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1.Background

, 1
( ) ( ) 0

n
ij

i j
i j

u uγ γ
=

−∇⋅ ∇ ≡ − ∂ ∂ =∑

         is a real-valued symmetric positive definite tensor with bounded 
         coefficients, satisfying a uniform ellipticity condition for some

γ

21 ( )xκ ξ ξ γ ξ κ ξ− ≤ ⋅ ≤

1κ ≥

nRξ∈ x∈Ω

|u g∂Ω=( )Ω

• Conductivity equation: rules the equilibrium distribution of the electrostatic
  potential u inside the domain   ,   in response to a prescribed boundary voltage g.
  Electrical Impedance Tomography(EIT).   

Calderon’s problem|u vγ ∂Ω∇ ⋅ →
• Internal measurement

power density of a solution u [ ]( ) : ( ) ( ) ( )H g x u x x u xγ γ=∇ ⋅ ∇

Application: Hybrid imaging 
How to construct power densities: Ammari et al. (2008),
                                                       Kuchment-Kunyansky (2010)

Ω
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History (non-linear case):

( ) 0uγ−∇ ⋅ ∇ = |u g∂Ω=( )Ω

• Isotropic case nIσγ = from only one measurement
2H uσ= ∇

2( ) 0H u
u

∇⋅ ∇ =
∇

( )Ω |u g∂Ω=

• Newton-based method see (Gebauer and Scherzer (2009))

• Theoretically, by  Bal (2012). 

[ ]( ) : ( ) ( ) ( )H g x u x x u xγ γ= ∇ ⋅ ∇
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The conductivity equation
                 

� 0)'( =∇⋅∇ u
unknown

γ ),(Ω �
known

gu =
Ω∂|

Fixing a few boundary condtions 

)1(

with '
iu solving (1) with 

Measurement operator :

1, , mg g⋯
''')'()'(': jiij uuHHH ∇⋅∇==→ γγγγ

igg ≡

mji ≤≤ ,1

Problem: recover 'γ from

• Explicit reconstruction using a large number of functionals in an isotropic
  case in dimension 3. see (Bal,Monard, Bonnetier and Triki)

22 u∇ασ

where α not necessary 2
1

• Generalized to dimension n, isotropic tensor with more general type of       
measurements 

• reconstruction formulas for the anisotropic two-dimensional problem 
  see Monard and Bal (2012). 

see Monard and Bal (2012).

• Isotropic, 2 dimensional setting,  see (Capdeboscq et al. (2009))

H
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Linearization of  the problem

The partial differential equation
                 

� 0)'( =∇⋅∇ u
unknown

γ ),(Ω �
known

gu =
Ω∂|

Fix a few boundary conditions 

)1(

with '
iu solving (1) with 

Measurement operator :

1, , mg g⋯
''')'()'(': jiij uuHHH ∇⋅∇==→ γγγγ

igg ≡

mji ≤≤ ,1

Fréchet derivative: � )(' 2
0 εοεγγγ ++=

known

)( 2' εοε ++= iii vuu

PDE (1) of order        and       
� 0)( 0 =∇⋅∇−

known
iuγ �

known
ii gu =Ω∂|

� )()( 0 i
unknown

i uv ∇⋅∇=∇⋅∇− γγ ),(Ω 0| =Ω∂iv

Non-linear problem: recover 'γ from H

)(εo)1(o ),(Ω
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• isotropic case in dimension 2 and 3 with numerical implementation 
  see (Kuchment and Kunyansky (2011))

• isotropic case, studied using pseudo-differential calculus, inversion modulo a 
  compact operator. see (Kuchment and Steinhauer (2011))

References on the linearized problem

The measurements look like )()( 2
000 εογγγεγ +∇⋅∇+∇⋅∇+∇⋅∇+∇⋅∇= ijjijijiij vuvuuuuuH

Linearized measurements � ijjiji

known

ij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= 00 γγγ
↓

Linearized problem: recover γ from ijdH
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Study of the principal symbol ),( ξxM ij of ijdH

Recall the equations and measurements:

� )()( 0 i
unknown

i uv ∇⋅∇=∇⋅∇− γγ ),(Ω 0| =Ω∂iv

� 0)( 0 =∇⋅∇−
known

iuγ ),(Ω �
known

ii gu =Ω∂|

� ijjiji

known

ij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= 00 γγγ

Denote )(: 00 ∇⋅−∇= γL ))((10 ii uLv ∇⋅∇= − γ

suppose γ compactly supported inside Ω

Ω
γsupp

Insert ))((10 ii uLv ∇⋅∇= − γ into ijdH and express as a pseudo-DO

yddyxMxMexdH
nn RR

ijij
yxin

ij ∫∫
×

−
−⋅− += ξγξξπγ ξ )(:)),(|),(()2(),( 1

)(

)(),( 0ξοξ =xM ij )(),(| 1
1

−
− = ξοξxM ij

↓ ↓
pricipal symbol the symbol of order -1

2.Microlocal inversion
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yddyxMxMexdH
nn RR

