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Abstract. We study the inverse backscattering problem for time-dependent potentials. We prove
uniqueness and Lipshitz stability for the recovery of small potentials.

1. Introduction

Let q(t, x) be smooth and supported in the cylinder R×Ω, where Ω ⊂ B(0, ρ) := {|x| < ρ} with
some ρ > 0 is a fixed domain in Rn. We study the inverse back-scattering problem for the wave
equation

(1) (∂2t −∆+ q(t, x))u = 0, (t, x) ∈ R× Rn,

n ≥ 3, odd. We show that small enough potentials q are stably recoverable from the data.
Results for stationary potentials q(x) have been proven in [5, 6, 15, 18, 21, 27, 28]. Even though

stability (say, of conditional Hölder type) has not been stated explicitly there (see also [24] for a
related result), it follows from the fact that the linearization of the problem near q = 0 is essentially
the Fourier transform of q, see, e.g., [21]. In terms of uniqueness, the best known result is generic
uniqueness so far.

The inverse problem of recovery of q(t, x) from “near-field” scattering data, closely related to the
inverse scattering one but not restricted to back-scattering, has been studied in [1,10,16,19,20,29],
and other works. Uniqueness is known, for example for potentials supported in a cylinder as above,
with a tempered growth in t, as shown in [20]. One of the techniques is to extract the light-ray
transform from the data, which relies on forward scattering, and invert it, see, e.g., [25] for an even
more general situation. That transform does not see timelike singularities however, see [12, 22, 23]
which makes it unstable. In view of that, the possibility of a stable recovery of q remained unclear.
In [11], it was shown that a similar boundary value problem, with inputs plane waves as below,
and the output measured at a fixed time t = T in the whole Rn

x, provides Lipschitz stable recovery.
The proof is based on Carleman estimates.

Even though forward propagating rays do not see all singularities, broken rays reflecting from
the interior could, at least on the principal level. Back-scattering provides such a geometry, in
particular. The main reason why one can expect a stable recovery in this case is the following.
Plane waves can only possibly detect singularities conormal to them, which are lightlike, indeed. On
the other hand, a linearization of the backscattering data near q = 0 is an integral over the product
of one such incoming and one outgoing wave. That product, on the principal level, is supported on
the intersection of such two hyperplanes in timespace, which is a delta on a codimension two (vs.
one) hyperplane, see Figure 1, where it looks like a line. That hyperplane has a richer subspace
of conormals and can possibly detect non-necessarily lightlike singularities. Varying the incident
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direction of the incoming wave provides a complete set of conormals. We refer to the discussion in
section 3.3 as well.

We are restricted to small potentials, and as we pointed out already, even for stationary q(x),
the uniqueness without that assumption is a well-known open problem. It seems feasible that our
methods could help prove local generic uniqueness (and stability) in line with the stationary results
in [5, 6, 21].

2. Main Results

We describe the scattering amplitude for (1) briefly in order to formulate the main theorem. In
Appendix A, we review the scattering theory for (1) in more detail.

We are sending waves δ(t + s − x · ω), where s is a delay parameter, |ω| = 1, and t ≪ 0; let
them propagate and scatter, and measure them at infinity at directions ω′ and delay time s′. The
scattering amplitude A♯(s′, ω′, s, ω), see Definition A.2 and Proposition A.1, measures the difference
between the wave we sent and the scattered one. Taking ω′ = −ω, we measure the response in
the direction opposite of the incoming one. If we have two potentials, q1 and q2, we denote the
corresponding quantities by the subscripts 1 and 2.

To state our main results, we introduce the change of variables

(2) σ =
s− s′

2
, σ′ =

s+ s′

2
.

For the choice of these coordinates we refer to Section 3.3. In short, we think of the data
A♯(s′, ω′, s, ω) as the response to the incident wave δ(t+ s−x ·ω), carried by the back-propagating
one δ(t + s′ + x · ω) (modulo more regular terms) with s and s′ chosen delay parameters. Those
two waves meet at time t = −σ′ at the hyperplane x · ω = σ in the x-space.

By Ã♯
1(σ

′, σ, ω) and Ã♯
2(σ

′, σ, ω), we denote the functions A♯
1(s

′,−ω, s, ω) and A♯
2(s

′,−ω, s, ω) in
the new variables. Our main result is the following.

Theorem 2.1. Let n ≥ 3 be an odd integer, and let q be a smooth function supported in R × Ω,
where Ω ⊂ B(0, ρ) for some ρ > 0. Then, there exists ε > 0 and k > 0 such that if

∥q1∥Ck(R×Ω̄) < ε, ∥q2∥Ck(R×Ω̄) < ε,

then the identity Ã♯
1 = Ã♯

2 implies q1 = q2. Moreover, under the same assumptions on q1, q2, there
exists a constant CΩ > 0 such that

∥q1 − q2∥L∞(R; L2(Rn)) ≤ CΩ∥Ã♯
1 − Ã♯

2∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Rσ)))

.

Note that we could use other norms above using complex interpolation under the assumptions
of the theorem but the price for that is to make the estimate of conditional Hölder type, i.e., to

have ∥A♯
1 −A♯

2∥µ above with some µ ∈ (0, 1).
The restriction to odd n ≥ 3 avoids the non-local translation representation that arises in even

dimensions, see also Section A.

3. Proofs

3.1. A pseudo-linearization identity. We review the scattering theory for time-dependent po-
tentials in Appendix A mostly following [3,4,20] with some additions as well. We sketch the main
notions below.
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We send a plane wave δ(t+ s− x · ω) to the perturbation, and let it interact with the potential.
More precisely, we are solving

(3) (∂2t −∆+ q(t, x))u− = 0, u−|t<−s−ρ = δ(t+ s− x · ω).
Recall that ρ is the radius of a cylinder which contains the support of q. Then we set

(4) u−sc = u− − δ(t+ s− x · ω).
The distribution u−sc (which is actually a function, see Proposition 3.2) would be automatically
outgoing by Definition A.1, since it vanishes for t ≪ 0. Then we could compute the asymptotic

wave profile u−,♯
sc (s′, ω′; s, ω) of u−sc(t, x; s, ω), which would give us the analog of the scattering

amplitude, see section A.4. As in the stationary case, we expect this to be “essentially” the
kernel of the scattering operator minus identity. This is true, indeed, at least when the scattering
operator exists as a bounded one as we show in Theorem A.5. One defines the scattering amplitude
A♯(s′, ω′; s, ω) by canceling some constant and ignoring some s′ derivatives.

We need to define the time-reversed analog of u− above, which we will denote by u+(t, x; s, ω).
It solves

(5) (∂2t −∆+ q(t, x))u+ = 0, u+|t>−s+ρ = δ(t+ s− x · ω).
We want to warn the reader about a possible confusion caused by the terms incoming/outgoing.
The solution u of (3), which we denote by u− below, is the response to an incident plane wave and
it is neither incoming nor outgoing by Definition A.1. On the other hand, u−sc = u−sc is outgoing.
Similarly, u+ is neither but u+sc, defined as in (4) but with u replaced by u+, is incoming.

Let q1 and q2 be two such potentials, and denote the corresponding quantities with subscripts 1
and 2. We have the following formula, proven also in [26] for n = 3, generalizing that in [21], where
the potentials are time-independent.

Proposition 3.1. We have

(6) (A♯
1 −A♯

2)(s
′, ω′; s, ω) =

∫
(q1 − q2)(t, x)u

−
1 (t, x, s, ω)u

+
2 (t, x, s

′, ω′) dt dx,

where u−1 solves (3) with q = q1, and u
+
2 solves (5) with q = q2.

The proof of this proposition is given in Appendix A, where the necessary notations and back-
ground are introduced.

3.2. Progressive wave expansion. We have the following progressive wave expansion. Let h =:
h0 be the Heaviside function and set hj(τ) = τ j/j! for τ > 0; hj(τ) = 0 for τ ≤ 0.

Proposition 3.2 ( [20]). Let q be a smooth function supported in R×Ω and u− be the solution of
(3). Then, for each integer N ≥ 0 we have

(7) u−(t, s, x, ω) = δ(t+ s− x · ω) +
N∑
j=0

aj(t, x, ω)hj(t+ s− x · ω) +RN (t, x, s, ω),

where

a0(t, x, ω) = −1

2

∫ 0

−∞
q(t+ τ, x+ τω) dτ,

aj(t, x, ω) = −1

2

∫ 0

−∞
(□+ q)aj−1(t+ τ, x+ τω, ω) dτ, j = 1, . . . , N,

and RN ∈ C(Rt × Rs × Sn−1
ω ; HN+1(Rn

x)).
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The latter statement follows from the fact that RN solves

(∂2t −∆+ q)RN = −[(∂2t −∆+ q)aN ]hN , RN |t<−s−ρ = 0.

We get a similar expansion for u+ but with a different remainder RN , and the formulas for aj above
involve integrals from 0 to ∞.

3.3. Sketch of the main idea. Using Proposition 3.1, and keeping the most singular terms of u−1
and u+2 only, we get

δA♯(s′, ω′; s, ω) ∼
∫
δq(t, x)δ(t+ s− x · ω)δ(t+ s′ − x · ω′) dt dx,(8)

where δA♯ and δq are formal linearizations, while the other two deltas above are Dirac deltas. The
symbol ∼ indicates that the right-hand side captures the leading-order contribution to δA♯, with
possible lower-order terms omitted.

