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Abstract. Three dimensional anisotropic attenuating and scattering media
sharing the same albedo operator have been shown to be related via a gauge
transformation. Such transformations define an equivalence relation. We show
that the gauge equivalence is also valid in media with non-constant index of
refraction, modeled by a Riemannian metric. The two dimensional model is
also investigated.

1. Introduction. We consider the inverse boundary value problem of radiation
transport in which the attenuation and the scattering kernel are to be determined
from the albedo operator. In contrast to the existing works, in this paper the
medium has a variable index of refraction and the attenuation is anisotropic.

The radiation is transported in a bounded domain M in Rn, n ≥ 2, with smooth
boundary and endowed with a Riemannian metric g. If u(x, v) represents the density
of particles at position x with velocity vector v in the unit tangent sphere at x, SxM ,
then the stationary linear transport equation which describes the propagation of
particles is

−Du(x, v)− a(x, v)u(x, v) +
∫

SxM

k(x, v′, v)u(x, v′) dωx(v′) = 0. (1)

The operator D is the derivative along the geodesic flow (see (11) below), which
in the case of g being Euclidean is simply Du(x, v) = v · ∇xu(x, v). The measure
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dωx(v′) is the volume form on SxM induced from the volume form on TxM deter-
mined by g at x; here TxM is the full tangent space to M at x. (See [16] for further
details.) The resulting form on SM is the Liouville form and is preserved under
the geodesic flow of g. The parameter a(x, v) in (1) is the attenuation coefficient
and quantifies the rate at which particles are lost from the point (x, v) in phase
space due to absorption and scattering into new directions. The kernel k(x, v′, v) is
referred to as the scattering coefficient and is proportional to the probability that
a particle at position x with velocity v′ ∈ SxM will scatter to have new velocity
v ∈ SxM . The albedo operator, defined more precisely below, maps the flux of
particles entering M to the flux of particles exiting M .

In the pioneering paper [5] on inverse transport theory it was pointed out that
there can be non-uniqueness to the inverse problem if the attenuation is anisotropic,
that is, it depends on direction as well as position. Under the assumption that
a = a(x) is isotropic, there is a large collection of uniqueness results to the stationary
inverse transport problem under varying assumptions on the parameters. We refer
to the recent review paper [2] for an exhaustive account on the subject and mention
here some of the results most closely related to the present article. Assuming
a Euclidean geometry, and with minimal restrictions guaranteeing only that the
forward problem is well-posed, uniqueness of a(x) (dimensions two and above) and
k(x, v′, v) (dimensions three and above) was proven in [6]; for sufficiently small k this
was extended to dimension two in [18], see also [20, 21]. The work [8] considers the
problem when less information is available, namely one no longer has the angular
resolution of the out-going flux, and the spatial part of k is shown to be determined
from the corresponding albedo operator. See also [4]. Stability results are proven
in [18, 8, 3, 15, 22].

The case of a Euclidean metric corresponds to transport in material with a con-
stant index of refraction. If the index of refraction is isotropic, but varying, then
(1) can be derived as a limiting case of Maxwell’s equations with non-constant (but
isotropic) permeability, resulting in a metric which is conformal to the Euclidean
metric (see [1] for example). For a general metric, we consider (1) as a model for
transport in a medium with varying, anisotropic index of refraction. When the
attenuation is assumed isotropic, uniqueness results in Euclidean geometry are ex-
tended to the Riemannian setting in [9, 10, 11, 12].

The recent paper [17] deals with anisotropic attenuation a(x, v). In that work it is
shown how it is possible to have media of differing attenuation and scattering which
yield the same albedo operator, and the non-uniqueness is completely characterized
via a gauge transformation as described below. In this paper we extend the results
in [17] to media with variable index of refraction. Moreover, we also extend those
results to transport in two dimensional domains, a case which was not addressed in
[17].

The attenuation a(x, v) is a combination of absorption σ and loss of particles
due to scattering. Precisely, a(x, v) = σ(x, v) +

∫
SxM

k(x, v, v′) dωx(v′). We point
out that, even if the absorption coefficient is assumed to be isotropic, σ = σ(x), if
k depends on two independent directions, the resulting attenuation a = a(x, v) is
anisotropic. In many previous works on the subject, a is assumed to be a function
of x alone whereas k is allowed to be fully anisotropic; this requires one to interpret
a in a slightly different manner.
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Define the “incoming” and “outgoing” bundles

Γ± = ∂±SM = {(x, v) ∈ ∂SM : ±〈v, νx〉 > 0}

where νx is the unit outer normal vector to the boundary ∂M at x and 〈·, ·〉 is the
inner product, each with respect to g at x. The medium is probed with the given
radiation

u|Γ− = u−, (2)

and the exiting radiation is detected on Γ+, thus defining the albedo operator A
which takes the incoming flux to the outgoing flux at the boundary: Au− = u|Γ+ .

In Section 2 we recall the well-posedness results on the forward problem (1) and
(2), the mapping properties of the albedo operator and the singular decomposition
of its Schwartz kernel. These results appeared in [10, 11] in various forms. For
the sake of completeness we include in Section 2 some of their proofs in a new and
simpler presentation. The parameters (a, k) are assumed admissible, i.e.

sup
(x,v)∈SM

(
|a(x, v)|+

∫
SxM

|k(x, v, v′)| dωx(v′)
)
<∞. (3)

Let T be the operator defined by the left hand side of (1). Admissibility (3) guaran-
tees that the second and third terms of T are bounded operators on both L1(SM)
and L∞(SM); the first term is unbounded. Since the boundary value problem
Tu = 0, u|Γ− = u− is equivalent to a non-homogeneous problem with a homo-
geneous boundary condition, the forward problem is well-posed if T−1 exists as a
bounded operator between appropriate spaces. We view T as an unbounded oper-
ator on L1(SM) with the domain

D1(T ) = {u ∈ L1(SM) : Du ∈ L1(SM), u|Γ− = 0}.

