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Hybrid methods: motivation

Conductivity carries important medical information.
Conductivity of tumors is much higher than that of healthy tissues. =⇒
EM measurements yield high contract.

However, electrical impedance, optical and microwave tomographies lead to
reconstruction problems that are strongly non-linear and severely ill-posed.

Acoustic waves yield high resolution but the contrast is low.

Use hybrid techniques; couple ultrasound with EM field:

Thermo-Acoustic and Photo-Acoustic Tomography (TAT/PAT)
Ultrasound Modulated Optical Tomography (UMOT)
Acousto-Electric Tomography (AET)
Magneto-Acousto-Electric Tomography (MAET)
Magneto-Acoustic Tomography with Magnetic Induction (MAT-MI)
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Physics of MAET

Tissue moving with velocity V (x, t) produces Lorentz currents JL(x, t):
JL(x, t) = σ(x)B × V (x, t)

There will also be Ohmic currents satisfying Ohm’s law
JO(x, t) = σ(x)∇u(x, t).

There are no sinks or sources, the total current is divergence-free
∇ · (JL + JO) = 0.

Thus
∇ · σ∇u = −∇ · (σB × V ) .

BC: the normal component of the total current JL(x, t) + JO(x, t) vanishes:

∂

∂n
u(z)

∣∣∣∣
∂Ω

= −(B × V (z)) · n(z)



Measuring functionals

At any given time t we measure potential u(z, t) at all z ∈ ∂Ω.

Integrate boundary values of u with weight I(z) and get a functional M (t):

M (t) =

∫
∂Ω

I(z)u(z, t)dA(z),

Consider lead potential wI(x) and lead current JI(x) = σ(x)∇wI(x):
∇ · σ∇wI(x) = 0,

∂

∂n
wI(z)

∣∣∣∣
∂Ω

= I (z) .

Then (by the second Green’s identity):

M (t) =

∫
Ω

B · JI(x)× V (x, t)dx



Previous models

(1) S. Haider, A. Hrbek, and Y. Xu, Magneto-acousto-electrical tomography:
a potential method for imaging current density and electrical impedance,
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Focused acoustic pulse, two-electrod acquisition

(2) B. J. Roth and K. Schalte, Ultrasonically-induced Lorentz force tomog-
raphy, Med. Biol. Eng. Comput. 47 (2009) 573–7

Time-harmonic plane waves, two-electrod acquisition, first term only.

(3) H. Ammari, Y. Capdeboscq, H. Kang, and A. Kozhemyak, Mathematical
models and reconstruction methods in magneto-acoustic imaging, Euro. Jnl.
of Appl. Math., 20 (2009) 303–17.

The present model generalizes (1) and (2).

Model (3) does not agree with all the others.



Analyzing the velocity field

Assume that speed of sound c and density ρ are constant.

Then velocity is the gradient of velocity potential ϕ(x, t):

V (x, t) =
1

ρ
∇ϕ(x, t)

Velocity potential and pressure p(x, t) satisfy the wave equation
1

c2
∂2

∂t2
ϕ(x, t) = Δϕ(x, t),

p(x, t) =
∂

∂t
ϕ(x, t).

Substitute into equation for M (t) and integrate by parts:

M (t) =
1

ρ
B ·

⎡
⎣∫
∂Ω

ϕ(z, t)JI(z)× n(z)dA(z) +

∫
Ω

ϕ(x, t)∇× JI(x)dx

⎤
⎦

Volumetric part shows that we measure components of curlJI(x)!



Synthetic focusing

If ϕ(x, t) could be focused into a point, i.e. ϕ(x, 0) = δ(x− x0), then

Mx0(0) =
1

ρ
B ·

⎡
⎣∫

Ω

δ(x− x0)curlJI(x)dx

⎤
⎦ =

1

ρ
B · curlJI(x0).

If three differenent directions of B are used, we have curlJI(x0)!

Perfect focusing is not possible! Let’s use spherical fronts centered at y:

ϕ(x, y, t) =
δ(|x− y| − ct)

4π|x− y| .

Then measuring functional MI,B(y, t) equals

MI,B(y, t) =
1

ρ

∫
Ω

δ(|x− y| − ct)

4π|x− y| B · ∇ × JI(x)dx + surface term

It solves the wave equation
∂2

∂t2
MI,B(y, t) = ΔyMI,B(y, t),

∂

∂t
MI,B(y, 0) =

1

ρ
B · curlJI(y).

Thus, curlJI(y) can be reconstructed by the methods of TAT!



From curls to currents

Denote curlJ(x) by C(x). Since J(x) is a purely solenoidal field:

J(x) = ∇×
∫
Ω

C(y)

4π(x− y)
dy +∇ψ(x),

where ψ(x) is a harmonic function.

Find ψ(x) by solving the Laplace eq-n with Neumann BC’s:
⎧⎨
⎩

Δψ(x) = 0, x ∈ Ω

∂
∂nψ(z) = I(z)− n ·

(
∇× ∫

Ω

C(y)
4π|z−y|dy

)
, z ∈ ∂Ω.

Got the current(s)!



From currents to conductivity

Is finding conductivity from known currents a linear problem?

0 = ∇× J

σ
=

(
∇1

σ

)
× J +

1

σ
C = − 1

σ2
(∇σ)× J +

1

σ
C

or
∇ ln σ × J = C.

Yes, it is!

If we have two lead currents J (j)(x), j = 1, 2, then:{∇ ln σ(x)× J (1)(x) = C (1)(x)
∇ ln σ(x)× J (2)(x) = C (2)(x)

.

This system w. r. to ∇ ln σ is overdetermined, easily solved at each x

At no cost (?) we can have three lead currents J (j)(x), j = 1, 2, 3, then:
⎧⎨
⎩

∇ ln σ × J (1) = C (1)

∇ ln σ × J (2) = C (2)

∇ ln σ × J (3) = C (3)

.



Explicit formula with three lead currents

If M is the following matrix

M =
(
J (1)J (2)J (3)

)
,

then

Δ ln σ =
1

2
∇ ·

⎡
⎣ 1

J (1) · (J (2) × J (3))
M

⎛
⎝ C (2) · J (3) − C (3) · J (2)

−C (1) · J (3) + C (3) · J (1)

C (1) · J (2) − C (2) · J (1)

⎞
⎠
⎤
⎦ ,

subject to the Dirichlet boundary conditions

lnσ|∂Ω = 0.

Solve the above Poisson equation, find lnσ !



Fast algorithm for a rectangular domain

A three step procedure:

(1) Synthetic focusing: fast algorithm for a cube, Kunyansky [2007]

(2) Finding currents from curls:
Fast Cosine Fourier Transform yields correct BC!

(3) Solving Poisson equation in a cube: use Fast Sine Fourier Transform



Simulations: phantom and noisy data

One of the simulated measurement functionals, with added 100% noise



Simulations: reconstruction

x2 = 0.25 x3 = 0.25

x2 = 0.25 x3 = 0.25



Reconstruction: profile

Cross section of the reconstruction by the line x1 = 0.25, x3 = 0.25.



Remarks and open questions

(1) Reconstruction with only two directions of magnetic field

If only B(1) and B(2) are used, then only C1 and C2 can be found.
But div curl J = 0. To find C3 solve

∂

∂x3
C3 = − ∂

∂x1
C1 − ∂

∂x2
C2.

(2) Cannot guarantee three linearly independent currents. Counterexample.

(3) Can one always have two non-parallel currents?


