A mathematical model and inversion procedure for

Magneto-Acousto-Electric Tomography

(MAET)

Leonid Kunyansky University of Arizona, Tucson, AZ

Supported in part by NSF grant DMS-0908243 NSF grant "we'll give you money, just wait"

Hybrid methods: motivation

Conductivity carries important medical information. Conductivity of tumors is much higher than that of healthy tissues. \implies EM measurements yield high contract.

However, electrical impedance, optical and microwave tomographies lead to reconstruction problems that are strongly non-linear and severely ill-posed.

Acoustic waves yield high resolution but the contrast is low.

Use **hybrid** techniques; couple ultrasound with EM field:

Thermo-Acoustic and Photo-Acoustic Tomography (TAT/PAT) Ultrasound Modulated Optical Tomography (UMOT) Acousto-Electric Tomography (AET) Magneto-Acousto-Electric Tomography (MAET) Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI)

Magneto-Acousto-Electric Tomography (MAET)

Physics of MAET

Tissue moving with velocity V(x, t) produces Lorentz currents $J_L(x, t)$: $J_L(x, t) = \sigma(x)B \times V(x, t)$

There will also be Ohmic currents satisfying Ohm's law $J_O(x,t) = \sigma(x)\nabla u(x,t).$

There are no sinks or sources, the total current is divergence-free $\nabla \cdot (J_L + J_O) = 0.$

Thus

$$\nabla \cdot \sigma \nabla u = -\nabla \cdot (\sigma B \times V) \,.$$

BC: the normal component of the total current $J_L(x, t) + J_O(x, t)$ vanishes:

$$\left.\frac{\partial}{\partial n} u(z)\right|_{\partial \Omega} = -(B \times V(z)) \cdot n(z)$$

Measuring functionals

At any given time t we measure potential u(z,t) at all $z \in \partial \Omega$.

Integrate boundary values of u with weight I(z) and get a functional M(t):

$$M(t) = \int\limits_{\partial\Omega} I(z) u(z,t) dA(z),$$

Consider lead potential $w_I(x)$ and lead current $J_I(x) = \sigma(x) \nabla w_I(x)$:

$$\nabla \cdot \sigma \nabla w_I(x) = 0,$$
$$\frac{\partial}{\partial n} w_I(z) \Big|_{\partial \Omega} = I(z).$$

Then (by the second Green's identity):

$$M(t) = \int_{\Omega} B \cdot J_I(x) \times V(x, t) dx$$

Previous models

(1) S. Haider, A. Hrbek, and Y. Xu, Magneto-acousto-electrical tomography: a potential method for imaging current density and electrical impedance, *Physiol. Meas.* **29** (2008) S41-S50.

Focused acoustic pulse, two-electrod acquisition

(2) B. J. Roth and K. Schalte, Ultrasonically-induced Lorentz force tomography, *Med. Biol. Eng. Comput.* **47** (2009) 573–7

Time-harmonic plane waves, two-electrod acquisition, first term only.

(3) H. Ammari, Y. Capdeboscq, H. Kang, and A. Kozhemyak, Mathematical models and reconstruction methods in magneto-acoustic imaging, *Euro. Jnl. of Appl. Math.*, **20** (2009) 303–17.

The present model generalizes (1) and (2).

Model (3) does not agree with all the others.

Analyzing the velocity field

Assume that speed of sound c and density ρ are constant.

Then velocity is the gradient of velocity potential $\varphi(x,t)$:

$$V(x,t) = \frac{1}{\rho} \nabla \varphi(x,t)$$

Velocity potential and pressure p(x, t) satisfy the wave equation

$$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \varphi(x, t) = \Delta \varphi(x, t),$$
$$p(x, t) = \frac{\partial}{\partial t} \varphi(x, t).$$

Substitute into equation for M(t) and integrate by parts:

$$M(t) = \frac{1}{\rho} B \cdot \left[\int_{\partial\Omega} \varphi(z,t) J_I(z) \times n(z) dA(z) + \int_{\Omega} \varphi(x,t) \nabla \times J_I(x) dx \right]$$

Volumetric part shows that we measure components of $curl J_I(x)$!