Given (x, v) ∈ SM , we define the “distance to boundary” functions

τ±(x, v) = min{t ≥ 0 : γ(x,v)(±t) ∈ ∂M},

and set τ = τ+ + τ−. The forward problem is well-posed under either one of the
two subcritical conditions:

sup
(x,v)∈SM

∣∣∣τ(x, v) ∫
SxM

k(x, v, v′) dωx(v′)
∣∣∣ < 1, (4)

or

a(x, v) ≥
∫

SxM

k(x, v, v′) dωx(v′) a.e. (x, v) ∈ SM ; (5)

see, e.g., [3, 6, 7, 13, 14]. It is proven further in [17, 19] that the forward prob-
lem is well-posed for a generic set of parameters, namely for an open dense set of
(a, k) ∈ L∞(SM) × C

(
M,L∞(SxM,L1(SxM))

)
. The proof in [17] is presented in

the context of the Euclidean metric, but it remains unchanged in the presence of a
general Riemannian metric.

For two dimensional domains we consider T defined on

D2(T ) = {u ∈ L∞(SM) : Du ∈ L∞(SM), u|Γ− = 0}.

Provided that

a ∈ L∞(SM), k ∈ L∞(S2M), and ‖k‖L∞(S2M) < (2π diam(M))−1, (6)
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where diamM is the diameter of M with respect to g, such T has a bounded inverse
in L∞(SM), see [11]. Here we introduce the somewhat unconventional notation

S2M := {(x, v′, v) : x ∈M, v′, v ∈ SxM}.
The key observation in [17], which motivates the definition of the gauge equiva-

lence below, is valid in the Riemannian setting as well: Let φ ∈ L∞(SM) be positive
with 1/φ ∈ L∞(SM), Dφ ∈ L∞(SM) and such that φ = 1 on ∂SM . Set

ã(x, v) = a(x, v)−D log φ(x, v), k̃(x, v′, v) =
k(x, v′, v)φ(x, v)

φ(x, v′)
. (7)

Then u satisfies (1) if and only if ũ = φu solves

−Dũ(x, v)− ã(x, v)ũ(x, v) +
∫

SxM

k̃(x, v′, v)ũ(x, v′) dωx(v′) = 0.

Since φ = 1 on Γ, u = ũ there, so the albedo operator A for the parameters (a, k)
is indistinguishable from the albedo operator Ã for the pair (ã, k̃), i.e. A = Ã.

Definition 1.1. Two admissible pairs (a, k) and (ã, k̃) are called gauge equivalent
if there exists a positive map φ ∈ L∞(SM) with Dφ ∈ L∞(SM), φ = 1 on Γ, such
that (7) holds. We denote this equivalence by (a, k) ∼ (ã, k̃).

The relation defined above is reflexive since (a, k) ∼ (a, k) via φ ≡ 1; it is
symmetric since (a, k) ∼ (ã, k̃) via φ yields (ã, k̃) ∼ (a, k) via 1/φ; and it is transitive
since if (a, k) ∼ (ã, k̃) via φ and (ã, k̃) ∼ (a′, k′) via φ̃ then (a, k) ∼ (a′, k′) via φφ̃.
Note also that gauge transformations preserve admissibility (3) and the first two
conditions in (6).

Gauge equivalent pairs generate the same albedo operator. In this paper we show
that the converse also holds. The precise assumptions we make on (M, g) are the
following.

Assumption 1.2. (M, g) is simple: M is strictly convex, and for any x ∈ M the
exponential map expx : exp−1

x (M) →M is a diffeomorphism. If the dimension of M
is two, let κ0 be the maximum sectional curvature of (M, g); if κ0 > 0, we assume
that diamM < π/

√
κ0.

Remark 1. If (M, g) is two dimensional and has constant positive curvature κ0,
then the restriction on the diameter is equivalent to simplicity of (M, g). If the
curvature is not constant, (M, g) may still be simple without satisfying diamM <
π/
√
κ0, but we must assume this to use the results of [11]. The constraint on the

diameter in [11] is imposed to facilitate comparison of geodesic triangles on M to
geodesic triangles on constant curvature manifolds where we must guarantee that
vertices of these triangles are not conjugate to one another. In fact, in [11] more is
assumed, namely diamM < π/(2

√
κ0). The proofs in [11] are written in terms of

the stricter diameter assumption, but they can be modified easily to accommodate
Assumption 1.2. See Appendix 2 for details.

The two dimensional case differs from the case of dimensions three and higher;
we begin by presenting the latter. Throughout, A (respectively Ã) are the albedo
operators corresponding to parameter pairs (a, k) (respectively (ã, k̃)).

Theorem 1.3. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 3
satisfying Assumption 1.2. Assume that (a, k), (ã, k̃) are admissible and that the
forward problems are well-posed. Then A = Ã if and only if (a, k) ∼ (ã, k̃).
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As in [17], one can obtain new uniqueness results for parameter determination if
the coefficients have additional symmetry as follows. Suppose that the attenuation
depends only on the line determined by ±v:

a(x, v) = a(x,−v), x ∈M, v ∈ SxM, (8)

and the scattering coefficient k > 0 obeys:

k(x, v′, v) = k(x, v, v′), x ∈M, v, v′ ∈ SxM. (9)

A common situation where (9) holds is in the scattering of light in tissue where it is
assumed to depend only on the angle of scattering, k(x, v, v′) = k(x, θ(v, v′)) with
θ(v, v′) being the angle between v and v′ at x.

Corollary 1. Let (M, g) be a Riemannian manifold of dimension n ≥ 3 satisfying
Assumption 1.2. Assume that (a, k), (ã, k̃) are admissible and that the forward
problems are well-posed and that (a, k) ∼ (ã, k̃).

1. If k, k̃ > 0 satisfy (9) then k = k̃ and a = ã + Dw(x) for some func-
tion w(x) vanishing on ∂M . In particular, the total attenuations are equal:∫

SxM
a(x, v) dωx(v) =

∫
SxM

ã(x, v) dωx(v), a.e. x.
2. If k, k̃ > 0 satisfy (9) and further a, ã satisfy (8), then a = ã.

Theorem 1.3 and its corollary above are proved in Section 3. In Section 5 we
also give a reconstruction formula for the coefficients in the symmetric case.

The two dimensional case is closely related to the work in [11] and it relies on
the following new idea. Suppose that A = Ã. Then it follows, just as in higher
dimensions, that a and ã are related via some gauge φ as in (7). Now define a new
scattering kernel k1 to be the gauge transformation (as in (7)) of k via the gauge φ.
We now have (ã, k1) ∼ (a, k) and, as observed above, this implies the corresponding
albedo operators are equal. Now we have changed the question into a simpler one:
if the albedo operators for the pairs (ã, k1) and (ã, k̃) are equal, show that k̃ = k1

(for then k and k̃ are also related via φ). The advantage is given by the fact that
the attenuation is identical. We prove this result in Theorem 4.1, Section 4.

