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Abstract. We prove Weyl-type asymptotic formulas for the real and the com-

plex internal transmission eigenvalues when the domain is a ball and the index

of refraction is constant.

1. Introduction. The purpose of this paper is to prove a Weyl-type asymptotic
formulas for the counting function of the real Interior Transmission Eigenvalues
(ITEs) for a ball and a constant index of refraction. Let Ω ⊂ Rn be an open
bounded domain with smooth boundary. Let m > 0 be a smooth function in Ω̄.
The Interior Transmission problem is given by the following system

(1)


(−∆− λ2m)v = 0,

(−∆− λ2)u = 0,

u|∂Ω = v|∂Ω, ∂νu|∂Ω = ∂νv|∂Ω,

where ν is the exterior unit normal. Any λ 6= 0 for which there exist non-zero
u, v ∈ H2(Ω) satisfying (1) is called an Interior Transmission Eigenvalue (ITE). In
the literature, λ2 is sometimes replaced by λ. We call the corresponding pair (u, v)
an Interior Transmission Eigenpair. The requirement that u and v be both non-zero
is unambiguous; if either u or v is identically zero, by unique continuation, the other
one also vanishes. A generalization of (1) is obtained by replacing the first equation
with a possibly anisotropic Helmholtz-type equation:

(2)


−∆u(x)− λ2u(x) = 0, x ∈ Ω,

−∇A(x)∇v − λ2m(x)v = 0, x ∈ Ω,

u(x)− v(x) = 0, x ∈ ∂Ω,
∂u
∂ν − ν ·A(x)∇v = 0, x ∈ ∂Ω.

Here A(x) = {aij(x)} is a smooth real symmetric invertible matrix.
ITEs were first studied in 1986 by Kirsch [12], and in 1988 in the context of the

inverse scattering problem by Colton and Monk [6]. They were shown to correspond
to the frequencies, for which the reconstruction algorithm in inverse scattering based
on linear sampling methods breaks down, see e.g. [13], [1] and [3]. When the index
of refraction m is radially symmetric, ITEs completely determines m, as shown in
[2] and [20].
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In 1989, Colton, Kirsch and Päivärinta [5] showed that the set of real ITEs
is at most discrete. The existence of real ITEs was first established for radially
symmetric m, see e.g. [6, 20]; the radial symmetry requirement was removed in
2008 by Sylvester and Päivärinta [22], with the assumption that the contrast of the
medium m − 1 is large enough. In 2010, Cakoni et al. [4] showed that the set of
real ITEs is infinite and discrete by only requiring that the contrast m − 1 does
not change sign and be bounded away from zero. In 2012, Sylvester [29] showed
discreteness under an even weaker assumption that m 6= 1 on the boundary. ITEs
for isotropic systems were also studied for L∞ and complex valued m, see e.g. [17]
and [25]; and for general elliptic differential operators, see e.g., [9] and [11]. The
interior anisotropic transmission problem has been studied as well; for this setting,
results on the discreteness and existence of ITEs were established in various papers
by Lakshtanov and Vainberg [16, 15, 14, 17]. It should be noted that complex
eigenvalues may exist, thus the ITE problem is not self-adjoint. Cakoni et al. [4]
also showed the existence of complex TEs under the same assumption on m. For
other results on the infiniteness of the set of complex ITEs, see e.g. results in [9],
[11] and [19].

There are various recent results about the asymptotic distribution of ITEs, both
for the isotropic and for the anisotropic cases. It was shown by Hitrik et al. [10]
that almost all ITEs are confined to a parabolic neighborhood of the positive real
axis. In 2013, Robbiano [25] gave the following upper bound

N(r) = ] {λ ∈ C : λ is an ITE, |λ| ≤ r} ,

(3) N(r) ≤ Crn+2, r > 1.

Here, the ITEs are counted with their geometric multiplicities (see the discussion
below and in Section 2). The result was later improved by the same author [24] to
an asymptotic formula

N(r) = α rn + o(rn),

where α agrees with the leading constant in (4) below with A = Id. A sharper
improvement of (3) was also given by Dimassi and Petkov [8] for the counting
function of the complex ITEs (counted with their geometric multiplicities, see the
discussion below) in a small sector, namely

N(θ, r) := ] {λ ∈ C : λ is an ITE, |λ| ≤ r, | arg λ| ≤ θ}

is of the type

N(θ, r) ≤ Crn , r ≥ r0(θ),

with an explicit but not optimal constant C = C(m), which is a constant multiple
of the integral in (4) below with A = Id. An rn/C lower estimate on the counting
function for real ITEs was obtained by Serov and Sylvester [26] in 2012. There is
also a more recent result on the asymptotic by Petkov and Vodev [23] in 2014.

