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Nodal sets of eigenfunctions

Let (M, g) be a compact Riemannian manifold and let

∆g = − 1
√

g

n∑
i ,j=1

∂

∂xi
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g ij√g

∂

∂xj

)
.

be its Laplace operator.
Let {ϕj} be an orthonormal basis of eigenfunctions

∆ϕj = λ2
j ϕj , 〈ϕj , ϕk〉 = δjk

If ∂M 6= ∅ we impose Dirichlet or Neumann boundary conditions.
The NODAL SET of ϕj is its zero set:

Zϕj = {x : ϕj(x) = 0}.

A NODAL DOMAIN is a connected component of M\Zϕj



Some Intuition about nodal sets

I Algebraic geometry: Eigenfunctions of eigenvalue λ2 are
analogues on (M, g) of polynomials of degree λ. Their nodal
sets are analogues of (real) algebraic varieties of this degree.
The λj →∞ is the high degree limit or high complexity limit.
This analogy is best if (M, g) is real analytic.

I Quantum mechanics: |ϕj(x)|2dVg (x) is the probability density
of a quantum particle of energy λ2

j being at x . Nodal sets are
the least likely places for a quantum particle in the energy
state λ2

j to be. The λj →∞ limit is the high energy or
semi-classical limit.



Problems

I How many nodal domains? (Courant: the nth eigenfunction
has ≤ n nodal domains. No lower bound in general; Lewy:
can be just two). How many connected components of Zϕj ?

I How ‘long’ are nodal sets, i.e. the total length (or
hypersurface volume in higher dimensions?)

I How are nodal sets distributed on the manifold?

I HOW DO ANSWERS DEPEND ON BEHAVIOR OF
GEODESIC FLOW?



Nodal domains for <Y `
m spherical harmonics: geodesic flow

integrable: Eigenfunctions coming from separation of
variables



Chladni diagrams: Integrable case



High energy nodal set: E. J. Heller, random spherical
harmonic: dimension of space of spherical harmonics of
degree N has dim 2N + 1



High energy nodal set: Chaotic billiard flow



High energy nodal set: Alex Barnett// Each nodal domain
is colored a random color; most are small but some are
super-big (macroscopic)



Volumes of nodal hypersurfaces: real analytic case

Even the hypersurface volume is hard to study rigorously. There
only exist sharp bounds in the analytic case:

Theorem
(Donnelly-Fefferman, 1988) Suppose that (M, g) is real analytic
and ∆ϕλ = λ2ϕλ. Then

c1λ ≤ Hn−1(Zϕλ) ≤ C2λ.



Distribution of nodal hypersurfaces

How do nodal hypersurfaces wind around on M.?
We put the natural Riemannian hyper-surface measure dHn−1 to
consider the nodal set as a current of integration Zϕj ]: for
f ∈ C (M) we put

〈[Zϕj ], f 〉 =

∫
Zϕj

f (x)dHn−1.

Problems:

I How does 〈[Zϕj ], f 〉 behave as λj →∞.

I If U ⊂ M is a nice open set, find the total hypersurface
volume Hn−1(Zϕj ∩ U) as λj →∞.

I How does it reflect dynamics of the geodesic flow?



Physics conjecture on real nodal hypersurface: ergodic case

Conjecture
Let (M, g) be a real analytic Riemannian manifold with ergodic
geodesic flow, and let {ϕj} be the density one sequence of ergodic
eigenfunctions. Then,

1

λj
〈[Zϕj ], f 〉 ∼

1

Vol(M, g)

∫
M

fdVolg .

Evidence: it follows from the “random wave model”, i.e. the
conjecture that eigenfunctions in the ergodic case resemble
Gaussian random waves of fixed frequency.



Quantum ergodicity

I Classical ergodicity: G t preserves the unit cosphere bundle
S∗gM. Ergodic = almost all orbits are uniformly dense.

I On the quantum level, ergodicity of G t implies that
eigenfunctions become uniformly distributed in phase space
(Shnirelman; Z, Colin de Verdière, Zworski-Z) . This is a key
ingredient in structure of nodal sets. Namely,∫

E
ϕ2
j dVg →

Vol(E )

Vol(M)
, ∀E ⊂ M : Vol(∂E ) = 0.

I Equidistribution actually holds in phase space S∗M.

I Random wave model (Berry conjecture): when G t is chaotic,
eigenfunctions of ∆g behave like random waves.



Intensity plot of a chaotic eigenfunction in the Bunimovich
stadium



Nodal domains for a random spherical harmonics



Equidistribution in the complex domain

We want to understand equidistribution of nodal sets. Clearly not
feasible for general C∞ metrics. So we study:

I Equi-distribution theory of “complexified nodal sets” for real
analytic (M, g)– i.e. complex zeros of analytic continuations
of eigenfunctions into the complexification of M.

I Intersections of nodal lines and geodesics on surfaces (in the
complex domain); intersection with the boundary when
∂M 6= ∅;

I The equi-distribution depends upon DYNAMICS OF
GEODESIC FLOW



Real versus complex nodal hypersurfaces

The only rigorous results on distribution of nodal sets (and level
sets) of eigenfunctions concern the complex zeros of analytic
continuations:

ZϕC
j

= {ζ ∈ MC : ϕC
j (ζ) = 0},

where ϕC
j is the analytic continuation of ϕj to the complexification

MC of M.