The product of the two deltas is a delta, with the coefficient 2(4− (1+ω ·ω′)2)−1/2 on the n− 1
dimensional hyperplane (co-dimension 2) given by the system

(9) −t+ x · ω = s, −t+ x · ω′ = s′

with s, s′ parameters, assuming ω ̸= ω′, i.e., staying away from the forward scattering directions.
Its conormal bundle is the span of (−1, ω) and (−1, ω′). Those are two lightlike covectors, and all
future pointing lightlike covectors look like this. Taking linear combinations, and varying ω and
ω′, we get all covectors. So we are really inverting the k = (n − 1) – Radon transform in R1+n

(by Helgason’s terminology [7]) over all k-planes; and this is stably invertible. We must stay away
from ω = ω′ though. On the other hand, the codimension two Radon transform is overdetermined,
so we do not need all of them, and we can avoid the bad planes. Back-scattering only (ω = −ω′)
is one case where this works.

Consider the back-scattering (ω′ = −ω) problem now. Then (9) reduces to

−t+ x · ω = s, −t− x · ω = s′

which implies

(10) x · ω = (s− s′)/2 = σ, t = −(s+ s′)/2 = −σ′.
This is easy to visualize as two hyperplanes in time-space at angle 45 degrees with the t-axis each,
intersecting at a right angle, see Figure 1 below. Varying ω, and s, s′ so that s + s′ is fixed, we

Figure 1. On the principal level, we integrate over the horizontal line in the middle,
which is a codimension two hyperplane, actually. The support of the integrand, all terms
considered, is inside the wedge, intersected with the cylinder |x| ≤ ρ.
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get integrals over all “lines” (codimension two hyperplanes, actually) on the hyperplane t = const.,
which is invertible, slice by slice. The stability estimate we get however treats t and x differently,
in principle.

We need to analyze the lower order terms now. If we linearize near q ̸= 0, and take the lower
order term a0 for u−1 in (7) into account only, then (8) is the main term but we get the following
additional terms:

B1(s
′, ω′; s, ω) :=

∫
δq(t, x)a1(t, x, ω)h(t+ s− x · ω)δ(t+ s′ − x · ω′) dt dx,

plus a similar B2 term coming from u+1 , plus an even more regular term containing two Heaviside
functions h. Each of B1, B2 integrates δq over a (weighted) truncated delta on the hyperplane
t + s′ − x · ω′ = 0, or t + s − x · ω = 0, respectively, see Figure 1. In other words, the Schwartz
kernels are deltas on half-hyperplanes. They can be thought of as a superposition of deltas on
codimension two hyperplanes, as in (8), all parallel to the intersection in Figure 1, moving along
the corresponding wing of the wedge there. We just need upper bounds of B1, B2, and they can
be done in the same norms as those we use for (8) to get an O(ε∥q∥) perturbation. The ε gain
comes from a1. We can treat the more regular terms, coming from aj , j ≥ 1, and from RN in
Proposition 3.2 similarly, which is a tedious task but doable. An important observation is that
the support of the product u−1 u

+
2 in (6) is contained in the intersection of the half-space above the

lower hyperplane (due to u−1 , see (43)) and the half-space below the upper hyperplane (due to u+1 ),
i.e., on the left of that the wedge in the figure. This is further intersected with the cylinder |x| ≤ ρ,
so in particular, we integrate in (6) over a compact set depending on the parameters.

3.4. Proof of the main result. Here, we will prove our main result. We begin with a few
notations. Inspired by (6), we set

q(t, x) = q1(t, x)− q2(t, x)

and

Mq(s′, s, ω) =

∫
q(t, x)u−1 (t, x, s, ω)u

+
2 (t, x, s

′,−ω) dt dx.

Writing

u−1 (t, x, s, ω) = δ(t+ s− x · ω) + u−1,sc(t, x, s, ω)

u+2 (t, x, s,−ω) = δ(t+ s+ x · ω) + u+2,sc(t, x, s,−ω)
we get

M =M00 +M01 +M10 +M11,

where

M00q(s
′, s, ω) =

∫
q(t, x)δ(t+ s− x · ω)δ(t+ s′ + x · ω) dt dx,(11)

M10q(s
′, s, ω) =

∫
q(t, x)u−1,sc(t, x, s, ω)δ(t+ s′ + x · ω) dt dx,

M01q(s
′, s, ω) =

∫
q(t, x)δ(t+ s− x · ω)u+2,sc(t, x, s

′,−ω) dt dx,

M11q(s
′, s, ω) =

∫
q(t, x)u−1,sc(t, x, s, ω)u

+
2,sc(t, x, s

′,−ω) dt dx.
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We denote by M̃q, M̃klq the above functions in the variables given by (2).

Remark 3.1. Let

(12) Σ = [−ρ, ρ],

where ρ is the radius of a cylinder which contains the support of q. Note that if σ /∈ Σ, then
(10) does not hold for any x ∈ Ω and ω ∈ Sn−1, and hence, the line of intersection (a hyperplane)

in Figure 1 does not intersect the cylinder R × Ω. Therefore, M̃00q(σ
′, σ, ω) = 0 for σ /∈ Σ. If

σ ∈ Σ, due to the definitions of u+1,sc and u+2,sc, it follows that there exists T > 0 such that the

(t, x)-supports of the integrands in the definition of M̃q, M̃klq belong to (−T − σ′, T − σ)× Ω.

Next, we will study M̃klq. We begin with M̃00q:

Lemma 3.1. Let Σ = [−ρ, ρ]. There exists a constant C > 0 depending only on n such that

(13) ∥q∥L∞(R; L2(Rn))/C ≤ ∥M̃00q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Σσ)))

≤ C∥q∥L∞(R; L2(Rn)).

Proof. As explained in Section 3.3, the product of the deltas in (11) can also be written as

δ

(
t+

s+ s′

2

)
δ

(
s− s′

2
− x · ω

)
.

Then

M00q(s
′, s, ω) =

[
Rq(−(s′ + s)/2, ·)

]
((s− s′)/2, ω),

where Rf(p, ω) =
∫
δ(p− x · ω)f(x) dx is the Radon transform of f . Using the change of variables

given by (2), we rewrite

M̃00q(σ
′, σ, ω) =

[
Rq(−σ′, ·)

]
(σ, ω).

For every s, we have the following stability estimate for the Radon transform, see [14, Ch. 2]:

∥f∥Hs(Rn)/C ≤ ∥Rf∥L2(Sn−1
ω ;Hs+(n−1)/2(Rσ))

≤ C∥f∥Hs(Rn),

for some constant C > 0. Therefore, choosing s = 0, we obtain

∥q(−σ′, ·)∥L2(Rn)/C ≤ ∥M̃00q(σ
′, ·, ·)∥L2(Sn−1

ω ;H(n−1)/2(Rσ))
≤ C∥q(−σ′, ·)∥L2(Rn)

for every σ′ with C independent of it. Finally, as we noted in Remark 3.1,

∥M̃00q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Σσ)))

= ∥M̃00q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Rσ)))

,

and hence, (13) holds. □

We need the next lemmas to obtain similar results for M̃10q and M̃01q.

Lemma 3.2. Let Σ and T be as in Remark 3.1. Let a1,j, hj, and R1,N be the functions introduced
in Section 3.2 with q = q1 and let R̄1,N be the function such that

R̄1,N (t, x, t+ s− x · ω, ω) = R1,N (t, x, s, ω).

Then, there exists CΩ,N > 0 such that

∥M̃10q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Σσ)))

≤ CΩ,N∥q∥L∞(R;L2(Rn))×

×

 N∑
j=0

∥a1,j∥L∞(R×Sn−1;C2n−2(Ω̄)) + sup
σ′∈R

∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥R̄1,N (t, ·, 2t+ 2σ′, ω)∥C2n−2(Ω̄)dt

 .
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Proof. For the sake of brevity, we denote

U(t, x, t+ s− x · ω, ω) =
N∑
j=0

a1,j(t, x, ω)hj(t+ s− x · ω) + R̄1,N (t, x, t+ s− x · ω, ω).

Then,

M10q(s
′, s, ω) =

∫
Rn

∫
R
q(t, x)U(t, x, t+ s− x · ω, ω)δ(t+ s′ + x · ω) dt dx

=

∫
R

∫
ω⊥
q(t,−(t+ s′)ω + y)U(t,−(t+ s′)ω + y, 2t+ s+ s′, ω) dt dy.

Using the change of variables given by (2), for any σ ∈ Σ, we obtain

M̃10q(σ
′, σ, ω) =

∫ T−σ′

−T−σ′

∫
ω⊥
q(t,−(t+ σ′ − σ)ω + y)U(t,−(t+ σ′ − σ)ω + y, 2t+ 2σ′, ω) dt dy

=

∫ T−σ′

−T−σ′

[
RU(t,·,2t+2σ′,·)q(t, ·)

]
(−t+ σ − σ′, ω) dt,

where

Rµf(p, ω) =

∫
x·ω=p

µ(x, ω)f(x)dx

is the weighted Radon transform of f with weight µ. By Theorem B.1,

∥M̃10q(σ
′, ·, ·)∥L2(Sn−1

ω ;H(n−1)/2(Σσ))

≤ CΩ sup
t∈[−T−σ′,T−σ′]

∥q(t, ·)∥L2(Ω)

∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥U(t, ·, 2t+ 2σ′, ω)∥C2n−2(Ω̄)dt.

We estimate next∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥U(t, ·, 2t+ 2σ′, ω)∥C2n−2(Ω̄)dt ≤ CN

∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥a(t, ·, ω)∥C2n−2(Ω̄)dt

+

∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥R̄1,N (t, ·, 2t+ 2σ′, ω)∥C2n−2(Ω̄)dt.

