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Outline

Joint work with Felea and Gaburro.

Motivated by papers of Cheney and Borden.

Seek to invert RADAR data for a time-dependent reflectivity
function.

We will see that backprojected RADAR images have artifacts
that can be reduced by pre-processing the data.
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Static Synthetic Aperture RADAR (SAR)

In static RADAR we have the following set up:
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The object to be imaged (v(x) := c−2(x)− c−2
0 ) is assumed

static and the RADAR flies, makes measurements, creating a
synthetic aperture

Backprojection produces an image with standard
mirror-artifacts.
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Model for moving objects

Now consider an object which moves as time elapses . . .

Scalar wave equation model for radio waves emitted from
location y at time Ty and measured at (x , t):

(∆− 1

c2(x , t)
∂2
t )u(y ; x , t) = δ(t + Ty )δ(x − y)

Notice the time-dependent speed c(x , t).

Corresponding to this, we build in the flexibility of the
initiation time Ty of our RADAR at location y - makes it
possible to see multiple facets of object, as it moves.

Clifford Nolan University of Limerick Conference in honour of Gunther Uhlmann’s 60th Birthday Irvine, CaliforniaHigh-frequency imaging of a moving object



Linearization

x is to be thought of as a location of a scatterer in the vicinity
of the ground - we consider x ∈ R2 or x ∈ R3.

y is to be thought of as the location of the source - we
consider y ∈ R2 or y ∈ R3.

Linearization: u(y ; x , t) = uin(y ; x , t) + usc(y ; x , t) where

(∆− 1

c2
0

∂2
t )uin(y ; x , t) = δ(t + Ty )δ(x − y),

(∆− 1

c2
0

∂2
t )usc(y ; x , t) = v(x , t)

∂2uin

∂2t
(y ; x , t)

and

v(x , t) :=
1

c2(x , t)
− 1

c2
0
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Linearization
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Linearization

Convolving the source for usc with the Green’s function gives

usc(y ; z , t) =

∫
δ(t − t ′ − |x−z|c0

)

4π|x − z |
∂2
t′δ(t + Ty − |x−y |c0

)

4π|x − y |
v(x , t ′)dxdt ′

We make a simple and concrete choice Ty = αy1, so that
sources are fired at different times for different locations along
the Y1 axis.

We also make a technical but reasonable assumption that
c0α 6= 1.
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FIO Representation of Scattering Operator F

Writing δ as an oscillatory integral we arrive at the forward
modeling scattering operator F which maps v to usc as follows

Fv(y , z , t) = usc(y ; z , t) =

∫
e i [(t−t

′−|x−z|)ω+(t′+c0αy1−|x−y |)ω′]

c2
0ω

2

|x − y ||x − z |
v(x , t ′)dωdω′dxdt ′

The operator F can easily be verified to be a Fourier Integral
Operator (FIO) of order q, say.
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Summary of Results

We consider the model v(x , t ′) ∈ E ′(X ) where X := Rm and
the data Fv(y , z , t) ∈ E ′(Y ) where Y := Rd .

Since F is a FIO, it has a canonical relation
C ⊂ T ∗Y × T ∗X , which describes how F maps singularities
in v to singularities in usc .

The acquisition geometry determined in part by m, d strongly
influences the structure of the relation C and we now consider
some explicit geometries . . .

In all cases we consider the natural projections
πL : C −→ T ∗Y , πR : C −→ T ∗X
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Summary of Results

Case 1: The “deluxe” data case: y , z , x belong to bounded
subsets of R3

In this case, d = 7,m = 4.

⇒ πL an embedding (and πR a submersion).

⇒ F ∗F is a microlocally elliptic ΨDO (by Guillemin’s result)

Therefore, F has a left-parametrix and this is the nicest
possible case - but expensive to collect and invert data.

Clifford Nolan University of Limerick Conference in honour of Gunther Uhlmann’s 60th Birthday Irvine, CaliforniaHigh-frequency imaging of a moving object



Summary of Results

Case 2: Same as case 1 but the source and receiver are
coincident y = z .

This is a formally determined case (d = m = 4).

πL and πR both have blowdown singularities (more on this
later).

If we apply F ∗ to the data, we show that artifacts appear
which can be more singular than the true singularities.

This follows from KF∗F belonging to the class I
5
2
,− 1

2 (4,Λ)
(more on this later).
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Summary of Results

Case 3: Same as case 2 but y3 = z3 are constant and the
scatterer is assumed to be on the ground x3 = 0.