For the two dimensional case, define the class

UΣ,ε =
{(
a(x, v), k(x, v′, v)

)
: ‖a‖L∞(SM) ≤ Σ, ‖k‖L∞(S2M) ≤ ε

}
. (10)

Notice that (a, k) ∈ UΣ,ε automatically implies admissibility and well-posedness of
the forward problem. We prove the following results.

Theorem 1.4. Let (M, g) be a smooth two dimensional Riemannian manifold sat-
isfying Assumption 1.2. For every Σ > 0 there exists δ > 0 such that for every
(a, k), (ã, k̃) ∈ UΣ,δ the following equivalence holds: (a, k) ∼ (ã, k̃) if and only if
A = Ã.

Corollary 2. Let (M, g) be a two dimensional Riemannian manifold satisfying
Assumption 1.2. Given Σ > 0 there exists δ > 0 such that the following holds:
Suppose that (a, k), (ã, k̃) ∈ UΣ,δ are gauge equivalent.

1. If k, k̃ > 0 satisfy (9) then k = k̃ and a = ã + Dw(x) for some function
w(x) vanishing on ∂M . Further, at a.e. x, the total attenuations are equal:∫

SxM
a(x, v) dωx(v) =

∫
SxM

ã(x, v) dωx(v).
2. If k, k̃ > 0 satisfy (9) and further a, ã satisfy (8), then a = ã.
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Remark 2. When a = a(x) and ã = ã(x) are independent of direction v ∈ SxM , if
A = Ã then the geodesic ray transform of a−ã, along all geodesics joining boundary
points of M , equals zero. Given the simplicity assumption on (M, g), this implies
a = ã ([16]) and the gauge function relating a to ã is φ ≡ 1. As in (7), this then
yields k = k̃.

2. The albedo operator and its kernel. Preparatory results. Identifiability
of parameters is based on an expansion of the distribution kernel of the albedo
operator into terms corresponding to: ballistic particles which do not scatter in
M ; particles which undergo a single scattering event in M ; and particles which
undergo multiple scattering events. In the current section we present this expansion
(Proposition 1, n ≥ 3, and Proposition 2, n = 2), thus indicating the relative
strengths of the singularities in each term. We then show how limiting arguments
may be applied to extract information from the expansion (Propositions 3 and 4).
First we must establish some notation.

We temporarily denote by dσ the volume form on Γ±, that is the natural restric-
tion of the volume form on SM to Γ±, see [16] for more details, where this form is
denoted by dΣ2n−2. In particular, extending dσ as a homogeneous form in |v′| of
order n − 1, we have that d|v′| dσ(x′, v′) coincides with the volume form on SM .
Then we set

dµ(x′, v′) = |〈v′, νx′〉| dσ(x′, v′).

The newly defined form dµ has the following invariant property. Fix (x′0, v
′
0) ∈

Γ±. Let ∂Ω̃ be another surface so that the geodesic issued from (x′0, v
′
0) hits it

transversally. Then the geodesic flow defines a natural local “projection” near
(x′0, v

′
0), of Γ± onto Γ̃±, where the latter is related to ∂Ω̃. Let dµ̃ be the measure

on Γ̃± defined above. Then the pull back of dµ̃ is dµ.
Given (x, v) ∈ SM , we denote by γ(x,v)(·) the geodesic uniquely determined by

γ(x,v)(0) = x, γ̇(x,v)(0) = v. We will use the shorthand notation

~γ(x,v)(t) = (γ(x,v)(t), γ̇(x,v)(t)).

The operator D in (1) is differentiation along the geodesic flow and is defined by

Du(x, v) =
∂

∂t

∣∣∣
t=0

u(γ(x,v)(t), γ̇(x,v)(t)). (11)

If (xi, ξi)n
i=1 are local coordinates for SM with the (ξi) with respect to the natural

basis
(

∂
∂xi

)
then in these coordinates

Df =
∂f

∂xi
ξi +

∂f

∂ξi
(−ξjξkΓi

jk)

where Γi
jk are the Christoffel symbols of the Levi-Civita connection of g.

If x, y ∈ M denote (momentarily) by v(x, y) ∈ SxM the tangent vector at x
of the unit speed geodesic joining x to y. Let d(x, y) be the Riemannian distance
between x and y. Define

E(x, y) := exp
{
−

∫ d(x,y)

0

a
(
~γ(x,v(x,y))(t)

)
dt

}
.

Note that γ̇(y,v(y,x))(d(y, x)− s) = −γ̇(x,v(x,y))(s), so when a depends on direction,
E(x, y) 6= E(y, x). It will also be convenient to define, inductively,

E(x1, x2, . . . , xj) = E(x1, x2, . . . , xj−1)E(xj−1, xj), x1, . . . , xj ∈M. (12)
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Proposition 1 below, which describes the terms in the expansion of the kernel
of A, is proven in [10], the Euclidean equivalent appearing in [6]. We denote by
δ{x,v}(x′, v′) the delta-distribution on Γ− with respect to the measure dµ defined
by ∫

Γ−

ϕ(x′, v′)δ{x,v}(x′, v′) dµ(x′, v′) = ϕ(x, v), ϕ ∈ C∞c (Γ−).

Similarly, δ{x}(y) is the delta distribution on M supported at x.

Proposition 1. [10] Let (M, g) be a smooth Riemannian manifold of dimension n ≥
2 satisfying Assumption 1.2. Assume that (a, k) are admissible and that the forward
problem is well-posed. Then the albedo operator A : L1(Γ−, dµ) → L1(Γ+, dµ) is
bounded and its Schwartz kernel α(x, v, x′, v′), considered as a distribution on Γ+

parameterized by (x′, v′) ∈ Γ−, has the expansion α = α0 + α1 + α2, where

α0 = E
(
γ(x,v)(−τ−(x, v)), x

)
δ{~γ(x,v)(−τ−(x,v))}(x′, v′),

α1 =
∫ τ+(x′,v′)

0

∫ τ−(x,v)

0

E(y(s), x)E(x′, z(t))k(z(t), ż(t), ẏ(s))δ{y(s)}(z(t)) ds dt

y(s) = γ(x,v)(s− τ−(x, v)), z(t) = γ(x′,v′)(t),

α2 ∈ L∞(Γ−;L1(Γ+, dµ)).