As for the anisotropic case, an asymptotic formula was obtained by Lakshtanov
and Vainberg [16] which gives

N(r) := ]{λ ∈ C : λ is an ITE, |λ| ≤ r}

has the asymptotic

(4) N(r) ∼ ωn
(2π)n

rn
∫

Ω

[
1 +

mn/2(x)

detA(x)

]
dx, r > 1.
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Here, A(x) is the matrix given in (2) and ωn is the volume of the unit ball in
Rn. The above result comes with certain assumptions on A, which exclude the
case A = Id. These assumptions are needed to guarantee the ellipticity in the
semiclassical sense of the problem, when microlocally restricted to the boundary
(called there “parameter elliptic”). Later, the above authors [18] also obtained a
lower bound of the counting function N(r) of real ITEs.

In all of the above results, the ITEs are counted with a certain notion of mul-
tiplicity, which may differ from one work to another. In Section 2, we discuss the
different definitions. In our main theorem below, we count the ITEs with their geo-
metric multiplicities, defined as the dimension of the span of the eigenpairs {u, v}
corresponding to the ITE. Then we define the counting function of the real ITEs
by

Ngeom
R (r) = # {λ; 0 < λ ≤ r; λ is an ITE} .

We also define the algebraic multiplicity of an ITE as the order of the ITE as
a zero of the determinant Fν(l)(λ) defined in (12). The function Fν(l)(λ) is the
determinant of the system which reflects the boundary conditions and is projected
to a fixed spherical harmonics eigenspace. We discover the following interesting
facts: the algebraic multiplicity is always either one or three (multiplied by µ(l)
if we view Fν(λ) as a Fν(λ) IdCµ). In the 1D model case, it is one for all ITEs if
and only if

√
m (6= 1) is rational, see Proposition 2.2. In the higher dimensional

case, this depends on how
√
m relates to the zeros of the Bessel functions Jν , see

Section 2.2 and Section 4. On the other hand, the geometric multiplicity is always
one in the 1D case, see Section 2.1, and equal to the dimension µ(l) of the spherical
harmonics eigenspace for the corresponding momentum l in the n-dimensional case,
see Section 2.2. We refer the reader to Section 2.3 for a more detailed discussion of
the multiplicities of the ITEs and for the justification for our choice of the definition.

Our main result (in dimension n ≥ 2) is as follows.

Theorem 1.1. Let 0 < m 6= 1 be constant, and let Ω ⊂ Rn, n ≥ 2 be the unit ball.
Then

Ngeom
R (r) = |N1(r)−Nγ(r)|+O(rn−1)

= (2π)−nω2
n

∣∣∣1−mn/2
∣∣∣ rn +O(rn−1).

Here, ωn is the volume of the unit ball in Rn. The factor |1−mn/2| is the same
as that which appears in known lower bounds results of real ITEs.

Before proving Theorem (1.1), we study a model problem in dimension 1, also
known as scattering on a half-line. For that problem, we give results both for the
real ITEs (counted both with geometric and algebraic multiplicities) and for the
complex ones (counted with their algebraic multiplicities). The geometric counting
function for the real ITEs has the asymptotic type stated in Theorem 1.1; while the
algebraic one (for the real ITEs) has, as the leading term, an everywhere discon-
tinuous function of (the constant) m. These results are given in Theorem 3.1 and
Theorem 3.2, respectively. The result of Theorem 3.1 is not new and can be found
in the existing literature. It can be obtained by taking the contrast to be constant
in the Weyl-type asymptotic formula for radially symmetric m, obtained in 1994 by
McLaughlin and Polyakov [20]. It is also implicit in the paper of Sylvester [30]. As
for the complex ITEs in 1D, Theorem 3.3 says that the asymptotic of the (algebraic)
counting function has 1 +m1/2 as the leading constant (compared to |1−m1/2| in
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the real geometric result). This is the same factor that appears in the currently
known upper bounds.

The structure of the paper is as follows. In the next section, we give an alge-
braic characterization of ITEs, both in the 1D and in higher dimension, as zeros
of certain functions defined in (7) and (12) respectively. In the same section, we
also describe explicitly the eigenspaces for each case. Then we discuss the various
notions of multiplicities used in current literature, as well as a justification for ours.
In Section 3, we study the model 1D problem, the results of which were briefly
summarized in the previous paragraph. Section 4 contains the proof of Theorem
1.1. The last section is devoted to a discussion of the Transmission Eigenvalues and
their relation with ITEs.

2. Transmission Eigenvalues, eigenspaces and their multiplicities.

2.1. Analysis of the eigenvalues and eigenspaces — 1D. We analyze here a
model problem: scattering on a half-line. In fact, the ITEs we get here are the same
as in the 3D case when the angular momentum l is zero, see next section. This is
the main reason why we study a half-line instead of the whole line, as in [30]. This
setting is only a model problem; more complete results of this type for variable
m(x) can be found in [20], [7], and in [19]. Sylvester [30] studied the same problem
on the whole line with m constant and got precise results about the distribution of
the ITEs in that case.

We set γ =
√
m > 0, which is assumed to be constant. The 1D case we study is

given by the system

(5)


−u′′ − λ2u = 0,

−v′′ − λ2γ2v = 0,

u(0) = v(0) = 0,

u(1) = v(1), u′(1) = v′(1)

.

