Linearized internal functionals for anisotropic conductivities

Chenxi Guo

joint work with Guillaume Bal and François Monard

Dept. of Applied Physics and Applied Mathematics, Columbia University.

June 20th, 2012

UC Irvine Conference in honor of Gunther Uhlmann

1.<u>Background</u>

$$-\nabla \cdot (\gamma \nabla u) \equiv -\sum_{i,j=1}^{n} \partial_{i} (\gamma^{ij} \partial_{j} u) = 0 \qquad (\Omega) \qquad \mathcal{U}|_{\partial \Omega} = \mathcal{G}$$

 γ is a real-valued symmetric positive definite tensor with bounded coefficients, satisfying a uniform ellipticity condition for some $\kappa \ge 1$

$$\kappa^{-1} \left| \xi \right|^2 \leq \xi \cdot \gamma(x) \xi \leq \kappa \left| \xi \right| \quad \xi \in \mathbb{R}^n \qquad x \in \Omega$$

 Conductivity equation: rules the equilibrium distribution of the electrostatic potential u inside the domain Ω in response to a prescribed boundary voltage g. Electrical Impedance Tomography(EIT).

 $\gamma \nabla u \cdot v |_{\partial \Omega} \rightarrow \text{Calderon's problem}$

Internal measurement

power density of a solution u $H_{\gamma}[g](x) \coloneqq \nabla u(x) \cdot \gamma(x) \nabla u(x)$

Application: Hybrid imaging How to construct power densities: Ammari et al. (2008), Kuchment-Kunyansky (2010)

$$-\nabla \cdot (\gamma \nabla u) = 0 \qquad (\Omega) \qquad u|_{\partial \Omega} = g \qquad H_{\gamma}[g](x) \coloneqq \nabla u(x) \cdot \gamma(x) \nabla u(x)$$

History (non-linear case):

• Isotropic case $\gamma = \sigma I_n$ from only one measurement $H = \sigma |\nabla u|^2$

$$\nabla \cdot \left(\frac{H}{\left|\nabla u\right|^{2}} \nabla u\right) = 0 \quad (\Omega) \quad u|_{\partial\Omega} = g$$

- Newton-based method see (Gebauer and Scherzer (2009))
- Theoretically, by Bal (2012).

The conductivity equation

$$\nabla \cdot \left(\begin{array}{c} \gamma' & \nabla u \end{array} \right) = 0 \qquad (\Omega), \qquad \qquad \mathcal{U} \Big|_{\partial \Omega} = \underbrace{g}_{known} \qquad (1)$$

Fixing a few boundary conditions g_1, \dots, g_m with u_i solving (1) with $g \equiv g_i$ Measurement operator : $H: \gamma' \rightarrow H(\gamma') = H_{ij}(\gamma') = \gamma' \nabla u_j \cdot \nabla u_j$ $1 \le i, j \le m$ Problem: recover γ' from H

- Isotropic, 2 dimensional setting, see (Capdeboscq et al. (2009))
- Explicit reconstruction using a large number of functionals in an isotropic case in dimension 3. see (Bal,Monard, Bonnetier and Triki)

• Generalized to dimension n, isotropic tensor with more general type of measurements $\sigma^{2\alpha} |\nabla u|^2$

```
where \alpha not necessary \frac{1}{2}
```

```
see Monard and Bal (2012).
```

 reconstruction formulas for the anisotropic two-dimensional problem see Monard and Bal (2012).

Linearization of the problem

The partial differential equation

$$\nabla \cdot \left(\underbrace{\gamma'}_{unknown} \nabla u \right) = 0 \qquad (\Omega), \qquad \mathcal{U}\Big|_{\partial\Omega} = \underbrace{g}_{known} \qquad (1)$$

Fix a few boundary conditions g_1, \dots, g_m with u_i solving (1) with $g \equiv g_i$ Measurement operator : $H: \gamma' \to H(\gamma') = H_{ij}(\gamma') = \gamma' \nabla u_i \cdot \nabla u_j$ $1 \le i, j \le m$ Non-linear problem: recover γ' from H

Fréchet derivative:
$$\gamma' = \gamma_0 + \epsilon \gamma + o(\epsilon^2)$$

 $u'_i = u_i + \epsilon v_i + o(\epsilon^2)$

PDE (1) of order
$$\mathcal{A}(1)$$
 and $\mathcal{A}(\mathcal{E})$
 $-\nabla \cdot (\gamma_0 \nabla \underbrace{u_i}_{known}) = 0 \quad (\Omega), \quad u_i |_{\partial\Omega} = \underbrace{g_i}_{known}$
 $-\nabla \cdot (\gamma_0 \nabla \underbrace{v_i}_{v_i}) = \nabla \cdot (\gamma \nabla u_i) \quad (\Omega), \quad v_i |_{\partial\Omega} = 0$