Note that k(z(t), ż(t), ẏ(s)) is only defined on the support of the integrand,
namely when y(s) = z(r).

As we shall see below, the singular nature of α0 enables determination of the
function E on Γ+ × Γ− in all dimensions by way of a limiting argument using an
approximate identity. However, it is only in dimensions n ≥ 3 that the same idea can
be applied to determine the function k from α1. For determination of k in dimension
n = 2, we need Proposition 2 which first appeared in [18] for the Euclidean case
and is in [11] in the Riemannian case. We first introduce some notation. Given
(x, v, x′, v′) ∈ Γ+ × Γ−, define χ : Γ+ × Γ− → {0, 1} by χ(x, v, x′, v′) = 1 if there
exist 0 ≤ s = s(x, v, x′, v′) ≤ τ−(x, v) and 0 ≤ t = t(x, v, x′, v′) ≤ τ+(x′, v′) such
that γ(x,v)(s − τ−(x, v)) = γ(x′,v′)(t) (that is, the geodesics intersect in M), and
χ(x, v, x′, v′) = 0 otherwise. When χ(x, v, x′, v′) = 1, let ψ(x, v, x′, v′) be the angle
between the tangent vectors of these geodesics at the point of intersection.

Proposition 2. [11] Let (M, g) be a two dimensional Riemannian manifold satisfy-
ing Assumption 1.2. Assume that (a, k) are admissible and that (6) holds. Then the
albedo operator A : L∞(Γ−, dµ) → L∞(Γ+, dµ) is bounded and its Schwartz kernel
α(x, v, x′, v′), considered as a distribution on Γ+ parameterized by (x′, v′) ∈ Γ−, has
the expansion α = α0 + α1 + α2, where

α0 = E
(
γ(x,v)(−τ−(x, v)), x

)
δ{~γ(x,v)(−τ−(x,v))}(x′, v′),

α1 = χ(x, v, x′, v′)E(x′, γ(x′,v′)(t), x)J (x, v, x′, v′)
k
(
~γ(x′,v′)(t), γ̇(x,v)(s− τ−(x, v))

)
| sin(ψ(x, v, x′, v′))|

,

0 ≤ α2 ≤ C‖k‖2L∞(S2M)

(
1 + log

1
| sin(ψ(x, v, x′, v′))|

)
.

Here, J is a function uniformly bounded 0 < m1 ≤ J ≤ m2 <∞ on Γ+ × Γ− (see
[11, Proposition 4]).

We begin by showing that α0 can be extracted from α. This is a re-presentation
of [10, Proposition 4.1], presented in a slightly cleaner manner. We include the proof
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in Appendix 1. Let ψ ∈ C∞0 ([0,∞)) be such that ψ(0) = 1 and
∫∞
0
ψ(t) dt = 1;

define ψε(x) = ψ(x/ε).

Proposition 3. Let (M, g) be an n-dimensional Riemannian manifold, n ≥ 2,
satisfying Assumption 1.2. Assume that (a, k) are admissible. Then the following
limit holds in L1(Γ+, dµ(x, v)):

lim
ε→0

∫
Γ−

α(x, v, x′, v′)ψε

(
d
(
x′, γ(x,v)(−τ−(x, v))

))
dµ(x′, v′)

= E
(
γ(x,v)(−τ−(x, v)), x

)
.

Determination of k is achieved in differing manners depending on dimension
n = 2 and n ≥ 3. Consider first the case n ≥ 3 and fix (y, w,w′) ∈ S2M , w 6=
w′. Proposition 4 below shows that we can determine k(y, w,w′) multiplied by
attenuations along the geodesics γ(y,w)(·) and γ(y,w′)(·) via a limiting process which
extracts α1. This does not succeed in determining k when n = 2 because α1,
as presented in Proposition 1, is in fact an L1 function (see [10]). Proposition 4
appeared in [10]; the Euclidean equivalent is in [6]. We present a proof of Proposition
4 in Appendix 1 which fixes a small error in [10].

Let expw′ : Tw′SyM → SyM be the exponential map of the unit tangent sphere
based at w′ ∈ SyM . Denote by v̂(v) = expw′(v), and let J(y,w′)(v̂) be the absolute
value of the determinant of the Jacobian of this change of variables. Let ϕ1 ∈
C∞0 (Rn) be such that 0 ≤ ϕ1 ≤ 1, ϕ1(0) = 0, ϕ1(v̂) = 0 for |v̂| > ε0 for sufficiently
small ε0, and

∫
Rn−1 ϕ1(v̂) dv̂ = 1. Now define ψε : SyM → R by

ψε(v) =
1

εn−1
ϕ1

(exp−1
w′ (v)
ε

)
, ε > 0.

Note that if f : SyM → R is continuous at w′ then∫
SyM

f(v)ψε(v) dωy(v) =
∫

Rn−1
f
(
exp−1

w′ (v̂)
) 1
εn−1

ϕ1

( v̂
ε

)
J(y,w′)(v̂) dv̂

→ f
(
exp−1

w′ (0)
)
J(y,w′)(0) = f(w′)

as ε→ 0.
We will use P(v;x, y) : SxM → SyM to denote the parallel translation of v ∈

SxM from x to y along the unique geodesic joining x and y. Define y(s) = γ(y,w)(s−
τ−(y, w)), −τ+(y, w) ≤ s ≤ τ−(y, w). Define β(s) ∈ ∂M to be the unique point in
the boundary for which it holds that γ(β(s),P(w′;y,β(s)))(·) contains the point y(s),
and define v(s) ∈ Sy(s)M to be its tangent vector there. Since w and w′ are
independent, β′(0) 6= 0. Now let ϕ ∈ C∞0 (R) be such that 0 ≤ ϕ ≤ 1, ϕ(0) = 1,∫

R ϕ(x) dx = ‖β′(0)‖−2
g ; let

ϕη(x) =
1
η
ϕ
(x
η

)
.

Define h1 : ∂M → R by h1(x′) = 〈exp−1
β(0)(x

′), β′(0)〉. Note that, restricted to the
curve β(s), for sufficiently small s, h1(β(s)) = 0 if and only if s = 0. Furthermore,

d

ds

∣∣∣
s=0

h1(β(s)) = ‖β′(0)‖2.