Any λ 6= 0 for which a non-trivial pair (u, v) solving that system exists, is an ITE.
For the purpose of this definition, γ can be a function.

Then u and v have the form:

u = a sinλx, v = b sin γλx.

The boundary condition at x = 1 yields

u(1) = v(1) =⇒ a sinλ = b sin γλ,

u′(1) = v′(1) =⇒ aλ cosλ = bλγ cos γλ,

which is written as, for λ 6= 0,

(6) M(λ)

(
a
b

)
:=

(
sinλ − sin γλ
cosλ −γ cosλγ

)(
a
b

)
= 0.

The above system has a non trivial solution if the determinant of the matrix is zero,
which gives us the following condition:

(7) F (λ) := γ sinλ cosλγ − sinλγ cosλ = 0.

This implies the following.

Proposition 2.1. The (possibly complex) ITEs are the zeros of F (λ) away from
λ = 0.

Inverse Problems and Imaging Volume 8, No. 3 (2014), 795–810
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It is easy to compute the following derivatives:

F ′(λ) = (1− γ2) sinλ sin(γλ),

F ′′(λ) = (1− γ2) (cosλ sin(γλ) + γ sinλ cos(γλ)) ,

F ′′′(λ) = (1− γ2)
[
2γ cosλ cos γλ− (1 + γ2) sinλ sin γλ

]
.

(8)

Proposition 2.2. Let γ(1− γ2) 6= 0. Then all (possibly complex) roots of F have
multiplicity one or three. If γ is irrational, then F (λ) has single roots only. If γ is
rational, then it has infinitely many roots of multiplicity three. Moreover, λ0 is a
zero of multiplicity three if and only if sinλ0 = sin(γλ0) = 0 and then necessarily
λ0 is real.

Proof. It is easy to see that F (λ0) = F ′(λ0) = 0 if and only if

sin(λ0) = 0, sin(γλ0) = 0.

Then for any double root λ0,

F ′′(λ0) = F ′′′(λ0) = 0,

but
F ′′′(λ0) = ±2γ(1− γ2) 6= 0.

Therefore, the multiplicity is either one or three.
Assume now that the multiplicity is three. Then (for λ0 6= 0){

F (λ0) = 0

F ′(λ0) = 0
⇔

{
sinλ0 = 0

sin γλ0 = 0
⇔

{
λ0 = kπ, k ∈ Z \ {0}
γλ0 = lπ, l ∈ Z \ {0}

⇒ γ = l/k ∈ Q.
Therefore, multiplicity three implies that γ is rational. On the other hand, if γ =
p/q, then it follows from above that kqπ, k integer, are all roots of multiplicity
three.

Example 2.3. When γ = 2, F (λ) = −2 sin3 λ which has zeros of multiplicity three
only. On the other hand, for γ = 3, F (λ) = −8 cosλ sin3 λ, which has both simple
zeros and zeros of multiplicity three.

Then the counting function of the ITEs counted with their algebraic multiplicities
(see the discussion below) has to be multiplied by 3 when γ = 2; and by 2, when
γ = 3 (modulo O(1) in the latter case).

We next discuss the eigenspaces and its relation to multiplicities. Let γ be
irrational and let λ0 be a simple ITE. Then (sinλ0,− sin γλ0) 6= (0, 0), and by (6),
a = sin(γλ0), b = sinλ0, modulo a non-zero multiplicative constant. The eigenpair
is then given by

u = sin(γλ0) sin(λ0x), v = sinλ0 sin(γλ0x).

Assume now that λ0 is a triple zero of F . sinλ0 = sin(γλ0) = 0, but the matrix
A in (6) still has rank one. Hence, up to a multiplication by a non-zero constant,

u = γ cos(γλ0) sin(λ0x), v = cosλ0 sin(γλ0x).

In this case, although the root is triple, we do not get a space of larger dimension.
On the other hand, A−1(λ) = (λ− λ0)−3B(λ), with B(λ0) 6= 0 (having rank one),
which means the Laurent expansion of A−1(λ) at λ = λ0 has its most singular order
−3. When γ = 2, one can compute that the residue is of rank one. Therefore, the
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candidate for the algebraic multiplicity, 3, is not the rank of the residue (which
cannot be larger than 2 anyway), but rather the order of the most singular term.
Thus, if the matrix A(λ) is taken as our main object, our approach will never get
geometric multiplicity three, while the number three is a natural choice for the
algebraic multiplicity of λ0.

Another point of view goes back to the original motivation to study ITE. They
are λ’s at which we cannot tell n(x) from 1 by looking at Cauchy data on ∂Ω. The
Cauchy data for n = 1, and n = γ, respectively, are given by

{C(sinλ, cosλ)}, {C(sin(γλ), γ cos(γλ))}.
For C = 1, the first vector is unit, and the second one is also unit in another
equivalent norm dependent only on γ. The modulus of the determinant F (λ) can
then be used to measure how close those two 1D spaces are to each other.