Equi-distribution of complex nodal sets in the ergodic case

Theorem
(Z, 2007) Assume (M, g) is real analytic and that the geodesic flow
of (M, g) is ergodic. Let ϕC

λj
be the analytic continuation to phase

space of the eigenfunction ϕλj , and let ZϕC
λj

be its complex zero set

in phase space B∗M. Then for all but a sparse subsequence of λj ,

1

λj

∫
Z
ϕC
λj

f ωn−1
g → i

π

∫
Mτ

f ∂∂
√
ρ ∧ ωn−1

g

As usual in quantum ergodicity, we may have to delete a sparse
subsequence of exceptional eigenvalues.



Grauert tube radius
√
ρ

Given real analytic (M, g), complexify M → MC.

I Complexify r 2(x , y)→ r 2(ζ, ζ̄). Grauert tube function =

√
ρ :=

√
−r 2(ζ, ζ̄).

Measures how deep into the complexification ζ ∈ MC is.



Examples: Torus

I Complexification of Rn/Zn is Cn/Zn.

I Grauert tube function: r(x , y) = |x − y | and
rC(z ,w) =

√
(z − w)2. Then

√
ρ(z) =

√
−(z − z̄)2 = 2|=z | = 2|ξ|.

I The complexified exponential map is:

expCx(iξ) = x + iξ.



Kähler metric on Grauert tube

I ρ(ζ) = −r 2
C(ζ, ζ̄) is the Kähler potential of the Kähler metric

ωg = i∂∂̄ρ.

I
√
ρ is singular at ρ = 0 (i.e. on MR):

(i∂∂̄
√
ρ)n = δMR , i .e.

∫
Mε

f (i∂∂̄
√
ρ)n =

∫
M

fdVg .



Limit distribution of zeros is singular along zero section

I The Kaehler structure on MC is ∂∂ρ. But the limit current is
∂∂
√
ρ. The latter is singular along the real domain.

I The reason for the singularity is that the zero set is invariant
under the involution ζ → ζ̄, since the eigenfunction is real
valued on M. The fixed point set is M and is also where zeros
concentrate.



Example: the unit circle S1

I The (real) eigenfunctions are cos kθ, sin kθ on a circle.

I The complexification is the cylinder S1
C = S1 × R.

I The complexified configuration space is similar to the phase
space T ∗S1. This is always true.

I The holomorphically extended eigenfunctions are cos kz , sin kz .



Simplest case: S1

The zeros of sin 2πkz in the cylinder C/Z all lie on the real axis at
the points z = n

2k . Thus, there are 2k real zeros. The limit zero
distribution is:

limk→∞
i

2πk ∂∂̄ log | sin 2πk |2 = limk→∞
1
k

∑2k
n=1 δ n

2k

= 1
π δ0(ξ)dx ∧ dξ.

On the other hand,

i
π∂∂̄|ξ| = i

π
d2

4dξ2 |ξ| 2
i dx ∧ dξ

= i
π

1
2 δ0(ξ) 2

i dx ∧ dξ.



Ergodicity of eigenfunctions in the complex domain

Ergodic eigenfunctions in the complex domain:

I Have extremal growth– 1
λ log |ϕC

λ |2 is like Siciak’s maximal
plurisubharmonic function on Cn;

I Have maximal growth rate of zeros



Work in Progress: Intersections of nodal lines and
geodesics

To get closer to real zeros, we “magnify” the singularity in the real
domain by intersecting nodal lines and geodesics on surfaces
dim M = 2.
Let γ ⊂ M2 be geodesic arc on a real analytic Riemannian surface.
We identify it with a a real analytic arc-length parameterization
γ : R→ M. For small ε, ∃ analytic continuation

γC : Sτ := {t + iτ ∈ C : |τ | ≤ ε} → Mτ .

Consider the restricted (pulled back) eigenfunctions

γ∗Cϕ
C
λj

on Sτ .



Intersections of nodal lines and geodesics

Let
N γ
λj

:= {(t + iτ : γ∗Hϕ
C
λj

(t + iτ) = 0} (1)

be the complex zero set of this holomorphic function of one
complex variable. Its zeros are the intersection points.
Then as a current of integration,

[N γ
λj

] = i∂∂̄t+iτ log
∣∣∣γ∗ϕC

λj
(t + iτ)

∣∣∣2 . (2)



Equidistribution of intersections

Theorem/Conjecture

Let (M, g) be real analytic with ergodic geodesic flow. Then there
exists a subsequence of eigenvalues λjk of density one such that

i

πλjk
∂∂̄t+iτ log

∣∣∣γ∗ϕC
λjk

(t + iτ)
∣∣∣2 → δτ=0ds.

The convergence is weak* convergence on Cc(Sε).