The measurements look like $H_{ij} = \gamma_0 \nabla u_i \cdot \nabla u_j + \varepsilon (\gamma \nabla u_i \cdot \nabla u_j + \gamma_0 \nabla u_i \cdot \nabla v_j + \gamma_0 \nabla u_j \cdot \nabla v_i) + o(\varepsilon^2)$ Linearized measurements $dH_{ij} = \gamma \nabla u_i \cdot \nabla u_j + \gamma_0 \nabla u_i \cdot \nabla v_j + \gamma_0 \nabla u_j \cdot \nabla v_i$

Linearized problem: recover γ from dH_{ii}

References on the linearized problem

- isotropic case in dimension 2 and 3 with numerical implementation see (Kuchment and Kunyansky (2011))
- isotropic case, studied using pseudo-differential calculus, inversion modulo a compact operator. see (Kuchment and Steinhauer (2011))

2.Microlocal inversion

Study of the principal symbol $M_{ij}(x,\xi)$ of dH_{ij}

Recall the equations and measurements:

$$-\nabla \cdot (\gamma_{0} \nabla \underbrace{u_{i}}_{known}) = 0 \quad (\Omega), \qquad u_{i}|_{\partial\Omega} = \underbrace{g_{i}}_{known}$$
$$-\nabla \cdot (\gamma_{0} \nabla \underbrace{v_{i}}_{unknown}) = \nabla \cdot (\gamma \nabla u_{i}) \quad (\Omega), \quad v_{i}|_{\partial\Omega} = 0$$
$$\underbrace{dH_{ij}}_{known} = \gamma \nabla u_{i} \cdot \nabla u_{j} + \gamma_{0} \nabla u_{i} \cdot \nabla v_{j} + \gamma_{0} \nabla u_{j} \cdot \nabla v_{i}$$
$$\underbrace{dH_{ij}}_{known} = -\nabla \cdot (\gamma_{0} \nabla) \qquad v_{i} = \mathcal{L}_{0}^{-1} (\nabla \cdot (\gamma \nabla u_{i}))$$
suppose γ compactly supported inside Ω

Insert $v_i = L_0^{-1} (\nabla \cdot (\gamma \nabla u_i))$ into dH_{ij} and express as a pseudo-DO

$$dH_{ij}(\gamma, x) = (2\pi)^{-n} \iint_{R^n \times R^n} e^{i\xi \cdot (x-y)} (M_{ij}(x,\xi) + M_{ij}|_{-1}(x,\xi)) : \gamma(y) d\xi dy$$

$$M_{ij}(x,\xi) = o(|\xi|^0) \qquad M_{ij}|_{-1}(x,\xi) = o(|\xi|^{-1})$$

$$\downarrow \qquad \qquad \downarrow$$

pricipal symbol

the symbol of order -1

$$dH_{ij}(\gamma, x) = (2\pi)^{-n} \iint_{\mathbb{R}^n \times \mathbb{R}^n} e^{i\xi \cdot (x-\gamma)} (M_{ij}(x,\xi) + M_{ij}|_{-1}(x,\xi)) : \gamma(\gamma) d\xi d\gamma$$

$$M_{ij}(x,\xi) = o(|\xi|^0) \qquad \qquad M_{ij}|_{-1}(x,\xi) = o(|\xi|^{-1})$$

$$\downarrow \qquad \qquad \downarrow$$
pricipal symbol the symbol of order -1

Goal: determine under which conditions the operator $dH = \{dH_{ij}\}_{1 \le i, j \le m}$ is an elliptic pseudo-differential operator

Conclusion: with only principal symbols $M_{ij}(x,\xi)$, $dH = \{dH_{ij}\}_{1 \le i,j \le m}$ will never be elliptic, no matter how large m

Define $A_0 = (\gamma_0)^{\frac{1}{2}} \xi_0 := A_0 \xi$ and $V_i := A_0 \nabla u_i$ rewrite the principal symbol $M_{ij}(x,\xi)$

$$\widetilde{M}_{ij}(x,\xi) = A_0 M_{ij}(x,\xi) A_0$$
$$= V_i \odot V_j - (\xi_0 \cdot V_j) \xi_0 \odot V_j - (\xi_0 \cdot V_j) \xi_0 \odot V_i$$