The above discussion suggests the following definitions. The geometric multiplic-
ity of an ITE is the dimension of the eigenspace of A(λ) (always one). The algebraic
one is the multiplicity as a root of detA(λ) (one or three). We will count the ITEs
below with their geometric multiplicities (i.e., once). This is consistent with the
choice we made in the Introduction.

2.2. Analysis of the eigenvalues and eigenspaces — Higher dimensions.
Denote by Y ml , l = 0, 1, . . . , m = 1, . . . µ(l), an orthonormal set of spherical har-
monics on Sn−1. They are the eigenfunctions of the Laplacian ∆Sn−1 on Sn−1. We
have

−∆Sn−1Y ml = l(l + n− 2)Y ml , l = 0, 1, . . . ; m = 1, . . . , µ(l),

where, for each l, the multiplicity of the eigenvalue l(l + n− 2) is given by

(9) µ(l) =
2l + n− 2

n− 2

(
l + n− 3

n− 3

)
=

2ln−2

(n− 2)!

(
1 +O(l−1)

)
.

The functions

(10) jν(λ) := λ1−n/2Jl+n/2−1(λ), ν := l + n/2− 1

are bounded at λ = 0; in fact, Jl(λ) ∼ clλ
l, as λ → 0. Any solution u of the

Helmholtz equation (−∆− λ2)u = 0 near 0 has the form

(11) u(x) =

∞∑
l=0

µ(l)∑
m=1

almjl+n/2−1(λr)Y ml (ω),

where x = rω and r > 0, |ω| = 1 are polar coordinates. Similarly, any outgoing

solution at ∞ has similar expansion, with Jν replaced by H
(1)
ν . Any solution v of

the equation (−∆− λ2γ2)u = 0 near 0 has the form

v(x) =

∞∑
l=0

µ(l)∑
m=1

blmjl+n/2−1(γλr)Y ml (ω).

Assume that u and v are inH2(Ω), where Ω is the unit ball. Then u and ur restricted
to r = 1 are in H3/2, and H1/2, respectively and the series below converge.

The boundary conditions in (1) imply

(12) Fν(λ) := γjν(λ)j′ν(γλ)− jν(γλ)j′ν(λ) = 0

for some ν, which can be written also as

Fν(λ) = γJν(λ)J ′ν(γλ)− Jν(γλ)J ′ν(λ) = 0.

Inverse Problems and Imaging Volume 8, No. 3 (2014), 795–810
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Indeed, the Cauchy data for the unperturbed equation is(∑
lm

almjl+n/2−1(λ)Y ml (ω), λ
∑
lm

almj
′
l+n/2−1(λ)Y ml (ω)

)
,

and the the Cauchy data for the perturbed equation is(∑
lm

blmjl+n/2−1(γλ)Y ml (ω), γλ
∑
lm

blmj
′
l+n/2−1(γλ)Y ml (ω)

)
.

They match if and only if alm and blm solve the system

(13) Mν

(
alm
blm

)
:=

(
jν(λ) jν(γλ)
j′ν(λ) γj′ν(γλ)

)(
alm
blm

)
= 0.

Then Fν = detMν . If Fν(λ) = 0 for some ν and λ, then (13) has a nonzero solution
for that ν. Next, since Jν and J ′ν cannot vanish simultaneously, that solution
consists of cm(al, bl) with all coefficients non-zero; note that Aν depends on l but
not on m. We may assume that (al, bl) is a unit vector, generating the 1D null
space. Then we get non-zero solutions u and v with that fixed ν = l+ n/2− 1 and
any m = 1, . . . , µ(l) of the form

(14) uν(x) =

µ(l)∑
m=1

cmaljν(l)(λr)Y
m
l (ω), vν(x) =

µ(l)∑
m=1

cmbljν(l)(γl)(γλr)Y
m
l (ω),

(recall that ν = l + n/2− 1). This gives a space of eigenpairs of dimension µ(l). If
the same root λ of Fν happens to be a root of one or more than one Fν′ with ν′ 6= ν,
the corresponding eigenspaces are orthogonal, and the total dimension is the sum
of the dimensions. Therefore, each such root contributes µ(l) ITEs to the counting
function. In particular, the algebraic multiplicity of λ, defined as the order of λ as
a root of Fν , plays no role.

Analysis of the zeros of Fν : The Bessel functions Jν(λ) solve

λ2J ′′ν + λJ ′ν + (λ2 − ν2)Jν = 0.

Thefefore,

J ′′ν = −λ−1J ′ν − (1− ν2λ−2)Jν

J ′′ν (γλ) = −(γλ)−1J ′ν(γλ)− (1− ν2γ−2λ−2)Jν(γλ).