Synthetic focusing

If $\varphi(x,t)$ could be focused into a point, i.e. $\varphi(x,0) = \delta(x-x_0)$, then $M_{x_0}(0) = \frac{1}{\rho} B \cdot \left[\int_{\Omega} \delta(x-x_0) \operatorname{curl} J_I(x) dx \right] = \frac{1}{\rho} B \cdot \operatorname{curl} J_I(x_0).$

If three differenent directions of B are used, we have $\operatorname{curl} J_I(x_0)!$

Perfect focusing is not possible! Let's use spherical fronts centered at y: $\varphi(x, y, t) = \frac{\delta(|x - y| - ct)}{4\pi |x - y|}.$

Then measuring functional $M_{I,B}(y,t)$ equals

$$M_{I,B}(y,t) = \frac{1}{\rho} \int_{\Omega} \frac{\delta(|x-y|-ct)}{4\pi |x-y|} B \cdot \nabla \times J_I(x) dx + \text{surface term}$$

It solves the wave equation

$$\frac{\partial^2}{\partial t^2} M_{I,B}(y,t) = \Delta_y M_{I,B}(y,t), \qquad \frac{\partial}{\partial t} M_{I,B}(y,0) = \frac{1}{\rho} B \cdot \operatorname{curl} J_I(y).$$

Thus, $curl J_I(y)$ can be reconstructed by the methods of TAT!

From curls to currents

Denote curl J(x) by C(x). Since J(x) is a purely solenoidal field: $J(x) = \nabla \times \int_{\Omega} \frac{C(y)}{4\pi(x-y)} dy + \nabla \psi(x),$

where $\psi(x)$ is a harmonic function.

Find $\psi(x)$ by solving the Laplace eq-n with Neumann BC's:

$$\begin{cases} \Delta \psi(x) = 0, \quad x \in \Omega\\ \frac{\partial}{\partial n} \psi(z) = I(z) - n \cdot \left(\nabla \times \int_{\Omega} \frac{C(y)}{4\pi |z - y|} dy \right), \quad z \in \partial \Omega. \end{cases}$$

Got the current(s)!

From currents to conductivity

Is finding conductivity from known currents a linear problem?

$$0 = \nabla \times \frac{J}{\sigma} = \left(\nabla \frac{1}{\sigma}\right) \times J + \frac{1}{\sigma}C = -\frac{1}{\sigma^2}(\nabla \sigma) \times J + \frac{1}{\sigma}C$$

or

 $\nabla \ln \sigma \times J = C.$

Yes, it is!

If we have two lead currents
$$J^{(j)}(x)$$
, $j = 1, 2$, then:

$$\begin{cases} \nabla \ln \sigma(x) \times J^{(1)}(x) = C^{(1)}(x) \\ \nabla \ln \sigma(x) \times J^{(2)}(x) = C^{(2)}(x) \end{cases}$$

This system w. r. to $\nabla \ln \sigma$ is overdetermined, easily solved at each x

At no cost (?) we can have three lead currents $J^{(j)}(x)$, j = 1, 2, 3, then:

$$\begin{cases} \nabla \ln \sigma \times J^{(1)} = C^{(1)} \\ \nabla \ln \sigma \times J^{(2)} = C^{(2)} \\ \nabla \ln \sigma \times J^{(3)} = C^{(3)} \end{cases} .$$

Explicit formula with three lead currents

If M is the following matrix

$$M = \left(J^{(1)} | J^{(2)} | J^{(3)} \right),$$

then

$$\Delta \ln \sigma = \frac{1}{2} \nabla \cdot \left[\frac{1}{J^{(1)} \cdot (J^{(2)} \times J^{(3)})} M \begin{pmatrix} C^{(2)} \cdot J^{(3)} - C^{(3)} \cdot J^{(2)} \\ -C^{(1)} \cdot J^{(3)} + C^{(3)} \cdot J^{(1)} \\ C^{(1)} \cdot J^{(2)} - C^{(2)} \cdot J^{(1)} \end{pmatrix} \right],$$

subject to the Dirichlet boundary conditions

 $\ln \sigma|_{\partial\Omega} = 0.$

Solve the above Poisson equation, find $\ln \sigma$!

Fast algorithm for a rectangular domain

A three step procedure:

(1) Synthetic focusing: fast algorithm for a cube, Kunyansky [2007]

(2) Finding currents from curls: Fast Cosine Fourier Transform yields correct BC!

(3) Solving Poisson equation in a cube: use Fast Sine Fourier Transform

Simulations: phantom and noisy data

One of the simulated measurement functionals, with added 100% noise

Simulations: reconstruction

Reconstruction:

Reconstruction: profile

Cross section of the reconstruction by the line $x_1 = 0.25$, $x_3 = 0.25$.

Remarks and open questions

(1) Reconstruction with only two directions of magnetic field If only $B^{(1)}$ and $B^{(2)}$ are used, then only C_1 and C_2 can be found. But div curl J = 0. To find C_3 solve

$$\frac{\partial}{\partial x_3}C_3 = -\frac{\partial}{\partial x_1}C_1 - \frac{\partial}{\partial x_2}C_2.$$

(2) Cannot guarantee three linearly independent currents. Counterexample.

(3) Can one always have two non-parallel currents?