The last two estimates complete the proof. □

Lemma 3.3. Let Ω ⊂ Rn be a bounded set, α be a multi-index, and K = |α| + (n + 1)/2. Let
f ∈ CN (Rt × Rs × Rn

x) such that f(t, s, ·) has a compact support. Assume that N ∈ N is large
enough so that the equation{

(∂2t −∆+ q(t, x))v(t, s, x) = f(t, s, x),

v|t<−s−ρ = 0.

has the unique smooth (as much as needed) solution v. Then

(14) ∥Dα
xv∥L∞(Ω) ≤ CΩ,Ke

CK
q (t+s+ρ)

∫ t

−s−ρ
∥f(τ, s, ·)∥HK(Rn)dτ,

where
CK
q = 2 + CK∥q(t, ·)∥Ck(Rn)

with some CK > 0 dependent on K.
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Proof. For non-negative k ∈ Z, we define

Ek
s (t) = ∥∂tv(t, s, ·)∥2Hk(Rn) +

∑
|γ|≤k

∥∇xD
γ
xv(t, s, ·)∥2(L2(Rn))n + ∥v(t, s, ·)∥2L2(Rn).

Then

∂tE
k
s (t) = 2

∑
|γ|≤k

ℜ(∂2tDγ
xv(t, s, ·), ∂tDγ

xv(t, s, ·))L2(Rn)

− 2
∑
|γ|≤k

ℜ(∆Dγ
xv(t, s, ·), ∂tDγ

xv(t, s, ·))L2(Rn) + 2ℜ(∂tv(t, s, ·), v(t, s, ·))L2(Rn),

where ℜ denotes the real part of the number. Since

(∂2t −∆)Dγ
xv(t, s, x) +Dγ

x(q(t, x)v(t, s, x)) = Dγ
xf(t, s, x),

the last identity becomes

∂tE
k
s (t) = 2

∑
|γ|≤k

ℜ(Dγ
xf(t, s, ·), ∂tDγ

xv(t, s, ·))L2(Rn)

− 2
∑
|γ|≤k

ℜ(Dγ
x(q(t, ·)v(t, s, ·)), ∂tDγ

xv(t, s, ·))L2(Rn) + 2ℜ(∂tv(t, s, ·), v(t, s, ·))L2(Rn).

Using the Cauchy–Schwarz inequality, we obtain

∂tE
k
s (t) ≤

∑
|γ|≤k

∥Dγ
xf(t, s, ·)∥2L2(Rn) + (2 + Ck∥q(t, ·)∥Ck(Rn))E

k
s (t).

By integration over (−s− ρ, t), we obtain

Ek
s (t) ≤ F k

s (t) + Ck
q

∫ t

−s−ρ
Ek

s (τ)dτ,

where

F k
s (t) =

∫ t

−s−ρ
∥f(τ, s, ·)∥Hk(Rn)dτ, Ck

q = 2 + Ck∥q(t, ·)∥Ck(Rn).

Then, the Grönwall’s inequality implies

Ek
s (t) ≤ F k

s (t) + Ck
q

∫ t

−s−ρ
F k
s (τ)e

Ck
q (t−τ)dτ.

Since F k
s is an increasing function,

(15) Ek
s (t) ≤ F k

s (t)

(
1 + Ck

q

∫ t

−s−ρ
eC

k
q (t−τ)dτ

)
≤ F k

s (t)e
Ck

q (t+s+ρ).

Due to the Sobolev inequality, it follows that

∥v(t, s, ·)∥C|α|(Ω̄) ≤ CΩ,K∥v(t, s, ·)∥HK+1(Ω) ≤ CΩ,K∥v(t, s, ·)∥HK+1(Rn).

Combining this with (15), we obtain (14). □

Lemma 3.4. Let L = 2n− 2. There exists a sufficiently large N ∈ R such that if

(16) ∥q1∥
CL+n−1

2 +3+2N (R×Ω̄)
< 1,
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then,
N∑
j=0

∥a1,j∥L∞(R×Sn−1;C2n−2(Ω̄)) ≤ CΩ,N∥q1∥CL+2N (R×Ω̄)

and

sup
σ′∈R

∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥R̄1,N (t, ·, 2t+ 2σ′, ω)∥CL(Ω̄)dt ≤ CΩ,N∥q1∥
CL+n−1

2 +3+2N (R×Ω̄)
.

Proof. The first estimate comes directly from the definition of a1,j . It remains to show the second
estimate. Set

A = sup
σ′∈R

∫ T−σ′

−T−σ′
sup

ω∈Sn−1

∥R̄1,N (t, ·, 2t+ 2σ′, ω)∥CL(Ω̄)dt.

We write

A = sup
σ′∈R

∫ T

−T
sup

ω∈Sn−1

∥R̄1,N (t− σ′, ·, 2t, ω)∥CL(Ω̄)dt

= sup
σ′∈R

∫ T

−T
sup

ω∈Sn−1

∑
|γ|≤L

sup
x∈Ω

∣∣[Dγ
xR̄1,N ](t− σ′, x, 2t, ω)

∣∣ dt
= sup

σ′∈R

∫ T

−T
sup

ω∈Sn−1

∑
|α|+|β|≤L

sup
x∈Ω

∣∣∣[Dα
xD

|β|
s R1,N ](t− σ′, x, 2t− (t− σ′) + x · ω, ω)

∣∣∣ dt.
Then, we estimate

A ≤
∑

|α|+|β|≤L

2T sup
σ′∈R

sup
ω∈Sn−1

sup
x∈Ω

sup
t∈[−T,T ]

∣∣∣[Dα
xD

|β|
s R1,N ](t− σ′, x, 2t− (t− σ′) + x · ω, ω)

∣∣∣
≤

∑
|α|+|β|≤L

2T sup
t∈R

sup
ω∈Sn−1

sup
x∈Ω

sup
s∈[−2T,2T ]

∣∣∣[Dα
xD

|β|
s R1,N ](t, x, s− t+ x · ω, ω)

∣∣∣ .(17)

To estimate the last term, let us fix multi-indexes α, β such that |α|+ |β| = L and note that

(∂2t −∆+ q)D|β|
s R1,N (t, x, s, ω) = −[(∂2t −∆+ q1)a1,N ](t, x, ω)h

(|β|)
N (s+ t− x · ω).

Moreover, by employing the derivative definition, it can be verified that

D|β|
s R1,N (t, x, s, ω)|t<−s−ρ = 0.

We denote

(18) A1,N (τ, x, ω) = −[(∂2t −∆+ q1)a1,N ](t, x, ω),

Next, we will show that

(19) f(t, s, x, ω) = A1,N (τ, x, ω)h
(|β|)
N (s+ t− x · ω)

has a compact support as a function of the x variable. In [20], it was shown that

a1,N (t, x, ω) = 0, for x · ω < −ρ and for |x− x · ω| > ρ.

Hence, if x · ω ≤ 0, for sufficiently large |x|, it follows that a1,N (t, x, ω) = 0. If x · ω > 0, then

h
(|β|)
N (s+ t− x · ω) = 0 for sufficiently large |x|. Therefore, for fixed t, s, and ω, the function given
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by (19) is compactly supported. Therefore, by Lemma 3.3,

sup
x∈Ω

|Dα
xD

|β|
s R1,N (t, x, s, ω)|

≤ CΩ,Ke
CK

q (t+s+ρ)

∫ t

−s−ρ
∥A1,N (τ, ·, ω)h(|β|)N (s+ τ − (·) · ω)∥HK(Rn)dτ,

where

(20) K = |α|+ n− 1

2
+ 1, CK

q = 2 + CK∥q(t, ·)∥CK(Rn).

Since h
(|β|+k)
N is an increasing function for all k = 0, · · · ,K, it follows that

sup
x∈Ω

|Dα
xD

|β|
s R1,N (t, x, s, ω)| ≤ CΩ,Ke

CK
q (t+s+ρ)(t+ s+ ρ)

× sup
τ∈R

∥A1,N (τ, ·, ω)h(|β|)N (s+ t− (·) · ω)∥HK(Rn).

This is true for all s ∈ R. Hence, if we choose y ∈ Ω and replace s by s− t+ y ·ω, the last estimate
becomes

sup
x∈Ω

|[Dα
xD

|β|
s R1,N ](t, x, s− t+ y · ω, ω)| ≤ CΩ,Ke

CK
q (s+y·ω+ρ)(s+ y · ω + ρ)

× sup
τ∈R

∥A1,N (τ, ·, ω)h(|β|)N (s+ y · ω − (·) · ω)∥HK(Rn).

Let

z = sup
s∈[−2T,2T ]

sup
y∈Ω

sup
ω∈Sn−1

(s+ y · ω).

Note that z is constant depending only on Ω. Then, from the last inequality, we derive

(21) sup
x,y∈Ω

sup
t∈R

sup
s∈[−2T,2T ]

|[Dα
xD

|β|
s R1,N ](t, x, s− t+ y · ω, ω)| ≤ CΩ,Ke

CK
q (z+ρ)(z + ρ)

× sup
τ∈R

∥A1,N (τ, ·, ω)h(|β|)N (z − (·) · ω)∥HK(Rn).

Moreover, we know that

A1,N (τ, ·, ω)h(|β|)N (z − (·) · ω)

has a compact support with respect to x, which is uniformly bounded in τ ∈ R and ω ∈ Sn−1, that
is, there is a compact set Ω̃ such that

suppA1,N (τ, ·, ω)h(|β|)N (z − (·) · ω) ⊂ Ω̃ for all τ ∈ R and ω ∈ Sn−1.

The set Ω̃ depends only on Ω. Therefore,

(22) sup
τ∈R

∥A1,N (τ, ·, ω)h(|β|)N (z − (·) · ω)∥HK(Rn) ≤ sup
τ∈R

∥A1,N (τ, ·, ω)h(|β|)N (z − (·) · ω)∥HK(Ω̃)

≤ CΩ,N sup
τ∈R

∥A1,N (τ, ·, ω)∥HK(Ω̃).
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Therefore, since

sup
x∈Ω

sup
t∈R

sup
s∈[−2T,2T ]

|[Dα
xD

|β|
s R1,N ](t, x, s− t+ x · ω, ω)|

≤ sup
x,y∈Ω

sup
t∈R

sup
s∈[−2T,2T ]

|[Dα
xD

|β|
s R1,N ](t, x, s− t+ y · ω, ω)|,

from (21), (20), and (16), we obtain

sup
x∈Ω

sup
t∈R

sup
s∈[−2T,2T ]

sup
ω∈Sn−1

|[Dα
xD

|β|
s R1,N ](t, x, s− t+ x · ω, ω)|

≤ CΩ,N sup
ω∈Sn−1

sup
τ∈R

∥A1,N (τ, ·, ω)∥CK(Ω̃).

