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Abstract. We use weakly nonlinear geometric optics to study a model for the DC Kerr effect
(the Kerr electro-optic effect), in which a light beam propagating through a material with strong
nonlinear optical properties can have its polarization rotated by applying a strong external electric
field. This effect is used to build fast switches (Kerr cells). We prove existence of an exact solution
of the nonlinear Maxwell system with a cubic Kerr nonlinearity, with the wavelength h being a small
parameter. We justify the effect within this model, and also solve the inverse problem of recovery of
the nonlinear susceptibility χ(3) from the change of the polarization.

1. Introduction

The goal of this work is to analyze a model for the DC Kerr effect in nonlinear optics (also
known as the Kerr electro-optic effect), and to solve the inverse problem of recovering the relevant
nonlinearity parameter. We use the so-called weakly nonlinear geometric optics with the wave
length proportional to a small parameter h > 0. The DC Kerr effect can be described as follows,
see, e.g., [32, 7]. A polarized beam of light is sent through a medium for which the polarization P
exhibits non-negligible nonlinear dependence on the electric field E which is of Kerr type, that is,
the nonlinearity is cubic, proportional to |E|2E, and its quadratic part vanishes due to cancellations.
Such materials include liquids, gases, amorphous solids, and even some crystals. The intensity of
the light is not strong enough for it to be affected significantly by nonlinear interaction. When a
strong constant (or slowly varying) electric field E0 is applied perpendicularly to the direction of
propagation, the nonlinear interaction becomes significant and it creates birefringence causing the
polarization to rotate along the way. This effect is used to create very fast switches, called Kerr
cells, see Section 4.4, which have been used to measure the speed of light. It can also be used to
measure the nonlinearity of the material, see [2], or the strong field intensity.

To model this effect, we work with Maxwell’s equations in Rt×R3
x in the absence of free currents

and charges (see [7, Sec. 2.1])

∂tD − curlH = 0,(1.1a)

∂tB + curlE = 0,(1.1b)

divB = 0,(1.1c)

divD = 0,(1.1d)

with the constitutive equations

B = µ0H, D = ε0E + P , P = ε0χ
(1)E + ε0χ

(3)|E|2E.(1.1e)

As already mentioned, E is the electric field and isD the electric displacement field. Moreover, B and
H represent the magnetic flux density and magnetic field strength respectively, whereas ε0 and µ0 are
the electric conductivity and the magnetic permeability in free space respectively. Our assumption

Date: May 2, 2025.
P.S. partly supported by NSF Grant DMS-2154489. N.E. acknowledges support from the Graduate Academy of

Leibniz University Hannover.

1



2 N. EPTAMINITAKIS AND P. STEFANOV

(1.1e) on the polarization density P indicates instant but nonlinear (third order) polarization. We

assume that the linear susceptibility χ(1) and the third order nonlinear susceptibility χ(3) are real
valued and compactly supported (we will take χ(1) = 0 later).

In our first main result, Theorem 1 below, we construct solutions depending on the small pa-
rameter h > 0, with a suitable h-dependent scaling of the strong electric field and the beam, see
(2.3). The weakly geometric optics originated in the physics literature and was developed in the
mathematical one in [30, 31, 21, 10, 11, 20, 34] and other works. We derive the h-dependent scaling
needed to explain the rotation of the polarization effect within this model, and then justify it. Then
in Theorem 2, we show that one can recover the X-ray transform of χ(3) along the light rays from
the change of the polarization, and then χ(3) itself.

There are a few related mathematical works about inverse problems for nonlinear optics that we
want to mention. A scalar stationary model has been studied in [9]. In [3], a recovery of χ(3) is
proven with a stationary model but that model excludes formation of harmonics, which actually
are a part of nonlinear optics. The authors study a fixed frequency with the higher linearization
method (see next paragraph). A stationary model with quadratic nonlinearity is considered in [4],
approximating the nonlinear Maxwell system to concentrate on second order harmonics only. The
inverse problem in nonlinear acoustics has been the focus of [1, 38, 22, 12]. That model is close to

a scalar version of nonlinear optics with a quadratic nonlinearity χ(2).
Most of the inverse problems results for nonlinear hyperbolic PDEs are based on the higher order

linearization method pioneered in [24] and [28]. The idea of the method is to consider small solutions
with one or several small parameters and take the Taylor expansion of the solution with respect to
them. The information about the nonlinearities is contained in those higher order terms, which solve
the linearized PDE with source terms. Other works in this direction are [18, 17, 28, 27, 26, 16, 37, 33].
On the other hand, inverse problems for semilinear wave type PDEs were studied using nonlinear
geometric optics by the second author and Sá Barreto in [35, 36], and for the quasilinear Westervelt
equation by the present authors in [12], in regimes where the nonlinearity affects the principal term
in [35, 12] and the sub-principal one in [36], because of the nature of the nonlinear problem there.
In particular, we justify in [35, 12] nonlinear effects observed in physics. They happen for highly
oscillatory solutions (in some frequency band), and the effect is in the leading order term. One
of the difficulties with this approach is that a priori solvability of the corresponding PDE is not
guaranteed by the “small initial conditions” theorems. The solutions of interest are not small in the
required Sobolev norms because of the high oscillations. On the other hand, they are physical, and
they should exist if the model is good.

2. Main results

We work in a large ball B(0, R0) ⊂ R3, R0 ≫ 1. Assume χ(1) = 0 (constant speed), and

χ(3) ∈ C∞
0 (R3), with suppχ(3) ⊂ B(0, R), 0 < R < R0. Assume also ε0µ0 = 1; this amounts to

rescaling the time variable t to t̃ = (ε0µ0)
−1/2t, so that the speed of light c = (ε0µ0)

−1/2 becomes
one. Under those assumptions and as explained in Section 3, we can convert (1.1a)–(1.1e) to the
second order 3× 3 hyperbolic system

(2.1) ∂2tE −∆E +∇ divE = −χ(3)∂2t (|E|2E),

under the divergence free condition

(2.2) div
(
E + χ(3)|E|2E

)
= 0.
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We prove that this is equivalent to the Maxwell system in Proposition 1 (with suitable initial
conditions). In (2.1) and throughout, ∇, div, and ∆ respectively denote the gradient, divergence,
and component-wise negative Laplacian in the space variables only.

For a fixed ω ∈ S2, we are interested in a solution of the form

(2.3) E = h1/2E(x, h) + h3/2U(t, x, ϕ/h, h), ϕ := −t+ x · ω,

with

(2.4) U(t, x, θ, h) ∼ U0(t, x, θ) + hU1(t, x, θ) + . . . ,

where all terms are 2π-periodic in θ. The choice of the scaling is explained in Section 4.1; in short,
it is the one guaranteeing the effect we want to model. We think of h1/2E(x, h) as the “strong”

electric field. It is indeed strong relative to the “beam” h3/2U . The ∼ h1/2 magnitude in absolute
terms is not an indicator of its strength, since we can rescale E, U , and χ(3) by suitable powers of
h, and change the power of h multiplying E(x, h), see Section 9. The stationary field h1/2E should
have an expansion

(2.5) h1/2E(x, h) ∼ h1/2 (E0(x) + hE1(x) + . . . ) ,

and satisfy (2.2). We take E0 = const. in Theorem 1(c) below but keep it variable in part (a).
We can impose a suitable initial condition that will generate a single-phase solution of the form

(2.3). However it turns out to be more convenient to instead impose initial conditions of the form

(2.6) E|t=0 = E(0) := h1/2E(x, h) + 2h3/2Uinit(x) cos
x · ω
h

, ∂tE|t=0 = 0,

where Uinit ∈ C∞
0 (R3; R3) is supported away from B(0, R) and satisfies

(2.7) divUinit(x) = 0, ω · Uinit(x) = 0,

which, as we will see, guarantee the divergence free conditions (1.1c), (1.1d). The initial condition
(2.6) will actually generate two waves at the level of geometric optics, propagating in opposite
directions: one towards the region of interest B(0, R) with phase ϕin = ϕ = −t+x ·ω, and one away
from it, with phase ϕout = t + x · ω (see Figure 1). This is explained in more detail in Section 4.2.
Then (2.4) holds in B(0, R) for t ≥ 0. When E0 = const., we define the phase retardation

(2.8) τ(x) =
1

2
|E0|2

∫ 0

−∞
χ(3)(x+ σω) dσ.

In the next theorem we formulate a lighter version of our main results, with remarks about the
general ones. We assume without loss of generality that ω = e1 = (1, 0, 0); then Uinit,1 = 0. We
denote by ∆D the Dirichlet Laplacian in B(0, R0); the spaces Bm

σ are defined in Section 7.

Theorem 1. Under the assumptions above, we have the following.

(a) [Existence of a strong electric field.] Let f ∈ Hs−1/2(∂B(0, R0)), where s > 5/2, and let
uf ∈ Hs(B(0, R0)) be its harmonic extension to B(0, R0). Also fix ε > 0. There exists h0 > 0 such

that for 0 < h ≤ h0 there exists a unique stationary solution h1/2E(·, h) ∈ Hs−1(B(0, R0)) of (2.1)
and (2.2) satisfying E = ∇uf on ∂B(0, R0), curlE = 0 in B(0, R0), and ∥E −∇uf∥Hs−1(M) ≤ ε. It
admits an asymptotic expansion in h of the form

h1/2E = h1/2∇uf − h3/2∇∆−1
D div(χ|∇uf |2∇uf ) +OHs−1(h5/2).
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B(0, R0)

B(0, R)

supp(χ)

2h3/2Uinit(x) cos
x·ω
h

detector

E

Figure 1. The setup. The backward (downward) propagating free solution is not shown.

(b) [The beam with no strong electric field.] Let m ≥ 3 be an integer and fix T > 0. There exists
σ > 0 and h0 > 0 such that for 0 < h ≤ h0 there exists a solution of (2.1) defined for t ∈ [0, T ],
subject to initial conditions (2.6) with E = 0, and satisfying in B(0, R)

(2.9) Ein = h
3
2

(
0, Uinit,2(x− te1) cos

−t+ x1

h
, Uinit,3(x− te1) cos

−t+ x1

h

)
+O(h

5
2 ),

where the error is term is the restriction to [0, T ]×B(0, R) of an element in h5/2Bm
σ .

(c) [The beam in presence of a strong electric field.] Let m ≥ 3 be an integer and fix T > 0.
Construct E as in (a) with s ≥ m+1 and f = |E0|x3, where |E0| = const., so that E = |E0|e3+O(h).
There exists σ > 0 and h0 > 0 such that for 0 < h ≤ h0 there exists a solution of (2.1) defined for
t ∈ [0, T ] with initial conditions (2.6), having an expansion of the form (2.4) in B(0, R) with its first
terms being

(2.10)

Ein = h
1
2 |E0|e3

+ h
3
2

(
0, Uinit,2(x− te1) cos

(−t+ x1

h
+ τ(x)

)
, Uinit,3(x− te1) cos

(−t+ x1

h
+ 3τ(x)

))
+O(h

5
2 ),

where the error is term is the restriction to [0, T ] × B(0, R) of an element in h5/2Bm
σ . In (2.10), τ

is as in (2.8).

In parts (b) and (c), the solution is unique among functions in a sufficiently small neighborhood of
an asymptotic solution with finitely many terms, see Proposition 3 for a precise statement.

Note that all statements above refer only to behavior of solutions in the region of interest B(0, R),
whereas in Lemma 1 and Proposition 3 later we make precise statements about their global behavior.

Part (a) states the existence of a stationary electric field, which is a differential of a harmonic
function up to lower order terms. A stationary solution of (2.1)–(2.2) as in the theorem that is
also curl-free yields, together with a stationary H, a stationary solution to (1.1a)–(1.1e). To get
a constant E0 as in part (c), we chose f = |E0|x3 with |E0| constant. In fact, a constant E does

not satisfy the divergence free condition for D, unless χ(3) is constant. The proof reduces to solving
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a nonlinear second order elliptic PDE, see (5.1) in Section 5. Part (b) says that under the chosen

prefactor of h3/2, and no strong electric field, the principal term of the beam would the same as if the
system were linear, i.e., χ(3) = 0. In part (c), the strong field is on, and the beam is interacting with
it. This creates phase shifts, and a birefringent effect rotating the polarization, which we explain in
more detail in Sections 4.3, and 4.4.