The construction of β(s) for fixed (y, w,w′) is now repeated for arbitrary (z, ξ, ξ′) ∈
S2M and we denote this by β(z,ξ,ξ′)(s). Define h2 : ∂M × S2M by h2(x′, z, ξ, ξ′) =
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dist
(
x′, β(z,ξ,ξ′)(·)

)
. Let ρ ∈ C∞0 (R) with ρ(0) = 1 and define ρδ(t) = ρ(t/δ). Let

W = {(z, ξ, ξ′) ∈ S2M : ξ 6= ±ξ′}. (13)

Proposition 4. Let (M, g) be a smooth Riemannian manifold of dimension n ≥ 3
satisfying Assumption 1.2. Assume that (a, k) are admissible and that the forward
problem is well-posed. If (y, w,w′) ∈ S2M with w 6= w′ then

I0 := lim
η→0

lim
δ→0

lim
ε→0

∫
Γ−

ψε(P(v′;x′, y))ϕη(h1(x′))ρδ(h2(x′, y, w,w′))

× α(~γ(y,w)(τ+(y, w)), x′, v′) dµ(x′, v′)

= E
(
γ(y,w′)(−τ−(y, w′)), y, γ(y,w)(τ+(y, w))

)
k(y, w′, w),

the limit holding in L1
loc(W ).

3. Gauge equivalence in dimensions three or higher. In this section we prove
Theorem 1.3 and its Corollary 1.

Proof of Theorem 1.3. From Proposition 3 we know that, for any (x, v) ∈ SM ,∫ τ+(x,v)

τ−(x,v)

a(~γ(x,v)(s)) ds =
∫ τ+(x,v)

τ−(x,v)

ã(~γ(x,v)(s)) ds;

set f(x, v) = (a− ã)(x, v) and define

w(x, v) =
∫ 0

−τ−(x,v)

f(~γ(x,v)(s)) ds.

Then certainly w
∣∣
Γ−

= 0, and from above, w
∣∣
Γ+

= 0. Thus w = 0 for all x ∈ ∂M

and for a.e. v ∈ SxM . Setting φ(x, v) = exp(w(x, v)) we obtain

D log φ(x, v) = Dw(x, v) = f(x, v) = (a− ã)(x, v) (14)

which establishes the first of (7).
From Proposition 4 it holds that, for any (y, w′, w) ∈W ,

E
(
y, γ(y,w)(τ+(y, w))

)
E

(
γ(y,w′)(−τ−(y, w′)), y

)
k(y, w′, w)

= Ẽ
(
y, γ(y,w)(τ+(y, w))

)
Ẽ

(
γ(y,w′)(−τ−(y, w′)), y

)
k̃(y, w′, w).

Now

Ẽ
(
y,γ(y,w)(τ+(y, w))

)
= exp

{
−

∫ τ+(y,w)

0

[
a(~γ(y,w)(s))−D log φ(~γ(y,w)(s))

]
ds

}
= exp

{
−

∫ τ+(y,w)

0

a(~γ(y,w)(s)) ds+ log φ
(
~γ(y,w)(τ+(y, w))

)
− log φ(y, w)

}
= E

(
y, γ(y,w)(τ+(y, w))

) 1
φ(y, w)

,

and similarly

Ẽ
(
γ(y,w′)(−τ−(y, w′)), y

)
= E

(
γ(y,w′)(τ+(y, w′)), y

)
φ(y, w′).

Thus

k̃(y, w′, w) =
φ(y, w)
φ(y, w′)

k(y, w′, w) (15)

which is the second of (7).
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Proof of Corollary 1. Interchanging w and w′ in (15) one obtains

k̃(y, w,w′) =
φ(y, w′)
φ(y, w)

k(y, w,w′) =
φ(y, w′)
φ(y, w)

k(y, w′, w) by (9)

=
φ(y, w′)2

φ(y, w)2
k̃(y, w′, w) by (15)

=
φ(y, w′)2

φ(y, w)2
k̃(y, w,w′) by (9) again.

Since k̃ > 0, φ(y, w′) = φ(y, w) for all w ∈ SyM and φ = φ(y) is independent of w;
(15) then implies k = k̃.

By (14) and the above, a(x, v)− ã(x, v) = D log φ(x). If a, ã satisfy (8) then we
also have a(x, v)− ã(x, v) = a(x,−v)− ã(x,−v) = −D log φ(x). Thus a− ã = 0.

4. Gauge equivalence in two dimensions. In this section we prove Theorem
1.4 and its Corollary 2. We begin by proving the intermediate result of unique
identifiability of k when a is already determined. This is very closely related to [11,
Theorem 1]. Recall the class UΣ,ε, (10).

Theorem 4.1. Let (M, g) be a smooth two dimensional Riemannian manifold sat-
isfying Assumption (1.2). Given Σ > 0 there exists ε > 0 which depends only on Σ,
(M, g) and the diameter of M such that the following holds: let (a, k), (a, k̃) ∈ UΣ,ε.
Then the corresponding albedo operators are equal (A = Ã) if, and only if, k = k̃.

Proof. We sketch the ideas of the proof simply to point out that once we know
that the attenuation coefficients are the same (as is assumed in the hypothesis) the
proof of [11, Theorem 1], where a is assumed to depend only on x, carries through
unchanged when a is allowed to be anisotropic.

Since the attenuation coefficients are the same, α0 = α̃0. Thus from Proposition
2 we have, for (x, v, x′, v′) ∈ Γ+ × Γ−,

(α2 − α̃2)(x, v, x′, v′) = (α̃1 − α1)(x, v, x′, v′)

= χ(·)E(x′, γ(x′,v′)(t), x)J (·)
(k̃ − k)

(
~γ(x′,v′)(t), γ̇(x,v)(s− τ−(x, v))

)
| sin(ψ(x, v, x′, v′))|

.