Since

(23) sup
ω∈Sn−1

sup
τ∈R

∥A1,N (τ, ·, ω)∥CK(Ω̃) ≤ CΩ,N∥q1∥CK+2+2N (R×Ω̄),

the previous estimate implies

sup
x∈Ω

sup
t∈R

sup
s∈[−2T,2T ]

sup
ω∈Sn−1

|[Dα
xD

|β|
s R1,N ](t, x, s− t+ x · ω, ω)| ≤ CΩ,N∥q1∥CK+2+2N (R×Ω̄).

Then, from (17), it follows that

A ≤ CΩ,N∥q1∥
CL+n−1

2 +3+2N (R×Ω̄)
.

This completes the proof. □

Now, we are ready to estimate M̃10q. Similarly, the same holds for M̃01q.

Lemma 3.5. Let Σ be as in (12). There exists a sufficiently large k ∈ N such that if

(24) ∥q1∥Ck(R×Ω̄) ≤ ε < 1,

then

(25) ∥M̃10q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Σσ)))

≤ εCΩ∥q∥L∞(R;L2(Rn)).

Proof. Depending on Ω, we choose N ∈ N large enough so that the hypothesis of Lemma 3.4 is
satisfied. Let k = L+ n−1

2 + 3 + 2N . Then, Lemmas 3.2, 3.4, and (24) give (25). □

Due to the symmetry, the same estimate holds for M̃01q. Next, we obtain a similar result for
M11q.

Lemma 3.6. Let Σ be as in (12). There exists a sufficiently large k ∈ R such that if

∥q1∥Ck(R×Ω̄) ≤ ε < 1, ∥q2∥Ck(R×Ω̄) ≤ ε < 1,

then

(26) ∥M̃11q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Σσ)))

≤ εCΩ∥q∥L∞(R;L2(Rn)).

Proof. Let N ∈ N be sufficiently large. We set

Qk
j (t, x, ω) = q(t, x)a1,j(t, x, ω)a2,k(t, x,−ω),

Qj(t, x, ω) = q(t, x)a1,j(t, x, ω),

Qk(t, x, ω) = q(t, x)a2,k(t, x,−ω).
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Next, we define

Al
kj(σ

′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qk

j (t, x, ω)h
(l)
j (t+ σ′ + σ − x · ω)δ(t+ σ′ − σ + x · ω)dtdx,

Bl
kj(σ

′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qk

j (t, x, ω)δ(t+ σ′ + σ − x · ω)h(l)k (t+ σ′ − σ + x · ω)dtdx,

Al
k(σ

′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qk(t, x, ω)∂lσR1,N (t, x, σ′ + σ, ω)δ(t+ σ′ − σ + x · ω)dtdx,

Bl
j(σ

′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qj(t, x, ω)δ(t+ σ′ + σ − x · ω)∂lσR2,N (t, x, σ′ − σ, ω)dtdx

and

Al1l2
j (σ′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qj(t, x, ω)h

(l1)
j (t+ σ′ + σ − x · ω)∂l2σ R2,N (t, x, σ′ − σ, ω)dtdx,

Bl1l2
k (σ′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qk(t, x, ω)∂l1σ R1,N (t, x, σ′ + σ, ω)h

(l2)
k (t+ σ′ − σ + x · ω)dtdx,

C l1l2(σ′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
q(t, x)∂l1σ R1,N (t, x, σ′ + σ, ω)∂l2σ R2,N (t, x, σ′ − σ, ω)dtdx

El1l2
kj (σ′, σ, ω) =

∫
Ω

∫ T−σ′

−T−σ′
Qk

j (t, x, ω)h
(l1)
j (t+ σ′ + σ − x · ω)h(l2)k (t+ σ′ − σ + x · ω)dtdx.

Then,

M̃q(σ′, σ, ω) =

N∑
k,j=0

(
E00

kj (σ
′, σ, ω) +A00

j (σ′, σ, ω) +B00
k (σ′, σ, ω) + C00(σ′, σ, ω)

)
Next, we note that

∂mσ E
00
kj ∈ span

{
{El1l2

kj } l1+l2=m
l1<j,l2<k

, {∂m−k−l
σ Al

kj}k+l≤m,l<j , {∂m−j−l
σ Bl

kj}j+l≤m,l<j

}
,

∂mσ A
00
j , ∂

m
σ B

00
j ∈ span

{{
Al,m−l

j , Al,m−l
j

}
l<j

,
{
∂m−j−l
σ Al

j , ∂
m−j−l
σ Bl

j

}
m≥j+l

}
,

∂mσ C
00 ∈ span

{{
C l,m−l

}
l≤m

}
.

Therefore,

(27) ∥M̃11q(σ
′, ·, ·)∥L2(Sn−1

ω ;H(n−1)/2(Σσ))
≤

∑
M θ

kj ,

where the sum is taking over all j, k ≤ N and the vectors θ = (γ1, γ2, η1, η2, τ1, τ2, ν1, ν2, µ1, µ2)
such that

η1 < k, η2, γ2, τ2 < j,

γ1 + γ2 + j, η1 + η2, τ1 + τ2, ν1 + ν2 + j, µ1 + µ2 ≤
n− 1

2
,
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and

M θ
kj =∥∂γ1σ A

γ2
kj(σ

′, ·, ·)∥L2(Σσ×Sn−1
ω ) + ∥∂γ1σ B

γ2
jk(σ

′, ·, ·)∥L2(Σσ×Sn−1
ω )

+ ∥∂ν1σ A
ν2
j (σ′, ·, ·)∥L2(Σσ×Sn−1

ω ) + ∥∂ν1σ B
ν2
j (σ′, ·, ·)∥L2(Σσ×Sn−1

ω )

+ ∥Aτ2τ1
j (σ′, ·, ·)∥L2(Σσ×Sn−1

ω ) + ∥Bτ1τ2
j (σ′, ·, ·)∥L2(Σσ×Sn−1

ω )

+ ∥Cµ1µ2(σ′, ·, ·)∥L2(Σσ×Sn−1
ω ) + ∥Eη1η2(σ′, ·, ·)∥L2(Σσ×Sn−1

ω ).

As we noted in the proof of Lemma 3.4, ∂lsR1,N satisfies

(28) (∂2t −∆+ q1)D
l
sR1,N (t, x, s, ω) = −[(∂2t −∆+ q1)a1,N ](t, x, ω)hlN (s+ t− x · ω)

and

(29) Dl
sR1,N (t, x, s, ω)|t<−s−ρ = 0.

The similar property holds for R2,N . Therefore, the same steps we used to prove Lemma 3.5, will
give

(30) ∥∂γ1σ A
γ2
kj(σ

′, ·, ·)∥L2(Σσ×Sn−1
ω ) + ∥∂γ1σ B

γ2
jk(σ

′, ·, ·)∥L2(Σσ×Sn−1
ω )

+ ∥∂ν1σ A
ν2
j (σ′, ·, ·)∥L2(Σσ×Sn−1

ω ) + ∥∂ν1σ B
ν2
j (σ′, ·, ·)∥L2(Σσ×Sn−1

ω ) ≤ εCΩ∥q∥L∞(R;L2(Rn))

for any σ′ ∈ R.
Next, we estimate

|Bτ1τ2
j (σ′, σ, ω)| ≤ ∥a2,j∥L∞(R×Ω×Sn−1)

×
∫
Ω
∥q(·, x)∥L∞(R)

∫ T

−T
|∂τ1σ R1,N (t− σ′, x, σ′ + σ, ω)|h(τ2)j (t− σ + x · ω)dtdx.

Due to Lemma 3.4, it follows

∥Bτ1τ2
j (σ′, ·, ·)∥L∞(Σ×Sn−1)

≤ CΩ∥q∥L∞(R;L2(Ω)) sup
σ∈Σ

sup
ω∈Sn−1

sup
x∈Ω

sup
t∈[−T,T ]

|∂τ1σ R1,N (t− σ′, x, σ′ + σ, ω)|.

To estimate the right-hand side, we repeat some steps of Lemma 3.4. Since ∂lsR1,N satisfies (28)
and (29), Lemma 3.3 gives

sup
σ∈Σ

sup
t∈[−T,T ]

|∂τ1σ R1,N (t− σ′, x, σ′ + σ, ω)|

≤ CΩ

∫ T−σ′

−σ−σ′−ρ
∥A1,N (τ, ·, ω)hτ1N (T + σ − (·) · ω∥HK(Rn)dτ,

where K = (n− 1)/2 + 1 and A1,N is the function defined by (18). Let

z = sup
σ∈Σ

T + σ.

Due to (22),

sup
σ∈Σ

sup
t∈[−T,T ]

|∂τ1σ R1,N (t− σ′, x, σ′ + σ, ω)| ≤ CΩ sup
τ∈R

∥A1,N (τ, ·, ω)∥HK(Ω̃)

for some compact Ω̃ which depends only on Ω. Then, (23) gives

sup
σ∈Σ

sup
t∈[−T,T ]

|∂τ1σ R1,N (t− σ′, x, σ′ + σ, ω)| ≤ CΩ∥q1∥
CL+n−1

2 +3+2N (R×Ω̄)
≤ εCΩ,
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and hence,
∥Bτ1τ2

j (σ′, ·, ·)∥L∞(Σ×Sn−1) ≤ εCΩ∥q∥L∞(R;L2(Ω)).