The proof of existence of (exact) solutions close to the asymptotic ones constructed in (c) is
non-trivial, since we lack a priori existence, uniqueness, and well-posedness results for the nonlinear
Maxwell system. We use a result of Guès ([15]) to prove existence of such solutions, at least in
our region of interest, thus justifying the formal asymptotic expansions. Rigorous justifications of
asymptotic expansions for solutions of quasilinear PDE have also been provided by other authors
under a variety of assumptions, see e.g., [23], [39], [19], and the references there. Some of the above
works also study multi-phase asymptotic solutions, in which case waves corresponding to different
phases can interact and form new ones that propagate in new directions; even though our asymptotic
solution exhibits two phases, one does not interact with the nonlinearity at the level of geometric
optics, and the construction of an asymptotic solution is similar to a single-phase one.

Our analysis confirms, at least in principle, formation of harmonics, typical for nonlinear problems
of wave type. In the principal term for the beam, of order O(h3/2), we observe only the modes ±1

(this is due to our choice of initial data). The next term, of order O(h5/2), can have the harmonics
k = −2,−1, 1, 2, see Lemma 3. They come from interactions of two of the harmonics in the previous
term with one instance of the strong electric field, via the cubic nonlinearity. At order O(h7/2) we
obtain harmonics corresponding to ±1, ±2, ±3, as well as a zero harmonic that solves (4.29).

As an immediate corollary of Theorem 1, we can recover the X-ray transform of χ(3) along the
lines through its support. We vary ω now, and assume that Uinit varies as well, so that the rays
through its support in the direction ω cover B(0, R). This is equivalent to illuminating B(0, R)
from all directions with a beam wide enough to cover it. For a fixed ω, we may have several beams
covering B(0, R) as well. We place a “detector” at the plane πR,ω := {x| x · ω = R}, see Figure 1,
and we assume R0 ≫ 1 so that the ball B(0, R), projected to πR,ω fits in B(0, R0/2).

Theorem 2. Under the assumptions of Theorem 1(c), for every ω ∈ S2, let Uinit ̸≡ 0 be such that
all rays in the direction of ω issued from suppUinit,2 ∩ suppUinit,3 cover B(0, R) and eventually exit
it. Then Ein(t, x) known for x ∈ πR,ω and for t ∈ [0, 2R0], and all 0 < h ≪ 1, recovers the X-ray

transform of χ(3) in the direction ω uniquely. Varying ω, χ(3) can be recovered uniquely as well.

In fact, the proof shows that knowing Ein(t, x) for (t, x) as stated and for 0 < h≪ 1, we can recover

the X-ray transform of χ(3) up to O(h).
The article is organized as follows. In Section 3, we reduce the Maxwell system (1.1a)–(1.1e) to

the wave type of equation (3.4) with appropriate divergence free conditions. We build the weakly
geometric optics solution in Section 4. In particular, in Section 4.3 we demonstrate the rotation of
the polarization effect presented in the leading term of the oscillatory expansion. In Section 4.4, we
show how Kerr cells fit in our analysis. The strong electric field E is constructed in Section 5 by
solving a nonlinear elliptic PDE of double-phase type. Some technical proofs showing the derivation
of the profile equations can be found in Section 6. In Section 7, we show that there exist exact
solutions close to the asymptotic ones, using a result by Guès. Finally, Theorem 2 is proved in
Section 8.

Acknowledgments. We thank Arshak Petrosyan for pointing out to us references [25] and [5],
and for the discussion on nonlinear elliptic PDEs.
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3. Reduction to a 2nd order hyperbolic system

In this section we show a correspondence between solutions to (1.1a)–(1.1e) and (2.1)–(2.2).
Taking divergence of (1.1a) and (1.1b), we see that divB and divD remain constant in time.
Therefore, equations (1.1c), (1.1d) can be considered as divergence free requirements on the initial
conditions that remain preserved for all t. We can eliminate B and D to obtain

∂t(ε0E + P )− curlH = 0,(3.1a)

∂tµ0H + curlE = 0,(3.1b)

divµ0H = 0,(3.1c)

div(ε0E + P ) = 0,(3.1d)

where we view P = P (E) as given by (1.1e). Equation (3.1d) has the form

(3.2) divD = 0 ⇐⇒ div
((

1 + χ(1)
)
E + χ(3)|E|2E

)
= 0,

and assume for now 1+χ(1) > 0, although eventually we take χ(1) = 0. We impose initial conditions

(3.3) (E,H)|t=t0 = (E(0), H(0)),

which cannot be arbitrary; the corresponding initial conditions (D(0), B(0)) for (D,B) must be
divergence free. This means that

(3.4) E(0) + χ(1)E(0) + χ(3)|E(0)|2E(0) = ε−1
0 D(0)

with divD(0) = 0, as in (3.2), and divH(0) = 0. Given divergence free (D(0), B(0)), we can easily

solve for H(0) = µ−1
0 B(0), and (3.4) can be solved for E(0) when χ

(3)|E(0)|2 is small enough, picking

up the solution close to H(0). This would be the case below since E ∼ h1/2.
We can transform (3.1a)–(3.1b) into a second order system for the electric field, of the form

(3.5) ε0(1 + χ(1))∂2tE + µ−1
0 curl curlE = −ε0χ(3)∂2t (|E|2E).

We need initial conditions

(3.6) E|t=t0 = E(0), ∂tE|t=t0 = E′
(0),

and we use a similar notation D′
(0) := ∂tD|t=t0 below.

Every solution (E,H) of (3.1a)–(3.1d) with initial conditions (3.3) satisfying the divergence free
conditions above provides a solution E of (3.5) with initial conditions (3.6). The second initial
condition E′

(0) in (3.6) can be found from

(3.7) D′
(0) = ε0∂t

(
E + χ(1)E + χ(3)|E|2E

)
|t=t0 = curlH(0).

Equation (3.7) can be solved for E′
(0) under the same conditions on χ(1), χ(3) and E(0). Then

the so found (E(0), ∂tE(0)) yield the divergence free conditions divD(0) = 0 (by assumption), and
divD′

(0) = 0 (by (3.7)).

Conversely, assume we are given a solution E to (3.5) with initial conditions (3.6) for which
divD(0) = divD′

(0) = 0. We show first how to choose a divergence free H(0) solving (3.7). We are

looking for H(0) satisfying

(3.8) divH(0) = 0, curlH(0) = D′
(0).

with D′
(0) given by (3.7). The second equation is solvable for H(0) in every ball by the Poincaré

lemma for two-forms. Such a solution is determined up to ∇ϕ for some function ϕ. Having one such
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solution H̃(0), to satisfy the first equation we need to solve ∆ϕ = − div H̃(0), which can be done
locally. In other words, (3.8) can be solved in every ball. Its solution is determined up to ∇ψ with
∆ψ = 0. On the other hand, adding such a term to H (time-independent) in (3.1a)–(3.1d) keeps
those equations satisfied, and adds it to the second initial condition in (3.3). A more general view
is that any such (0, H(0)) is a stationary solution of (3.1a)–(3.1d) with the same initial conditions,
and can be added linearly to any other solution.

Having fixed H(0), we set

(3.9) H(·) = H(0)(·)− µ−1
0

∫ t

0
curlE(τ, ·) dτ

which guarantees that (3.1b) is satisfied. Differentiating (3.1a) with respect to t, we see that its
time derivative vanishes as a consequence of (3.5). Then (3.1a) holds up to a constant in t but
that constant vanishes because of (3.7). This establishes the equivalency of (3.1a)–(3.1d) and (3.5),
including the corresponding initial conditions.

Proposition 1. Let (E,H) be a solution of (3.1a)–(1.1e) with initial conditions (3.3) for which
D(0), H(0) are divergence free. Then E solves (3.5) with initial conditions (3.6), where E′

(0) can be

determined by (3.7).
On the other hand, given E(0), E

′
(0) so that the left-hand sides of (3.4), (3.7) are divergence free,

determine D′
(0) by (3.7). Let H(0) be a solution of (3.8) determined up to the differential of some

harmonic function ϕ. Then, (E,H), with H determined by (3.9) is a solution of (3.5) with initial
conditions (3.3), with H determined up to ∇ϕ.

Using the identity

(3.10) curl curl = ∇div−∆,

and writing (ε0µ0)
−1 = c2, equation (3.5) reduces to

(3.11) (1 + χ(1))∂2tE − c2(∆E −∇ divE) = −χ(3)∂2t (|E|2E).

If µ0 is the magnetic permeability in vacuum, then c is the speed of light. The linear part is a formal
elasticity system with a zero pressure speed. On the other hand, the divergence free condition
eliminates pressure waves.

As mentioned in Section 2, we take χ(1) = 0. Taking χ(1) variable, of magnitude ∼ 1, as long as
1+χ(1) > 0, would make the speed c(x) variable but still ∼ 1 (i.e., not a large or a small parameter),
see also Section 9. Finally, we rescale the variables to ensure light speed c = 1, thus arriving to (2.1)
and (2.2) from (3.11) and (3.2) respectively. According to [7, pp. 67–68], the contribution of the
term ∇ divE in (2.1) can be considered negligible in major cases of interest. We do not ignore it
however, and we show that it indeed contributes a lower order term in our case. Its presence leads
to some technical complications, which we resolved.

4. The weakly nonlinear geometric optics

4.1. The general setup. Recall that we seek an asymptotic solution to (2.1) under the divergence
free condition (2.2), having the form (2.3) in the region of interest. As we explain in Section 9, a
different scaling of the solution may affect the qualitative effect one observes. We now explain our
choice of the scaling from the point of view of weakly geometric optics using a simplified model.
Assume temporarily that u := E is scalar and real (ignoring the third term in (2.1)), and write χ

instead of χ(3); then |u|2u = u3. Since

χ∂2t u
3 = 3χu2∂2t u+ 6χu(∂tu)

2,
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we can write a simplified version of (2.1) as

(1 + 3χu2)∂2t u− c2∆u+ 6χu(∂tu)
2 = 0.

This gives us speed

(4.1) cχ = (1 + 3χu2)−1/2c.

When χu2 is of order ∼ 1, the speed is effectively changed by the solution, so we are in the fully
nonlinear regime, where in particular, the geometry of the rays changes ([30]). The DC Kerr effect
does not do that. When χu2 ∼ h, the eikonal equation describing the propagation of singularities
(an analog of (4.11) below) stays the same as that of the linear wave equation, so the geometry is
unchanged, but the nonlinearity affects the transport (profile) equation for the leading term of the
amplitude. This is the weakly nonlinear geometric regime by definition. Moreover, if the leading
term in the asymptotic expansion of u were constant, we would expect a linear leading transport
equation, which we confirm below in the vector valued case. The effective change of the speed by
∼ h would cause a retardation ∼ h proportional to the wavelength 2πh, which would create a phase
shift of a size comparable to the latter over distance ∼ 1, and this is what we want to model. The
physical χ is very small in the metric system of units but we can always rescale u, which in turn
rescales χ as well (see Section 9), so we do not treat χ as a “small” quantity. The discussion above

indeed suggests the scaling h1/2E(x, h) for the strong stationary electric field in a solution (2.3).

We now comment on our choice of initial conditions (2.6). As mentioned, we want h1/2E(x, h)
to solve (2.2), at least in a large region B(0, R0). This was essentially the content of Theorem 1(a);
we state here a very similar result, whose main addition to the former is a statement regarding the
extension of E on all of R3, in the case of a constant leading order term. We will prove it together
with Theorem 1(a) in Section 5.

Lemma 1. Choose a large ball B(0, R0) ⊂ R3 with R0 ≫ R and such that suppUinit ⊂ B(0, R0)

and fix s > 5/2. There exists a strong field h1/2E(·, h) ∈ Hs−1
loc (R3) ∩ L∞(R3) as in (2.5) satisfying

(2.2) outside a small neighborhood of ∂B(0, R0). It can be taken such that E0 = const. on R3 and
Ek ∈ C∞

0 (R3) for k ≥ 1, with curlEk = 0 on R3 for all k ≥ 0.

Lemma 1 implies that the first term in (2.6) generates a stationary electric displacement field D
that is divergence free in a large enough domain. To make the second term in (2.6) divergence free
as well, first write

div
(
Uinit(x) cos

x · ω
h

)
= (divUinit(x)) cos

x · ω
h

− h−1ω · Uinit(x) sin
x · ω
h

.

We choose Uinit(x) so that (2.7) is satisfied. If ω = e1 := (1, 0, 0), which we can always assume, this
can be achieved by taking

(4.2) Uinit(x) = (0,−∂x3ρ, ∂x2ρ),

with some ρ ∈ C∞
0 . Below, we will also consider Uinit with the property to be a non-zero constant

field in the “core” of the beam. This can be done by taking

(4.3) ρ(x2, x3) = −a2x3 + a3x2 when |(x2, x3)| ≤ r0

with some r0 > 0 (the radius of “core”) and (a2, a3) ̸= (0, 0). Then Uinit(x) = (0, a2, a3) when
|(x2, x3)| ≤ r0.

