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Abstract
We prove Hölder type stability estimates near generic simple Riemannian metrics for the inverse

problem of recovering such metrics from the Dirichlet-to-Neumann map associated to the wave equation
for the Laplace-Beltrami operator.

1 Introduction and Main results

In this paper we consider the inverse problem of determining a Riemannian metric on a Riemannian manifold
with boundary from the vibrations measured at the boundary. This information is encoded in the hyperbolic
Dirichlet-to-Neumann (DN) map associated to the solutions to the wave equation. We concentrate on the
stability question, that is if two hyperbolic DN maps are close in an appropriate topology, how close are the
Riemannian metrics? We apply stability results obtained recently by the authors for the boundary rigidity
problem [StU2], [StU3] to study this problem. We now describe in more detail the problem and the results.

Let .M; @M; g/ be a compact Riemannian manifold with boundary. We denote by�g the Laplace-
Beltrami operator. In local coordinates ,g.x/ D .gij .x// and�g is given by

�g D .detg/�
1
2

nX

i;jD1

@

@xi
.detg/

1
2 gij @

@xj
:

Here .gij / D .gij /
�1, detg D det.gij /, and we will use freely the convention of raising and lowering

indices of tensors. Consider the following problem
8
<
:

.@2
t ��g/u D 0 in .0;T / � M ,

ujtD0 D @tujtD0 D 0 in M ,
uj.0;T /�@M D f;

(1)

wheref 2 C 1
0
.RC � @M /. Denote by� D �.x/ the outer normal to@M at x 2 @M , normalized so thatP

gij�i�j D 1. We define the hyperbolic Dirichlet-to-Neumann (DN) map�g by

�gf WD
nX

iD1

�i @u

@xi

ˇ̌
ˇ̌
.0;T /�@M

;
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where�i D
P

gij�j . It is easy to see that if

 W M ! M

is a diffeomorphism with j@M D Id, then� �g D �g, where �g denotes the pull back of the metric
g. The inverse problem is therefore formulated in the following way: knowing�g , can one determine the
metricg up to an isometry that leaves the boundary fixed?

An affirmative answer to this question for smooth metrics was given by Belishev and Kurylev [BK].
Their approach is based on the boundary control method introduced by Belishev [B1] and uses in a very
essential way a unique continuation principle proven by Tataru [T]. Because of the latter, it is unlikely that
this method would prove Hölder type stability estimates even under geometric and topological restrictions.
We also refer to [KKL1], [B2], [KKLM] and the references therein for more uniqueness results in this
direction.

Hölder type of conditional stability estimate was proven by the authors in [StU1] for metrics close
enough to the Euclidean one inC k , k � 1 in three dimensions. Hölder type stability estimates were proven
in [IS] and [Su] for the hyperbolic DN map associated to the Euclidean wave equation plus a potential.

The conditional type of the estimate, typical for such kind of inverse problems, is due to an additional
a priori condition of boundedness of theH s norm of the metrics for some larges. It can be considered as a
compactness condition inH s with smallers. A well-known functional analysis argument shows that under
such compactness condition, the map�g ! g (by identifying isometric metrics) must be continuous, once
we know it is well-defined. This was exploited in [AKKLT] and minimal geometric conditions guarantee-
ing the compactness condition were established there in terms of bounds of certain geometric invariants,
depending only on the second derivatives of the metric. The continuity of the map above however, does not
give information about the type of a possible stability estimate, i.e. about the modulus of continuity of that
map, see also [KKL2]. In this paper, we prove Hölder type of stability near genericsimplemetrics. A Rie-
mannian manifold.M; @M; g/ is simple,@M is strictly convex and any two points inM can be connected
by a single minimizing geodesic depending smoothly on them, see Definition 1 in next section.

Since simple manifolds are diffeomorphic to the unit ball in the Euclidean space, from now on, without
loss of generality, we consider the case thatM D x̋ where˝ is a bounded domain in the Euclidean space
with smooth boundary.