Thus, intersections of (complexified) nodal sets and geodesics
concentrate in the real domain– and are distributed by arc-length
measure on the real geodesic.
(Proof seems complete for periodic geodesics on surfaces when the
geodesic satisfies a generic asymmetry condition; also for
“random” geodesics in all dimensions)



Ideas of proofs

We now explain:

I Why it helps to work in the complex domain;

I How we relate nodal sets and geodesic flow;

I How to study intersections of nodal lines and geodesics in the
ergodic case.



Why it helps to work in MC

In the complex domain we have:

1. Poincaré-Lelong formula: Zϕj = i
2π∂∂̄ log |ϕC

j |2.

2. Compactness in L1 of the PSH functions

{ i

λj
∂∂̄ log |ϕC

j |2}.

3. L2 norm of |ϕC
j (ζ)| on Grauert tube Mτ is eλjτ . Easy to see

from Poisson-wave kernel.

4. Control over weak* limits of |ϕC
j |2} when geodesic flow is

ergodic (quantum ergodicity).



Step I: Ergodicity of complexified eigenfunctions

The first step is to prove quantum ergodicity of the complexified
eigenfunctions:

Theorem
Assume the geodesic flow of (M, g) is ergodic. Then

|ϕελ(z)|2

||ϕελ||2L2(∂Mε)

→ 1, weakly in L1(Mε),

along a density one subsquence of λj .

This is the analogue of what can be proved for the real
eigenfunctions (Shnirelman, SZ, Colin de Verdiere).



Nodal sets (related: Shiffman-Z, Nonnenmacher)

Lemma
We have:

1

λj
log |ϕελ(z)|2 → √ρ, in L1(Mε).

Combine with Poincare- Lelong:

[Z̃j ] = ∂∂̄ log |ϕ̃C
j |2

to get
1

λj
[Z̃j ]→ i∂∂̄

√
ρ.

The exponential growth of |ϕC
j (ζ)| comes directly from the

eigenvalue equation

U(iτ)Cϕj = e−λj
√
ρ(ζ)ϕC

j .



Equi-distribution of intersections

So far:

1

λj

∫
Z
ϕC
λj

f ωn−1
g → i

π

∫
Mτ

f ∂∂
√
ρ ∧ ωn−1

g

Intersections with typical geodesic:

γC : Sτ := {t + iτ ∈ C : |τ | ≤ ε} → Mτ .

Then:
i

πλjk
∂∂̄t+iτ log

∣∣∣γ∗ϕC
λjk

(t + iτ)
∣∣∣2 → δτ=0ds.

The convergence is weak* convergence on Cc(Sε).



New ingredient: quantum ergodic restriction theorem

In the real domain:

Theorem
(J. Toth and S. Z 2010-2011; Dyatlov-Zworski, 2012) If G t is
ergodic and a geodesic H is “asymmetric” then the restrictions of
{ϕj} to H are quantum ergodic on H in the sense that

lim
λj→∞;j∈S

〈Opλj (a0)ϕλj |H , ϕλj |H〉L2(H)

= cn

∫
B∗H

a(s, τ) ρH∂Ω(s, τ) dsdτ

for a certain measure ρH∂Ω(s, τ) dsdτ .



Intersections of complex zeros and geodesics

To analyze intersections of nodal lines and geodesics, we need a
quantum ergodic restriction in the complex domain. It’s
completely different ! Analytic continuation decouples modes:

Example: Round S2. Let Y N
m be the usual joint eigenfunctions of

∆ and rotation around the z-axis, with Y N
m transforming by e imθ

under rotation. Any eigenfunction is ϕN =
∑N

m=−N aNmY N
m .

Restrict to equator: ϕN |ϕ=0 =
∑N

m=−N aNmPN
m (1)e imθ.

Analytically continue to complex equator:

ϕC
N |γC =

N∑
m=−N

amNPN
m (1)e im(θ+iη).

Term with top m dominates! Ergodicity (or random-ness): the
aNN 6= 0, aN,−N 6= 0. Equipartition of energy.



Complexified Poisson kernel

To connect eigenfunctions and geodesic flow, we use the Poisson
kernel

U(iτ, x , y) =
∞∑
j=0

e−τλjϕj(x)ϕj(y).

It admits a holomorphic extension to MC in x → ζ when√
ρ(ζ) < τ .

Theorem
(Hadamard, Mizohata; Boutet de Monvel; SZ 2011, M. Stenzel
2012) U(iε, z , y) : L2(M)→ H2(∂Mε) is a complex Fourier integral
operator of order −m−1

4 quantizing the complexified exponential
map expy (iε)η/|η|)}.



Euclidean case

On Rn:

U(t, x , y) =

∫
Rn

e it|ξ|e i〈ξ,x−y〉dξ.

Its analytic continuation to t + iτ, ζ = x + ip is given by

U(t + iτ, x + ip, y) =

∫
Rn

e i(t+iτ)|ξ|e i〈ξ,x+ip−y〉dξ,

which converges absolutely for |p| < τ.
Key point:

U(iτ)ϕλj = e−τλjϕC
λj
.

But U(iτ)ϕλj only changes L2 norms by powers of λj . So

exponential growth = eτλj .