We now verify that D(0) in (3.4) is divergence free in the region of interest (with χ(1) = 0). The
support property of Uinit yields

E(0) + χ(3)|E(0)|2E(0) = E(0) + χ(3)h3/2|E|2E =
(
h1/2E + χ(3)h3/2|E|2E

)
+ 2h3/2Uinit(x) cos

x · ω
h

,
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and both terms are divergence free outside a neighborhood of ∂B(0, R0). Next, D
′
(0) in (3.7) is also

divergence free because E′
(0) = 0.

Remark 1. An alternative way to choose initial conditions is by taking

E|t=0 = h1/2E(x, h) + 2h3/2h curl
(
Ũinit(x) sin

x · ω
h

)
, ∂tE|t=0 = 0.

Then

E|t=0 − h1/2E(x, h) = h3/2
[
(ω × Ũinit(x)) cos

x · ω
h

+ h
(
curl Ũinit(x)

)
sin

x · ω
h

]
and Uinit := ω× Ũinit is normal to ω but not automatically divergence free as above (but it does not

need to be), unless we chose it properly. We can make Ũinit constant in the core of the beam as well.

4.2. Initialization of the problem, the linear solution. For 0 ≤ t ≪ 1, (2.1) and (2.6) have a
solution in the linear regime, and an expansion for it in h can be constructed using geometric optics
for the scalar wave equation in R3. Indeed, if we produce solutions of the equation

(4.4) ∂2tE −∆E = 0,

with E vector valued and with initial conditions satisfying divE
∣∣
t=0

= div ∂tE
∣∣
t=0

, then divE = 0
stays true for all t. In the previous section we arranged the initial conditions in such a way that the
divergence free condition holds in a neighborhood of suppUinit. This implies that for such initial
data, a solution of (4.4) (which will have finite speed of propagation) will also solve (2.1) for small
enough t, and it will be divergence free near suppUinit. By our uniqueness result (see Proposition 3),
this solution will be the only solution to (2.1), (2.6) in a suitable class. Near suppUinit, we have

(4.5) E = h1/2E(x, h) + h3/2Uin(t, x, ϕin/h, h) + h3/2Uout(t, x, ϕout/h, h), ϕin/out = ∓t+ x · ω
and, for t small,

(4.6)
Uin(t, x, θ, h) = eiθain,+(t, x, h) + e−iθain,−(t, x, h),

Uout(t, x, θ, h) = eiθaout,+(t, x, h) + e−iθaout,−(t, x, h).

The amplitudes have asymptotic expansions

(4.7) ain/out,± ∼
∞∑
k=0

hka
(k)
in/out,±(t, x).

Substituting into (4.4) and matching powers of h, the transport equations for the leading order
amplitudes are found to be

(4.8) (∂t + ω · ∇)a
(0)
in,± = 0, (∂t − ω · ∇)a

(0)
out,± = 0

with initial conditions satisfying

a
(0)
in,+ + a

(0)
out,+ = Uinit, a

(0)
in,− + a

(0)
out,− = Uinit for t = 0.

The second initial condition in (2.6) implies

−a(0)in,+ + a
(0)
out,+ = 0, a

(0)
in,− − a

(0)
out,− = 0 for t = 0.

Therefore,

a
(0)
in,+ = a

(0)
out,+ = a

(0)
in,− = a

(0)
out,− =

1

2
Uinit for t = 0.

Solving the transport equations, we get

a
(0)
in,+ = a

(0)
in,− =

1

2
Uinit(x− tω), a

(0)
out,+ = a

(0)
out,− =

1

2
Uinit(x+ tω).
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Thus the leading term of the beam is

(4.9) Uinit(x− tω) cos
(x · ω − t

h

)
+ Uinit(x+ tω) cos

(x · ω + t

h

)
,

representing two “waves” (not solutions of the wave equation by themselves) moving in opposite
directions. The lower order terms of the amplitudes can be computed consecutively in a similar
way, solving non-homogeneous versions of the transport equations (4.8) (that is, with the same
vector fields), with sources depending on terms we already computed and their derivatives. We can
construct as many terms in the expansion as we want, say up to hN with a remainder O(hN+1).
Note that each of Uin/out propagates with finite speed, and is smooth if Uinit is.

4.3. The asymptotic solution: the leading term U0. Our goal is to construct an asymptotic
solution of (2.1), (2.6) for t ∈ [0, T ] with a fixed T > 0. Since Uout propagates away from B(0, R) in
a linear regime, the terms in its expansion do not contribute to this solution there. We denote

Ein = h1/2E(x, h) + h3/2Uin(t, x, ϕin/h, h)

and use the ansatz

(4.10) Ein ∼ h1/2E0 + h3/2
(
E1(x) + U0(t, x, ϕ/h)

)
+ h5/2

(
E2(x) + U1(t, x, ϕ/h)

)
+ . . . ,

where ϕ = ϕin = −t + x · ω. A more accurate notation would be Uin,k instead of Uk, but we will
keep the latter to improve readability. If K ≥ 0, we say that a formal h-dependent expansion for E
as in (4.5) solves (2.1) up to order O(hK−1/2) if

∂2tE −∆E +∇ divE + χ(3)∂2t (|E|2E) ∼
∑
k≥K

hk+1/2Fk(t, x, ϕin/h, ϕout/h),

where Fk are smooth and 2π-periodic in the last two variables, and similarly for Ein and h3/2Uout.
The next lemma, proved in Section 6, confirms the predictions in Section 4.1, namely that the

nonlinear term χ(3)∂t(|E|2E) does not affect the dispersion relation, but it does affect the transport
equation for the first profile U0. We write Πω and Π⊥

ω for the orthogonal projections onto the span
of ω and its orthogonal complement respectively.

Lemma 2. Suppose that Ein in (4.10) satisfies (2.1) to order O(h1/2). Then the phase function
ϕ = ω · x− t is characteristic, that is, it satisfies the dispersion relation1

(4.11) det
(
((∂tϕ)

2 − |∇ϕ|2)Id3 +∇ϕ⊗∇ϕ
)
= 0.

With this ϕ, and if E0 in (2.5) is constant with E0 ·ω = 0, the first profile U0 satisfies the equations

∂θΠωU0 = 0,(4.12)

L(E0)Π
⊥
ω ∂θU0 = 0,(4.13)

where L is the vector valued transport operator

(4.14) L(E0)V = −2(∂t + ω · ∇)V + χ(3)|E0|2(∂θV ) + 2χ(3)(E0 · ∂θV )E0.

If ϕ is as above and (4.12) is satisfied, Ein solves (2.1) to order O(h−1/2).

Since U0 is assumed to be periodic in θ, it has a Fourier series expansion. At the expense of
adding a θ-independent term to U0, we can cancel one power of ∂θ in (4.12)-(4.13). The initial
condition U0 = Uinit(x) cos θ at t = 0 in (4.9) is of single phase, with θ = ϕ/h (more precisely, with

1Recall that ∇ denotes gradient only in x.
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ϕ/h and −ϕ/h in complex notation), so since (4.12)-(4.13) are linear, no higher order harmonics are
generated in the principal term U0. Thus its Fourier series reduces to

(4.15) U0 = A0(t, x) cos θ +B0(t, x) sin θ + C0(t, x),

where from (4.12) it follows that A0, B0 must take values in ω⊥ and C0 takes values in R3 (uncon-
strained, though we will see in Section 4.5 that it vanishes). Introduce the characteristic variables

(4.16) (s, y) = (t, x− tω); then (t, x) = (s, y + sω) and ∂t + ω · ∇x = ∂s.

Passing to the characteristic coordinates, (4.13) integrated in θ yields

−2∂s(A0 cos θ +B0 sin θ) + χ(3)|E0|2(−A0 sin θ +B0 cos θ)

− 2χ(3) sin θ(E0 ·A0)E0 + 2χ(3) cos θ(E0 ·B0)E0 = 0.

Note that this ODE carries no information about C0. It is equivalent to the 6× 6 system

(4.17)
d

ds

(
A0

B0

)
+

1

2
χ(3)|E0|2

(
−B0

A0

)
+ χ(3)

(
−(E0 ·B0)E0

(E0 ·A0)E0

)
= 0.

Note that all quantities above are restricted to a characteristic line, and are functions of s and of
the other parameters determining the line. We recast (4.17) as

(4.18)

[
d

ds
+

1

2
χ(3)

(
0 −|E0|2Id3 − 2E0 ⊗ E0

|E0|2Id3 + 2E0 ⊗ E0 0

)](
A0

B0

)
= 0.

Next, we assume without loss of generality that E0 = |E0|e3. Equation (4.18) becomes[
d

ds
+

1

2
χ(3)|E0|2

(
0 −diag(1, 1, 3)

diag(1, 1, 3) 0

)](
A0

B0

)
= 0.

Set A = A0 + iB0. Temporarily adopting the notation χ̃(3)(s) = χ(3)(y + sω), we get

(4.19)
d

ds
A =

1

2
χ̃(3)(s)|E0|2

−i 0 0
0 −i 0
0 0 −3i

A,

which is a diagonal system. Recall (2.8) and write

(4.20) τ̃(s) := τ(y + sω) =
1

2
|E0|2

∫ s

−∞
χ̃(3)(σ) dσ,

The solution of (4.19) is now seen to be

A = (c1e
−iτ̃ , c2e

−iτ̃ , c3e
−i3τ̃ ).

So we get components with fundamental periods 2π, 2π, 2π/3. In particular, E0 creates a phase
shift of the third component different that is from the other two.

We now take the initial condition (4.9) into account. In characteristic coordinates, ϕ = y ·ω. The
initial condition for A is A = Uinit(y ·ω) for 0 ≤ t≪ 1. Note that we get the initial condition C0 = 0
when t = 0, which we will use later. Since we chose the direction of propagation to be perpendicular
to E0, we have ω3 = 0, and without loss of generality we can assume ω = (1, 0, 0) as in Theorem 1.
Since Uinit is orthogonal to ω by (2.7), it is of the form Uinit = (0, Uinit,2, Uinit,3) for 0 ≤ t≪ 1. Then
A =

(
0, Uinit,2(y)e

−iτ̃ , Uinit,3(y)e
−i3τ̃

)
, where Uinit is written in the coordinates y = (x1 − t, x2, x3),

s = t. That gives us a leading term of the solution

Ein ∼ h
1
2 |E0|e3 + h

3
2C0(t, x) + h

3
2

(
0, Uinit,2 cos τ̃ cos(ϕ/h)− Uinit,2 sin τ̃ sin(ϕ/h),

Uinit,3 cos(3τ̃) cos(ϕ/h)− Uinit,3 sin(3τ̃) sin(ϕ/h)
)
+O(h5/2)(4.21)
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= h
1
2 |E0|e3 + h

3
2C0(t, x) + h

3
2
(
0, Uinit,2 cos(ϕ/h+ τ̃), Uinit,3 cos(ϕ/h+ 3τ̃)

)
+O(h5/2),

where Uinit = Uinit(y), τ̃ = τ(y + tω), and ϕ = y · ω = −t + x · ω with ω = e1. This yields (2.10),
and (2.9) upon setting E0 = 0, except for the fact that there we have C0 = 0 (this is shown in
Section 4.5) and for the statement there regarding the error (explained in Section 7).

If we assume x = y + sω with s ≫ 1, so that the ray leaves suppχ(3), then τ = const., and the
third term in (4.21) stays constant along that ray. In the standard (t, x) coordinates, ϕ = −t+x ·ω,
and under the same assumption about τ and for a fixed x ·ω, the second term of the electric field E
rotates on an ellipse. This is a circular polarization when Uinit,2 = Uinit,3 ̸= 0 and 2τ = (2k+1)π/2,
k an integer. It is elliptical in general. When Uinit,2 = Uinit,3 = 1, for example, the half-lengths of

the axes are
√
2 cos τ ,

√
2 sin τ , respectively.

We demonstrate this effect in Figure 2. The plot represents the change of the polarization along
a light ray, i.e., for s 7→ (t, x) = (s, y0 + se1) with y0 fixed, and 0 < h not too small to make the
diagrams less cramped. There, s, which is also x1 shifted, is along the horizontal axis. This is
the basis for solving the inverse problem in Theorem 2. Measuring the change of the polarization,
encoded by the phase shift τ , we recover the X-ray transform of χ(3), and then χ(3) itself.

Figure 2. The polarization changes from linear to ellipsoidal along the way. The two axes
are preserved. Left: The polarization starts as a linear one but the nonlinear interaction
converts it into elliptical. Right: Frontal view.