ijij
yxin

ij ∫∫
×

−
−⋅− += ξγξξπγ ξ )(:)),(|),(()2(),( 1

)(

)(),( 0ξοξ =xM ij )(),(| 1
1

−
− = ξοξxM ij

↓ ↓
pricipal symbol the symbol of order -1

Goal: determine under which conditions the operator mjiijdHdH ≤≤= ,1}{

is an elliptic pseudo-differential operator

Conclusion: with only principal symbols           , ),( ξxM ij mjiijdHdH ≤≤= ,1}{ will never 

be elliptic, no matter how large m

Define 2
1

)( 00 γ=A
∧

= ξξ 00 : A and ii uAV ∇= 0: rewrite the principal symbol ),( ξxM ij

),(
~

ξxM ij 00 ),( AxMA ij ξ=

0 0 0 0( ) ( )i j i j j iV V V V V Vξ ξ ξ ξ= − ⋅ − ⋅⊙ ⊙ ⊙

1 ( )
2

U V U V V U= ⊗ + ⊗⊙Notation:
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Lemma:

For any ji, and vector fields ji VV , defined as above ii uAV ∇= 0: the symbol 
),(

~
ξxM ij satisfies

~

0( , ) : 0ijM x ξ ξ η =⊙ for all 1−∈ nSη and 0η ξ⊥

Conclusion: the ijM can never control a subspace of  )(RSn of dimension 1−n

Basic Hypothesis: the gradients n
iiu 1}{ =∇ form a frame in nR

Lemma:
Suppose that the vector fields n

iiV 1}{ = form a basis of If a matrix )(RSP n∈

~
( , ): 0ijM x Pξ = nji ≤≤≤1

Then P is of the form 0P ξ η= ⊙ for some vector η satisfying 0η ξ⊥

Conclusion: the only only only only directions that are not controlled 
                    by the principal symbols are

0P ξ η= ⊙

nR

0η ξ⊥
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The second term of ijdH

Goal: invert mjiijdHdH ≤≤= ,1}{ microlocally from ),(|),( 1 ξξ xMxM ijij −+

• case 0γ is constant ),(| 1
~

ξxMij −

yddyxMxMexdH
nn RR

ijij
yxin

ij ∫∫
×

−
−⋅− += ξγξξπγ ξ )(:)),(|),(()2(),( 1

)(

1
0 0 0 0 01[ (( )( 2 ) )i j n jA H V I Vξ ξ ξ ξ ξ−= − ⋅ − ⊗ + ⊗

010 ),(| AxMA ij ξ−=

0 0 0 0(( )( 2 ) ]symj i n iH V I Vξ ξ ξ ξ+ ⋅ − ⊗ + ⊗
2

0 0i iH A u A= ∇where

Lemma

Suppose 0γ is constant, pick ii xu = ni ≤≤1 and add an additional solution 
denoted by 1+nu with full-rank Hessian 1

2
+∇ nu  If there exist , ( )nP Q S R∈   such

that for all 1 ,i j n≤ ≤
~ ~

1( | )( , ) : ( 1 ) 0ijijM M x P Qξ−+ + − =
~ ~

, 1 1, 1( | )( , ) : ( 1 ) 0i ni nM M x P Qξ+ −+ + + − =
then 0P Q= =
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• case 0γ is not constant

Basic Hypotheses

• 1( , )nu u∇ ∇⋯ form a frame � 0)( 0 =∇⋅∇−
known

iuγ �
known

ii gu =Ω∂|

• Add one addition          such that  1nu + 1 0
n

j j n
j

u uµ +∇ +∇ =∑

we construct the matrix 1[ , , ]nZ µ µ= ∇ ∇⋯ assume Z to be invertible

Remark: in the case 0γ    constant, the above hypothesis is automatically 
satisfied, by choosing

i iu x= 1 i n≤ ≤

1
1
2

t
nu x Qx+ = Q invertible

Goal: under the above hypotheses,   can control all bad directions 
0ξ η⊙

~

1|ijM −

Recall yddyxMxMexdH
nn RR

ijij
yxin

ij ∫∫
×

−
−⋅− += ξγξξπγ ξ )(:)),(|),(()2(),( 1

)(

0)( =Qtr
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Lemma
Assume that 1[ , , ]nZ µ µ= ∇ ∇⋯ is invertible, if

~

1 0| : 0nc
ijM ξ η− =⊙ and ~

, 1 1 0| : 0nc
i nM ξ η+ − =⊙

for any 0ξ η⊥1 ,i j n≤ ≤ and

yddyxMxMexdH
nn RR

ijij
yxin

ij ∫∫
×

−
−⋅− += ξγξξπγ ξ )(:)),(|),(()2(),( 1

)(

� ijjiji

known

ij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= 00 γγγ

))((10 ii uLv ∇⋅∇= − γ

Recall:

0=ηthen

Theorem
Suppose that we have measurements 1 ,{ }ij i j ndH ≤ ≤ and , 1 1{ }i n i ndH + ≤ ≤

such that 1[ , , ]nZ µ µ= ∇ ∇⋯ is invertible and 1( , )nu u∇ ∇⋯ form a frame.