(See Proposition 2 and the discussion preceding it for definitions of the terms in-
volved.) Thus

χ|(k̃ − k)(y, w′, w)| ≤ C1e
2Σ diam Mχ| sinψ||(α2 − α̃2)(x, v, x′, v′)| a.e.,

where C1 is a uniform constant depending only on (M, g), y is the point of intersec-
tion y = γ(x′,v′)(t) = γ(x,v)(s − τ−(x, v)), w′ = γ̇(x′,v′)(t), w = γ̇(x,v)(s − τ−(x, v)),
and ψ is the angle between w′ and w. The theorem is proved once we obtain the
estimate

χ| sinψ||(α2 − α̃2)(x, v, x′, v′)| ≤ C2 ε‖k − k̃‖L∞(S2M), a.e., (16)

for then we have

‖k − k̃‖L∞(S2M) ≤ C3e
2Σ diam Mε‖k − k̃‖L∞(S2M).
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The proof of (16) follows from estimates for K2φ0 and K3φ0, where, with y(t) =
γ(x,v)(t− τ−(x, v)),

Ku(x, v) =
∫ τ−(x,v)

0

E(y(t), x)
∫

Sy(t)M

k(y(t), v̂, ẏ(t))u(y(t), v̂) dωy(t)(v̂) dt

and φ0(x, v) = E
(
γ(x,v)(−τ−(x, v)), x

)
δ{x′,v′}(x, v) (see [11]). Upon analysis of the

proofs in [11] it is clear that the only manner in which the attenuation coefficient a
appears is within the function E, and that the only property of E used is the fact
that |E| ≤ 1, uniformly in x ∈ M and in v ∈ SxM . Thus the proof of estimate
(16) presented in [11] remains valid and unaltered when a is allowed to depend on
direction as well as position.

Proof of Theorem 1.4. The first of (7) follows as in the first part of the proof of
Theorem 1.3; let ϕ(x, v) be the gauge function. Now define

k1(x, v′, v) =
ϕ(x, v)
ϕ(x, v′)

k(x, v′, v) (17)

and let A1 be the albedo operator corresponding to the pair (ã, k1). We must show
that k1 = k̃. By definition, (a, k) and (ã, k1) are gauge equivalent. As in Section 1,
this implies that A = A1; thus Ã = A1, but now the corresponding pairs have the
same attenuation: (ã, k̃) and (ã, k1) respectively. From Theorem 4.1, there exists
ε > 0 such that (ã, k̃), (ã, k1) ∈ UΣ,ε implies that k1 = k̃. We now choose δ = δ(ε)
to guarantee this.

Since

ϕ(x, v)
ϕ(x, v′)

= exp
{∫ 0

−τ−(x,v)

(a− ã)(γ(x,v)(s) ds−
∫ 0

−τ−(x,v′)

(a− ã)(γ(x,v′)(s) ds
}
,

we get the uniform bound∣∣∣ ϕ(x, v)
ϕ(x, v′)

∣∣∣ ≤ e2‖a−ã‖L∞(SM) diam M ≤ e4Σ diam M , for a.e. (x, v, v′) ∈ S2M.

Choosing δ = e−4Σ diam M we have δ ≤ ε, so (ã, k̃) ∈ UΣ,δ implies (ã, k̃) ∈ UΣ,ε, and
(a, k) ∈ UΣ,δ implies

‖k1‖L∞(S2M) ≤ e4Σ diam M‖k‖L∞(S2M) ≤ e4Σ diam Mδ = ε

so (ã, k1) ∈ UΣ,ε also.

The proof of Corollary 2 is now identical to that of Corollary 1.

5. Explicit reconstruction under symmetry assumptions. We demonstrate
how one is able to take advantage of the symmetry assumptions (8) and (9) to obtain
explicit reconstruction formulae for a and k which are uniquely determined in this
case, as shown in Corollary 1. The formulae hold only in dimensions three and
higher, the reason for this being that we employ the limiting formula of Proposition
4, the equivalent of which is not known in dimension two. As in Section 2, the
albedo operator determines integrals of a along geodesics joining boundary points,
but, even under the symmetry condition (8), this does not yet determine the function
a(x, v). Next, we use the fact that when n ≥ 3, A also determines

E
(
γ(y,w′)(−τ−(y, w′)), y, γ(y,w)(τ+(y, w))

)
k(y, w′, w).
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This too, on its own, is not sufficient to determine k since the function E is the
attenuation along a “broken geodesic” which has not been determined. As we
demonstrate below, we can use the symmetry assumptions to first recover k, and
then recover a. We must assume higher regularity on the coefficients, namely

a ∈ C(SM), k ∈ C(S2M). (18)

Recalling Proposition 3, for ε > 0, (x, v) ∈ SM , define

Jε(x, v) =
∫

Γ−

α(~γ(x,v)(τ+(x, v)), x′, v′)ψε

(
d
(
x′, γ(x,v)(−τ−(x, v))

))
dµ(x′, v′).

(19)

Note that Jε is constant along ~γ(x,v)(s), −τ−(x, v) ≤ s ≤ τ+(x, v). Define τ(x, v) =
τ−(x, v)+τ+(x, v). Proposition 3 gives the limit of Jε(x, v) as ε→ 0, for (x, v) ∈ Γ+.
We now extend this to (x, v) ∈ SM .

Lemma 5.1. For a.e. (x, v) ∈ SM ,

J0(x, v) := lim
ε→0

Jε(x, v) = E
(
γ(x,v)(−τ−(x, v)), γ(x,v)(τ+(x, v))

)
,

the limit holding in L1(SM, τ−1 dx dωx(v)).

Proof. Define

f(x, v) =
1

τ(x, v)

∣∣Jε(x, v)− E
(
γ(x,v)(−τ−(x, v)), γ(x,v)(τ+(x, v))

)∣∣.
Then if z = z(t) = γ(x,v)(t− τ−(x, v)),∫

SM

f(y, w) dωy(w) dy =
∫

Γ+

∫ τ−(x,v)

0

f(z(t), ż(t)) dt dµ(x, v)

=
∫

Γ+

∫ τ−(x,v)

0

∣∣Jε

(
~γ(x,v)(t− τ−(x, v))

)
− E

(
γ(z,ż)(−τ−(z, ż)), γ(z,ż)(τ+(z, ż))

)∣∣ dt dµ(x, v)
τ(z, ż)

.

The attenuation term E(·) above is nothing more than the attenuation along the
whole geodesic γ(z(t),ż(t)), from boundary to boundary, which coincides with that
along γ(x,v), (x, v) ∈ Γ+, and τ(z(t), ż(t)) = τ−(x, v). Further, by the remark
following (19), Jε

(
~γ(x,v)(t− τ−(x, v))

)
= Jε(x, v). Thus∫

SM

f(y,w) dωy(w) dy

=
∫

Γ+

∣∣Jε(x, v)− E(γ(x,v)(−τ−(x, v)), x)
∣∣ 1
τ−(x, v)

∫ τ−(x,v)

0

dt dµ(x, v)

=
∫

Γ+

∣∣Jε(x, v)− E(γ(x,v)(−τ−(x, v)), x)
∣∣ dµ(x, v)

→ 0

as ε→ 0 by Proposition 3.