4.4. Interpretation and Kerr cells. The interpretation of the nonlinear effect in the leading term
in (2.10) is as follows. The “strong” electric field h1/2E changes the effective matrix-valued index
of refraction making it birefringent – that is, creating speeds of light depending on the polarization:
different for light polarized in the direction of E compared to that for light perpendicular to it. The
change in speeds between the two polarization directions is proportional to the wavelength, to the
square of the amplitude of the electric field, and to a constant depending on the material. In our
analysis, that change is 2hτ , τ ∼ |E0|2, which we view as a phase shift in (2.10). The nonlinearity
always produces a phase shift. When Uinit,3 = 0 but Uinit,2 ̸= 0, the light, a priori linearly polarized in
the direction Uinit = (0, Uinit,2, Uinit,3) = (0, Uinit,2, 0), remains linearly polarized in the same direction
but with a phase shift −τ , increasing along the way. Similarly, when Uinit,2 = 0 but Uinit,3 ̸= 0, the
light, a priori linearly polarized in the direction Uinit = (0, Uinit,2, Uinit,3) = (0, 0, Uinit,3), remains
linearly polarized as well but the phase shift is −3τ . By (2.8), this is consistent with the heuristic

argument in Section 4.1, where we estimated a reduction of the speed by 3
2hχ

(3)|E0|2 + O(h2) in
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(4.1), since in our case E ∼ h1/2E0. When neither Uinit,2 nor Uinit,3 vanish, the polarization becomes
elliptical.

Kerr cells, or Kerr cell shutters, are based on the DC Kerr effect, see [13]. Two polarizing filters
are placed at angle π/2 to each other, one at the entrance of a beam and one at the exit from a

cell filled with a material with relatively large nonlinear coefficient χ(3), for example nitrobenzene.
In Figure 2 and in Figure 3 for example, the first filter polarizes the beam linearly as shown there
at the left-hand side. If E = 0, i.e., no stationary electric field is applied (not shown in the figure),
the polarization remains constant, as it follows from our analysis. Then the second filter blocks the
light. Applying a “strong” E causes the polarization to rotate, and if at the exit the total rotation
is not kπ, k ∈ N, at least some light would be transmitted. Switching E on and off can happen very
quickly, giving us a shutter speed far exceeding that of a mechanical one.

Figure 3. Polarization change with a constant χ(3). The parameters are chosen so that
the total rotation is by π/2. The round polarizing filters have orientations along the dotted
lines, and the one on the right transmits all the light.

We obtain maximal transmission when the total rotation at exit is by π/2 + kπ, see Figure 3.

Assuming for the moment that χ(3) is constant in the region of interest (although then χ(3), extended
globally as zero, is discontinuous, and we do not study that case), by our analysis the phase shift of
one component relative to the other is 3τ − τ = 2τ by absolute value. Thus the maximal effect takes
place when τ = π/2+ kπ. On the other hand, τ = 1

2 |E0|2χ(3)d, where d is the distance between the
polarizers. Therefore, the equation

1

2
|E0|2χ(3)d =

π

2

can be used to determine χ(3) when E0 is given, by varying E0 from 0 to the value giving us the
highest intensity for the first time (thus eliminating kπ). This method was used in [2], for example,

to measure the Kerr constant, which in turn determines χ(3) for olive oil. On the other hand, if we
know χ(3), we can find the optimal E0 maximizing the output.

To formalize these arguments, assume that Uinit is as in (4.2), (4.3), making Uinit = (0, a2, a3) in
the “core” x22+x23 ≤ ρ2 of the beam along the axis ω = e1. The second polarizing filter projects the

high frequency part of the beam to (0,−a3, a2)/
√
a22 + a23. Then the electric energy density ε0

2 |E|2
of the high frequency part of (2.10) in the core is proportional to

(4.22)
a22a

2
3

a22 + a23
sin2(τ) sin2(ϕ/h+ 2τ).
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Indeed, the effect of the polarizing filter is to project the term in the second line in (2.10) to

(0,−a3, a2)/
√
a22 + a23, so what is left propagating is

− a2a3
a22 + a23

(
cos(ϕ/h+ τ)− cos(ϕ/h+ 3τ)

)
(0,−a3, a2)

= 2
a2a3
a22 + a23

sin(ϕ/h+ 2τ) sin(τ)(0,−a3, a2).

Its energy is proportional to its norm squared, thus giving us (4.22). The magnitude of the amplitude

2 |a2a3|√
a22+a23

| sin(τ)| of the oscillations attains its maximum with respect to τ when τ = π/2 + kπ,

provided a2a3 ̸= 0, as stated above. In terms of (a3, a3) with a fixed length, the maximum is
achieved when τ ̸= kπ and a2 = a3, i.e., when the angle with e3 is π/4.

4.5. The asymptotic solution: full expansion. To prove the existence of exact solutions in
Section 7, we need to prove that it is possible to construct an approximate solution to (2.1) to high
order. As before, we are looking for the incoming part Ein of a solution, as in (4.10), with all of the
Uj 2π-periodic in θ, extending Uin from the linear region (0 ≤ t≪ 1) to the nonlinear one. Lemmas
3 and 4 below will be proved in Section 6.

Lemma 3. Suppose that (4.10) satisfies (2.1) to order O(hK+3/2), where K ≥ 0. Assume also that
U0 satisfies (4.12)–(4.13), ϕ = −t + ω, and the first K + 2 terms in the expansion of E have been
constructed as in Lemma 1, with E0 = const. and E0 ·ω = 0. Then for 0 ≤ k ≤ K the profiles Uk+1

satisfy equations of the form

Πω∂θUk+1 =

∫
ΠωFk

(
χ(3), Ej , ∂

α
(t,x,θ)Uℓ : j, ℓ = 0, . . . , k, |α| ≤ 2

)
dθ,(4.23)

L(E0)Π
⊥
ω ∂θUk+1 = Π⊥

ω∇(∂θUk+1(t, x, θ) · ω)

+ Π⊥
ωGk(χ

(3), Ej , ∂
α
(t,x,θ)Uℓ : j = 0, . . . k + 1, ℓ = 0, . . . , k, |α| ≤ 2),

(4.24)

where L is defined in (4.14) and each entry of Fk, Gk is a polynomial in the entries of their argu-
ments; the antiderivative in (4.23) is chosen such that the zeroth Fourier mode of the right hand
side vanishes.

If there exist smooth profiles Uk+1, −1 ≤ k ≤ K, such that (4.12)–(4.13) and (4.23)–(4.24)

hold on a time interval [0, T ], then E solves (2.1) up to order O(hK+1/2). If in addition those
profiles (together with their outgoing counterparts) satisfy the initial conditions determined by (2.6)
as explained in Section 4.2, then for all such k, Πω∂θUk+1 (resp. Π⊥

ω ∂θUk+1) contains no complex
Fourier modes outside the range [−k − 1, k + 1] (resp. [−k − 2, k + 2]), and ∂θUk+1 ∈ C∞

0 ([0, T ] ×
R3 × S1).

Remark 2. The appearance of two equations satisfied by ∂θUk+1 is typical of the WKB method for
constructing approximate solutions for symmetric hyperbolic systems of PDE, see [30].

Note that (4.23) and (4.24) are equations for ∂θUk+1, however their right hand sides contain Uℓ

and its derivatives for ℓ ∈ {0, . . . , k}. So in general those equations cannot be solved successively to
determine ∂θUk+1, unless the zero Fourier modes of the Uℓ’s have also been determined for ℓ ≤ k.
We explain now how to solve (4.23)–(4.24), assuming for the moment that this is done; the zero
modes are the subject of Lemma 4 below. First, (4.23) clearly determines ΠωUk+1 up to its zero

mode. For Π⊥
ωUk+1, let Uk+1 =

∑k+2
ℓ=−k−2 U

{ℓ}
k+1e

iℓθ, with U
{ℓ}
k+1 = U

{ℓ}
k+1 and valued in C3. Having

determined ∂θUk+1 ·ω and the previous profiles, the right hand side of (4.24) is a known source and
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from the proof of Lemma 3 follows that it contains no Fourier modes outside the range [−k−2, k+2].
Equating modes corresponding to 0 < |ℓ| ≤ k + 2 we obtain

L(E0)
( k+2∑

ℓ=−k−2

iℓΠ⊥
ωU

{ℓ}
k+1e

iℓθ
)
=

∑
0<|ℓ|≤k+2

f
{ℓ}
k+1e

iℓθ,(4.25)

where the right hand side is the Fourier expansion of the source with respect to θ. At t = 0,

Π⊥
ωU

{ℓ}
k+1 = 0 for all k ≥ 0. Using (4.14), and that if E0 = |E0|e3 we have

|E0|2Id3 + 2E0 ⊗ E0 = |E0|2 diag(1, 1, 3),

(4.25) becomes in characteristic coordinates (4.16)∑
0<|ℓ|≤k+2

iℓ
(
− 2Id3∂s + iℓχ̃(3)(s)|E0|2 diag(1, 1, 3)

)
Π⊥

ωU
{ℓ}
k+1e

iℓθ =
∑

0<|ℓ|≤k+2

f
{ℓ}
k+1e

iℓθ,

or equivalently, using the notation (4.20),(
Id3∂s −

1

2
iℓχ̃(3)(s)|E0|2 diag(1, 1, 3)

)
Π⊥

ωU
{ℓ}
k+1 =

i

2ℓ
f
{ℓ}
k+1

⇐⇒ ∂s

(
diag(e−iℓτ̃ , e−iℓτ̃ , e−3iℓτ̃ )Π⊥

ωU
{ℓ}
k+1

)
=

i

2ℓ
diag(e−iℓτ̃ , e−iℓτ̃ , e−3iℓτ̃ )f

{ℓ}
k+1

⇐⇒ Π⊥
ωU

{ℓ}
k+1 =

i

2ℓ

∫ s

0
diag(eiℓ(τ̃(s)−τ̃(σ)), eiℓ(τ̃(s)−τ̃(σ)), e3iℓ(τ̃(s)−τ̃(σ)))f

{ℓ}
k+1dσ

for all 0 < |ℓ| ≤ k + 2, which solves (4.24) at the non-zero modes.
Note that (4.25) does not contain the zero mode of the right hand side of (4.24). The requirement

that the zero mode of (4.24) must vanish is what gives us an equation for the zero mode of Uk:

Lemma 4. Let the notations and assumptions be as in the first part of Lemma 3 and denote by A{0}

the zeroth Fourier mode of an expression A. Then Ck := U
{0}
k solves the linear wave-type equation

(4.26)

∂2tCk −∆Ck +∇ divCk = χ(3)Hk(Ej , ∂
α
t Uℓ : j = 0, . . . , k − 1, ℓ = 0, . . . , k − 1, |α| ≤ 2){0},

where each entry of Hk is a polynomial in the entries of its arguments, and each term contains at
least one factor of ∂αt Uℓ for some α and ℓ as above. For k = 0, 1 the right hand side vanishes.

We check that (4.26) is solvable for Ck with vanishing initial conditions, provided all the quantities
in the source have been determined for t ∈ [0, T ] (namely, Ej for 0 ≤ j ≤ k, Uℓ for 0 ≤ ℓ ≤ k − 1):
indeed, we can write it as

(4.27) ∂2tCk −∆Ck +∇ divCk = Fk,

where Fk is known, with suppFk ⊂ [0, T ]× suppχ(3). Moreover, Fk(t, ·) = 0 for 0 ≤ t≪ 1, because

suppχ(3) ∩ ∂α(t,θ)Uℓ = 0 for such t. Applying div to both sides results in ∂2t divCk = divFk, from

which divCk =
∫ t
0

∫ s
0 divFk(u, x)dudt, since Ck

∣∣
t=0

= ∂tCk

∣∣
t=0

= 0. Thus

(4.28) ∂2tCk −∆Ck = −
∫ t

0

∫ s

0
∇ divFk(u, x)dudt+ Fk

with vanishing initial conditions, which can be solved for Ck using Duhamel’s formula. Moreover,
the solution will be smooth and compactly supported in space for t ∈ [0, T ], because the source
terms are.
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After solving (4.28), we need to check that Ck indeed satisfies (4.27). Apply ∂2t div to both sides
of (4.28): this yields

(∂2t −∆)(∂2t divCk − divFk) = 0,

where ∂2t divCk − divFk vanish for 0 ≤ t ≪ 1. By standard uniqueness of solutions for the scalar

wave equation, ∂2t divCk−divFk = 0 for all time, so that divCk =
∫ t
0

∫ s
0 divFk(u, x)dudt. Plugging

this into (4.28) we obtain (4.27).
By last statement in Lemma 4 combined with the discussion above, the first two zero harmonics

C0 and C1 vanish. It follows from (6.10), upon noticing that when ℓ = 0, 1, any product of Ej ,

∂2t Uℓ involving exactly one factor of the latter contributes nothing to the zero mode, that the zero
harmonic C2 at order O(h7/2) solves

(4.29)
∂2tC2 −∆C2 +∇ divC2 = −χ(3)

(
2|∂tU0|2E0 + 2(U0 · ∂2t U0)E0

+ 2(E0 · ∂2t U0)U0 + 4(E0 · ∂tU0)∂tU0 + 2(E0 · U0)∂
2
t U0

){0}
,

with vanishing initial conditions. Observe that if the strong field E0 vanishes or if χ(3) = 0, then no
zero harmonic C2 is generated at this order.