We drop the subscript ν in Fν in the computations below. We compute F ′(λ):

F ′(λ) = γJ ′ν(λ)J ′ν(γλ) + γ2Jν(λ)J ′′ν (γλ)− γJ ′ν(γλ)J ′ν(λ)− Jν(γλ)J ′′ν (λ)

= γ2Jν(λ)J ′′ν (γλ)− Jν(γλ)J ′′ν (λ)

= − γ2Jν(λ)(γλ)−1J ′ν(γλ)− γ2Jν(λ)(1− ν2γ−2λ−2)Jν(γλ)

+ Jν(γλ)λ−1J ′ν(λ) + (1− ν2λ−2)Jν(γλ)Jν(λ)

= λ−1
(
− γJν(λ)J ′ν(γλ) + Jν(γλ)J ′ν(λ)

)
+ (1− γ2)Jν(λ)Jν(γλ)

= − λ−1F (λ) + (1− γ2)Jν(λ)Jν(γλ).

Inverse Problems and Imaging Volume 8, No. 3 (2014), 795–810
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The zeros of Jν(λ) are at all simple except possibly at λ = 0. Therefore, λ = λ0 6= 0
is a zero of F with multiplicity more than 1 if and only if

(15)

{
F (λ0) = 0

F ′(λ0) = 0
⇔

{
Jν(λ0) = 0

Jν(γλ0) = 0
.

We compute F ′′(λ) now:

F ′′(λ) = λ−2F (λ)− λ−1F ′(λ) + (1− γ2)J ′ν(λ)Jν(γλ) + (1− γ2)γJν(λ)J ′ν(γλ).

Hence at λ0 6= 0 satisfying (15), we have F ′′(λ0) = 0.
Next, we compute F ′′′(λ):

F ′′′(λ) = − 2λ−3F (λ) + λ−2F ′(λ) + λ−2F ′(λ)− λ−1F ′′(λ)

+ (1− γ2)
(
J ′′ν (λ)Jν(γλ) + 2γJ ′ν(λ)J ′ν(γλ) + γ2Jν(λ)J ′′ν (γλ)

)
.

At λ0 6= 0 satisfying (15), we have F ′′(λ0) = 0 and

F ′′′(λ0) = 2γ(1− γ2)J ′ν(λ)J ′ν(γλ).

Since Jν only has simple roots away from λ = 0, we have the following result:

Proposition 2.4. For γ(1− γ2) 6= 0, away from λ = 0,

Fν(λ) = γJν(λ)J ′ν(γλ)− Jν(γλ)J ′ν(λ)

has roots with possible multiplicities one or three. It is three if and only if the root
is a common zero of Jν(λ) and Jν(γλ), and in particular, real.

2.3. Various notions of multiplicity of the ITEs in literature. As mentioned
in the introduction, the notion of a multiplicity of an ITE varies from one work to an-
other. One of the approaches is to view the problem as a spectral one for some non-
selfadjoint operator P . Concretely, in [29], [8] and in [25], P = diag(−m−1∆,−∆)
with boundary conditions as in (1). The ITEs are defined to be the eigenvalues
of P. There might be generalized eigenvectors of P , hence the existence of higher
dimensional generalized eigenspaces, which are the union of the kernels of (P −λ2)k

for k = 1, 2, . . . . Thus, there are two natural notions of multiplicity, one associated
with the dimension of the eigenspace, while the other the generalized eigenspace.
The latter, also equal to the rank of the residue of the resolvent, is used in [29],
[8] and in [25], to define the multiplicity of ITE. This approach is also employed
in scattering theory to define the multiplicity of a resonance, after the problem
is reduced to a non-selfadjoint one by complex scaling, see, e.g., [27]. With this
definition, the multiplicity of a resonance λ0 6= 0 is also the rank of residue of the
resolvent at the pole λ0.

In the analysis of the ITEs, another approach is to write the problem as a non-
linear spectral problem for a certain fourth order elliptic differential operator, see,
e.g., [22] and study the dimension of corresponding null spaces. With this approach,
there is no obvious candidate for generalized eigenvectors.

One can also formulate the ITE problem as one finding the null-space of the
difference DNm(λ)−DN(λ) of the Dirichlet-to-Neumann (DN) maps, see, e.g., [18];
or of the difference of the Neumann-to-Dirichlet maps when DNm(λ) and DN(λ)
have a common pole (which is exactly when λ is not a simple ITE in the case
we study). Then the null space consists of functions on the boundary (which can
be related to interior solutions, of course). This formulation includes the spectral
parameter in the operators in a non-linear way; and the implicit choice of the
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multiplicity is then the dimension of the null-space, which does not include the
generalized eigenvectors mentioned above.

3. Counting the ITEs in the 1D case.

3.1. Counting real ITEs in 1D. Let Ngeom
R (r) be the number of the real ITEs

not exceeding r, counted once, i.e., with their geometric multiplicities. Let N1(r)
be the number of the Dirichlet eigenvalues λ2 with λ ∈ (0, r] of −d2/dx2, and let
Nγ(r) be related in the same way to −γ−2d2/dx2. Clearly, N1(r) = r/π + O(1),
Nγ(r) = γr/π +O(1).

Theorem 3.1. Let 0 < γ 6= 1. Then

Ngeom
R (r) = |N1(r)−Nγ(r)|+O(1)

= |1− γ| r
π

+O(1).