Similarly, this estimate holds also for Aτ2τ1
j , Cµ1µ2 , and Eη1η2 . Hence, from (27) and (30), we obtain

(26). □

Finally, we prove Theorem 2.1.

Proof of Theorem 2.1. Let C be a constant form Lemma 3.1 and CΩ be a common constant from
Lemmas 3.5 and 3.6. Let us fix 0 < ε < 1 such that 1/C − 3εCΩ > 0. Next, we choose k ∈ N
as large as Lemmas 3.5 and 3.6 require. Then, under conditions ∥q1∥Ck(R×Ω̄), ∥q2∥Ck(R×Ω̄) < ε,
Lemmas 3.1, 3.5, and 3.6 imply

∥M̃q∥L∞(Rσ′ ;L2(Sn−1
ω ;H(n−1)/2(Σσ)))

≥ 1

C
∥q∥L∞(R;L2(Rn)) − 3εCΩ∥q∥L∞(R;L2(Rn)).

This completes the proof. □

Remark 3.2. We want to emphasize on some subtle moment in the proof. The integration in (6)
happens inside the wedge in Figure 1, which, intersected with the cylinder |x| ≤ ρ, is compact. On
the other hand, M00q integrates over the “line segment” (a hyperplane) there only while the other

integrals integrate q inside the whole wedge. In order to absorb the M̃10q, etc., terms, we need
them to be small in q, which they are but they depend on q over a set larger than the one needed
in M̃00q. This arguments still works because we actually extend the estimates to q everywhere in
the t variable by taking a supremum in σ′ above. On the other hand, if we wanted to establish
local stability, like estimating q for t over a finite time interval having finite time back-scattering
data, that would have been be a problem.

Appendix A. Scattering theory for time-dependent potentials

We recall the basics of the scattering theory for time-dependent perturbations of the wave equa-
tion by restricting it to time-dependent potentials. We follow Cooper and Strauss [3, 4], where it
was introduced for moving obstacles, and its adaptation to time-dependent potentials in [20]. Some
of the statements below are new however, like Theorem A.4 and Theorem A.5. This theory is a
natural extension of (a part of) the Lax-Phillips scattering theory. We consider the wave equation

(3) with a smooth time-dependent potential q(t, x) supported in the cylinder R × B(0, R). We
assume n ≥ 3, odd to avoid working with the non-local translation representation when n is even.

A.1. Lax-Phillips formalism about the wave equation. The natural Cauchy problem for the
wave equation is the following

(31) (∂2t −∆)u = 0, (u, ut)|t=0 = (f1, f2).

We convert the wave equation into a system by setting u(t) = (u, ut); then

(32) ∂tu = Au, A :=

(
0 Id
∆ 0

)
.

We use boldface to denote vector-valued functions not necessarily of the type (u, ut) if there is
no background scalar function u(t, x) present. In particular, u(t) in Definition A.1 below is not
necessarily of that form.

The natural energy space of states of finite energy is defined as the completion of C∞
0 (Rn) ×

C∞
0 (Rn) under the energy norm

∥f∥2H =
1

2

∫ (
|∇f1|2 + |f2|2

)
dx, f := (f1, f2).
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In particular, the first term defines the Dirichlet space HD(Rn) with norm ∥∇f∥L2 . When n ≥ 3,
they are locally in L2, as it follows from the Poincaré inequality. The operator A naturally extends
to a skew-selfadjoint one (i.e, iA is self-adjoint) on H. Then by Stone’s theorem, U0(t) = etA is a
well-defined strongly continuous unitary group, and the solution of (32) is given by u(t) = U0(t)f .
The unitarity means energy conservation, in particular.

We define the local energy space Hloc in the usual way:

Hloc = {f : ϕf ∈ H for each ϕ ∈ C∞
0 (Rn)}.

By the finite speed of propagation, the Cauchy problem (31) has a well defined solution in Hloc if
the Cauchy data f is in Hloc only. We view those solutions as ones with (possibly) infinite energy
but locally finite one. Then u ∈ C(R; Hloc) and the wave equation is solved in distribution sense.
One can easily extend this to distributions.

A.2. Existence of dynamics. By [9], see also [17, X.12], the solution to

(∂2t −∆+ q(t, x))u = 0, (u, ut)|t=s = (f1, f2)

is given by u(t) = U(t, s)f , where f = (f1, f2) and U(t, s) is a two-parameter strongly continuous
group of bounded operators with the properties

(i) U(t, s)U(s, r) = U(t, r) for all t, s, r; and U(t, t) = Id,
(ii) ∥U(t, s)∥ ≤ exp

{
C|t− s| sups≤τ≤t, x∈Rn |q(τ, x)|

}
,

(iii) for any f ∈ D(A), we have U(t, s)f ∈ D(A) and

(33)
d

dt
U(t, s)f = (A−Q(t))U(t, s)f ,

d

ds
U(t, s)f = −U(t, s)(A−Q(s))f ,

where Q(t)f = (0, q(t, ·)f1) (and Q(t) is clearly bounded).
The two-parameter semi-group admits the expansion

(34) U(t, s) = U0(t− s) +
∞∑
k=1

Vk(t, s),

where

Vk(t, s)f = (−1)k
∫ t

s
ds1

∫ s1

s
dsk· · ·

∫ sk−1

s
dsk

× U0(t− s1)Q(s1) . . . U0(sk−1 − sk)Q(sk)U0(sk − s)f , k ≫ 1.

This expansion is an iterated version of the Duhamel’s formula

U(t, s) = U0(t− s) +

∫ t

s
U(t, σ)Q(σ)U0(σ − s) dσ

= U0(t− s) +

∫ t

s
U0(t− σ)Q(σ)U(σ, s) dσ.

(35)

The convergence of (34) follows from the estimate

∥Vk(t, s)∥ ≤ |t− s|k

k!

(
sup

s≤τ≤t
∥Q(τ)∥

)k

.

In particular, we get that we still have the finite speed of propagation property:

suppU(t, s)f ⊂ suppf +B(0, |t− s|).
As before, the finite speed of propagation allows us to extend U(t, s) to the space Hloc by a partition
of unity.
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Finally, notice that when q is time independent, then U(t, s) depends on the difference t−s only,
i.e., U(t, s) = U(t− s) where U is a group. It is not unitary however (unless q = 0) in the space H.
If we redefine the energy norm by

∥f∥2Hq =

∫ (
|∇f1|2 + q|f1|2 + |f2|2

)
dx,

(we need to know that it is a norm however, and q ≥ 0 suffices for that), then U(t) is unitary in
Hq.

A.3. Plane waves, translation representation and asymptotic wave profiles of free so-
lutions. The plane waves

δ(t− ω · x)
solve the wave equation, obviously. They can be thought of as plane waves propagating in the
direction ω with speed one. If we replace t by t+ s there, we can think of s as the delay time. The
plane wave above is the Schwartz kernel of the Radon transform

Rf(s, ω) =

∫
δ(s− ω · x)f(x) dx =

∫
x·ω=s

f(x) dSx.

For any density g(ω, s) (which can be a distribution as well), the superposition

u(t, x) :=

∫
R×Sn−1

δ(t+ s− ω · x)g(s, ω) ds dω =

∫
Sn−1

g(ω · x− t, ω) dω

is still a solution of the wave equation. The expression above can be recognized as the the transpose
R′ of the Radon transform applied to gt(s, ω) := g(s − t, ω). It turns out that all solutions of the
free wave equation in the energy space have that form.

Indeed, in [13], Lax and Phillips defined the free translation representation R : H → L2(R×Sn−1)
as follows

k(s, ω) = Rf(s, ω) = cn(−∂(n+1)/2
s Rf1 + ∂(n−1)/2

s Rf2),

where R is the Radon transform and cn = 2−1(2π)(1−n)/2, c−n = 2−1(−2π)(1−n)/2. The inverse is
given by

(36) R−1k(x) = 2c−n

∫
Sn−1

(
−∂(n−3)/2

s k(x · ω, ω), ∂(n−1)/2
s k(x · ω, ω)

)
dω.

The map R is unitary, and (RU0(t)R−1k)(s, ω) = k(s − t, ω), which explains the name. We also
set

(37) u♯(s, ω) = (−1)(n−1)/2k(s, ω)

and call u♯ the asymptotic wave profile of the solution u(t) = U0(t)f . This name is justified by the
theorem below, and it is the analog of the far free pattern for solutions of the free wave equation.

Theorem A.1 (Lax-Phillips, [13]). Let u(t) = U0(t)f , f ∈ H. Then∫ ∣∣∣ut − |x|−(n−1)/2u♯
(
|x| − t,

x

|x|

)∣∣∣2 dx→ 0, as |t| → ∞.

Remark A.1. In [13], the factor (−1)(n−1)/2 is missing from (37), i.e., u♯ = k. Cooper and Strauss
in [3] found out that this factor must be present in (37).
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A.4. Outgoing solutions and their asymptotic wave profiles. We follow here [2, 3]. Given
u(t, x) (and only then), recall the notation u(t) := (u(t, ·), ut(t, ·)), see (32).

Definition A.1. The function u(t) ∈ C(R; Hloc) is called outgoing if limt→−∞(u(t), U0(t)g) = 0
for each g ∈ C∞

0 (Rn)× C∞
0 (Rn).

In this definition, u(t) does not need to be a solution of the wave equation (anywhere). On
the other hand, if u(t, x) solves the wave equation in |x| > ρ for some ρ > 0, then, see [2, 3], u is
outgoing if and only if for any T ∈ R, U0(t− T )u(T ) = 0 in the forward cone |x| < t− T − ρ.

One simple example of non-trivial outgoing solutions (for |x| > ρ) is the following. Let p ∈
L1
loc(R; L2(Rn)) satisfy p = 0 for t < t0, where t0 is fixed. Solve

(38) (∂2t −∆)u = p(t, x) in R× Rn.

with Cauchy data

(u, ut)|t=t0 = (0, 0).