Combining Lemmas 1-4, we see how to construct an asymptotic solution of (2.1) for t ∈ [0, T ]

up to order O(hk+1/2), k ≥ 0, subject to (2.6): first construct Ej for 0 ≤ j ≤ k + 1 with the help
of Lemma 1, the profiles of Uin for small positive time (before they interact with the nonlinearity)
and Uout for t ∈ [0, T ], up to order O(hk+1). Then use Lemma 2 to construct U0 up to the zero
mode as described in Section 4.3. For the zero mode of U0, as already explained, Lemma 4 together
with vanishing initial conditions implies C0 = 0. Then solve (4.23)–(4.24) for k = 0 with the initial
conditions coming from the O(h) term of Uin at small positive time, to determine the components
of ∂θU1, that is, U1 up to its zero mode. Note here that (4.24) is solvable with the process explained
after Lemma 3 because its zero mode vanishes, since C0 = 0 satisfies (4.27). The zero mode of U1

vanishes as well, as already explained. Then proceed inductively using Lemmas 3–4 to construct Uℓ

for ℓ ≤ k and ∂θUk+1. This proves the following:

Proposition 2. Let k ≥ 0 and T > 0. There exists a formal asymptotic solution of (2.1) up to

order O(hk+1/2) of the form Ein + h3/2Uout, with Ein as in (4.10) and Uout as in (4.6), defined on
[0, T ] × R3, subject to initial conditions (2.6). Moreover, E0 is constant, and for each j ≥ 0, Ej+1

and Uj are smooth and compactly supported in space.

Remark 3. The zeroth harmonics h7/2C2(t, x) + h9/2C3(t, x) + . . . can be considered as an effect of

the “beam” on the stationary electric field h1/2E. Shining the beam through the strong stationary
field affects the beam by a nonlinear interaction, but it also modifies h1/2E by an O(h7/2) term.

5. The strong electric field E

While a pair of constant fields (E,B) satisfies the Maxwell system without the divergence free

conditions, it does not solve the latter, since in general divD = div(χ(3)|E|2E) ̸= 0 for E constant.

In our ansatz (4.5) we included a time independent field h1/2E(x, h), and we would like it, together
with a time-independent magnetic field, to be a stationary solution of the Maxwell system.

We start with a brief remark about the stationary solutions (E(0), H(0)) of (3.1a)–(3.1d), (3.3), and
respectively of (2.1), (3.6), each satisfying the corresponding divergence free conditions. The initial
conditions for (3.1a)–(3.1d) are the fields themselves at t = 0; for (2.1), they are (E(0), E

′
(0)) with

E′
(0) determined by (3.7), see Proposition 1. The Maxwell system for (E(0), H(0)) is decoupled, and
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we described the stationary solutions (0, H(0)) earlier: they are H(0) = ∇ϕ with ∆ϕ = 0. A similar
argument, which we make more explicit below, describes the set of the possible E(0) as E(0) = ∇ψ
with ψ solving a nonlinear elliptic PDE, see (5.1) below, with h = 1 there formally.

By (3.1b) and (2.2), h1/2E(x, h) must solve

curlh1/2E = 0, div
(
h1/2E + χ(3)h3/2|E|2E

)
= 0.

The first equation suggests setting E = ∇ψ, where ψ is not necessarily small at infinity (in fact, we
would like it to satisfy an arbitrary regular enough boundary condition at the boundary of a large
domain). In the second equation, we eliminate the factor h1/2 from both terms and reach

(5.1) div
(
∇ψ + hχ|∇ψ|2∇ψ

)
= 0.

Here and for the rest of this section we write χ instead of χ(3) to avoid overburdening the notation.
Equation (5.1) is the Euler-Lagrange equation for the double-phase functional

I :=

∫ (1
2
|∇ϕ|2 + 1

4
hχ|∇ϕ|4

)
dx,

for which properties of minimizers have been extensively studied in the literature, see e.g., [25], and
[5] and the references there. Here we will take a direct approach (for which the smallness of h is
essential) and construct a sufficiently regular solution of (5.1) in a large domain using the Banach
fixed point theorem.

Let M ⊂ R3 be a large domain with smooth boundary containing the support of χ. Also let
s > 5/2, which guarantees that Hs−1(M) is an algebra, see [14, 6]. We seek a solution to (5.1) with
the boundary condition

(5.2) ψ
∣∣
∂M

= f ∈ Hs−1/2(∂M).

Let uf ∈ Hs(M) ∩ C∞(M) be the harmonic extension of f to M , that is, the solution to

∆u = 0 on M, u
∣∣
∂M

= f,

see [29, Theorem 4.21]. With respect to the f above, and for a fixed δ > 0, consider

Xf,δ := {u ∈ Hs(M) : ∥u− uf∥s ≤ δ}.
This is a non-empty closed subset of a complete metric space, hence it is complete with the metric
induced on it by the Hs norm. Define

Tf,δ,h : Xf,δ → Hs(M), Tf,δ,h(u) = uf − h∆−1
D (div(χ|∇u|2∇u)),

where the codomain property uses the fact that Hs−1 is an algebra.

Lemma 5. Fix s > 5/2. There exists h0 > 0 (depending on χ, δ, f , s and M) such that for
0 < h ≤ h0, Tf,δ,h : Xf,δ → Xf,δ is a contraction.

Proof. First observe that by the algebra property ofHs−1(M) there exist constants C0, C1 depending
on M and s such that∥∥∆−1

D div
(
χ⟨∇φ1,∇φ2⟩∇φ3

)∥∥
s
≤C0∥χ∥s−1∥∇φ1∥s−1∥∇φ2∥s−1∥∇φ3∥s−1(5.3)

≤C1∥χ∥s−1∥φ1∥s∥φ2∥s∥φ3∥s, φj ∈ Hs(M).(5.4)

In particular, if h0 is such that

C1h0∥χ∥s−1

(
∥uf∥s + δ

)3 ≤ δ,

then for 0 < h ≤ h0 we have ∥Tf,δ,h(u)−uf∥s ≤ δ for all u ∈ Xf,δ, which implies Tf,δ,h : Xf,δ → Xf,δ.
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Shrinking h0 further if necessary to ensure that

(5.5) 3C1h0∥χ∥s−1

(
∥uf∥s + δ

)2 ≤ 1/2,

we have, for u, u′ ∈ Xf,δ and 0 < h ≤ h0,

(5.6)
∥Tf,δ,h(u)− Tf,δ,h(u

′)∥s
(5.4)

≤ hC1∥χ∥s−1

(
∥u∥2s + ∥u′∥s∥u∥s + ∥u′∥2s

)
∥u′ − u∥s

≤ 3hC1∥χ∥s−1(∥uf∥s + δ)2∥u′ − u∥s ≤
1

2
∥u′ − u∥s,

that is, Tf,δ,h is a contraction. □

Using Lemma 5 we obtain existence and uniqueness of solutions to (5.1)–(5.2) in Xf,δ, as well as
an asymptotic expansion in h:

Theorem 3. Fix s > 5/2 and δ > 0. There exists h0 > 0, depending on M , χ, δ, f , and s, such
that for each 0 < h ≤ h0 there exists a unique solution ψ(·, h) ∈ Xf,δ to (5.1) with the boundary
condition (5.2). Moreover, ψ admits an asymptotic expansion in h in the sense that for any fixed

n ≥ 0 there exist ψ(j) ∈ Hs(M), 0 ≤ j ≤ n, and Rn+1 : (0, h0] → Hs(M) such that

(5.7) ψ =
n∑

j=0

hjψ(j) +Rn+1(h), Rn+1(h) = OHs(M)(h
n+1), for all 0 < h ≤ h0.

One has ψ(0) = uf , ψ
(1) = −∆−1

D (div(χ|∇uf |2∇uf )). If f ∈ C∞(∂M), then ψ(j) ∈ C∞(M) for all
0 ≤ j ≤ n.

Proof. By the Banach fixed point theorem, and with h0 as in Lemma 5, for each 0 < h ≤ h0, Tf,δ,h
admits a unique fixed point ψ ∈ Xf,δ. Since such a ψ is a fixed point of Tf,δ,h if and only if it solves
(5.1)–(5.2), we conclude that there exists a unique solution to (5.1)–(5.2) in Xf,δ.

To show the statement regarding the asymptotic expansion, fix n ≥ 0. Again by the Banach fixed
point theorem, the solution ψ arises as the limit of the convergent sequence

ψ0 = uf , ψk+1 := Tf,δ,hψk = uf − h∆−1
D (div(χ|∇ψk|2∇ψk)), k ≥ 0,

which can be written as

ψ = lim
n→∞

ψn = ψ0 + lim
n→∞

n−1∑
k=0

(ψk+1 − ψk).

Using (5.6) for u = ψk, u
′ = ψk−1 we can see that for every k ≥ 1,

(5.8)
∥ψk+1 − ψk∥s≤3C1h∥χ∥s−1

(
∥uf∥s + δ

)2∥ψk − ψk−1∥s

≤hk
(
3C1∥χ∥s−1

(
∥uf∥s + δ

)2)k
∥ψ1 − ψ0∥s.

Using this and the estimate ∥ψ1 − ψ0∥s ≤ hC1∥χ∥s−1∥ψ0∥3s, which follows by (5.4), we see that

(5.9)

∥ψ − ψn∥s ≤
∞∑
k=n

∥ψk+1 − ψk∥s
(5.8)

≤
∞∑
k=n

hk
(
3C1∥χ∥s−1

(
∥uf∥s + δ

)2)k∥ψ1 − ψ0∥s

≤ hn+1C1∥χ∥s−1∥ψ0∥3
∞∑

m=0

(
3C1∥χ∥s−1

(
∥uf∥s + δ

)2)m+n
hm0 ,
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where the infinite sum converges by (5.5). Substituting inductively ψk for k < n in ψn, we see that
ψn is a polynomial of degree dn in h, where dn is given recursively as dn = 3dn−1 + 1, d0 = 0. In
particular, since dn ≥ n, for 0 ≤ j ≤ n there exist h-independent ψ(j) ∈ Hs(M) such that

ψn =
n∑

j=0

hjψ(j) +OHs(M)(h
n+1).

Combined with (5.9), this shows (5.7). The statement about ψ(0) and ψ(1) can be read off from ψ1.
Finally, if f is smooth, then uf ∈ C∞(M), so from the mapping property of (∆D)

−1 : Hs−2 → Hs

it follows that ψk ∈ C∞(M) for all k ≥ 0. Thus this is also true for the ψ(k). □

We can proceed to the following proof now.

Proof of Theorem 1(a) and Lemma 1. Applying Theorem 3 withM = B(0, R0) and setting E = ∇ψ
proves Theorem 1(a), except for uniqueness. For that, if E ∈ Hs−1(M) as in the statement of the
theorem satisfies curlE = 0, a low regularity version of the Poincaré lemma (e.g., [8, Theorem 8.3])
implies the existence of ψ ∈ Hs(M) such that E = ∇ψ. This ψ satisfies (5.1) and ψ − f

∣∣
∂M

= a =
const. Using (5.3),

∥ψ − uf − a∥s = ∥h∆−1
D (div(χ|∇ψ|2∇ψ))∥s≤C0h∥χ∥s−1∥∇ψ∥3s−1 ≤ C0h∥χ∥s−1(∥∇uf∥s−1 + ε)3.

Taking Ej = ∇ψj , j = 1, 2 with the properties above we see that if h is sufficiently small, then
ψj−aj ∈ Xf,δ and solve (5.1), (5.2), so they must be equal, that is, ψ1−a1 = ψ2−a2 =⇒ E1 = E2.