As we mentioned above, we use recent result by the authors about the so-called boundary rigidity prob-
lem. The latter can be formulated as follows: Letg be a simple metric in̋ . Can we determineg, up
to an isometry as above, from the knowledge of the distance function�g.x; y/, known for allx, y on the
boundary@˝? The main result in [StU3] is that fork � 1, this is true for a dense open setGk.˝/ in
C k. x̋/ of simple metrics, andGk is defined as the set of those metrics, for which the linearized problem,
integrals of 2-tensors along geodesics, is s-injective, see section 2. Moreover,Gk contains all real analytic
simple metrics in̋ .

The main result of this paper is the following.

Theorem 1 There existk > 0, 0 < � < 1, such that for anyg0 2 Gk and T > diamg0
.˝/, 0 < " <

T � diamg0
.˝/, there exists"0 > 0, with the property that if

kgm � g0k
C. x̋/ < "0; kgmk

C k. x̋/ � A; m D 1; 2;

with someA > 0, then one can find aC 3. x̋/ diffeomorphism W x̋ ! x̋ , j@˝ D Id, such that

kg1 �  �g2k
C 2. x̋/ � C

�g1
��g2

�
H 1

0
.Œ0;"��@˝/!L2.Œ0;T ��@˝/ : (2)
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Remark 1. The condition about the closeness of the metrics tog0 can, of course, be formulated in an
invariant way: for some pull backs �

i gi of gi , i D 1; 2, with i as above, we require that �
i gi be"0-close

to g0. One can also study orbits of metrics under actions of such diffeomorphisms and express that condition
as distance between the orbits ofg1, g2. We remark also that the a-priori condition on boundedness of the
C k norm ofgi , i D 1; 2, can be formulated invariantly in terms of a bound of the covariant derivatives of
the curvature tensor as in [LSU].

Remark 2. One can generalize this result to lower order perturbation of�g. More precisely, consider
P D ��g C

P
bj@=@xj C q, whereb D fbj g andq are complex-valued. In this case,� is also preserved

under the transformationP ‘ a�1Pa, wherea 6D 0, a D 1 on@˝. Once we prove the stability estimate for
g as above, the problem then is reduced to integral geometry problems of recovering the form

P
bj dxj (up

to d� with �j@˝ D 0) from integrals along geodesics and to that of recoveringq from weighted integrals
along geodesics, where the weight depends onb. Stability estimates for the first one are provided in [BG],
see also [StU2]. The second one is injective with natural stability estimates for generic.g; b/, as follows
from the analysis in [StU3]. Uniqueness of the recovery ofP , up to the obstructions above, was proven in
[KL] without restrictions ong, b, q.

The plan of the paper is the following. In section 3 we first prove a Hölder stability estimate at the
boundary. We show that if the DN maps of two metrics are close, then their derivatives on the boundary are
close, in boundary normal coordinates. This follows essentially from the fact that, away from the glancing
manifold,�g is locally a pseudo-differential operator, and the normal derivatives ofg can be recursively
reconstructed in an explicit way from its full symbol, see [SyU]. In section 4, we prove interior stability,
i.e., we prove the main result. To this end we prove first a Hölder type of stability estimate that proves that
if the DN maps of two metrics are close, then their boundary distance functions are close, too, and then we
apply the results in [StU3].

2 Preliminaries

Definition 1 We say that the Riemannian metricg is simplein ˝, if @˝ is strictly convex w.r.t.g, and for
anyx 2 x̋ , the exponential mapexpx W exp�1

x . x̋/ ! x̋ is a diffeomorphism.

Note that a smallC k. x̋/, k � 1, perturbation of a simple metric in̋ is also simple. Next, ifg is simple,
one can extendg in a strictly convex neighborhood̋1 � x̋ as a simple metric in̋ 1.

The geodesicX -ray transformIg of 2-tensors, which is a linearization of the boundary rigidity problem,
is defined as

Igf . / D
Z nX

i;jD1

fij . .t// P i.t/ P j .t/ dt;

wherefij is a symmetric tensor. It is known thatIgd sv D 0 for any vector fieldv with v D 0 on@˝. Here
d s is the symmetric differential defined byŒd sv�ij D 1

2
.rivj C rjvi/, andri are the covariant derivatives.