By Duhamel’s formula,

u(t) =

∫ t

t0

U0(t− s)p(s) ds, p(s) := (0, p(s, ·)).

The latter is well-defined in Hloc by finite speed of propagation. The solution for t < t0 is just
zero. Then u is outgoing in a trivial way. Moreover, this is the unique outgoing solution of (38).
Indeed, take the difference v of any two. Then v(t) = U0(t)f , where f is the initial condition.
Then 0 = limt→−∞(v(t), U0(t)g) = (f , g), for any test function g; therefore, f = 0 and then v = 0.

This can be generalized as follows.

Theorem A.2 ( [2, 3]). Let p ∈ L1
loc(R; L2(Rn)) and assume that for each t,

(39) lim
T→−∞

∫ t

T
U0(−s)p(s) ds exists in Hloc, p(s) := (0, p(s, ·)).

Then there exists a unique outgoing solution u ∈ C(R; Hloc) of (38) given by

u(t) =

∫ t

−∞
U0(t− s)p(s) ds.

Remark A.2. Clearly, p ∈ L1((−∞, a); L2(Rn)) for any a would guarantee the regularity assump-
tion on p and (39). Also, the assumptions on p in the next theorem are enough.

Proof. The absolute convergence of the integral in H0
loc follows from the assumptions. To show that

u is outgoing, for g ∈ C∞
0 (Rn)× C∞

0 (Rn), consider

(u(t), U0(t)g) =

∫ t

−∞
(U0(t− s)p(s), U0(t)g) ds =

∫ t

−∞
(U0(−s)p(s), g) ds.

The latter converges to 0, as t→ −∞ by assumption. □

Theorem A.3 ( [2, 3]). Let n ≥ 3 be odd. Let p ∈ L1
loc(R; L2(Rn)) with p(t, x) = 0 for |x| > ρ.

Let u be the unique outgoing solution of (38).
(a) Then there is a unique function u♯ ∈ L2

loc(R× Sn−1) such that for all R1 < R2 we have∫
R1+t<|x|<R2+t

∣∣∣∣ut(t, x)− |x|−(n−1)/2u♯
(
|x| − t,

x

|x|

)∣∣∣∣2 dx→ 0, as t→ ∞.
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(b) If p ∈ C∞
0 (Rn+1),

(40) u♯(s, ω) = c−n ∂
(n−1)/2
s

∫
p(ω · x− s, x) dx.

(c) The map p→ u♯ is continuous.

Remark A.3. For general p as in the theorem, u♯ is still given by (40) but the derivative is in
distribution sense; by (b), the result is in L2

loc(R× Sn−1). Another way to write (40) is∫
u♯(s, ω)ϕ(s) ds = cn

∫∫
p(t, x)(∂(n−1)/2

s ϕ)(ω · x− s, x) dt ds, ∀ψ(s) ∈ C∞
0 (R).

Proof. Motivated by Theorem A.2, for fixed R1 < R2, set

f =

∫ −R1+ρ

−R2−ρ
U0(−τ)p(τ) dτ, v(t) = U0(t)f .

By Huygens’ principle, v(t) = u(t) for R1+ t < |x| < R2+ t. Therefore, v does have an asymptotic
wave profile, and v♯(s, ω) = u♯(s, ω) for R1 < s < R2. On the other hand, we have a formula for
v♯, (36) and (37) which says

v♯(s, ω) = (−1)(n−1)/2(Rf)(s, ω)

= c−n ∂
(n−1)/2
s

∫ −R1+ρ

−R2−ρ

∫
x·ω=s+τ

p(x · ω − s, x) dSx dτ.

Then

u♯(s, ω)|R1<s<R2 = v♯(s, ω) = c−n ∂
(n−1)/2
s

∫
p(x · ω − s, x) dx.

Since R1 < R2 are arbitrary, this, combined with Theorem A.2, proves (a); and (b) for p ∈ C∞
0 .

The proof of (c) is straightforward: use (40) and take Fourier transform w.r.t. s. In particular,
we get that the map p→ u♯ can be extended continuously in those spaces. □

Remark A.4. We call u♯ in the theorem the asymptotic wave profile of the unique outgoing solution
of (38). Note that there are two cases where we defined such profiles: for free solutions in the
energy space, see Theorem A.2, and in Theorem A.3 above, where u is in the energy space locally
only, and solves (38) instead.

A.5. Scattering solutions. The scattering solutions u− and u+ were introduced in section 3 as
the solutions of (3), and (5), respectively. Since they involve distributions, not necessarily in the
energy spaces (even locally), we proceed as follows. We can think of (u(t, x; s, ω), ut(t, x; s, ω)) as
distribution in the (s, ω) variables with values in Hloc. It is more convenient however to do the
following. Let hj(t) = h(t)tj/j!, j = 1, 2 . . . , where h is the Heaviside function; and we also set
h−1 = δ . Then h′j = hj−1, j = 0, 1, 2, . . . . To define u− eventually, we solve

(41) (∂2t −∆+ q(t, x))Γ = 0, Γ|t<−s−ρ = h1(t+ s− x · ω)
first (notice that h1(t+ s− x · ω) is locally in the energy space now), set

Γsc = Γ− h1(t+ s− x · ω),
compute the asymptotic wave profile Γ♯(s′, ω′; s, ω) of Γsc, and differentiate the result twice w.r.t.
s to get the analog of the scattering amplitude. In particular, then

(42) u(t, x; s, ω) = ∂2sΓ(t, x; s, ω), u−sc(t, x; s, ω) = ∂2sΓsc(t, x; s, ω).

will be well defined as distributions.
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In a similar way, one can construct the scattering solutions u+ which look like plane waves as
t → +∞, instead of t → −∞. They would solve (5). Performing the change of variables t̃ = −t
(time reversal), s̃ = −s, ω̃ = −ω, we see that u+(t, x; s, ω) = ũ+(−t, x;−s,−ω), where ũ is related
to q̃(t, x) := q(−t, x). The regularized version, Γ+, can be constructed as in (41) with the condition
Γ+ = h1(−t − s + x · ω) for t > −s + ρ. The right-hand side of this condition then would be
supported outside R×B(0, R) for t > −s+ ρ. Then we define u+ and u+sc as in (42).

By the finite speed of propagation property

(43) suppu−(·, ·; s, ω) ⊂ {t+ s− x · ω ≥ 0}, suppu+(·, ·; s, ω) ⊂ {t+ s− x · ω ≤ 0}.

Next theorem generalizes Theorem A.3.

Theorem A.4. Let p be as in Theorem A.3. Set

u(t) :=

∫ t

−∞
U(t, s)p(s) ds.

Then u ∈ C(R; Hloc) is outgoing, and has has an asymptotic wave profile u♯(s, ω) given by

u♯(s, ω) = c−n ∂
(n−1)/2
s

∫
p(t, x)u+(t, x; s, ω) dt dx.

Proof. By (35),

u(t) =

∫ t

−∞
U0(t− s)p(s) ds+

∫ t

−∞

∫ t

s
U0(t− σ)Q(σ)U(σ, s)p(s) dσ ds

=

∫ t

−∞
U0(t− s)p(s) ds+

∫ t

−∞

∫ σ

−∞
U0(t− σ)Q(σ)U(σ, s)p(s) ds dσ.

(44)

Then we are in the situation of Theorem A.3 with p(t) there replaced by

(45) p̃(t) := p(t) + p1(t), p1(t) := Q(t)

∫ t

−∞
U(t, s)p(s) ds = Q(t)u(t).

Then u has an asymptotic wave profile u♯(s′, ω′) satisfying

(46) u♯(s′, ω′) = c−n ∂
(n−1)/2
s

∫
p̃(t, x)δ(t+ s′ − ω′ · x) dx dt.

The first term on the right-hand side of (44) is handled by Theorem A.3. We analyze the second
term below, which we call u1(t). By Theorem A.3 again, its asymptotic wave profile is given by

u♯1(s
′, ω′) = c−n ∂

(n−1)/2
s

∫ [
Q(t, x)

∫ t

−∞
U(t, x; s, y)p(s, y) ds dy

]
2
δ(t+ s′ − ω′ · x) dt dx

= c−n ∂
(n−1)/2
s

∫
K(s′, ω′; s, y)p(s, y) ds dy,

(47)

where the last identity defines K, i.e.,

(48) K(s′, ω′; s, y) =

∫ ∞

s

∫
q(t, x)U12(t, x; s, y)δ(t+ s′ − ω′ · x) dx dt.

By (33),

(−∂s +A′
y −Q′(s))U ′(t, x; s, y) = 0,
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where A is the operator defined by (32) and the primes denote transpose operators in distribution
(not in energy space) sense. This equality can be written also as(

−∂s ∆y − q(s)
Id −∂s

)
U ′(t, x; s, y) = 0.

In particular,

(49) (∂2s −∆y + q(s))U12(t, x; s, y) = 0.

Differentiate K in (48) to obtain

∂sK(s′, ω′; s, y) =

∫ ∞

s

∫
q(t, x)∂sU12(t, x; s, y)δ(t+ s′ − ω′ · x) dx dt

because U12(s, x; s, y) = 0. Differentiate again:

∂2sK(s′, ω′; s, y) =

∫ ∞

s

∫
q(t, x)∂2sU12(t, x; s, y)δ(t+ s′ − ω′ · x) dx dt

− q(s, x)δ(s+ s′ − ω′ · y).
Then by (49) and (48),

(50) (∂2s −∆y + q(s))K(s′, ω′; s, y) = −q(s, x)δ(s+ s′ − ω′ · y).
On the support of the integrand in (48), we have t+ s′ < ρ, s < t. Therefore,

(51) K(s′, ω′; s, y)|s>−s′+ρ = 0.