To prove Lemma 1, use Theorem 3 again, with f = ax3, where a is constant. We will extend ψ
suitably to R3. Fix n ≥ 0; note that for 0 ≤ j ≤ n we have ψ(j) ∈ C∞(M) in (5.7). Denote by D a

bounded domain with M ⊂ D, extend ψ(0) as ψ̃(0) = ax3 on R3, and each ψ(j) to a smooth function
ψ̃(j) ∈ C∞

0 (D). As for the error term, by (5.7) there exists a bounded function (0, h0] → Hs(M),
h 7→ h−n−1Rn+1(h). Using standard extension operators for Sobolev functions on smooth, bounded
domains and a suitable cutoff, there exists a bounded operator E : Hs(M) → Hs

D
(R3), therefore

upon setting R̃n+1 = hn+1E(h−n−1Rn+1(h)) we obtain a map R̃n+1 : (0, h0] → Hs
D
(R3) with the

property R̃n+1 = OHs(R3)(h
n+1). Letting ψ̃ =

∑n
j=0 h

jψ̃(j) + R̃n+1(h), we obtain a function in

Hs(R3) that solves (5.1) on M ∪Dc
. Now set

h1/2E(·, h) = h1/2∇ψ ∈ Hs−1
loc (Rn),

which satisfies curlE = 0 on R3, the divergence free condition (2.2) inM∪Dc
, and has an asymptotic

expansion in h, in the sense that for every n ≥ 0,

(5.10) h1/2E(x, h)− h1/2
n∑

j=0

hjEj = OHs−1(R3)(h
n+3/2), Ej := ∇ψ̃(j).

Finally, since the O(1) term of E is bounded, the next n − 1 are in C∞
0 , and the error is in

Hs−1(R3) ⊂ L∞(R3) (by Sobolev Embedding), we see that E ∈ L∞(R3). □

6. The Profile Equations – Proofs of Lemmas 2-4

In this section we will prove Lemmas 2-4 by substituting (4.10) into (2.1). This is the general
approach for the construction of asymptotic solutions of symmetric hyperbolic systems (see e.g.,
[30]), adapted to a second order system. For the duration of this section we write E instead of Ein

to avoid over-cluttering the notation.
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Proof of Lemma 2. Substitute (4.10) into (2.1). The leading order of the left hand side of (2.1) is

O(h−1/2). By

∂2t (|E|2E) = 2|∂tE|2E + 2(E · ∂2tE)E + 4(E · ∂tE)∂tE + |E|2∂2tE,

the right hand side does not contribute to order O(h−1/2), since the terms there are of order h3/2,

h1/2, h3/2, h1/2, respectively. Thus the coefficient of h−1/2 is only determined by the left hand side,
and it must vanish; we obtain

((∂tϕ)
2 − |∇ϕ|2)∂2θU0 + (∇ϕ · ∂2θU0)∇ϕ = 0.

It follows that ϕ = −t+ ω · x is a characteristic phase of multiplicity 2, in the sense that it satisfies

det
(
((∂tϕ)

2 − |∇ϕ|2)Id3 +∇ϕ⊗∇ϕ
)
= 0,

and for every (t, x), the dimension of the nullspace of ((∂tϕ)
2−|∇ϕ|2)Id3+∇ϕ⊗∇ϕ is 2 (and given

by ω⊥). Then U0 satisfies the polarization condition

(6.1) ∂2θU0 ∈ ker
(
((∂tϕ)

2 − |∇ϕ|2)Id3 +∇ϕ⊗∇ϕ
)

⇐⇒ ∂2θU0 · ω = 0.

Since U0 is assumed to be periodic in θ, this condition is equivalent to ∂θU0 ·ω = 0, i.e., (4.12). This

also proves the last statement, that is, if (4.12) holds then (2.1) is true to order O(h−1/2).

At order h1/2, the right hand side enters and we obtain

(6.2)
−2(∂t + ω · ∇)∂θU0 + χ(3)|E0|2∂2θU0 + 2χ(3)(E0 · ∂2θU0)E0

+ (div ∂θU0)ω +∇(∂θU0(t, x, θ) · ω) + (∂2θU1 · ω)ω = 0.

Notice that (6.2) is a linear equation for ∂θU0. It implies in particular that the first five terms
must be in the range of the last, which is spanned by ω. That is, they must be annihilated by
Π⊥

ω v = v − (v · ω)ω, the projection on ω⊥. Applying Π⊥
ω to (6.2) we obtain

−2(∂t + ω · ∇)Π⊥
ω ∂θU0 + χ(3)|E0|2Π⊥

ω ∂
2
θU0 + 2χ(3)(E0 · ∂2θU0)Π

⊥
ωE0 +Π⊥

ω∇(∂θU0(t, x, θ) · ω) = 0.

Using that ω · E0 = 0 and (6.1), we reach

−2(∂t + ω · ∇)(Π⊥
ω ∂θU0) + χ(3)|E0|2∂θ(Π⊥

ω ∂θU0) + 2χ(3)(E0 · ∂θ(Π⊥
ω ∂θU0))E0 = 0,

i.e., (4.13). □

Proof of Lemma 3. Recall our assumption that ∂θU0 · ω = 0, E0 is constant with E0 · ω = 0, and
ϕ = −t + ω · x. Also note that, by Lemma 1, −∆Ek+1 + ∇divEk+1 = curl curlEk+1 = 0 for all
k ≥ 0. We show (4.24). Write the linear part of (2.1) as

LE := ∂2tE −∆E +∇ divE.

Let E be as in (4.10). We find

(6.3)

LE ∼ h−1/2(∂2θU0 · ω)ω

+ h1/2
(
− 2(∂t + ω · ∇)∂θU0 + (div ∂θU0)ω +∇(∂θU0(t, x, θ) · ω) + (∂2θU1 · ω)ω

)
+
∑
k≥0

h3/2+k
(
− 2(∂t + ω · ∇)∂θUk+1 + ∂2t Uk −∆Uk +∇ divUk

+ (div ∂θUk+1)ω +∇(∂θUk+1(t, x, θ) · ω) + (∂2θUk+2 · ω)ω
)
.
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Write the right hand side of (2.1) as

(6.4)

−2χ(3)|∂tE|2E − 2χ(3)(E·∂2tE)E − 4χ(3)(E · ∂tE)∂tE − χ(3)|E|2∂2tE

=
2∑

j=1

ω
[1]
j (∂2tE,E,E) +

2∑
j=1

ω
[2]
j (∂tE, ∂tE,E),

where ω
[ℓ]
j are R3-valued tensors. We have, with ϕ = −t+ ω · x,

(6.5)

∂tE ∼− h1/2∂θU0 +
∑
k≥0

h3/2+k (−∂θUk+1 + ∂tUk) ,

∂2tE ∼h−1/2∂2θU0 + h1/2
(
−2∂2tθU0 + ∂2θU1

)
+
∑
k≥0

h3/2+k
(
−2∂2tθUk+1 + ∂2t Uk + ∂2θUk+2

)
.

Denote by A(λ) the coefficient of hλ in the expansion of an expression A. Equating (6.3) and (6.4)

at order h3/2+k, 0 ≤ k ≤ K,

(6.6)

−2(∂t + ω · ∇)∂θUk+1 + ∂2t Uk −∆Uk +∇ divUk

+ (div ∂θUk+1)ω +∇(∂θUk+1(t, x, θ) · ω) + (∂2θUk+2 · ω)ω

=

2∑
j=1

k∑
s=−1

k−s∑
t=0

ω
[1]
j

(
(∂2tE)(s+

1
2), E(t+ 1

2), E(k−s−t+ 1
2)
)

+

2∑
j=1

k∑
s=0

k−s∑
t=0

ω
[2]
j

(
(∂tE)(s+

1
2), (∂tE)(t+

1
2), E(k−s−t+ 1

2)
)
.

We now argue that Uℓ with ℓ ≥ k + 2 does not appear in the right hand side of (6.6), and Uk+1

only appears linearly. From (4.10) and (6.5) follows that Uk+2 and derivatives of it only appear

in (∂nt E)(7/2+k−l) for l ≤ n and 0 ≤ n ≤ 2. It is now easy to check that it cannot appear in the
right hand side of (6.6) due to the ranges of the summations. Similarly, since Uk+1 appears in

(∂nt E)(5/2+k−l) for l ≤ n and 0 ≤ n ≤ 2, it only shows up in the right hand side of (6.6) in the terms

ω
[1]
j

(
(∂2tE)(k+

1
2), E(1/2), E(1/2)

)
. We can isolate the s = k term in the first summations of (6.6) and

rewrite the latter in the form

−2(∂t + ω · ∇)∂θUk+1 + ∂2t Uk −∆Uk

+∇ divUk + (div ∂θUk+1)ω +∇(∂θUk+1(t, x, θ) · ω) + (∂2θUk+2 · ω)ω

= −χ(3)|E0|2(∂2θUk+1)− 2χ(3)(E0 · ∂2θUk+1)E0(6.7)

− χ(3)|E0|2(−2∂2tθUk + ∂2t Uk−1)− 2χ(3)(E0 · (−2∂2tθUk + ∂2t Uk−1))E0

+
2∑

j=1

k−1∑
s=−1

k−s∑
t=0

ω
[1]
j

(
(∂2tE)(s+

1
2), E(t+ 1

2), E(k−s−t+ 1
2)
)

+

2∑
j=1

k∑
s=0

k−s∑
t=0

ω
[2]
j

(
(∂tE)(s+

1
2), (∂tE)(t+

1
2), E(k−s−t+ 1

2)
)
,



22 N. EPTAMINITAKIS AND P. STEFANOV

where for convenience we set Um = 0 if m < 0. Apply Π⊥
ω to find

−2(∂t + ω · ∇)∂θΠ
⊥
ωUk+1 +Π⊥

ω (∇(∂θUk+1(t, x, θ) · ω))

+ χ(3)|E0|2(∂2θΠ⊥
ωUk+1) + 2χ(3)(E0 · ∂2θΠ⊥

ωUk+1)E0 +Π⊥
ω (∇ divUk + ∂2t Uk −∆Uk)

= −χ(3)|E0|2Π⊥
ω (−2∂2tθUk + ∂2t Uk−1)− 2χ(3)(E0 · (−2∂2tθUk + ∂2t Uk−1))E0(6.8)

+

2∑
j=1

k−1∑
s=−1

k−s∑
t=0

Π⊥
ωω

[1]
j

(
(∂2tE)(s+

1
2), E(t+ 1

2), E(k−s−t+ 1
2)
)

+

2∑
j=1

k∑
s=0

k−s∑
t=0

Π⊥
ωω

[2]
j

(
(∂tE)(s+

1
2), (∂tE)(t+

1
2), E(k−s−t+ 1

2)
)
.

This equation can be more succinctly expressed in the form (4.24).
For (4.23), applying Πω in (6.7) with k replaced by k − 1, we obtain an equation of the form

∂2θΠωUk+1 = ΠωFk

(
χ(3), Ej , ∂

α
(t,x,θ)Uj : j = 0, . . . , k, |α| ≤ 2

)
,

where each component of Fk is a polynomial in the entries of its arguments. The right hand side
must average to 0 with respect to θ, since the left hand side does. We can integrate in θ and choose
the integration constant (which is a function of (t, x) in this case) in such a way that the right hand
side has no 0 Fourier mode; this yields (4.23).

If m ≥ 0, the O(hm+1/2) term of (2.1) with Ein substituted there is given by (6.6) with k = m−1
((6.2) if m = 0), and it vanishes exactly when its projections to both ω and ω⊥ vanish. This
corresponds to the equations (4.23) for k = m and (4.24) for k = m−1 ((4.13) if m = 0). Therefore,

as long as these are satisfied for m ≤ K, (2.1) is satisfied to order O(hK+1/2).
Now suppose that there exist smooth profiles Uk+1, −1 ≤ k ≤ K, such that (4.12)–(4.13) and

(4.23)–(4.24) hold on a time interval [0, T ] and that their initial conditions are those originating
from (2.6), as explained in Section 4.2. This implies in particular Uk

∣∣
t=0

∈ C∞
0 (R3 × S1). We will

show by induction that for every 0 ≤ k ≤ K, Πω∂θUk+1 and Π⊥
ω ∂θUk have no Fourier modes outside

the range [−k − 1, k + 1] and lie in C∞
0 ([0, T ] × R3 × S1). If k = 0, the Fourier support statement

holds for Π⊥
ωU0, since we already saw that U0 contains only the modes −1, 0, 1. The Fourier support

statement for ΠωU1, follows from (4.23) for k = 0: more explicitly, apply Πω to (6.2) and use that
Πω∂θU0 = ΠωE0 = 0 to obtain

(6.9) ∂2θΠωU1 = −div ∂θU0 =⇒ ∂θΠωU1 = − sin(θ) divA0 + cos(θ) divB0,

see (4.15). Regarding spatial support, Π⊥
ω ∂θU0 solves a homogeneous transport equation with initial

conditions in C∞
0 (R3×S1), so it lies in C∞

0 ([0, T ]×R3×S1), and Πω∂θU0 = 0. Similarly, Πω∂θU1 ∈
C∞
0 ([0, T ]× R3 × S1) by (6.9) and (4.21).
Assuming the statement holds for 0 ≤ k ≤ K − 1, we will show it for k + 1. Eq. (6.8) is a linear

transport PDE for Π⊥
ω ∂θUk+1 that can be split into separate transport equations corresponding to

non-zero Fourier modes (the zero mode yields an equation for the zero mode of Uk, as in Lemma 4).
By the induction hypothesis, the source terms in the left hand side of (6.8) only contribute Fourier

modes in the range [−k − 1, k + 1]. Now look at ω
[1]
j

(
(∂2tE)(s+

1
2), E(t+ 1

2), E(ℓ−s−t+ 1
2)
)
. It is not

hard to see from (6.5) that (∂2tE)(s+
1
2) contributes Fourier modes in the range [−s − 2, s + 2] and

E(t+ 1
2) only contributes Fourier modes in the range [−t, t]. Hence the maximum possible Fourier

mode in the product is given by (s + 2) + t + (k − s − t) = k + 2, similarly for the minimal one.