Notation: $U \odot V = \frac{1}{2} (U \otimes V + V \otimes U)$

Lemma:

For any *i*, *j* and vector fields V_i, V_j defined as above $V_i := A_0 \nabla u_i$ the symbol $\tilde{M}_{ij}(x,\xi)$ satisfies

 $\widetilde{M}_{ij}(x,\xi)$: $\xi_0 \odot \eta = 0$ for all $\eta \in S^{n-1}$ and $\eta \perp \xi_0$

Conclusion: the M_{ij} can never control a subspace of $S_n(R)$ of dimension n-1

Basic Hypothesis: the gradients $\{\nabla u_i\}_{i=1}^n$ form a frame in \mathbb{R}^n

Lemma:

Suppose that the vector fields $\{V_i\}_{i=1}^n$ form a basis of \mathbb{R}^n If a matrix $P \in S_n(\mathbb{R})$

 $M_{ij}(x,\xi): P=0$ $1 \le i \le j \le n$

Then *P* is of the form $P = \xi_0 \odot \eta$ for some vector η satisfying $\eta \perp \xi_0$

Conclusion: the **only** directions that are not controlled by the principal symbols are $P = \xi_0 \odot \eta \qquad \eta \perp \xi_0$ The second term of dH_{ii}

$$dH_{ij}(\gamma, x) = (2\pi)^{-n} \iint_{R'' \times R''} e^{i\xi \cdot (x-y)} (M_{ij}(x,\xi) + M_{ij}|_{-1}(x,\xi)) : \gamma(y) d\xi dy$$

Goal: invert $dH = \{dH_{ij}\}_{1 \le i, j \le m}$ microlocally from $M_{ij}(x,\xi) + M_{ij}|_{-1}(x,\xi)$

• case γ_0 is constant $M_{ij}|_{-1}(x,\xi) = A_0 M_{ij}|_{-1}(x,\xi)A_0$

$$= \|A_{0}\xi\|^{-1} \sqrt{-1} [H_{i}((\xi_{0} \cdot V_{j})(I_{n} - 2\xi_{0} \otimes \xi_{0}) + V_{j} \otimes \xi_{0}) + H_{j}((\xi_{0} \cdot V_{i})(I_{n} - 2\xi_{0} \otimes \xi_{0}) + V_{i} \otimes \xi_{0}]^{sym}$$

where $H_i = A_0 \nabla^2 u_i A_0$

Lemma

Suppose γ_0 is constant, pick $u_i = x_i$ $1 \le i \le n$ and add an additional solution denoted by u_{n+1} with full-rank Hessian $\nabla^2 u_{n+1}$ If there exist $P, Q \in S_n(R)$ such that for all $1 \le i, j \le n$

$$(M_{ij} + M_{ij} \mid_{-1})(x,\xi) : (P + \sqrt{-1}Q) = 0$$

$$(\tilde{M}_{i,n+1} + \tilde{M}_{i,n+1} \mid_{-1})(x,\xi) : (P + \sqrt{-1}Q) = 0$$

then P = Q = 0

10

• case γ₀ is not constant

Basic Hypotheses

•
$$(\nabla u_1, \dots, \nabla u_n)$$
 form a frame $-\nabla \cdot (\gamma_0 \nabla \underbrace{u_i}_{known}) = 0$ $u_i|_{\partial \Omega} = \underbrace{g_i}_{known}$

• Add one addition
$$u_{n+1}$$
 such that $\sum_{j=1}^{n} \mu_j \nabla u_j + \nabla u_{n+1} = 0$

we construct the matrix $Z = [\nabla \mu_1, \dots, \nabla \mu_n]$ assume *z* to be invertible Remark: in the case γ_0 constant, the above hypothesis is automatically satisfied, by choosing

$$u_{i} = x_{i} \qquad 1 \le i \le n$$

$$u_{n+1} = \frac{1}{2} x^{t} Q x \quad Q \quad \text{invertible} \quad tr(Q) = 0$$

$$(2) = \int_{-\pi}^{\pi} \int_{0}^{\pi} \frac{i^{\pi} (x-y)}{2} (1 + (x-y)) = 0$$

Recall $dH_{ij}(\gamma, x) = (2\pi)^{-n} \iint_{R^n \times R^n} e^{i\xi \cdot (x-y)} (M_{ij}(x,\xi) + M_{ij}|_{-1}(x,\xi)) \colon \gamma(y) d\xi dy$