Definition 2 We say thatIg is s-injectivein ˝, if Igf D 0 andf 2 L2.˝/ imply f D d sv with some
vector fieldv 2 H 1

0
.˝/.

Definition 3 Givenk � 2, defineGk D Gk.˝/ as the set of all simpleC k. x̋/ metrics in˝ for which the
mapIg is s-injective.
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By [StU3], for k � 1, Gk is open and dense subset of all simpleC k. x̋/ metrics, and in particular, all
real analytic simple metrics belong toGk . All metrics with small enough bound on the curvature, and in
particular all negatively curved metrics belong toGk , see [Sh] and the references there. We have local
uniqueness for the boundary rigidity problem near metrics inGk , global uniqueness for pair of metrics in an
open and dense setU � Gk � Gk , and a conditional stability estimate of Hölder type, see [StU3] and (34).

To simplify the notation, we denote

k � k� D k � kH 1
0
.Œ0;"��@˝/!L2.Œ0;T ��@˝/:

More precisely, if� is the DN map defined above, andf 2 H 1
0
.Œ0; "� � @˝/, thenk�k� is defined as the

supremum ofk�f kH 1.Œ0;T ��@˝/ over allf as above withkf kH 1.Œ0;"��@˝/ D 1. The correctness of this
definition is justified by the following. One can extend any suchf as zero fort > " and the so extendedf
will be in H 1.Œ0;T �� @˝/ with f jtD0 D 0. We can use standard estimates for mixed hyperbolic problems,
see [CP], to show thatk�k� < 1, because it can be estimated by the same norm with" D T .

3 Stability at the boundary

We will prove first stability at the boundary. The arguments here are close to those in [StU1, Prop. 5.1] and
[SyU].

Fix a simple metricg0 2 C k , k � 1. Extendg0 as a simple metric in some̋1 � x̋ . Let g, Qg be two
metrics that will play the role ofg1, g2 in Theorem 1 with someA > 0 and"0 � 1, i.e., we have

kgk
C k. x̋/ C k Qgk

C k. x̋/ � M; kg � g0k
C. x̋/ C k Qg � g0k

C. x̋/ � "0: (3)

The first condition above is a typical compactness condition. Using the interpolation estimate [Tri]

kf kC t. x̋/ � C kf k1��
C t1. x̋/kf k�

C t2. x̋/; t D .1 � �/t1 C � t2; (4)

where0 < � < 1, t1 � 0, t2 � 0, one gets thatkg � g0k
C t . x̋/ � C.M /"

.k�t/=k
0

for eacht � 0, if k > t ;
the same is true forQg. For our purposes, it is enough to apply (4) witht , t1 and t2 integers only, then (4)
easily extends to compact manifolds with or without boundary. Set

ı D
� � Q�


�: (5)

Here and below, a tilde above an object indicates that it is associated withQg. If there is no tilde, it is related
to g.

We need here a highly oscillating solution asymptotically supported near a single geodesic transversal
to @˝. We need to work only locally near a fixed pointx0 2 @˝, and let.x0; xn/ be boundary normal
coordinates nearx0. Let � > 0 be a large parameter. Fixt0 such that0 < t0 < "=10, and let� 2
C 1

0
.RC � @˝/ be supported in a small enough neighborhood of.t0; x0/ of radius not exceeding"=100 and

equal to 1 in a smaller neighborhood of this point. We defineu as the solution to (1) with

f D ei�.t��.x;!//�.t; x/: (6)

One can get an asymptotic expansion ofu near.t0; x0/ by looking foru of the form

u D ei�.t��.x;!//
NX

jD0

��j Aj .t; x; !/C O.��N �1/; (7)
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whereN � 0 is fixed,
P

gij.x0/!i!j D 1,
P

gij .x0/�j .x0/!j < 0. The phase function solves the
eikonal equation

nX

i;jD1

gij @�

@xi

@�

@xj
D 1; �j@˝ D x � ! (8)

with the extra condition@�=@�j@˝ < 0. It is uniquely solvable nearx0. In our coordinates, the metricg
satisfiesgin D ıin, gin D ıin for i D 1; : : : ; n, and@=@� D �@=@xn. By (8), @�=@xnjxnD0 D !n > 0.
The principal partA0 of the amplitude solves near.t0; x0/ the transport equation (see [SyU])

