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1.Background
—V-(Wu)= —Z 0,(y’0 u)=0 Q) o=

7, 7=1

Y is a real-valued symmetric positive definite tensor with bounded
coefficients, satisfying a uniform ellipticity condition for some « =1

ke[ <&y (g <klg| Eek xreQ)

» Conductivity equation: rules the equilibrium distribution of the electrostatic
potential u inside the domain  in response to a prescribed boundary voltage g.
Electrical Impedance Tomography(EIT).

YVu-v|,, —> Calderon’s problem

* Internal measurement
power density of a solution# /7,[£](x) :=Vu(x)-y(x)Vu(x)
Application: Hybrid imaging

How to construct power densities: Ammari et al. (2008),
Kuchment-Kunyansky (2010)



-V-(yVu)=0 () U =g A [g1(x)=Vu(x)-y(x)Vu(x)

History (non-linear case):

. 2
* Isotropic case y =0/, from only one measurement HZGW%

Vo4
V- Vu)=0 —

* Newton-based method see (Gebauer and Scherzer (2009))

- Theoretically, by Bal (2012).



The conductivity equation

V-( ¥ Vu)=0 (@ U= g 1
-~ fnown

unknown

Fixing a few boundary condtions £, 1&g, with u, solving (1)with £ =g,
Measurement operator : Z:y'—>Hy)=H()=y'Vu,-Vu, 1< j<m

Problem: recover ¥ from #

* Isotropic, 2 dimensional setting, see (Capdeboscq et al. (2009))

 Explicit reconstruction using a large number of functionals in an isotropic
case in dimension 3. see (Bal,Monard, Bonnetier and Triki)

» Generalized to dimension n, isotropic tensor with more general type of

measurements ¢*|Vu|
1
where o not necessary ;

see Monard and Bal (2012).

* reconstruction formulas for the anisotropic two-dimensional problem
see Monard and Bal (2012).



Linearization of the problem

The partial differential equation

V-( y' Vu)=0 @), U= g (1)

fnown
unknown

Fix a few boundary conditions g.*3g, with % solving (1)with £= g,

Measurement operator : Z:y'—= H(y")=H,(y")=y'Vu,-Nu, 1<j j<m

Non-linear problem: recover y' from #

Fréchet derivative: y'= v, +ey +o(e?)
——
fknown

u,=u+ev,+0(g?)

PDE (1) of order dl)and d¢)  —v.(y,V . )=0 (@), #lo= &
o ——

fnown
known

—V-(y,V :2 )=V-(WVu) (Q), v,|,0=0

unknown



The measurements look like #Z,=y,Vu,Vu,+e(yNVu,-Vu,+y,Vu,-Vv,+y,Vu ,-Vv,)+ o(e?)
l

Linearized measurements dH,=WNu,Nu,+y\Nu,Nv,+yVu, -V,

known

Linearized problem: recover v from 47,

References on the linearized problem

* isotropic case in dimension 2 and 3 with numerical implementation
see (Kuchment and Kunyansky (2011))

« isotropic case, studied using pseudo-differential calculus, inversion modulo a
compact operator. see (Kuchment and Steinhauer (2011))



2.Microlocal inversion

Study of the principal symbol 47,(v,¢) of 4,

Recall the equations and measurements:

—V-(VOV@)=0 (Q), ul~|ag=§5

fknown fknown

V-3,V v, )=V-(Wu,) ), V=0
-
unknowrn

A, =yWNVu,-NVNu,+yVu,-Vv,+y,Vu,-Vy,
fknown

Denote Z,=-V-(y,V) v,=1'(V-(yVu,) 0
suppose y compactly supported inside Q2
Insert v,=Z,'(V-(yVu,)) into 44, and express as a pseudo-DO

dH(y, 0) = Q)" [[D (M (5,8 + M|, (5,8):y (W dedy

R'<R”

M,(x,@jods\“) M|, (%,E) =lo<\s\1>

pricipal symbol the symbol of order -1



dH (v, 1) = Q2r) " ([ (5,8 + My |, (5,E)) 1y () dedy

R'<xR"

My(x8)=o(el) My (xE)=o(E)
l !
pricipal symbol the symbol of order -1

Goal: determine under which conditions the operator &7 =1{d#},, ..,
is an elliptic pseudo-differential operator

Conclusion: with only principal symbols #7,(x,&) dH ={dH},., ., will never

be elliptic, no matter how large m

Define4 = ()" & = 4¢ and ¥ = 4V, rewrite the principal symbol 47,(x.S)

My(1,E)= AM ,(x,E) 4,
=10V ~(& )5 OF~(& )& 0,

. 1
Notation: U@V:E(U®V+ VeU)



Lemma:

For any 7./ and vector fields 7.7, defined as above 7= 4V« the symbol
My(xE)satisfies

My(x,E):E,on=0 forall nes™ and nLéE

Conclusion: the #, can never control a subspace of $,(&) of dimension »-1

Basic Hypothesis: the gradients {V«”, form a frame in #

Lemma:
Suppose that the vector fields {#;}-; form a basis of #’If a matrix 2<S,(&)

/i/y(x,é):on 1</ j<n
Then 7 is of the form £=¢ on for some vector n  satisfying n L¢,

Conclusion: the only directions that are not controlled
by the principal symbols are P=Eon  nlé



The second term of @/7,,
dH (v, 0) = Q2r) " [[& (M (0,8)+ My |, (5,8)): v (W dedy
R"xR"
Goal: invert @7 =14} <n microlocally from M, (x,8)+ M|, (x,8)
* case 7 is constant /14/1_1 (58 =4 Myl (5E)A4,