Goal: under the above hypotheses, $\mathcal{M}_{\mathcal{Y}}|_{-1}$ can control all bad directions $\xi_0 \odot \eta$

Recall:

$$\frac{dH_{ij}}{dH_{ij}} = \gamma \nabla u_i \cdot \nabla u_j + \gamma_0 \nabla u_i \cdot \nabla v_j + \gamma_0 \nabla u_j \cdot \nabla v_i$$

$$v_i = L_0^{-1} (\nabla \cdot (\gamma \nabla u_i))$$

$$dH_{ij}(\gamma, x) = (2\pi)^{-n} \iint_{R'' \times R''} e^{i\xi \cdot (x-y)} (M_{ij}(x,\xi) + M_{ij}|_{-1}(x,\xi)) : \gamma(y) d\xi dy$$

<u>Lemma</u>

Assume that $Z = [\nabla \mu_1, \dots, \nabla \mu_n]$ is invertible, if $\tilde{M}_{ij} \mid_{-1}^{nc} : \xi_0 \odot \eta = 0$ and $\tilde{M}_{i,n+1} \mid_{-1}^{nc} : \xi_0 \odot \eta = 0$ for any $1 \le i, j \le n$ and $\xi_0 \perp \eta$ then $\eta = 0$

Theorem

Suppose that we have measurements $\{dH_{ij}\}_{1 \le i,j \le n}$ and $\{dH_{i,n+1}\}_{1 \le i \le n}$ such that $Z = [\nabla \mu_1, \dots, \nabla \mu_n]$ is invertible and $(\nabla \mu_1, \dots \nabla \mu_n)$ form a frame. we denote the operator dH as follows $dH := (dH_{ij}, \dots, dH_{i,n+1})_{1 \le i,j \le n}$ Then the operator $G \circ dH : \{L^2(\Omega')\}^{\frac{n(n+1)}{2}} \Rightarrow \{L^2(\Omega')\}^{\frac{n(n+1)}{2}+n}$

is semi-Fredholm, where *G* is the restriction operator to $L^2(\Omega')$

<u>Proof</u>: construct a parametrix Q such that $Q \circ dH - Id$ is of order -1

12

3.Explicit reconstruction

$$-\nabla \cdot (\gamma_{0} \nabla \underbrace{u_{i}}_{known}) = 0 \quad (\Omega), \quad u_{i}|_{\partial\Omega} = \underbrace{g_{i}}_{known} \quad (*)$$

$$\left(\begin{array}{c} -\nabla \cdot (\gamma_{0} \nabla \underbrace{v_{i}}_{unknown}) = \nabla \cdot (\gamma \nabla u_{i}) \quad (\Omega), \quad v_{i}|_{\partial\Omega} = 0 \\ \underbrace{dH_{ij}}_{known} = \gamma \nabla u_{i} \cdot \nabla u_{j} + \gamma_{0} \nabla u_{i} \cdot \nabla v_{j} + \gamma_{0} \nabla u_{j} \cdot \nabla v_{i} \end{array} \right)$$

Let us now add another solution of (*) u with corresponding v at order ε $u' = u + \varepsilon v + o(\varepsilon^2)$

 ∇u may be expressed in the basis $\nabla u_1, \dots \nabla u_n$

$$\sum_{j}^{n} \mu_{j} \nabla u_{j} + \nabla u = 0$$

Suppose $[\nabla U] = [\nabla u_1 | \cdots | \nabla u_n]$ and $Z = [Z_1 | \cdots | Z_n]$ be invertible, where $Z_i = \nabla \mu_i$

In the end, we obtain the strongly coupled elliptic system

$$-\nabla \cdot (\gamma_0 \nabla v_i) + \sum_{j=1}^n W_{ij} \cdot \nabla v_j = f_i, \quad v_i|_{\partial \Omega} = 0 \qquad 1 \le i \le n$$

where W_{ii} depends on γ_0 and (u_1, \dots, u_n)

 f_i depends on dH_{pq} and their derivatives

With $L_0 := -\nabla \cdot (\gamma_0 \nabla)$ define $L_0^{-1} : f \in \hat{\mathcal{L}} \mapsto u \in H_0^{\dagger}(\Omega)$ where u solves $-\nabla \cdot (\gamma_0 \nabla u) = f$ $u|_{\partial \Omega} = 0$