LA0 D 0; A0jxnD0 D �; (9)

and the lower order terms solve

iLAj D .@2
t ��g/Aj�1 ; Aj jxnD0 D 0; j � 1; (10)

where

L D 2@t C 2
@�

@xn

@

@xn
C 2

n�1X

˛;ˇD1

g˛ˇ
@�

@x˛
@

@xˇ
C�g�:

The construction ofu (see also next section) guarantees thatAj , j D 1; : : : ;N are supported in a small
neighborhood, depending on the size of supp�, of the characteristic issued from.t0; x0/ in the (co-)direction
.1; !/. Therefore, the termQu WD ei�.t��/P ��j Aj in (7) satisfies the zero initial conditions in (1). More-
over, Qu satisfies the boundary conditionQu D f with f as in (6), provided thatT in (1) is such that0 < T �t0
is small enough. Writeu D Qu Cw. Thenw D wt D 0 for t D 0, andwj.0;T /�@˝ D 0 with T as above,
and.@2

t ��g/w D O.��N /. Using standard hyperbolic estimates and Sobolev embedding estimates, one
can show thatw D O.��.N �k// in C 1, wherek > 0 depends onn only. We then replaceN by N C k,
and this proves (7) with the estimate of the remainder in theC 1 norm. We emphasize that it is important
thatT � t0 is small enough so that the wave does not meet@˝ again (if it does, we need to reflect it off the
boundary, as in next section).

Let	 , Q	 be two local diffeomorphisms mapping the original coordinates nearx0 into boundary normal
coordinates.x0; xn/ near.0; 0/, corresponding tog, Qg, respectively. Leth D 	�g, Qh D Q	� Qg, and' D
	�1 Q	 . Using a partition of unity, one can extend' in a small neighborhood of@˝.

Theorem 2 For any� < 1, m � 0, there existsk > 0, such that for anyA > 0, if kgj kC k. x̋/ � A,
j D 1; 2, then9C > 0, such that for some diffeomorphism' fixing the boundary,

sup
x2@˝;j j�m

ˇ̌
@ .g � '� Qg/

ˇ̌
� Cı�=2

m

:

Proof: We follow closely [SyU], where it is proven that� recovers the Taylor series ofg at @˝ (i.e., that
is theı D 0 case). Denote'� Qg by Qg again, and work in normal boundary coordinates, the same for both
metrics. Observe first that in those coordinates, in a neighborhood.t0 � "1; t0 C "1/ � V � RC � @˝ of
t D t0, .x0; xn/ D .0; 0/, where� D 1, we have

�.uj.0;T /�@˝/ D ei�.t�x�!/
 

i�
@�

@xn
�

NX

jD0

��j @

@xn
Aj

!
C O.��N �1/; (11)
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and similarly for Q� Qu. Therefore,

 @�
@xn

�
@ Q�
@xn


L2.V /

�
C

�

�
ıkukH 1.Œ0;"��@˝/ (12)

C k Q�k�ku � QukH 1.Œ0;"��@˝/
�

C
C

�
:

Notice thatku � QukH 1.Œ0;"��@˝/ � C��N , as� ! 1, whereC is uniform, if g belongs to a fixed ball in

C k with k � 1. On the other hand,kukH 1.Œ0;"��@˝/ � C� with a similarC . Take the limit� ! 1 above
to get

 @�
@xn

�
@ Q�
@xn


L2.V /

� Cı:

By the eikonal equation (8), inV � @˝, we have

@�

@xn
D
�
1 �

n�1X

˛;ˇD1

g˛ˇ!˛!ˇ

� 1
2
; (13)

and similarly for@ Q�=@xn. Choosing various!’s, not tangent to@˝, we prove thatkg � QgkL2.V / � Cı. By
a partition of unity argument, this is true on the whole@˝. Using interpolation estimates in Sobolev spaces
and Sobolev embedding theorems, we get for anym � 0 and� < 1 that

kg � QgkC m.@˝/ � Cı�; (14)

provided thatk � 1, see (3).
To estimate the difference of the first normal derivatives ofg and Qg, we use (11) again. As in (12), we

have @A0

@xn
�
@ QA0

@xn


L2.V /

� C
�
�ıC ıC ��1

�
: (15)

The r.h.s. above is minimized when� D ı�1=2, thus

@A0

@xn
�
@ QA0

@xn


L2.V /

� Cı1=2:

The transport equation (9) implies that onxn D 0, and on� D 1, we have

@A0

@xn
D �

1

2!n

1
p

detg

@

@xn

p
detg

@

@xn
� C R;

whereR involves tangential derivatives ofg only. Therefore,

1
p

detg

@

@xn

p
detg

@

@xn
� �

1p
det Qg

@

@xn

p
det Qg

@

@xn
Q� D O.ı1=2/

in L2.V /. By (13), (14),

@

@xn

p
detg

�
1 �

n�1X

˛;ˇD1

g˛ˇ!˛!ˇ

� 1
2 �

@

@xn

p
det Qg

�
1 �

n�1X

˛;ˇD1

Qg˛ˇ!˛!ˇ
� 1

2 D O.ı1=2/
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for all !’s as above. Set! 0 D 0 first to estimate the normal derivative of detg � det Qg. Choosing finite
number of!’s, we estimateg˛ˇ � Qg˛ˇ for each˛, ˇ as well. Therefore,

 @

@xn
.g � Qg/


C m.@˝/

� Cı�=2 (16)

for anym � 0 and� < 1 as long ask � 1.
To estimate the difference of the second normal derivatives ofg and Qg, we argue as above. First, we

show that, similarly to (15),

@A1

@xn
�
@ QA1

@xn


L2.V /

� C
�
�2ıC �ı1=2 C ��1

�
: (17)

Choose� D ı�1=4 to get that the r.h.s. above isO.ı1=4/. The transport equation (10), including the initial
conditionA1 D 0 for xn D 0 imply that forxn D 0 and on� D 1, we have

@A1

@xn
D �

1

2!n

1
p

detg

@

@xn

p
detg

@

@xn
A0:

This implies@2
xn.A0 � QA0/ D O.ı1=4/ in L2.V /, and therefore the same estimate holds for@2

xn.� � Q�/.
This allows us to estimate@2

xn.g � Qg/ in the same way. Proceeding by induction, we prove the theorem.2

4 Interior Stability

In this section, we prove Theorem 1. The proof is based on the following.

Proposition 1 Fix M > 0, "0 > 0 and letg, Qg be two simple metrics satisfying (3). Then

k� � Q�kC.@˝�@˝/ � C k� � Q�k�� ; 8x; y 2 @˝

with some0 < � < 1 depending onn only.

Proof: Recall (5) thatı D k� � Q�k�. It is enough to prove the proposition forı � 1. By Theorem 2, one
can assume that for anym � 0, there exist� > 0, k > 0, such that

sup
x2@˝; j j�m

j@ .g � Qg/j � Cı�: (18)

It is convenient to replace the two metricsg and Qg by two new ones,g1 and Qg1, equal in aı-dependent
neighborhood of@˝. Let� 2 C 1.R/, �.t/ D 1 for t < 1, and�.t/ D 0 for t > 2. Let M > 0 be a large
parameter that will be specified below. Set

Qg1 D Qg C �
�
ı�1=M �.x; @˝/

�
.g � Qg/; g1 D g:

Using the finite Taylor expansion ofg � Qg of large enough order and (18), we see that (see also [StU3,
sec. 7])

k Qg1 � QgkC m. x̋/ � Cı��m=M :
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ChooseM D 2m=�. In particular, the estimate above implies thatQg1 is also simple forı � 1. Without
loss of generality we can assume that (3) is still true forg1 and Qg1. Moreover, one has

j� Qg.x; y/ � � Qg1
.x; y/j � Cı�=2; 8x; y: (19)