From Proposition 4, for a.e. (y, w′, w) ∈W (recall (13)),

E
(
γ(y,w′)(−τ−(y, w′)), y, γ(y,w)(τ+(y, w))

)
k(y, w′, w) = I0(y, w′, w), and (20)

E
(
γ(y,w)(−τ−(y, w)), y, γ(y,w′)(τ+(y, w′))

)
k(y, w,w′) = I0(y, w,w′). (21)
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Under the symmetry assumption (9), and recalling (12), we multiply these to obtain

E
(
γ(y,w)(−τ−(y, w)),γ(y,w)(τ+(y, w))

)
×E

(
γ(y,w′)(−τ−(y, w′)), γ(y,w′)(τ+(y, w′))

)
k2(y, w′, w)

= I0(y, w′, w)I0(y, w,w′). (22)

From Lemma 5.1 we can thus determine

k(y, w′, w) =
(I0(y, w′, w)I0(y, w,w′)

J0(y, w)J0(y, w′)

) 1
2
. (23)

Plugging (23) into (21) we obtain for a.e. (y, w′, w) ∈W∫ τ−(y,w)

0

a
(
~γ(y,w)(s− τ−(y, w))

)
ds+

∫ τ+(y,w′)

0

a
(
~γ(y,w′)(s)

)
ds

=
1
2

log
( I0(y, w′, w)
I0(y, w,w′)J0(y, w)J0(y, w′)

)
. (24)

From the regularity assumption (18), this equality extends pointwise to hold in all
of S2M . We now set w′ = −w. We make use of the obvious facts that τ+(y,−w) =
τ−(y, w) and ~γ(y,−w)(s) = (γ(y,w)(−s),−γ̇(y,w)(−s)). Making the change of variables
s↔ s− τ−(y, w) in the first of the integrals in (24) and s↔ −s in the second, the
left hand side of (24) becomes∫ 0

−τ−(y,w)

[
a(γ(y,w)(s), γ̇(y,w)(s))+a(γ(y,w)(s),−γ̇(y,w)(s))

]
ds

= 2
∫ 0

−τ−(y,w)

a(γ(y,w)(s), γ̇(y,w)(s)) ds

since we are assuming the symmetry (8) for a. This is clearly differentiable in y
along the geodesic γ(y,w) and so the right hand side of (24) is also; denote by Dw

this derivative along the geodesic flow at y in the direction w. Performing this
derivative one obtains the reconstruction formula for a(y, w):

a(y, w) =
1
4
Dw log

( I0(y, w′, w)
I0(y, w,w′)J0(y, w)J0(y, w′)

)
.

6. Appendix 1.

Proof of Proposition 3. When α is replaced by α0 the result is immediate. When α
is replaced by α1,

0 ≤
∫

Γ+

∫
Γ−

∫ τ+(x′,v′)

0

∫ τ−(x,v)

0

k
(
z(t), ż(t),P(ẏ(s); y(s), z(t))

)
δ{y(s)}(z(t))

× ψε

(
d
(
x′, γ(x,v)(−τ−(x, v))

))
ds dt dµ(x′, v′) dµ(x, v)

=
∫

M

∫
S2

yM

k(y, w′, w)ψε

(
d
(
γ(y,w′)(−τ−(y, w′)), γ(y,w)(−τ−(y, w))

))
× dωy(w′) dωy(w) dy

where (y, w′) = ~γ(x′,v′)(t), (y, w) = ~γ(x,v)(s− τ−(x, v)). Now there exists a constant
C such that

suppψε

(
d
(
γ(y,w′)(−τ−(y, w′)),γ(y,w)(−τ−(y, w))

))
⊂Wε = {(y, w′, w) ∈ S2M : ‖w′ − w‖g < Cε}
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and so

0 ≤
∫

Γ+

∫
Γ−

α1(x, v, x′, v′)ψε

(
d
(
x′, γ(x,v)(−τ−(x, v))

))
dµ(x′, v′) dµ(x, v)

≤ ‖ψ‖∞
∫

Wε

k(y, w′, w) dωy(w′) dωy(w) dy → 0

as ε→ 0 since k ∈ L1(S2M) and the measure of Wε → 0 as ε→ 0. Finally, for α2

0 ≤
∫

Γ+

∣∣∣∫
Γ−

α2(x, v, x′, v′)ψε

(
d
(
x′, γ(x,v)(−τ−(x, v))

))
dµ(x′, v′)

∣∣∣ dµ(x, v)

≤
∫

Vε

∣∣α2(x, v, x′, v′)
∣∣ dµ(x′, v′) dµ(x, v) → 0

as ε→ 0. Here

suppψε

(
d
(
x′, γ(x,v)(−τ−(x, v))

))
⊂ Vε = {(x, v, x′, v′) ∈ Γ+ × Γ− : d

(
x′, γ(x,v)(−τ−(x, v))

)
< Cε}

and the limit above holds since, by Proposition 1, α2 ∈ L1(Γ+ × Γ−) and the
measure of Vε → 0 as ε→ 0.

Proof of Proposition 4. Replacing α by α0 and integrating with respect to dµ(x′, v′),
the integrand gets evaluated at (x′, v′) = ~γ(y,w)(−τ−(y, w)) and so we obtain a mul-
tiple of

ψε

(
P

(
γ̇(y,w)(−τ−(y, w))

)
; γ(y,w)(−τ−(y, w)), y

)
= ψε(w) = 0

for all sufficiently small ε since w 6= w′. Replacing α by α1,

I1 : =
∫

Γ−

ψε(P(v′;x′, y))ϕη(h1(x′))ρδ(h2(x′, y, w,w′))

× α1(~γ(y,w)(τ+(y, w)), x′, v′) dµ(x′, v′)

=
∫ τ(y,w)

0

∫
Sy(s)M

ψε

(
P(γ̇(y(s),v̂)(−τ−(y(s), v̂)); γ(y(s),v̂)(−τ−(y(s), v̂)), y)

)
× ϕη

(
h1

(
γ(y(s),v̂)(−τ−(y(s), v̂))

