L^p eigenfunction estimates and directional oscillation

Melissa Tacy

Department of Mathematics Northwestern University

mtacy@math.northwestern.edu

20 June 2012

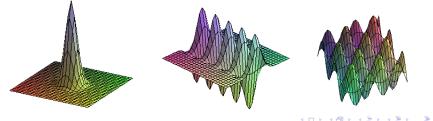
◆□> ◆舂> ◆注> ◆注> 注目

Eigenfunction Concentration

Would like to understand behaviour of eigenfunctions of Laplace-Beltrami and similar operators. Let M be a compact Riemannian manifold without boundary

$$-\Delta u_j = \lambda_j^2 u_j$$

- How large can u_j be ?
- Where can u_j be large?
- What do concentrations look like?



Seek estimates of the form

$$\|u_j\|_{L^p} \lesssim f(\lambda_j, p) \|u_j\|_{L^2}$$

and sharp examples

- Expect properties of classical flow to be evident in estimates.
- Not easy to study eigenfunctions directly. Therefore we will study sums (clusters) of eigenfunctions.

We study norms of spectral clusters on windows of width w

$$E_{\lambda} = \sum_{\lambda_j \in [\lambda - w, \lambda + w]} E_j$$

 E_j projection onto λ_j eigenspace.

Obviously include eigenfunctions but also can include sums of eigenfunctions if w is large enough. Shrinking the window avoids pollution of estimates by eigenfunctions of similar eigenvalue.

Pick χ smooth such that $\chi(0) = 1$ and $\hat{\chi}$ is supported in $[\epsilon, 2\epsilon]$. We will study

$$\chi_{\lambda,A} = \chi(A(\sqrt{-\Delta} - \lambda))$$

Write

$$\chi_{\lambda,\mathcal{A}} = \int_{\epsilon}^{2\epsilon} e^{itA\sqrt{-\Delta}} e^{-itA\lambda} \hat{\chi}(t) dt$$

If we can write $e^{itA\sqrt{-\Delta}}$ as an integral operator with kernel e(x, y, t, A) we can write

$$\chi_{\lambda,A}u = \int_{\epsilon}^{2\epsilon} \int_{M} e(x, y, t, A) e^{-itA\lambda} \hat{\chi}(t) u(y) dt dy$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The operator $e^{it\sqrt{-\Delta}}$ is the fundamental solution to

$$\begin{cases} (i\partial_t + \sqrt{-\Delta})U(t) = 0\\ U(0) = \delta_y \end{cases}$$

We can build a parametrix for this propagator and write its kernel as ∞

$$e(x, y, t) = \int_0^\infty e^{i\theta(d(x, y) - t)} a(x, y, t, \theta) d\theta$$

where $a(x, y, t, \theta)$ has principal symbol

$$\theta^{\frac{n-1}{2}}a_0(x,y,t)$$

Expression for $\chi_{\lambda,1}$

Substituting into the expression for χ_{λ}

$$\chi_{\lambda,1}u = \int_{\epsilon}^{2\epsilon} \int_{M} \int_{0}^{\infty} e^{i\theta(d(x,y)-t)} e^{-it\lambda} \theta^{\frac{n-1}{2}} \tilde{a}(x,y,t,\theta) u(y) d\theta dy dt$$

Change of variables $\theta \to \lambda \theta$

$$\chi_{\lambda,1}u = \lambda^{\frac{n+1}{2}} \int_{\epsilon}^{2\epsilon} \int_{M} \int_{0}^{\infty} e^{i\lambda\theta(d(x,y)-t)} e^{-it\lambda}\theta^{\frac{n-1}{2}} \tilde{a}(x,y,t,\theta)u(y)d\theta dy dt$$

Now use stationary phase in (t, θ) . Nondegenerate critical points when

$$d(x, y) = t \quad \theta = 1$$

$$\chi_{\lambda,1} = \lambda^{\frac{n-1}{2}} \int_{M} e^{i\lambda d(x,y)} a(x, y) u(y) dy$$

where a(x, y) is supported away from the diagonal.