This is a formally determined case (d = m = 3).

πL and πR both have blowdown singularities.

If we apply F ∗ to the data, we show that artifacts appear
which can be just as singular as the true singularities.

This follows from KF∗F belonging to the class I 3,0(4,Λ).
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Summary of Results

Case 4: y3 = z3 are constant. y2 = z2, y1 6= z1, no restriction
on scatterer location.

This is a formally determined case (d = m = 4).

πL and πR both have blowdown singularities.

If we apply F ∗ to the data, we show that artifacts appear
which can be just as singular as the true singularities.

This follows from KF∗F belonging to the class I 2,0(4,Λ).
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Ingredients of Analysis

The results for case 1 are easily understood.

For cases 2-4 we find that πL, πR have a blowdown singularity
along a submanifold Σ ⊂ C .

For πL for example, this means that (i) πL drops rank by
k > 0 at Σ, (ii) Ker(DπL|Σ) ⊂ TΣ and (iii) det(DπL)
vanishes to order k at Σ.

Canonical form of a blowdown:
f (x1, . . . , xn−k , xn−k+1, . . . , xn) =
(x1, x2, . . . xn−k , xn−k+1x1, . . . , xnx1)

We are able to apply a theorem of Marhuenda which states
that if πL, πR only have blowdown singularities at Σ and
πL(Σ), πR(Σ) are involutive and non-radial, then the
distribution kernel KF∗F ∈ I 2q+(k−1)/2,−(k−1)/2(4,ΛπR(Σ)).

The ‘artifact’ manifold ΛπR(Σ) is as follows . . .
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Ingredients of Analysis

As stated πR(Σ) is involutive, which roughly means its
homogeneous defining functions are given by equations of the
form ξi = 0, i = 1, . . . r for some r > 0 with
{ξi , ξj} = 0, i , j = 1, . . . , r .

The artifact submanifold ΛπR(Σ) is the joint flow-out from Σ
by the Hamiltonian vector fields {Hξi}ri=1.

Note that u ∈ I p,l(∆,Λ)⇒ u ∈ I p+l(∆ \ Λ) and
u ∈ I p(Λ \∆) which leads to the results about the strength of
the artifact singularities that we quoted.
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Ingredients of Analysis

For example, in case 4, Σ is defined by the single equation:

ω′

|x − y |
+

ω

|x − z |
= 0

C =

{
y1, y2, z1, t, c0αω

′ + ω′
x1 − y1

|x − y |
, ω′

x2 − y2

|x − y |
+ ω

x2 − y2

|x − z |
,

ω
x1 − z1

|x − z |
, ω; x1, x2, x3, t

′, ω′
x1 − y1

|x − y |
+ ω

x1 − z1

|x − z |
,

ω′
x2 − y2

|x − y |
+ ω

x2 − y2

|x − z |
, ω′

x3 − h

|x − y |
+ ω

x3 − h

|x − z |
, ω − ω′,

}
with the travel time conditions

t ′ = −c0αy1 + |x−y | ; t = −c0αy1 + |x−y |+ |x−z |.

In this case, KF∗F ∈ I 2,0(∆,ΛπR(Σ))⇒ KF∗F ∈
I 2(∆ \ ΛπR(Σ)), KF∗F ∈ I 2(ΛπR(Σ) \∆)
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Reduction of Artifacts

The previous slide indicates that artifacts will flow out from Σ.

However, we can preprocess the data and reduce the strength
of the artifacts as follows.

We construct a zero order ΨDO, namely Q such that it’s
principal symbol σQ vanishes to order s ≥ 1 on πL(Σ).

It then follows from the I p,l calculus (Greenleaf, Uhlmann,
Marhuenda) that
F ∗Qd = F ∗QFv ∈ I 2q−s+(k−1)/2,s−(k−1)/2(·, ·) .

In case 4, KF∗QF ∈ I 2−s,2(∆,ΛπR(Σ))⇒ KF∗QF ∈
I 2(∆ \ ΛπR(Σ)), KF∗QF ∈ I 2−s(ΛπR(Σ) \∆)

For example in case 3, Q = (∂2
y2

+ (∂y1 + ∂y3)2)(−∆)−1.
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Concluding Remarks

We have shown that it is possible to image moving objects
and that unless a high-demensional data set is used (case 1),
or else a filtered backprojection is employed, strong artifacts
can occur in the back projected image.

A more practical consideration / implementation of this
method would be useful.
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