Similarly, (∂tE)(s+
1
2) only contributes modes in the range [−s− 1, s+ 1]. So the maximal possible
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mode in the last row of (6.8) is (s + 1) + (t + 1) + (k − s − t) = k + 2. Thus, taking into account
initial conditions, ∂θΠ

⊥
ωUk+1 contains no Fourier modes outside the range [−k−2, k+2]. Regarding

its spatial support, the only source term in the transport equation (6.8) corresponding to non-zero

Fourier modes that does not contain a factor of χ(3) ∈ C∞
0 (R3) is Π⊥

ω (∇(∂θUk+1(t, x, θ) · ω)), which
is compactly supported by the inductive assumption. Thus Π⊥∂θUk+1 must also be compactly
supported in space for t ∈ [0, T ], if it is so for t = 0. For the Fourier support of ∂θΠωUk+2, apply
Πω to (6.7): exactly as before, and using in addition that the Fourier content of Uk+1 is contained
in [−k − 2, k + 2], the same must hold for Πω∂θUk+2. For its spatial support, we can now write

∂2θΠωUk+2 =
∑

0<|ℓ|≤k+2 F
{ℓ}(t, x)eiℓθ with F {ℓ} ∈ C∞

0 ([0, T ]× R3), by (6.8) with Πω applied to it.

Thus ∂θΠωUk+2 =
∑

0<|ℓ|≤k+2
1
iℓF

{ℓ}(t, x)eiℓθ ∈ C∞
0 ([0, T ]×R3×S1). This completes the induction.

Finally, the statement for Π⊥
ωUK+1 follows exactly as that for Π⊥

ωUk+1 in the inductive step. □

Proof of Lemma 4. The equation for Ck can be derived from the zero Fourier mode (that is, the
average in θ) of (6.7). The zero mode of left hand side there is

∂2t Uk −∆Uk +∇ divUk.

To see what terms appear on the right hand side, write the right hand side of (2.1), with Ein

substituted there, as

F (t, x, θ) = −χ(3)|h1/2E(x) + h3/2Uin(t, x, θ)|2(h1/2E(x) + h3/2Uin(t, x, θ)).

If ϕ = −t+ x · ω,

∂2t (F (t, x, ϕ/h)) = ∂2t F − 2h−1∂2tθF + h−2∂2θF

evaluated at (t, x, ϕ/h). Since ∂θ annihilates the zero mode, we see that only the first term on the

right hand side contributes to it, and its O(hk+3/2) term can be written as in (6.4) in the form

2∑
j=1

k∑
s=1

k−s∑
l=0

ω
[1]
j

(
∂2t Us−1, (El + Ul−1), (Ek−s−l + Uk−s−l−1)

)
+

2∑
j=1

k∑
s=1

k−s∑
l=1

ω
[2]
j

(
∂tUs−1, ∂tUl−1, (Ek−s−l + Uk−s−l−1)

)
,

where Uℓ = 0 if ℓ < 0. We thus obtain (4.26).
For the last statement, a computation shows that

∂2t F = −h5/2χ(3)
(
2(E0 · ∂2t U0)E0 + |E0|2∂2t U0

)
− h7/2χ(3)

(
2|∂tU0|2E0 + 2((E1 + U0) · ∂2t U0)E0 + 2(E0 · ∂2t U1)E0 + |E0|2∂2t U1(6.10)

+ 2(E0 · ∂2t U0)(E1 + U0) + 4(E0 · ∂tU0)∂tU0 + 2(E0 · (E1 + U0))∂
2
t U0

)
+O(h9/2),

hence the right hand side of (6.7) does not contribute to the zero mode when k = 0. Thus C0 solves

∂2tC0 −∆C0 +∇ divC0 = 0, C0

∣∣
t=0

= ∂tC0

∣∣
t=0

= 0,

which implies C0 = 0, as explained after the statement of Lemma 4. Therefore, the zero mode of
the O(h5/2) term of (6.10) vanishes and so the right hand side of (4.26) vanishes when k = 0, 1. □
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7. Exact Solutions

In this section we will use a result of Guès ([15]) to prove the existence of exact solutions for
the Maxwell system near our approximate ones (at least in our region of interest), thus justifying
the formal computations above. We consider a first order system with the property that any suf-
ficiently L∞-small solutions of it also solve (3.1a–3.1b), and vice versa. Recall that we assumed

c = (µ0ε0)
−1/2 = 1, which amounts to replacing t by ct. Replacing H by (µ0/e0)

1/2H, we arrive at

(3.1a–3.1d) but with ε0 and µ0 there replaced by 1. Also recall that χ(1) = 0. We write (t, x) by
y = (y0, y1, y2, y3) ∈ R4, and we also write u = (E,H)T . Let

(7.1) L(χ(3)(x), u)u :=

3∑
j=0

Aj(χ
(3)(x), u)∂yju = 0,

where

A0(a, u) =

(
Id3 + ψ(a|E|2)(a|E|2Id3 + 2aE ⊗ E) 0

0 Id3

)
,

with ψ ∈ C∞(R) satisfying ψ(s) = 1 for s > −1/8 and ψ(s) = 0 for s < −1/4, and for j = 1, 2, 3,

Aj(a, u) =

(
0 −Uj

Uj 0

)
, U1 =

0 0 0
0 0 −1
0 1 0

 , U2 =

 0 0 1
0 0 0
−1 0 0

 , U3 =

0 −1 0
1 0 0
0 0 0

 .

If ψ were identically 1 everywhere, we would get exactly the original system (3.1a-3.1b), with

a = χ(3). A solution of (7.1) satisfying χ(3)|E|2 > −1/8 is also a solution of the original one and
vice versa. A computation using the matrix determinant lemma shows that

det(A0 − λId6) = (1− λ)3
(
1 + a|E|2ψ(a|E|2)− λ

)2(
1 + 3a|E|2ψ(a|E|2)− λ

)
,

so the eigenvalues of A0 are given by

λ1 = 1, λ2 = 1 + ψ(a|E|2)a|E|2, λ3 = 1 + 3ψ(a|E|2)a|E|2.

The support condition on ψ guarantees that they are always positive, thus A0 is symmetric positive
definite. Since A−1

0 Aj is symmetric for j = 1, 2, 3, (7.1) is a symmetric hyperbolic system in the
sense of [15]. There is no zeroth order term, which implies u = const. is a solution (without the
divergence free condition (3.1d) taken into account).

The initial conditions we want to impose are

(7.2) u
∣∣
t=0

= g :=
(
h1/2E(x, h) + 2h3/2Uinit(x) cos

(x · ω
h

)
, 0

)T
,

with E as in Lemma 1 with suitable s. This is in accordance with taking ∂tE = 0 in (2.6) and the
discussion following (3.7). Note that E

∣∣
t=0

does not satisfy (3.1d) everywhere.
We recall the statement of the main theorem in [15], adapted to our setting. Fix a real number

T > 0 (this will be the time for which our asymptotic solution is defined, long enough to allow
the asymptotic solution to interact with the medium and exit, so that it can be measured), and
an integer m ≥ 0; then write Ω = [0, T ] × R3. For ρ > 0 define the following spaces of functions
depending on a parameter h ∈ (0, 1]:

Am
ρ =

{
uh : uh ∈ C0([0, T ];Wm,∞(R3)) ∀ h ∈ (0, 1], and for all t ∈ (0, T ] and h ∈ (0, 1],

∥uh∥L∞(R3) ≤ ρ, ∥∂αxuh∥L∞(R3) ≤ ρh1−|α| if 1 ≤ |α| ≤ m
}
,
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Bm
ρ =

{
uh : uh ∈ C0([0, T ];Hm(R3)) ∀ h ∈ (0, 1], and for all t ∈ (0, T ) and h ∈ (0, 1],

∥∂αxuh∥L2(R3) ≤ ρh−|α| for 0 ≤ |α| ≤ m
}
.

In our context, the theorem reads

Theorem 4 ([15, Theorem 1.1]). Suppose that m ≥ 3 and M ≥ m, and let ρ > 0 be given such that

χ(3) ∈ Am
ρ . Then there exist hρ and σρ such that if vh ∈ Am+1

ρ satisfies

(7.3) L(χ(3)(x), vh)vh ∈ hMBm
ρ ,

then for any given Cauchy data gh ∈ vh
∣∣
t=0

+ hMBm
ρ , the Cauchy problem

L(χ(3)(x), uh)uh = 0, uh
∣∣
t=0

= gh

admits for h ∈ (0, hρ] a unique solution uh ∈ vh + hMBm
σ on Ω.

Fix T > 0, m ≥ 3, and M > m and let ρ > 0 be as in the statement of Theorem 4, that is,
with χ(3) ∈ Am

ρ . Further, let Ej for 0 ≤ j ≤ M + 1 be as in Lemma 1 with the s there satisfying
s ≥ m+ 1. We consider the expressions, defined for t ∈ [0, T ],

(7.4)

EM (t, x) :=h1/2E0 +

M∑
k=0

hk+3/2

(
Ek+1 + Uin,k

(
t, x,

ϕin
h

))
+

M∑
k=0

hk+3/2Uout,k

(
t, x,

ϕout
h

)
,

HM (t, x) :=−
∫ t

0
curlEM (τ, x, h)dτ,

where Uin,k = Uk as in (4.10) satisfy the equations in Lemmas 2-4, and Uout,k(θ) = eiθa
(k)
in,+ +

e−iθa
(k)
out,−, see (4.7). Recalling that ϕin/out = ∓t+ x · ω, we have

∂t

(
Uin/out,k

(
t, x,

ϕin/out

h

))
= ∂tUin/out,k ∓ h−1∂θUin/out,k

∣∣∣(
t,x,

ϕin/out
h

).
Thus∫ t

0
curl

(
Uin/out,k

(
τ, x,

ϕin/out

h

))
dτ =

∫ t

0

(
curlUin/out,k + h−1ω × ∂θUin/out,k

) ∣∣∣(
τ,x,

ϕin/out
h

)dτ
=

∫ t

0

(
curlUin/out,k ± ω × ∂tUin/out,k

) ∣∣∣(
τ,x,

ϕin/out
h

)dτ(7.5)

∓ ω × Uin/out,k

(
t, x,

ϕin/out

h

)
± ω × Uin/out,k

(
0, x,

x · ω
h

)
.

By the construction in Section 4.2 and Proposition 2, all of the Uin/out,k, k ≥ 0, are compactly
supported in space and smooth; the same holds for Ek+1, while E0 is constant. Upon setting

vM = (EM , HM )T , we can shrink h enough to guarantee that vM ∈ Am+1
ρ . Further, we shrink h

even more if needed, so that χ(3)|EM |2 > −1/8 (so that ψ(χ(3)|EM |2) = 1).

By Lemma 3, EM solves (2.1) up to order O(hM−1/2), so we have

∂2tEM −∆EM +∇ divEM + χ(3)∂2t (|EM |2EM ) = hM+1/2(Ain(t, x, ϕin/h) +Aout(t, x, ϕout/h)),

where Ain/out ∈ C∞
0 ([0, T ] × R3 × S1), therefore if h is small enough, the right hand side lies in

hMBm
ρ . Hence by (3.10) and (7.4),

∂t(∂t(EM + χ(3)|EM |2EM )− curlHM ) = hM+1/2(Ain(t, x, ϕin/h) +Aout(t, x, ϕout/h)),
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and ∂t(EM + χ(3)|EM |2EM )− curlHM

∣∣
t=0

= 0, thus in particular

∂t(EM + χ(3)|EM |2EM )− curlHM ∈ hMBm
ρ , ∂tHM + curlEM = 0.

That is, (7.3) is fulfilled (recall ψ(χ(3)|EM |2) = 1). Regarding the Cauchy data of vM ,

vM
∣∣
t=0

=
(M+1∑

k=0

hk+1/2Ek + 2h3/2Uinit(x) cos
(x · ω

h

)
, 0
)T
.