))
ρδ

(
h2(γ(y(s),v̂)(−τ−(y(s), v̂)), y, w,w′)

)
× E

(
γ(y(s),v̂)(−τ−(y(s), v̂)), y(s), γ(y,w)(τ+(y, w))

)
k(y(s), v̂, ẏ(s)) dωy(s)(v̂) ds

Now define ṽ(v̂, s) = P
(
γ̇(y(s),v̂)(−τ−(y(s), v̂)); γ(y(s),v̂)(−τ−(y(s), v̂)), y

)
∈ SyM

and denote by dv̂
dṽ the change of volume element of this change of variables. We

obtain

I1 =
∫ τ(y,w)

0

∫
SyM

ψε(ṽ)ϕη

(
h1

(
γ(y(s),v̂(ṽ,s))(−τ−(y(s), v̂(ṽ, s)))

))
× ρδ

(
h2(γ(y(s),v̂(ṽ,s))(−τ−(y(s), v̂(ṽ, s))), y, w,w′)

)
E(· · · )

× k(y(s), v̂(ṽ, s), ẏ(s))
dv̂

dṽ
dωy(s)(ṽ) ds

→ I2 :=
∫ τ(y,w)

0

ϕη

(
h1(β(y,w,w′)(s))

)
ρδ

(
h2(β(y,w,w′)(s), y, w,w′)

)
E(· · · )

× k(y(s), v(s), ẏ(s))
dv̂

dṽ

∣∣∣
v̂=v(s)

ds
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as ε→ 0. Note that ρδ

(
h2(β(y,w,w′)(s), y, w,w′)

)
= 1. Define s̃(s) = h1(β(y,w,w′)(s)).

Then s̃ = 0 if and only if s = 0 (for sufficiently small s), and ds̃
ds

∣∣
s=0

= ‖β′(y,w,w′)(0)‖2.
So, for sufficiently small s̃0,

I2 =
∫ s̃0

−s̃0

ϕη(s̃)E(· · · )k
(
y(s(s̃)), v(s(s̃)), ẏ(s(s̃))

)dv̂
dṽ

∣∣∣
v̂=v(s)

ds

ds̃
ds̃

→ E
(
γ(y,w′)(−τ−(y, w′)), y, γ(y,w)(τ+(y, w))

)
k(y, w′, w)

as η → 0 since
∫

R ϕ(x) dx = ‖β′(y,w,w′)(0)‖−2
g .

Finally, we must show that the integral vanishes when we replace α by α2. Let
χ(z, ξ, ξ′) ∈ C∞0 (W ). Then, with y(s) = γ(z,ξ)(s− τ−(z, ξ)),

lim
ε→0

∫
M

∫
S2

zM

∣∣∣∫
Γ−

ψε(P(v′;x′, z))ϕη(h1(x′))ρδ(h2(x′, z, ξ, ξ′))

× α2(~γ(z,ξ)(τ+(z, ξ)), x′, v′)χ(z, ξ, ξ′) dµ(x′, v′)
∣∣∣ dωz(ξ′) dωz(ξ) dz

≤ 1
η

∫
Γ+

∫ τ−(x,v)

0

∫
Sy(s)M

∫
∂M

ρδ(h2(x′, y(s), ẏ(s), ξ′))α2(x, v, x′,P(ξ′; y(s), x′))

× |χ(y(s), ẏ(s), ξ′)||〈P(ξ′; y(s), x′), νx′〉| dx′ dωy(s)(ξ′) ds dµ(x, v)
→ 0

as δ → 0 since the support of ρδ is a (3n − 1)-dimensional variety in the (4n − 3)-
dimensional domain of integration, and since α2 ∈ L∞(Γ−;L1(Γ+, dµ)).

7. Appendix 2. In [11] it is assumed that the diameter of (M, g) satisfies diamM <
π/(2

√
κ0). We wish to apply the results of [11] here but with the restriction relaxed

to diamM < π/
√
κ0. In this section we show how the proofs in [11] are easily

modified to accommodate the potentially larger diameter.
We fix the dimension to be two and the maximal sectional curvature to be κ0 > 0.

In order to estimate α2 one repeatedly compares geodesic triangles in M with “com-
parison triangles” on the sphere of radius 1/

√
κ0. In [11, Lemma 6] the estimate

sin(
√
κ0 d) ≥

√
sin2(

√
κ0 ν) + sin2(

√
κ0∆t) cos2(

√
κ0 ν) ≥ C1

√
ν2 + C2∆t2. (25)

is proven, where d,∆t, ν ≤ π/(2
√
κ0) are distances on the manifold. We now

show that the same estimate (with different constants) is achievable assuming only
that d,∆t, ν ≤ π/

√
κ0. For simplicity we prove the estimate with κ0 = 1. If

x ≤ A = diamM < π then sinx ≥ (sinA/A)x > 0, so (25) will follow if we prove

ν2 + ∆t2 cos2 ν − 1
π2

(ν2 + ∆t2) ≥ 0 (26)

for 0 ≤ ∆t, ν ≤ A < π. First, it is easily checked that (26) holds on the boundary
of the square [0, π] × [0, π] with strict inequality except at (0, 0). Thus for it to
fail within the square, it must occur at a place where the gradient of the left hand
side vanishes. A straight forward computation shows that this happens only at
∆t = (π2−1)1/4 cos−1/2(1/π), ν = cos−1(1/π), and at this point, the left hand side
of (26) is (1− 1/π2) cos−2(1/π) > 0. For general κ0, (26) becomes

κ0ν
2 + ∆t2 cos2(

√
κ0 ν)−

κ0

π2

(
ν2 +

1
κ0

∆t2
)
≥ 0.
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The only other places where the bound on the diameter is used in [11] are in
Propositions 7 and 8 there. In Proposition 7, one begins with the estimate

sinψ
sin(

√
κ0 ν)

≤ 1
| sin(

√
κ0∆t)|

and uses, for 0 ≤ x < π/2, sinx ≤ x and sinx ≥ (2/π)x to prove
1
ν
≤ π

2|∆t|| sinψ|
. (27)

Again, ν,∆t are distances between points on the manifold. If one uses instead
sinx ≥

(
sin(

√
κ0A)/(

√
κ0A)

)
x then (27) simply becomes

1
ν
≤

√
κ0A

sin(
√
κ0A)|∆t|| sinψ|

.

The modification to the proof of Proposition 8 is similar.
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