Proof. Let 0 < γ < 1 first. Assume that γ is irrational. Then sinλ and sin(γλ) do
not have common zeros and the ITEs can be characterized as not only as the zeros
of F but also as the zeros of the differences DN = DNγ −DN1 = F/(sin(γλ) sinλ)
of the DN maps

DN(λ) = γ cot(γλ)− cotλ.

Since by (8), DN = (1 − γ2)F/F ′, at the zeros of F , we get DN′ = 1 − γ2 > 0.
This is the crucial observation which makes the counting possible, compared with
Proposition 4.1. Therefore, DN has at most one zero on any interval, on which
it is continuous. In terms of the branches of the graphs (the graph between two
consecutive poles) of γ cot(γλ) and cotλ, this means if two such branches intersect,
the former has a greater slope than the latter (and they are both negative); and
therefore, they cannot intersect more than once. On the other hand, comparing
their asymptotes at the poles, we see that a branch of cotλ is intersected by a
branch of (the slower varying) γ cot(γλ) if and only if the interval of definition of
the former is contained in the (larger) interval of definition of the latter. Therefore,
the number of branches of cotλ which do not contribute (exactly one) zero is equal
to the number of intervals (kπ, (k + 1)π), k = 1, 2, . . . . Each of these types of
intervals contains a zero mπ/γ, m integer, of sin(γλ), and contains exactly one such
zero because γ < 1.

Let r > 0. We apply the arguments above for all intervals between zeros of
γ cot(γλ) in [0, r]. In the partial interval, which contains r, we have O(1) ITEs.
Therefore, up to an O(1) error, the number of ITEs is that of zeros of sinλ minus
those of sin(γλ).

Next, let γ = p/q be rational. In this case, each common pole of cotλ and
γ cot(γλ) corresponds to common zeros of sinλ and sin(γλ). By the analysis above,
any such pole is an ITE. If γ = p/q < 1 is irreducible, then the zeros of sin(γλ)
are kqπ/p, k integer. Those of them which are zeros of sinλ as well are given
by k = mp, m integer. Consider the interval between two such consecutive zeros,
I := ((m− 1)qπ,mqπ]. As above, in I, the branch with domain Il := ((l− 1)π, lπ),
l = (m − 1)q + 1, . . .mq, of the faster oscillating cotλ are not intersected by some
of those of cot(γλ) if and only if there is a pole of cot(γλ) in Īl; i.e., if some kqπ/p
belongs to [lπ, (l+1)π], see Figure 1. That pole can be an endpoint of Īl only for the
most-left and the most-right intervals Il; and there, there are no intersections of the
two graphs. For the rest of the Il intervals, and there are q− 2 of them, the pole of
cot(γλ) is interior for Il, and therefore, an interior point for I as well. The number
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of such kqπ/p in the interior of I is p− 1; therefore we have (q − 2)− (p− 1) ITEs
in the interior of I, and thus, q−p ITEs in I, since we include the right endpoint in
I but not the left one. Then N(mqπ) = m(q − p) = mq(1− γ). This easily implies
N(r) = r(1− γ)/π +O(1).

In section 4.2 we use a lightly modified counting argument, which we could have
applied to this case as well.

When γ > 1, one can rescale to show Nγ(r/γ) = N1/γ(r), where we temporarily
denote by Nγ the counting function Ngeom

R of the ITEs related to γ (not to be
confused with Nγ). Then we use what we proved above.

Figure 1. The graphs of γ cot(γλ) and cot(λ) on (0, 8π] with γ =
3/8. Here, p = 3, q = 8. The thick dots represent the ITEs. The
ITE 8π has algebraic multiplicity 3, the other three are simple.

Let Nalg
R (r) be the number of the real ITEs not exceeding r counted with their

algebraic multiplicities (1 or 3). The asymptotic for this counting function is slightly
different.

Theorem 3.2. Let γ =
√
n be a positive constant. If γ =

√
m 6= 1 is irrational,

then Nalg
R (r) = Ngeom

R (r). If γ = p/q is rational and p/q is irreducible, then

Nalg
R (r) =

(∣∣∣1− p

q

∣∣∣+
2

q

)
r/π +O(1).

Proof. If γ is irrational, then we just apply Proposition 2.2. Let 0 < γ < 1 be
rational. In the counting argument above, we counted each common zero of sin(γλ)
and sin(λ) once; and those are exactly the triple roots of F . When we work with
the algebraic multiplicities, we should add them two more times. Therefore, in each
interval I as in the proof above, we have q− p+ 2 ITEs, instead of q− p. As above,
we need to divide this by πq to get the leading term. When γ > 1, we use the
rescaling argument above, or direct counting.

Remark 1. In both cases, γ < 1 and γ > 1, we get

Nalg
R (r) ≤ (1 + γ)r/π +O(1),

which is consistent with the theorem below. We have equality if and only if γ or 1/γ
is an integer. We get the same leading term as in (4) which estimates the complex

ITEs, and is also the upper bound in [8], modulo the multiplicative factor 3
√

3.
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3.2. Counting complex ITEs in 1D. Let Nalg
C (r) be the number of the complex

ITEs in <λ > 0 counted with their algebraic multiplicities (1 or 3) of modulus r
or less. The fact that they are in a strip parallel to the real line has been proved
in [30] and [19]; the latter work provides an explicit bound for C(Γ) below for the
whole line case.

