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Radiation fields in Minkowski space

Suppose u solves �u = 0 with smooth, compactly supported initial
data in R× Rn. (�u = f ∈ C∞c (Rn+1) with u = 0 for t� 0 works
as well.)
In polar coordinates (t, r, ω), introduce s = t− r ρ = 1

r , and introduce

v(ρ, s, ω) = ρ−
n−1
2 u

(
s+

1

ρ
,

1

ρ
ω

)

Fact

v is smooth down to ρ = 0, i.e., to null infinity.

Definition

The forward radiation field is the function given by

R+[u](s, ω) = ∂sv(0, s, ω)

In 1-d, these are the waves moving to the left and right.
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Radiation fields in Minkowski space

The radiation field is of independent interest: R+ is

an FIO

a unitary isomorphism Ḣ1(Rn)× L2(Rn)→ L2(R× Sn−1)
a translation representation

related to the Radon transform

a concrete realization of the wave operators in Lax-Phillips scattering
theory

The radiation field is understood in a variety of geometric contexts. See
Friedlander, Sá Barreto, Wang, Melrose–Wang, Sá Barreto–Wunsch, . . . .
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Radiation fields in Minkowski space

Motivating question

How does R+ behave as s→∞?

On Minkowski space R× Rn,

|R+[u](s, ω)| .

{
(1 + s)−∞ n odd

(1 + s)−
n+1
2 n even

Klainerman–Sobolev inequalities yield

|R+[u](s, ω)| . (1 + s)−1/2

on perturbations of MInkowski space
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Where does the radiation field live?

Take the radial compactification of Minkowski space
(ρ = (t2 + r2)−1/2, θ = (t, r)/ρ ∈ S1):

dt2 −
∑

dz2j = cos 2θ
dρ2

ρ4
− cos 2θ

dθ

ρ2
+ 2 sin 2θ

dρ

ρ2
dθ

ρ
− sin2 θ

dω2

ρ2
.

Introduce v = cos 2θ and metric becomes

v
dρ2

ρ4
− v

4(1− v2)
dv2

ρ2
− dρ

ρ2
dv

ρ
− 1− v

2

dω2

ρ2

The radiation field is the (rescaled) restriction of the solution u to the
front face of the blow up of {v = ρ = 0}.
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Asymptotically Minkowski spaces

Suppose (M, g) is an (n+ 1)-dimensional compact manifold with
connected boundary, g a time-oriented Lorentzian metric on M that
extends to a nondegenerate quadratic form on scTM .

Definition

g is a Lorentzian scattering metric if there is a boundary defining function
ρ and a Morse-Bott function v ∈ C∞(M) so that 0 is a regular value for v
and, in a neighborhood of ∂M ,

g = v
dρ2

ρ4
− 2f

dρ

ρ2
dv

ρ
− h

ρ2
,

where f = 1
2 +O(v) +O(ρ) near v = ρ = 0, and h|Ann(dρ,dv) is positive

definite near ∂M .

Also impose a non-trapping assumption on the light rays.
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Radiation fields

Proposition

The radiation field exists for metrics of this form.

The radiation field blow-up:
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Asymptotics of radiation fields

Theorem

Suppose (M, g) is as above (non-trapping Lorentzian scattering), u is a
tempered solution of �gu = f ∈ C∞c (M◦). Then R+[u] has an
asymptotic expansion of the form

R+[u] ∼
∑
j

∑
κ≤mj

s−iσj |log s|κ ajκ

Note

This is really a full asymptotic expansion for u in terms of ρ and s.

Note

This is not an existence theorem!
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Some remarks

The σj and mj in the expansion are related to the resonances of an
asymptotically hyperbolic problem in the region of ∂M where {v > 0}
(and in particular are independent of u).

This region inherits an AH metric: k(X,Y ) = −1
v g(ρX̃, ρỸ ), where X̃,

Ỹ ⊥ ρ2∂ρ. The σj are the locations of the poles of an operator related
to (∆k − σ2)−1.

Resonance gap (known) for k yields rate of decay for R+[u].

In Minkowski space, k is the hyperbolic metric, and the expansion for
u is of the form

u ∼

{
O(ρ

n−1
2 s−∞) n odd∑

j ρ
n−1
2 s−

n−1
2
−jaj n even
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Ideas in the proof

Much heavy lifting done in recent paper of Vasy.

Mellin transform reduces to problem on ∂M .

Pσ fits into framework of Vasy paper, yielding a preliminary
asymptotic expansion.

Propagation of singularities estimate implies remainder term is lower
order.

Work of Haber-Vasy implies the coefficients are L2-based conormal
distributions.

Coefficients are classical conormal, so have expansions in v.

Blow-up turns v expansion into s expansion (since v = sρ).
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Thank you

Dean Baskin (Northwestern) Asymptotics of radiation fields Irvine 12 / 12


	Minkowski space
	Asymptotically Minkowski spacetimes
	Main theorem
	Ideas in proof