Therefore, K solves (50), (51), which is the same problem solved by u+sc(s
′, ω′; s, y), see (5). There-

fore, K = u+sc.
Going back to (46) and (45), we see that

u♯(s′, ω′) = c−n ∂
(n−1)/2
s

∫
(p(t, x) + p1(t, x)) δ(t+ s′ − ω′ · x) dx dt

= c−n ∂
(n−1)/2
s

∫
p(t, x))

(
δ(t+ s′ − ω′ · x) + u+sc(s

′, ω′; t, x)
)
dx dt

= c−n ∂
(n−1)/2
s

∫
p(t, x))u+(s′, ω′; t, x) dx dt,

where we used (47) and the identity K = u+sc we just derived. □

A.6. The scattering amplitude and the scattering kernel. Let Γ solve (41). Since the Cauchy
data (h1(t+ s− x · ω), h0(t+ s− x · ω)), for say, t = −s− ρ− 1, is in Hloc, a solution (Γ,Γt) with
locally finite energy exists. Then Γsc is clearly outgoing. It solves the Cauchy problem

(∂2t −∆)Γsc = −qΓ, Γsc|t<−s−ρ = 0.

By Theorem A.3, Γsc has an asymptotic wave profile Γ♯
sc given by

Γ♯
sc(s

′, ω′; s, ω) = −c−n ∂
(n−1)/2
s′

∫
q(x · ω′ − s′, x)Γ(x · ω′ − s′, x; s, ω) dx

= −c−n ∂
(n−1)/2
s′

∫
q(t, x)Γ(t, x; s, ω)δ(t+ s′ − x · ω′) dt dx.

Differentiate twice w.r.t. s, see (42), to get

u−,♯
sc (s′, ω′; s, ω) = −c−n ∂

(n−1)/2
s′

∫
q(t, x)u−(t, x; s, ω)δ(t+ s′ − x · ω′) dt dx.
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Definition A.2. The scattering amplitude A♯ is given by

A♯(s′, ω′; s, ω) =

∫
q(t, x)u−(t, x; s, ω)δ(t+ s′ − x · ω′) dt dx,

where u− solves (3).

By the finite speed of propagation, u−(t, x; s, ω) = 0 for x · ω > t + s. Therefore, the integrand
vanishes outside of the region x · (ω − ω′) ≤ s − s′. The l.h.s. has a lower bound −2ρ on supp q;
therefore,

suppA♯ ⊂ {s′ ≤ s+ ρ|ω − ω′|} ⊂ {s′ ≤ s+ 2ρ}.

Note that A♯ and u♯sc = −c−n ∂
(n−1)/2
s′ A♯ can be reconstructed from each other thanks to that support

property.
Since the perturbed dynamics is a two-parameter group, we need to generalize the notion of the

wave operators and the scattering operator.

Definition A.3. The wave operators Ω− and W+ in H are defined as the strong limits

Ω− = s - lim
t→−∞

U(0, t)U0(t), W+f = lim
t→∞

U0(−t)U(t, 0)f ; f ∈ Ran Ω−,

if they exist and define continuous operators. In the latter case, the scattering operator S is defined
by

S =W+Ω−.

This definition also makes sense for f ∈ Hcomp, where Hcomp denotes the subspace of H consisting
of compactly supported functions, with Sf taking values possibly in Hloc.

Theorem A.5.
(a) The wave operator Ω− : Hcomp → H exists and

(52) U(t, 0)Ω−f = 2c−n

∫
R×Sn−1

u−(t, x; s, ω)∂(n−3)/2
s (Rf)(s, ω) ds dω.

(b) The wave operator W+ : H → Hloc exists.
(c) The scattering operator S : Hcomp → Hloc exists.

Proof. Choose f ∈ Hcomp, so that f(x) = 0 for |x| > R with some R > 0. Let k = Rf . Then
k(s, ω) = 0 for |s| > R. For t < −R − ρ := t0, U(0, t)U0(t)f = U(0, t0)U0(t0)f . In particular, the
limit defining Ω−f exists trivially and U(t, 0)Ω−f = U(t, t0)U0(t0)f . The r.h.s. of the latter solves
the perturbed wave equation and equals U0(t0)f = R−1k(· − t0, ·) for t = t0. To prove (52), we
need to show that the r.h.s. of (52), call it v(t), has the same initial condition for t ≤ t0.

For t ≤ t0, u(t, x; s, ω) = δ(t+ s− x · ω). Then by (36),

v(t) = 2c−n

∫
R×Sn−1

δ(t+ s− x · ω)∂(n−3)/2
s k(s, ω) ds dω = (R−1k)1(· − t, ·),

which proves (a).
To prove the existence of W+ in (b), fix first R > 0 and let 1B(0,R) be the characteristic function

of that ball. By (35),

1B(0,R)U0(−t)U(t, s) = 1B(0,R)U0(−s) + 1B(0,R)

∫ t

s
U0(−σ)Q(σ)U(σ, s) dσ.

By Huygens’ principle, 1B(0,R)U0(−σ)Q(σ) = 0 for σ > R + ρ. For t > R + ρ then the integral
above is independent of t and therefore the strong limit 1B(0,R)W+ exists in a trivial way, defining
a unique element in Hloc.
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Part (c) follows from (a) and (b). □

The scattering operator S on H exists (as a bounded operator) under some conditions, see

the references in [20, sec. 3]. Then −c−n ∂
(n−1)/2
s′ A♯(s′, ω′; s, ω) is the Schwartz kernel of R(S −

Id)R−1. In the general case, we can consider the latter as the Schwartz kernel of the operator
mapping asymptotic wave profiles instead of translation representations, see (37), as shown [20,
Proposition 3.1].

Proposition A.1 ( [2, 3], [20]). Let f ∈ C∞
0 (Rn) × C∞

0 (Rn). Let v0(t) = U0(t)f , and let v(t) be
the solution of (1) which equals v0(t) for t≪ 0. Then we have

v♯(s′, ω′) = v♯0(s
′, ω′)− c−n ∂

(n−1)/2
s′

∫
R×Sn−1

A♯(s′, ω′; s, ω)v♯0(s, ω) ds dω.

The proof of the proposition is done by taking the asymptotic wave profile of (52) and applying
Duhamel’s formula (35) first.

Finally, we will prove Proposition 3.1

Proof of Proposition 3.1. Start with

U1(t, s)− U2(t, s) =

∫ t

s
U1(t, σ)(Q1(σ)−Q2(σ))U2(σ, s) dσ,

which can be obtained by applying the Fundamental Theorem of Calculus to F (σ) = U1(t, σ)U2(σ, s)
in the interval σ ∈ [s, t]. Apply U0(−s)f on the right-hand, and take the (strong) limit s → −∞
to get

(53) U1(t, 0)Ω1,−f − U2(t, 0)Ω2,−f =

∫ t

−∞
U1(t, σ)(Q1(σ)−Q2(σ)) [U2(σ, 0)Ω2,−f ] dσ.

For the left-hand side, and for the expression in the square brackets we will apply Theorem A.5(a).
We take the asymptotic wave profile of (53) next applying Theorem A.4. Then (6) is just that
expression, written as a composition of Schwartz kernels, eventually applied to Rf . □

Appendix B. A weighted Radon transform

We recall the definition of the weighted Euclidean Radon transform

Rµf(p, ω) =

∫
x·ω=p

µ(x, ω)f(x)dx =

∫
ω⊥
µ(pω + y, ω)f(pω + y)dy.

where µ ∈ C∞(R× Sn−1) is a weight. We will use the next result:

Theorem B.1. Let Ω be an open, bounded set and µ ∈ C∞(R× Sn−1). Then, there is a constant
CΩ > 0, which depends only on Ω, such that

∥Rµf∥L2(Sn−1
ω ;H(n−1)/2(Rσ))

≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥C2n−2(Ω̄)∥f∥L2(Ω)

for all f ∈ C∞
0 (Ω).

To prove this, we need the following auxiliary lemmas.

Lemma B.1. Let Ω ⊂ Rn be an open, bounded set and ν be a function on Rn × Rn such that for
any fixed ξ ∈ Rn, ν(·, ξ) ⊂ Cn(Ω̄) with supp ν(·, ξ) ⊂ Ω. Then, the operator V , given by

V : f →
∫
Rn

e−ixξν(x, ξ)f(x)dx,
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satisfies

∥V ∥L2(Ω)→L2(Rn) ≤ CΩ sup
ξ∈Rn

∥ν(·, ξ)∥Cn(Ω̄).

Proof. Throughout this proof, CΩ will serve as a universal positive constant depending only on Ω,
which may vary from line to line. Let f ∈ C∞

0 (Ω), then

|V f(ξ)| =
∣∣∣∣∫

Rn

Dxn · · ·Dx1

(∫ x1

−∞
· · ·

∫ xn

−∞
f(y)e−iyξdyn · · · dy1

)
ν(x, ξ)dx

∣∣∣∣ .
By integration by parts, we obtain

|V f(ξ)| ≤
∫
Rn

∣∣∣∣∫ x1

−∞
· · ·

∫ xn

−∞
f(y)e−iyξdyn · · · dy1

∣∣∣∣ |Dxn · · ·Dx1ν(x, ξ)|dx

≤ CΩ sup
ξ∈Rn

∥ν(·, ξ)∥Cn(Ω̄) sup
x∈Rn

∣∣∣∣∫
Rn

e−iyξf(y)χ{z:zk≤xk}(y)dy

∣∣∣∣ ,
where χA is the indicator function for a set A. Therefore, we estimate

∥V f∥L2(Rn) ≤ CΩ sup
ξ∈Rn

∥ν(·, ξ)∥Cn(Ω̄) sup
x∈Rn

∥F [fχ{z:zk≤xk}]∥L2(Ω)

≤ CΩ sup
ξ∈Rn

∥ν(·, ξ)∥Cn(Ω̄) sup
x∈Rn

∥fχ{z:zk≤xk}∥L2(Ω)

≤ CΩ sup
ξ∈Rn

∥ν(·, ξ)∥Cn(Ω̄)∥f∥L2(Ω).