we denote the operator      as followsdH
, 1 1 ,: ( , , )ij i n i j ndH dH dH + ≤ ≤= ⋯

Then the operator
( 1) ( 1)

2 22 2:{ ( ')} { ( ')}
n n n n n

G dH L L
+ +

+
Ω ⇒ Ω�

is semi-Fredholm, where G is the restriction operator to 2 ( ')L Ω

Proof:  construct a parametrix Q Q dH Id−�such that              is of order -1
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3.Explicit reconstruction

� 0)( 0 =∇⋅∇−
known

iuγ ),(Ω �
known

ii gu =Ω∂|

),(Ω 0| =Ω∂iv� )()( 0 i
unknown

i uv ∇⋅∇=∇⋅∇− γγ

� ijjiji

known

ij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= 00 γγγ{
Let us now add another solution of

(＊)

(＊) u with corresponding v at order ε
)(' 2εοε ++= vuu

u∇ may be expressed in the basis 1, nu u∇ ∇⋯

0
n

j j
j

u uµ ∇ +∇ =∑

Suppose 1[ ] :[ | | ]nU u u∇ = ∇ ∇⋯ and 1: [ | | ]nZ Z Z= ⋯ be invertible, where i iZ µ= ∇



14

In the end, we obtain the strongly coupled elliptic system

where

With  0 0: ( )L γ=−∇⋅ ∇ define 1 2 1
0 0: ( )L f L u H− ∈ ∈ Ω↦ where u solves 0( )u fγ−∇⋅ ∇ =

| 0u ∂Ω=
By Lax-Milgram theorem, and by Rellich imbedding, 1 2 1

0 0: ( ) ( )L L H− Ω Ω↦

Applying 1
0L
− to the elliptic system yields

0
1

( ) ,
n

i ij j i
j

v W v fγ
=

−∇ ⋅ ∇ + ⋅∇ =∑ | 0iv ∂Ω= 1 i n≤ ≤

ijW depends on 0γ and ),,( 1 nuu ⋯

if depends on pqdH and their derivatives 

is compact. 
1 1
0 0

1
( ) :

n

i ij j i i
j

v L W v h L f− −

=

+ ⋅∇ = =∑

1 1 1
0 0 0: ( ) : ( ) ( )ij ij ijP H v Pv L W v H−Ω ∋ → = ⋅∇ ∈ Ω compact if ijW bounded.

1( , , ),nv v v= ⋯ 1( , , ),nh h h= ⋯

( )I P v h+ =

where P compact

(＊)

(＊) satisfies a Fredholm alternative, if -1 is not an eigenvalue of  

1 1( ) ( )i H Hv C dH
Ω Ω

≤

P

we obtain

and

and we obtain the stability:
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2 1( ) ( )L HC dHγ
Ω Ω
≤

� ijjiji

known

ij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= 00 γγγ

0 0( ( ) 2 )pq ij ij
ip q j i jdH H u H u H v uγ γ γ= ∇ ⊗ ∇ − ∇ ∇⊙

once are reconstructed),( 1 nvv ⋯

the relations

can be inverted for γ

and we get the stability
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• case 0γ is constant

� )()( 0 i
unknown

i uv ∇⋅∇=∇⋅∇− γγ ),(Ω 0| =Ω∂iv

� 0)( 0 =∇⋅∇−
known

iuγ ),(Ω �
known

ii gu =Ω∂|

� ijjiji

known

ij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= 00 γγγ

Taking Id=0γ  using harmonic polynomials as solutions of 

(＊)

(＊)

i iu x= 1 i n≤ ≤

' 2

1

1
2

n

p p
p

u a x
=

= ∑ 0pa ≠
{

Then we get n additional measurements
' : ' ' 'i i i idH u u u v v uγ= ∇ ∇ +∇ ∇ +∇ ⋅∇⊙ ⊙

Together with ijjijiij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= γ

1 i n≤ ≤

1 ,i j n≤ ≤

0=∑
p

pa
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For this choice of             , the elliptic system is decoupled, hence solvable.

' : ' ' 'i i i idH u u u v v uγ= ∇ ∇ +∇ ∇ +∇ ⋅∇⊙ ⊙

ijjijiij vuvuuudH ∇⋅∇+∇⋅∇+∇⋅∇= γ

1 i n≤ ≤

1 ,i j n≤ ≤
{nnn ++ )1(

2
1

'

1 1 1

1 1( )
n n n

i j j p p ip j i i p pp
j p pi i

v a x dH dH a dH
a a= = =

∆ = ∂ −∂ +∂ + ∂∑ ∑ ∑

ij ij j i i jdH v vγ = −∂ −∂

we obtain a standard estimate for iv

1 1( ) ( )i H Hv C dH
Ω Ω
≤

notice that the RHS is a linear combination  
',ij idH dH and their first derivatives 

12 ( )( )ij HL
C dHγ

ΩΩ
≤

⇒ we lose one derivative

� )(' 2
0 εοεγγγ ++=

known
)( 2' εοε ++= iii vuu

of

stability: then

),,( 1 nuu ⋯