By Lax-Milgram theorem, and by Rellich imbedding, $\mathcal{L}_0^{-1}: \mathcal{L}^2(\Omega) \mapsto \mathcal{H}_0^{\mathsf{t}}(\Omega)$ is compact. Applying \mathcal{L}_0^{-1} to the elliptic system yields $v_i + \sum_{i=1}^n \mathcal{L}_0^{-1}(\mathcal{W}_{ij} \cdot \nabla v_j) = h_i := \mathcal{L}_0^{-1} f_i$

 $P_{ij}: H_0^1(\Omega) \ni v \to P_{ij}v := L_0^{-1}(W_{ij} \cdot \nabla v) \in H_0^1(\Omega)$ compact if W_{ij} bounded.

we obtain (I+P)v=h (*) where $v=(v_1,\dots,v_n)$, $h=(h_1,\dots,h_n)$, and *P* compact (*) satisfies a Fredholm alternative, if -1 is not an eigenvalue of *P* and we obtain the stability: $\|v_i\|_{H^1(\Omega)} \leq C \|dH\|_{H^1(\Omega)}$

14

once $(v_1, \cdots v_n)$ are reconstructed

the relations

$$\underbrace{dH_{ij}}_{known} = \gamma \nabla u_i \cdot \nabla u_j + \gamma_0 \nabla u_i \cdot \nabla v_j + \gamma_0 \nabla u_j \cdot \nabla v_i$$

can be inverted for γ

$$\gamma = \gamma_0 (dH_{ip} (H^{pq} \nabla u_q \otimes H^{ij} \nabla u_j) - 2H^{ij} \nabla v_i \odot \nabla u_j) \gamma_0$$

and we get the stability

$$\left\|\gamma\right\|_{L^{2}(\Omega)} \leq C \left\|dH\right\|_{H^{1}(\Omega)}$$

• case γ_0 is constant

$$-\nabla \cdot (\gamma_0 \nabla \underbrace{u_i}_{known}) = 0 \quad (\Omega), \quad u_i \mid_{\partial \Omega} = \underbrace{g_i}_{known} \quad (\star)$$
$$-\nabla \cdot (\gamma_0 \nabla \underbrace{v_i}_{unknown}) = \nabla \cdot (\gamma \nabla u_i) \quad (\Omega), \quad v_i \mid_{\partial \Omega} = 0$$
$$\underbrace{dH_{ij}}_{known} = \gamma \nabla u_i \cdot \nabla u_j + \gamma_0 \nabla u_i \cdot \nabla v_j + \gamma_0 \nabla u_j \cdot \nabla v_i$$

Taking $\gamma_0 = Id$ using harmonic polynomials as solutions of (\star)

$$u_i = x_i \qquad 1 \le i \le n$$

$$u' = \frac{1}{2} \sum_{p=1}^n a_p x_p^2 \qquad a_p \ne 0 \qquad \sum_p a_p = 0$$

Then we get n additional measurements

$$dH_i = \gamma : \nabla u_i \odot \nabla u' + \nabla u_i \odot \nabla v' + \nabla v_i \cdot \nabla u' \qquad 1 \le i \le n$$

Together with

$$dH_{ij} = \gamma \nabla u_i \cdot \nabla u_j + \nabla u_i \cdot \nabla v_j + \nabla u_j \cdot \nabla v_i \qquad 1 \le i, j \le n$$

$$\frac{1}{2}n(n+1)+n \qquad \begin{cases} dH_i = \gamma : \nabla u_i \odot \nabla u' + \nabla u_i \odot \nabla v' + \nabla v_i \cdot \nabla u' & 1 \le i \le n \\ dH_{ij} = \gamma \nabla u_i \cdot \nabla u_j + \nabla u_i \cdot \nabla v_j + \nabla u_j \cdot \nabla v_i & 1 \le i, j \le n \end{cases}$$

For this choice of (u_1, \dots, u_n) , the elliptic system is decoupled, hence solvable.

we obtain a standard estimate for v_i notice that the RHS is a linear combination of dH_{ij}, dH_i and their first derivatives

<u>stability</u>: $\|v_i\|_{H^1(\Omega)} \le C \|dH\|_{H^1(\Omega)}$ then $\|\gamma_{ij}\|_{L^2(\Omega)} \le C \|dH\|_{H^1(\Omega)}$ \Rightarrow we lose one derivative

 $\gamma_{ij} = dH_{ij} - \partial_j v_i - \partial_i v_j$