Theorem 3.3. Let γ =
√
n be a positive constant, different from 1. Then

Nalg
C (r) = (1 + γ)

r

π
+ o(r).

Moreover, all ITEs are symmetric about the real line and included in the strip
|=λ| ≤ C(γ) for some C(γ) > 0.

Proof. Write

4iF (λ) = γ(eiγλ + e−iγλ)(eiλ − e−iλ)− (eiγλ − e−iγλ)(eiλ + e−iλ).

When λ = <λ + i=λ, = � 0, the leading term on the right is (γ − 1)ei(γ+1)λ with
modulus |γ − 1|e(γ+1)|=λ|, and we get

4|F (λ)| ≥ |γ − 1|e(γ+1)|=λ| − C(γ)|γ − 1|e|1−γ||=λ|.

Therefore, for = ≤ −C ′(γ), F cannot vanish. Since F (z) = F (z̄), this covers the
=λ > 0 case, as well.

To prove the asymptotic formula, we apply a theorem by Titchmarsh [31] which
was generalized to distributions, and successfully used by Zworski [32] to prove
a Weyl type of asymptotic of the resonances for the Schrödinger equation in one
dimension. If f is a distribution on R and [a, b] is the smallest closed interval

containing supp f̂ , the counting function N(r) of the zeros of f in C satisfies

N(r) = (b− a)r/π + o(r).

We can write F̂ (ξ) as a linear combination of delta functions supported at −γ − 1,
−γ + 1, γ − 1, and γ + 1, all with non-zero coefficients. Therefore, a = −γ − 1,
b = γ + 1. We get twice the claimed asymptotic, but this included the zeros in
<λ < 0 which are symmetric to those in <λ > 0, because F is odd. This completes
the proof.

Remark 2. Combining Theorem 3.2 and Theorem 3.3, we can estimate the as-
ymptotic distribution of the non-real ITEs. The fact that it changes in a singular
way when one perturbs γ means that we can view the triple (almost real) ITEs,
when γ is rational, as collapsed complex ITEs. In particular, we recover one of the
results in [19]: there are infinitely many complex eigenvalues when γ or 1/γ is not
an integer. We also get a linear lower r/C bound on their counting function.

4. Counting ITEs in higher dimensions. Denote by λν,j the zeros of Fν defined
by (12), with ν ∈ Z + n/2− 1. The discussion above implies the following:

(16) Ngeom
R (r) =

∑
λν,j<r

µ(ν − n/2 + 1).

Note that the sum is finite; by (19) below, it contains zeros associated with ν = O(r)
only.
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4.1. Comparing the derivatives at the intersections — Higher dimension.
The zeros of Fν are also the intersection points, i.e., the zeros of the following
equation

(17) γJν(λ)J ′ν(γλ) = Jν(γλ)J ′ν(λ).

Near every simple zero, we have Jν(λ0), Jν(γλ0) 6= 0. Then we can rewrite (17)
near λ0 as

γ
J ′ν(γλ)

Jν(γλ)
=
J ′ν(λ)

Jν(λ)
.

We drop the subscripts ν in Fν the next few lines again. Since

P := γ
J ′ν(γλ)

Jν(γλ)
− J ′ν(λ)

Jν(λ)
=

F

Jν(λ)Jν(γλ)
= (1− γ2)

F

F ′ + λ−1F
,

at any simple zero λ0, we have

(18) P ′(λ0) = (1− γ2)
F ′(F ′ + λ−1F )− F (F ′ + λ−1F )′

(F ′ + λ−1F )2
= 1− γ2.

So we have proved the following.

Proposition 4.1. For 0 < γ < 1, at each intersection point (root) λ0 of H(λ) =
J ′ν(λ)

Jν(λ)
and G(λ) = γH(γλ), we have

H ′(λ0) < G′(λ0).

When γ > 1, we have

H ′(λ0) > G′(λ0).

This proposition is our main counting argument.

4.2. Proof of Theorem 1.1. The zeros of Fν are of two types: (1) points of
intersection of the graphs of H and G away from their poles; and (2) common
poles of G and H (common zeros of Jν(λ) and Jν(γλ)). Denote the positive zeroes
of Jν by jν,k, k = 1, 2, . . . (we suppress the dependence on ν). Let 0 < γ < 1
first. We call below the intervals (jν,k, jν,k+1] between two consecutive zeros of Fν
“small intervals”; and the intervals (jν,k/γ, jν,k+1/γ] between two consecutive zeros
of Jν(γλ) will be called “large intervals”. At the endpoints of each small/large
interval, the corresponding function H or G, respectively, diverges to∞ on the left;
and to −∞ to the right. If a branch of H intersects a branch of G, this can happen
at one point only, by Proposition 4.1. We refer to Figure 2, where γ > 1.