We extendg1, Qg1 in the same way as simple metrics in a neighborhood˝1 �� ˝. The advantage we have
now is that

g1 D Qg1 for �1=C � xn � ı1=M ; (20)

wherexn is a boundary normal coordinate as above (the same for both metrics).
Next, we will construct an oscillating solution related tog1, similar to the one used in Section 3. To

simplify the notation, the objects below related tog1 are without tildes (and without the subscript1) and
those related toQg1 have tildes above them (and again, without the subscript1). Fix x0 andy0 on @˝.
Assume that

�.x0; y0/ � ı�=2: (21)

We want to show that�2.x0; y0/� Q�2.x0; y0/ D O.ı�
0
/with some0 < �0 < 1 under the condition (21) and

then to show that this is uniform w.r.t.x0, y0 as in (21). Then we apply the following argument: if a smooth
functionf on a compact Riemannian manifold with uniformly boundedC 1 norm satisfiesf .x/ D O.ı�

0
/

outside a setW with diameterO.ı�
00
/, thenf D O.ı�

0
/C O.ı�

00
/ as can be easily seen by integrating the

derivative off along curves connecting an arbitrary point inW with a point outsideW .
All constants below will be uniform w.r.t.g and Qg satisfying (3) and in particular, independent of the

choice ofx0 andy0.
Consider the geodesic connectingx0 andy0, extended from̋ to ˝1. Let z0 2 ˝1 n ˝ be a point

on this geodesic such that the geodesic segmentŒz0; x0� is in ˝1 n ˝. We assume that�.z0; x0/ > 1=C

with C > 0 fixed. Set�.x/ D �.x; z0/. Then, by the simplicity assumption, sincez0 2 ˝1, we have that
� 2 C k�1. x̋/, and� solves the eikonal equation

nX

i;jD1

gij @�

@xi

@�

@xj
D 1: (22)

Then we construct a solutionu of (1) of the form

u D ei�.�.x/�t/ .A.t; x/C v.t; xI �// ; (23)

where

kv.t; �I �/kC 2 �
C

�
: (24)

The construction ofu is the same as that in the preceeding section, except that the phase function has
different initial condition and we want to solve it all the way to the opposite side of@˝. The principal part
A of the amplitude solves the transport equation (9). This is an ODE along the geodesics issued from points
in suppA \ .R � @˝/ in (co-)directionsr�. Let

U D
n
.t; x/ 2 RC � @˝I jt � t0j C �.x; x0/ < ı

�=2=C
o
; (25)

where0 < t0 � 1 is fixed, andC � 1 will be specified later. Choose a cut-off function0 � � � 1,
� 2 C 1

0
.RC �@˝/ such that supp� � U , and� D 1 in a set defined asU but withC replaced by2C . One

can arrange thatj@t�j C jr�j � Cı��=2. Then we solve the transport equation (9) with initial condition

AjRC�@˝ D �:
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The solution is supported in a neighborhood of the geodesic connectingx0 andy0 of sizeO.ı�=2/, and can
be extended all the way to some neighborhood ofy0 by the simplicity assumption. IfC in (25) is large
enough, then suppA \ .RC � @˝/ consists of two disjoint components nearx0 andy0 respectively, one
of them being supp� � U . The other one, let us call itV , is the image ofU under translation by all
geodesics issued fromz0, passing throughU . Because of the strict convexity of@˝, each component is of
sizeO.ı�=2/, at a distance bounded from below by the same quantity. Denote byB.y; r/ the ball centered
aty with radiusr . ThenV contains the setV0 D V \ B.y0 ; ı

�=2=C0/, such that onV0, we haveA � 1=C .
Above,C0 is chosen so thatV0 is contained in the translation of the setf� D 1g � U under the geodesics
issued fromz0.

Then one gets a solution with the required properties except thatu does not necessarily vanish in̋ for
t < 0 small enough but the principal partei�.��t/A does. To justify (24) in theC 2 norm, we construct lower
order terms, similarly to (11), up to orderN large enough so that after applying standard a priori estimates
and Sobolev embedding estimates, we get the estimate in theC 2 norm. Finally, one can modify the solution
such that it would vanish fort < 0 without changing any fixed number of terms, as above.