Estimates for $\chi_{\lambda,1}$

In 1988 Sogge obtained a full set of $L^2 \rightarrow L^p$ estimates for $\chi_{\lambda,1}$. Technique depends on TT^* method, need to estimate

$$\lambda^{n-1} \int_{M} e^{i\lambda(d(x,z)-d(z,y))} a(x,z)\bar{a}(z,y) dz$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Bound depends on |x y|
- Interpolate with L² estimates and apply Hardy-Littlewood-Sobolev

Assume the window width $w = 1/A \rightarrow 0$ as $\lambda \rightarrow \infty$. We need to evaluate

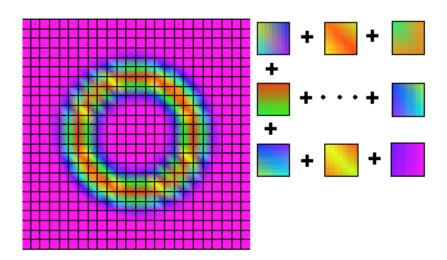
$$\int_{t$$

Cannot achieve this on any manifold but for manifolds without conjugate point we can use the universal cover. If M has no conjugate points its universal cover \widetilde{M} is a manifold with infinite injectivity radius. Therefore we can find a solution for

٠

$$\begin{cases} (i\partial_t + \sqrt{-\Delta}_{\widetilde{M}})U(t) = 0\\ U(0) = \delta_y \end{cases}$$

for all time on \widetilde{M}



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三里 - 釣��

Expression for Propagator Kernel

 $e^{it\sqrt{-\Delta}}$ has kernel

$$e(x, y, t) = \sum_{\gamma \in \Gamma} \tilde{e}(x, \gamma y, t)$$

where Γ is the group of automorphisms of the covering $\pi : \widetilde{M} \to M$ and the fundamental solution of

$$\begin{cases} (i\partial_t + \sqrt{-\Delta}_{\widetilde{M}})U(t) = 0\\ U(0) = \delta_y \end{cases}$$

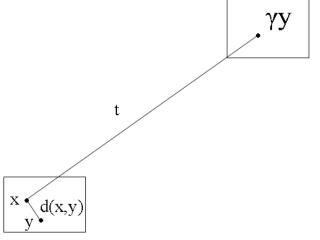
is given by

$$U(t)u = \int_{\widetilde{M}} \widetilde{e}(x, y, t)u(y)dy$$

Technical Difficulties

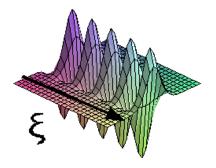
No longer have strong relationships between distance and time. Cannot use HLS as before.

▲山戸→御戸→三日→ ▲日戸 日 のへで



Directionally Localised Examples

Quasimode localised in direction ξ



- Well defined direction of oscillation for short time.
- Can obtain "good" *L^p* bounds.
- Consider general quasimode as a sum of directionally localised ones.

Return to window width one for simplicity Let

- $\{\xi_j\}$ be a set of $\lambda^{-\frac{1}{2}}$ separated directions in S^{n-1} .
- $\zeta(\eta)$ a smooth, cut off function of scale supported when $|\eta| \leq 2\lambda^{-\frac{1}{2}}.$
- x_i a set of λ^{-1} separated points in M.
- $\beta(x)$ a cut off function supported when $|x| \leq 2\lambda^{-1}$.

$$\chi_{\lambda,1}(\xi_j,x_i) = \lambda^{\frac{n-1}{2}}\beta(x-x_i)\int_{\mathcal{M}} e^{i\lambda d(x,y)}\zeta\left(\frac{x-y}{|x-y|}-\xi_j\right)a(x,y)u(y)dy$$

Let $K_{i,j,l,m}(x,z)$ be the kernel of $\chi_{\lambda,1}(\xi_j, x_i)(\chi_{\lambda,1}(\xi_m, x_l))^*$.

Then for x_i far enough from x_l , $|K_{i,j,l,m}(x,z)|$ decays if

•
$$\frac{x_i - x_l}{|x_i - x_l|} \neq \xi_j$$

• $\xi_j \neq \xi_m$

Otherwise non-stationary phase

$$d(x,z)-d(z,y)$$

Take geometric averages localised at different points and many directions.

expt=r: f(x), n=2048 ppw=20 e=5

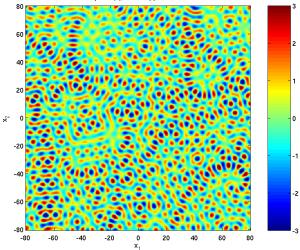
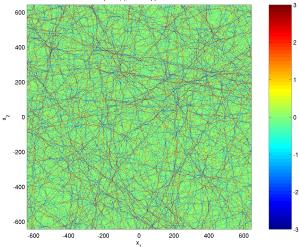


Image due to Alex Barnett

expt=r: f(x), n=4096 ppw=5 e=5



・ロト ・聞ト ・ヨト ・ヨト

æ

Image due to Alex Barnett

Application to Clusters with Decaying Window Width

- Can still define directionally localised projectors and these give good $L^2 \rightarrow L^p$ estimates.
- Can get cancellation as long as frequency localisation is not too large
- Means we can run up to Ehrenfest time

