x) = \mathsf{exp}[\mathfrak{i}kd\cdot x]$



(with Leonid Kunyansky)

Fernando Guevara Vasquez,

Directionality with stationary phase method



(with Leonid Kunyansky)

Fernando Guevara Vasquez,

- Time domain problems (active control of waves)
- Approximate Green's identities with a few devices while enforcing a constraint (e.g. penalize size of devices)

Thank you!