Using (5.10), and assuming that s > m + 1 there, we see that the error compared to g from (7.2)

satisfies vM
∣∣
t=0

− g = OHs−1(R3)(h
M+5/2), so in particular in hMBm

ρ , if h is small enough. We
conclude that the assumptions of Theorem 4 are satisfied, yielding the existence of a unique exact
solution uh = (E,H) of (7.1)-(7.2) such that uh − vM ∈ hMBm

σ , for some σ > 0. By the Sobolev
embedding theorem ([29, Theorem 3.26])

(7.6) sup
Ω

|uh − vM | ≤ C sup
|α|≤m

sup
t∈[0,T ]

∥∂α(uh − vM )∥L2(R3) ≤ CσhM−m,

so upon shrinking h we can guarantee that χ(3)|E|2 > −1/8, which implies that uh solves the original
system (3.1a)-(3.1b). Regarding the divergence-free conditions, they are satisfied by uh in B(0, R0)

for t = 0 by Lemma 1. Since ∂t div(E + χ(3)|E|2) = 0 and ∂t divH = 0 by (3.1a) and (3.1b)
respectively, they are also satisfied for all t ≥ 0 in B(0, R0).

Going back to (2.1), we would also like to show the existence of a unique solution in some class. Let
m′ ≥ 4, andM ′ ≥ m′+2, which impliesM ′−2 > m′−1 ≥ 3. Then the original system (3.1a)-(3.1b)

admits unique exact solutions uh = (E,H) ∈ vM ′+hM
′Bm′

σ and u′h = (E′, H ′) ∈ vM ′−2+h
M ′−2Bm′−1

σ′

on Ω, for some σ, σ′ > 0. We claim that they agree if h is small enough. Indeed, for t ∈ [0, T ], and
for |α| ≤ m′ − 1,

h2−M ′∥∂α(uh − vM ′−2)∥L2(R3) ≤h2−M ′∥∂α(uh − vM ′)∥L2(R3) + h2−M ′∥∂α(vM ′ − vM ′−2)∥L2(R3)

≤h2−M ′∥∂α(uh − vM ′)∥L2(R3)

+ h2−M ′∥∂α(hM ′+1/2(EM ′ + Uin,M ′−1 + Uout,M ′−1))∥L2(R3)(7.7)

+ h2−M ′∥∂α(hM ′+3/2(EM ′+1 + Uin,M ′ + Uout,M ′))∥L2(R3)

≤σh−|α|+2 + h2−M ′
Cαh

M ′+1/2−|α| ≤ σ′h−|α|

for h sufficiently small, where for the third inequality we used that vM ′ − uh ∈ hM
′Bm′

σ as well as
the fact that the quantities in (7.4) and (7.5) are compactly supported and smooth. We conclude

that uh − vM ′−2 ∈ hM
′−2Bm′−1

σ′ if h is sufficiently small, so uh = u′h by uniqueness.
Now consider the first part E of the exact solution uh, which solves (2.1) with initial conditions

(2.6), and satisfies (2.2) in B(0, R0). We claim that this solution is unique in EM ′ + hM
′Bm′

σ , if h

is small enough. It suffices to show that H −HM ′−2 ∈ hM
′−2Bm′−1

σ′ , since then we obtain the claim

by uniqueness of the solution to the system in vM ′−2 + hM
′−2Bm′−1

σ′ . We have, for |α| ≤ m′ − 1

h2−M ′∥∂α(H −HM ′−2)∥L2(R3) ≤h2−M ′∥∂α(H −HM ′)∥L2(R3) + h2−M ′∥∂α(HM ′ −HM ′−2)∥L2(R3)

≤h2−M ′∥
∫ T

0
∂α curl(E − EM ′)dt∥L2(R3) + h2−M ′

Cαh
M ′+1/2−|α|

≤h2−M ′
∫ T

0
∥∂α curl(E − EM ′)∥L2(R3)dt+ Cαh

5/2−|α|
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≤h2−M ′
∫ T

0
σhM

′−|α|−1dt+ Cαh
5/2−|α|

≤ (hTσ + Cαh
5/2)h−|α| ≤ σ′h−|α|,

provided h is sufficiently small. For the second inequality we used (7.5) and a computation as in (7.7);

for the third, Minkowski’s integral inequality, and for the fourth the fact that E ∈ EM ′ + hM
′Bm′

σ ,

so that h−M ′∥∂β(E−EM ′)∥L2(R3) ≤ σh−|β| for all t ∈ [0, T ] and |β| ≤ m′. Since we just showed that

E ∈ EM ′ + hM
′Bm′

σ implies (E,H) ∈ vM ′−2 + hM
′−2Bm′−1

σ′ , and we have uniqueness for solutions of
the system in the latter space, E is unique in the former.

We have reached the following proposition, which proves Theorem 1(b) and (c). Note that (b) is
a special case of (c), when E = 0.

Proposition 3. Let T > 0, and m ≥ 3 and M > m be integers. Consider the asymptotic solution
vM = (EM , HM )T , see (7.4), defined for t ∈ [0, T ]. There exists σ > 0 and h0 such that for
0 < h ≤ h0, the system (3.1a)-(3.1b) with initial conditions (7.2), where E is as in Lemma 1 with
s ≥ m+ 1, has a unique solution (E,H) ∈ vM + hMBm

σ on Ω. Moreover, (3.1c)-(3.1d) are satisfied
in a large ball of radius R0. If we take m ≥ 4 and M ≥ m+ 2, then E above is the unique solution
to (2.1), (2.6) in Eh + hMBm

σ , and it also solves (2.2) for |x| < R0 and t ∈ [0, T ].

8. Proof of Theorem 2

Proof of Theorem 2. We construct a solution E as in Theorem 1(c), using the more precise statement
of Proposition 3. Spefically, we let m ≥ 4 and M ≥ m+ 3 there to obtain uniqueness, as well as to
guarantee that if f ∈ hM−3/2Bm

σ then h−1∥f∥L∞ ≤ C for some h-independent constant (this follows
as in (7.6)). As before, we assume c = 1.

First, knowing Ein for x ∈ πR,ω as stated in the theorem, and ω fixed, we explain now how to use
a similar argument as in [35, Proposition 3.2] to separate the high-frequency part of Ein in (2.10)

from the rest, up to O(h5/2). To this end, assume for now that ω = e1, write x = (x1, x
′), and choose

ψ ∈ C∞
0 ((0, 2R0)). Then (after subtracting h1/2E0), multiply Ein by ψ(t) cos(ϕ/h) and integrate

in t over a time interval equal to suppUinit(·, x). For x′ so that |x′| ≤ R, we have for the second
component of Ein∫ 2R0

0
h−3/2Ein,2(t, R, x

′) cos
−t+R

h
ψ(t) dt

=

∫ 2R0

0
Uinit,2(R− t, x′) cos

(−t+R

h
+ τ(R, x′)

)
cos

−t+R

h
ψ(t) dt+O(h)

=
1

2
cos(τ(R, x′))

∫ 2R0

0
Uinit,2(R− t, x′)ψ(t) dt+OL∞(h),(8.1)

using the product of cosines formula and a change of variables to absorb the second term generated by
the latter into the error. To see that the error is OL∞(h), notice that E differs from an asymptotic
solution containing finitely many terms by an element of hMBm

σ for some σ > 0, and the term
corresponding to each k ≥ 0 in (7.4) is in hk+3/2L∞. Since the total error in (8.1) includes terms

corresponding to k ≥ 1 only, it is in hL∞+hM−3/2Bm
σ ⊂ hL∞ by our choice ofM . Since Uinit,2(·, x′) ̸≡

0, the integral in (8.1) can be made non-vanishing with a suitable ψ in a neighborhood of every x′

with |x′| ≤ R, and eventually we can use a partition of unity. This recovers cos(τ(R, x′)) uniquely.
Similarly, we recover sin(τ(R, x′)) by multiplying by ψ(t) sin(ϕ/h) instead of ψ(t) cos(ϕ/h).

This process recovers τ(R, x′) up to 2πk, k integer. Then if we have two such τj ’s corresponding to
two nonlinearity coefficients, we get τ1(R, x

′)− τ2(R, x
′) = 2πk(x′) on the “detector”, see Figure 1.
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Since the left-hand size is smooth and compactly supported, we must have k(x′) = 0. By (2.8), this

recovers the X-ray transform of χ(3) in the direction ω. As stated in the theorem, varying ω, we
recover χ(3) itself. □

Note that in the proof above, we projected to e2 = (0, 1, 0) only. We could have projected the
field to e3 as well. Physically, the separation of the high from the low frequencies above corresponds
to measuring light vs. a constant electric field, and the projection to e2 of e3 corresponds to applying
polarizing filters.

Remark 4. Assume now that Uinit(x1, x
′) = (0, a2, a3) = const. for |x′| ≤ R, |x1| < δ with some

δ > 0. Then we can project Ein(t, R, x
′) to (0,−a3, a2)/

√
a22 + a23 as in Section 4.4, and with ψ

supported in (R − δ,R + δ) we can extract the high-frequency behavior as in (8.1). In this way we
justify the arguments there, where we analyzed the leading high-frequency terms only.

9. Concluding remarks

We make some remarks on the magnitudes of the physical quantities involved. The speed of light
in vacuum is c0 ≈ 3 × 108 m/sec, the permittivity of free space is ε0 ≈ 8.854 × 10−12 F/m, and

χ(3) of nitrobenzene is of the order of χ(3) ≈ 5.7 × 10−20 m2/V2 (see [7, Table 4.1.2]). A typical

external electric field is of the order of Ẽ ∼ 30 kV/cm, where Ẽ = h1/2E in our notation. A typical

wavelength (for green) is λ ≈ 5×10−7 m. The scaling we chose requires χ(3)|Ẽ0|2 ∼ h with λ = 2πh.

With those values, we get χ(3)|Ẽ0|2/λ ≈ 1, which is consistent with our scaling.

This shows that χ(3) is very small in the metric units and remains small even relative to the
wavelength λ, which is 2πh in our setup. We treat χ(3) implicitly as ∼ 1. On the other hand, the
strong electric field E has an amplitude of the order h1/2, which is not “strong.” We can of course
rescale those quantities. We can take E♯ = h1/2−pE + h3/2−pU . Choosing a suitable p > 1/2, we

get closer to physics, where χ(3), now replaced by h2pχ(3) is indeed small, and h1/2E, now rescaled
to h−p+1/2E, is large. The requirement χ(3)|E|2 ∼ h is preserved.

It may seem non-physical to relate the ratio of the amplitude of the beam to that of the strong
electric field, which is a dimensionless variable, to the wavelength 2πh, which has units of length. In
fact, we are interested in propagation over lengths L = T over the time interval [0, T ] (since c = 1
after rescaling t), a typical one being 10 cm. Then 2πh should be considered as the wavelength
relative to L, i.e., as their ratio, which is dimensionless. Finally, the typical beams involved in the
DC Kerr effect are not necessarily of small width like laser rays, even though some are. For this
reason, we do not treat that width, which in our case would be the size of suppUinit in directions
perpendicular to ω, as a small parameter.

The prefactor h3/2 in (2.3) multiplying Uin is motivated by our need to extend the asymptotic
construction to any order O(hN ). Since the size of Uinit in (2.6) is arbitrary, as long as it is h-
independent, it can be “small” if we want to model even weaker beams. It can be large as well, but
then we would have to take h even smaller for similar error bounds. On the other hand, if we put
h1/2εU instead of h3/2U in (2.3), with 0 < ε≪ 1, the leading profile equation would be the same but
one would have trouble deriving the lower order terms for an asymptotic solution, and ultimately,
proving existence of an exact solution close to it. Trying to take h1/2Uin there (instead of h3/2Uin)
puts us in the strongly nonlinear regime, which changes the geometry of the wave propagation, and
is much harder to justify. In other words, we really want the beam to be weaker than the strong
electric field, and it being weaker by the factor h is what makes the construction work.

We would like to point out possible generalizations which we believe can be treated in the same
way. In Theorem 1(c), one can have a strong electric field E with a not necessarily constant leading

term h1/2E0 as in part (a). Also, E could be t (and x) dependent as long as it does not oscillate
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at the rate 1/h. Finally, χ(1) > −1 could be nontrivial and x-dependent, as long as the beam does
not develop caustics over the time interval of interest, but we expect the treatment of this case to
complicate the exposition substantially.
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[35] A. Sá Barreto and P. Stefanov. Recovery of a cubic non-linearity in the wave wquation in the weakly non-linear

regime. Comm. Math. Phys., 392(1):25–53, 2022.
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