= 4] VUL 7))L, 28, ®E) + 7, )

h H Av2 A +H/~((§() K)([” — 2&0 ® 50)4_ K@ go]sym
where 4, = AV u A,

Lemma

Suppose . is constant, pick «=x 1</<» and add an additional solution
denoted by «.. with full-rank HessianVv’«,,, If there exist ~.0<5,(# such
that for all 1<:i/<x

(M + My | )(5E): (P+N=10) =0

(‘/Nl/z',nﬂ + /’N/f,nﬂ L) E): (P+ \/—_1Q) —0

then P=0=0 o



e case7, is not constant

Basic Hypotheses

e (Vi,-Vu) formaframe —V-(,V “, )=0  u|n= g,

known fknown

* Add one addition #,, such that iu_,~vu,.+Vuﬂ+I:0

we construct the matrix Z=[Vu.-.Ve,] assume ~ to be invertible

Remark: in the case 7 constant, the above hypothesis is automatically
satisfied, by choosing
u =x 1</<n
u,, :%fox ¢ invertible 7r(0Q)=0
Recall @H,(y,1)=Qr)" [[&* (M ,(x,8)+ M, |, (5,8)): v (N edy
R'xR"
Goal: under the above hypotheses,/f/zf |, can control all bad directions
oy

11



Recall: dHy =V N,y Vg Vv, 4y Va, Vy,
fknown
v, = Lal(v . (yvyl))
ﬂ’sz(ya X) = (277:)_” J'J' el'é.(x—)/) (%(X,é) +/1/lj |_1 (_)C, 5)) : y()/)dgﬂ’)/
R'xR"
Lemma

Assume that Zz=(vu.-.vu] isinvertible, if 4. 15:¢,0n=0and a1 on=0
forany 1<i/<z and & 1n then n=0
Theorem
Suppose that we have measurements b« and b
such that Z=[Vu.-.Vu1 is invertible and v«.--v«) form a frame.
we denote the operator #7 as follows — #7=(d, - d,,,)., .,

n(n+1) /7(’7+1)+

Then the operator GedZ:{L( @)} > ={L(Q)} °

is semi-Fredholm, where ¢ is the restriction operator to 2@

Proof: construct a parametrix ¢ such that ¢-#7-/ s of order -1 12



3.Explicit reconstruction

V0V 1)=0 (Q), 4la= g (%)

known known

- V : (yov l/:i ) = V ’ (yvul) (Q)’ Vi ‘692 O
unknown

dH , =yVu, Vu,+yVu,-Vv +y Vu,-Vv,

—

known

Let us now add another solution of (*) 2z with corresponding v at order &
u'=u+ev+o(g?)

v« may be expressed in the basis V4.V,

D uNu, +Vu=0
J

Suppose VU=V« |-|Ve] and Z2=[41-12] be invertible, where Z =vy,

13



In the end, we obtain the strongly coupled elliptic system
V- (y,Vr,)+ Z ’VIJ % vV, = S Y =0 1</<m
/=1

where 7, depends on v, and . x,)

/. depends on 47, and their derivatives

With 7 =—v-¢,v) define 4'1/€Luc(© where # solves ~V (WV¥A=/
]o=0

By Lax-Milgram theorem, and by Rellich imbedding, 4 : £ #4(Q) is compact.

Applying %' to the elliptic system vields v+ > L' (W,-Vv)=h =L/
/=1

B Hy(Q)>v— Pv=L](W,-Vv) e H,(Q) compactif #, bounded.
we obtain (/+Pyv=rh (%)
where v=04,-v,), 4=(%4,,%4,), and 2 compact
() satisfies a Fredholm alternative, if -1 is not an eigenvalue of #

< Clar| ¢

and we obtain the stability: 2'Q)

Vi H'(Q)



once (v,---v,) are reconstructed

the relations

dH ;= WVu,Vu,+yNVu, Vv, +yVu Vv,
—

fnown

can be inverted for ¥

vy =y (dH ,(H"Nu,® H'Nu,)=2H"Vv,0Vu,)y,

and we get the stability

”7/ 2(Q) = C”dH”H‘(Q)

15



e case 7 iIs constant

_V(J/Ov Zﬂ ):O (Q)a Z//l' |GQ: é (*)

known fnown

~VrV y )=V-Vu) (Q), 1]0=0

unknown
dH; =yVu, Nu,+yVu,-Vv. +yVu -V,

known

Taking 7, = /7 using harmonic polynomials as solutions of (* )

U, =X, 1<7/<n
.
uzizllapxi a,20 > a,=0
p=
Then we get n additional measurements
dH. =y :Vu,OVu'+Vu OVv+Vv.-Vu'  1<i<n

Together with dH ;= yWVu, Vu,+Vu,-Vv,+Vu, Vv, 1< j<n

16



| dH. =y :Vu,OVu'+Vu, OVV'+Vv,-Vu'  1<i<n
5/7(/7+ 1)+ 7

dH ,=yVu, Vu,+Vu,-Vv,+Vu, Vv, 1<ij<n

For this choice of «,--,4,) , the elliptic system is decoupled, hence solvable.

1 7 7 1 7 y': j/O +87/+O(82)
Av,=—>"0 (-0, \ax di, +0,dH)+—0,> adH, fron
a =1 p=1

= - ; u,=u +ev,+o(g?)

Yy =y =0,,~0y,

we obtain a standard estimate for », notice that the RHS is a linear combination
of «#, 4, and their first derivatives

2 (Q) < Cﬂ'“a’b’“l{l Q)

v, Vy

stability: s SCdH 0, then

— we |lose one derivative
17