This completes the proof. □

Lemma B.2. Let ω ⊂ Rn be an open bounded set and µ, ν ∈ C∞(R× Sn−1). Then, there exists a
constant CΩ > 0, which depend only on Ω, such that

|(R∗
µRνD

γf, f)L2(Rn)| ≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄) sup
ω∈Sn−1

∥ν(·, ω)∥Cn−1+|γ|(Ω̄) ∥f∥L2(Ω).

for any f ∈ C∞
0 (Ω) and multi-index any γ with 0 ≤ |γ| ≤ n− 1.

Proof. Throughout this proof, CΩ will serve as a universal positive constant depending only on Ω,
which may vary from line to line. Let χ ∈ C∞

0 (Rn) such that χ(x) = 1 for x ∈ Ω. Then, for
f ∈ C∞

0 (Ω),

|(R∗
µRνD

γf, f)L2(Rn)| = |(χR∗
µRνD

γ(χf), f)L2(Rn)| ≤ ∥χR∗
µRνD

γ(χf)∥L2(Rn)∥f∥L2(Rn).

Let us investigate the first multiplier on the right-hand side. By Proposition 5.8.3 in [23], R∗
µRν is

a ΨDO of order 1− n with the amplitude given by

(2π − 1)
µ(x, ξ/|ξ|)ν(y, ξ/|ξ|) + µ(x,−ξ/|ξ|)ν(y,−ξ/|ξ|)

|ξ|n−1
.

Then,

χR∗
µRνD

γ(χf) = Af +Bf

with

Af(x) = CΩ

∫
Rn

∫
Rn

ei(x−y)ξχ(x)
µ(x, ξ/|ξ|)ν(y, ξ/|ξ|)

|ξ|n−1
Dγ

y (χ(y)f(y))dydξ

and

Bf(x) = CΩ

∫
Rn

∫
Rn

ei(x−y)ξχ(x)
µ(x,−ξ/|ξ|)ν(y,−ξ/|ξ|)

|ξ|n−1
Dγ

y (χ(y)f(y))dydξ.
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By integration by parts, we obtain

|Af(x)| ≤ CΩ

∑
α+β=γ

∣∣∣∣∣
∫
Rn

∫
Rn

ei(x−y)ξχ(x)ξα
µ(x, ξ/|ξ|)Dβ

y ν(y, ξ/|ξ|)
|ξ|n−1

χ(y)f(y)dydξ

∣∣∣∣∣ .
Let ϕ ∈ C∞(Rn) be a function such that

ϕ(ξ) =

{
0 |ξ| ≤ 1;

1 |ξ| ≥ 2.

We denote

A1
α,βf(x) =

∫
Rn

∫
Rn

ei(x−y)ξ(1− ϕ(ξ))χ(x)ξα
µ(x, ξ/|ξ|)Dβ

y ν(y, ξ/|ξ|)
|ξ|n−1

χ(y)f(y)dydξ

and

A2
α,βf(x) =

∫
Rn

∫
Rn

ei(x−y)ξϕ(ξ)χ(x)ξα
µ(x, ξ/|ξ|)Dβ

y ν(y, ξ/|ξ|)
|ξ|n−1

χ(y)f(y)dydξ.

Then, the last inequality implies

(54) |Af(x)| ≤ CΩ

∑
α+β=γ

(
|A1

α,βf(x)|+ |A2
α,βf(x)|

)
.

Let us estimate the L2-norm of A1
α,βf . The kernel of A1

α,β is given by

Kα,β(x, y) =

∫
Rn

ei(x−y)ξ(1− ϕ(ξ))ξα
χ(x)χ(y)µ(x, ξ/|ξ|)Dβ

y ν(y, ξ/|ξ|)
|ξ|n−1

dξ.

We estimate

sup
y∈Rn

∫
Rn

|Kα,β(x, y)|dx

≤ ∥χ∥L∞(Rn)

∫
Rn

ξα
(1− ϕ(ξ))

|ξ|n−1
dξ sup

ω∈Sn−1

∥µ(·, ω)∥L∞(Rn) sup
ω∈Sn−1

∥ν(·, ω)∥C|β|(Rn).

Hence,

sup
y∈Rn

∫
Rn

|Kα,β(x, y)|dx = CΩ sup
ω∈Sn−1

∥µ(·, ω)∥L∞(Rn) sup
ω∈Sn−1

∥ν(·, ω)∥C|β|(Rn),

and similarly,

sup
x∈Rn

∫
Rn

|Kα,β(x, y)|dy = CΩ sup
ω∈Sn−1

∥µ(·, ω)∥L∞(Rn) sup
ω∈Sn−1

∥ν(·, ω)∥C|β|(Rn).

Therefore, by Lemma 18.1.12 in [8],

(55) ∥A1
α,βf∥L2(Ω) ≤ CΩ sup

ω∈Sn−1

∥µ(·, ω)∥L∞(Rn) sup
ω∈Sn−1

∥ν(·, ω)∥C|β|(Rn)∥f∥L2(Ω).

Next, we estimate the L2-norm of A2
α,βf . We denote We denote

να,β(y, ξ) =
ξαDβ

y ν(y, ξ/|ξ|)
|ξ||α|

χ(y)

and

vα,β(ξ) =

∫
Rn

e−iyξνα,β(y, ξ)f(y)dy,
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so that

A2
α,βf(x) =

∫
Rn

eixξϕ(ξ)
χ(x)µ(x, ξ/|ξ|)

|ξ|n−1−|α| vα,β(ξ)dξ

=

∫
Rn

eixξϕ(ξ)
χ(x)µ(x, ξ/|ξ|)

|ξ|n−1−|α| F [F−1vα,β](ξ)dξ.

Next, we note that∑
τ≤n+1

∫
Rn

∣∣∣∣Dτ
x

(
χ(x)ϕ(ξ)µ(x, ξ/|ξ|)

|ξ|n−1−|α|

)∣∣∣∣ dx ≤ CΩ sup
ω∈Sn−1

∥χ(·)µ(·, ω)∥Cn+1(Rn)

≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄).

Therefore, Theorem 18.1.11’ in [8] implies that∫
Rn

∣∣∣ ∫
Rn

eixξ
χ(x)ϕ(ξ)µ(x, ξ/|ξ|)

|ξ|n−1−|α| F [F−1vα,β](ξ)dξ
∣∣∣2dx

≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥2Cn+1(Ω̄)∥F
−1vα,β∥2L2(Rn)

≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥2Cn+1(Ω̄)∥vα,β∥
2
L2(Rn).

Hence,

∥A2
α,βf∥L2(Rn) ≤ CΩ sup

ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄)∥vα,β∥L2(Rn).

By Lemma B.1,

∥vα,β∥L2(Rn) ≤ CΩ sup
ξ∈Rn

∥να,β(·, ξ)∥Cn(Ω̄)∥f∥L2(Ω).

We estimate

sup
ξ∈Rn

∥να,β(·, ξ)∥Cn(Ω̄) = sup
ξ∈Rn

∥∥∥∥ξαDβν(·, ξ/|ξ|)
|ξ||α|

χ(·)
∥∥∥∥
Cn(Ω̄)

≤ CΩ sup
ξ∈Rn

∥∥∥Dβν(·, ξ/|ξ|)
∥∥∥
Cn(Ω̄)

≤ CΩ sup
ξ∈Sn−1

∥ν(·, ξ)∥Cn+|β|(Ω̄) .

Therefore,

∥A2
α,βf∥L2(Rn) ≤ CΩ sup

ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄) sup
ξ∈Sn−1

∥ν(·, ξ)∥Cn+|β|(Ω̄) ∥f∥L2(Ω).

Therefore, by (54) and (55), we obtain

∥Af∥L2(Rn) ≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄) sup
ω∈Sn−1

∥ν(·, ω)∥Cn−1+|γ|(Ω̄) ∥f∥L2(Ω).

Similarly, we estimate ∥Bf∥L2(Rn) and conclude that

∥χR∗
µRνD

α(χf)∥L2(Rn) ≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄) sup
ω∈Sn−1

∥ν(·, ω)∥Cn−1+|γ|(Ω̄) ∥f∥L2(Ω).

This completes the proof. □

Now, we prove Theorem B.1.
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Proof of Theorem B.1. Let f ∈ C∞
0 (Ω) and Ω ⊂ Rn compact. We denote L = (n − 1)/2 and

estimate

∥Rµf∥2L2(Sn−1
ω ;HL(Rσ))

=
L∑
l=0

∥∂lpRµf∥L2(R×Sn−1) ≤
2L∑
l=0

|(R∗
µ∂

l
pRµf, f)L2(Rn)|.

We note that

∂lpRµf(p, ω) = ∂lp

(∫
ω⊥
µ(pω + y, ω)f(pω + y)dy

)
=

∑
|α|+|β|=l

Cα,β

∫
ω⊥
Dαf(pω + y)Dβµ(pω + y, ω)ωα+βdy.

Let us set

µα,β(x, ω) = ωα+βDβµ(x, ω)

so that, the previous equality gives

∂lpRµ =
∑

|α|+|β|=l

Cα,βRµα,β
Dα and R∗

µ∂
l
pRµ =

∑
|α|+|β|=l

Cα,βR
∗
µRµα,β

Dα.

By Lemma B.2, we estimate

|(R∗
µRµα,β

Dαf, f)L2(Ω)| ≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥Cn+1(Ω̄) sup
ω∈Sn−1

∥Dβµ(·, ω)∥Cn−1+|α|(Ω̄)∥f∥
2
L2(Ω)

≤ CΩ sup
ω∈Sn−1

∥µ(·, ω)∥2C2n−2(Ω̄)∥f∥
2
L2(Ω).

This completes the proof. □
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