We reflectu off @˝ at V by settingh D ujV and solving (1) with boundary data�h. Let us call
this solutionv. Thenv has the form (23) as well, with a different amplitudeB instead ofA and a phase
function'. The phase function' still solves the eikonal equation (22) with boundary condition'j@˝ D �

and is the unique solution with gradient pointing towards the interior of˝ (the other solution is�). For
B we haveBjV D �AjV . Thenw WD u C v vanishes onV moduloO.��1/, and is well defined for
0 < t < � WD �.x0; y0/C ı�=2=C , C � 1. We then extendw by imposing zero boundary conditions for
� � t � T . Clearly, the requirements onT and" imply that T > � , if ı � 1. As above, to justify the
estimate on the remainder, we need to construct the lower order terms up to some order, as well.

We claim that
1

�
kwkH 1.Œ0;T ��@˝/ � C C

C.ı/

�
; (26)

where the first constantC is independent ofı (but it depends onM and"0 in (3) as mentioned above). To
prove this, we only need to estimateAr� on U , andAr� andBr' on V . By the definition of�, we have
jr�j � C on U . Next, we havejAr�j D jBr'j � C on V as well.

Next, we construct a similar solutionQw related toQg1. We construct first a phase functionQ� as Q�.x/ D
Q�.x; z0/. It solves the eikonal equation

nX

i;jD1

Qgij
1

@ Q�
@xi

@ Q�
@xj

D 1; Q�jU D �: (27)

The latter equality follows from (20). The other properties ofQw are similar to those ofw. Let QV be defined
as above, but associated toQg1.

OnV , we have

�.wj.0;T /�@˝/ D �2i�ei�.��t/ @�

@xn
A C Oı.1/;

and similarly for Q� Qw. Notice that  @�
@xn

A


L2.V /
� ın�=4=C; (28)

because area.V0/ � ın�=2=C .
If V \ QV D ;, then we get by (28),

k�.wj.0;T /�@˝/ � Q�. Qwj.0;T /�@˝/k � �ın�=4=C � C.ı/: (29)
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On the other hand,

k�.wj.0;T /�@˝/ � Q�. Qwj.0;T /�@˝/k � ıkwkH 1.Œ0;T ��@˝/ C C kw � QwkH 1.Œ0;T ��@˝/: (30)

Notice thatkwkH 1.Œ0;T ��@˝/ is Oı.1/ outsideU , as� ! 1. Restricted toU , we getO.�ı��=2Cn�=4/.
Thus,

kwkH 1.Œ0;T ��@˝/ � C�ı��=2Cn�=4 C C.ı/: (31)

On the other hand,
kw � QwkH 1.Œ0;T ��@˝/ � C.ı/: (32)

Combine the inequalities (29), (30), (31) and (32), to get

�ın�=4 � C�ı1��=2Cn�=4 C C.ı/:

Divide by� and take the limit� ! 1 to get a contradiction.
The contradiction above shows thatV and QV do intersect provided thatı � 1. Therefore, there exists

q 2 V \ QV � @˝, andp; Qp 2 U , such that�.p; q/ D Q�. Qp; q/. Since the diameters ofU , V , and QV are
O.ı�=2/, we get that

j�.x0; y0/ � Q�.x0; y0/j � Cı�=2: (33)

Recall now that by our notation convention,� D �g1
, Q� D � Qg1

above. Combine this with (19) and the
argument following (21), to complete the proof of the proposition. 2

Proof of Theorem 1:The proof follows directly by combining Proposition 1 and Theorem 4 in [StU3].
Indeed, under the assumptions of Theorem 1, it was shown in [StU3, Theorem 5], that for any� < 1,

kg2 �  �g1kC 2. x̋/ � C.A/k�g1
� �g2

k�
C.@˝�@˝/ (34)

as long ask � 1. Apply Proposition 1 to complete the proof. 2
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