If a small interval is contained in the interior of large one, then the graph of
Jν(γλ) will intersect that of Jν(λ), and there is exactly one such point in that small
interval. The λ coordinate of that point is an ν-ITE (a zero of Fν). If Jν(γλ) and
Jν(λ) have a common pole (vertical asymptote), then that pole is an ν-ITE as well.
Those are the two types of ν-ITEs we may have. In the latter case, a small interval
is contained in the closure of a large one, and they have a common endpoint. Since
we defined all intervals as open on the left and closed on the right; we may attribute
an ITE which is a common pole to the small interval to the left of it. Therefore,
we established an bijection between the ν-ITEs and the small intervals which are
contained entirely in a large one. The small intervals left without an associated ν-
ITE are those which have common points with two large ones; i.e., those containing
some of the zeros jν,k/γ. Therefore, the number of ν-ITEs not exceeding r is equal
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λ 
ν,3

Figure 2. The graphs of Fν (the smooth curve), Hν and Gν for
λ ∈ [5, 25] and ν = 11/2 with γ = λν,3/λν,1 ≈ 0.57. The func-
tion Fν has a triple root at λν,3 ≈ 16.35 where the two vertical
asymptotes coincide. The zeros to the left and right are simple.

to the number of zeros of Jν(λ) minus that of Jν(γλ) up to an error 1, depending
on the position on r in the small interval to which it belongs. By [21, Ch. 7.6.5],

(19) jν,k = kπ +
1

2
νπ − 1

4
π +O(k−1).

Therefore, that error, multiplied by the corresponding multiplicity, see (16), con-
tributes an O(rn−1) term to N(r). This proves Theorem 1.1 for 0 < γ < 1. The
case γ > 1 follows by rescaling, as in the 1D case.

4.3. Another remark about multiplicities. The geometric multiplicity of each
zero λ0 of Fν(l) is µ(l), if there is only one ν so that Fν(λ0) = 0; otherwise is a sum
of such µ(λ). The ITE λ0 is multiple (triple) if and only if Jν(λ0) = Jν(γλ0) = 0.
We cannot tell whether γ = 1 or not, if the Cauchy data is (0, Yl) for any Ym a
linear combination of Y ml , m = 1, . . . , µ(l). However, we can do it for Cauchy data
(Yl, 0), which is the orthogonal complement to that space for a fixed l. Therefore,
the algebraic multiplicity 3µ(λ) does not play a role here. It only tells us how fast
the information about γ, encoded in the Dirichlet data, “degenerates”, as λ→ λ0.

5. Transmission eigenvalues (TEs). It is easy to see that in this case, the in-
terior transmission eigenvalues are also transmission eigenvalues (in the whole Rn).
Indeed, uν in the eigenpair in (14) extends from the unit ball to the whole Rn in a
trivial way, by the same formula. Then the function vν , extended as uν outside the
unit ball as uν , is a solution of (−∆ − λ2m)u = 0, where m = γ2 in the unit ball,
and m = 1 outside. This is a transmission problem. We will use the following facts:
uν is C∞, and its the exterior Cauchy data matches the interior one; the interior
one is the same as that of vν because (uν , vν) is an eigenpair; the exterior Cauchy
data of both functions coincide as well because they are equal outside the unit ball.
Therefore, vν and its normal derivative do not jump across the unit sphere. The
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relative scattering matrix in the spherical harmonic base was computed in [28]. It
is a diagonal operator with diagonal entries

Sl(λ) = −h
(2)′

ν (λ)jν(γλ)− γh(2)
ν (λ)j′ν(γλ)

h
(1)′
ν (λ)jν(γλ)− γh(1)

ν (λ)j′ν(γλ)
,

where h
(1,2)
ν (λ) = λ1−n/2H

(1,2)
l+n/2−1(λ).

Then Al(λ) = Sl(λ) − 1 are the diagonal elements of the scattering amplitude
A(λ), considered as an operator. A simple calculation yields

Al(λ) =
−j′ν(λ)jν(γλ) + γjν(λ)j′ν(γλ)

h
(1)′
ν (λ)jν(γλ)− γh(1)

ν (λ)j′ν(γλ)
=

Fν(λ)

h
(1)′
ν (λ)jν(γλ)− γh(1)

ν (λ)j′ν(γλ)
.

Therefore, Al has the same zeros as Fν . The denominator has complex zeros only,
at the resonances; which lie in the lower half-plane, see [28]. At each such zero, the
eigenspace of S(λ) restricted to the spherical harmonics with momentum l, has a
kernel coinciding with that space; and its dimension is µ(l). We can then define
the geometric multiplicity of each TE λ as the dimension of the kernel of A(λ) (the
latter might include more than one but always finitely many l’s). Now, N(λ) is the
number of the real λ 6= 0, for which A(λ) has a non-trivial kernel, counted with their
geometric multiplicities. When an ITE λ0 is not a simple root of Fν , the algebraic
multiplicity shows up if we study A−1(λ) — the most singular term in the Laurent
expansion is (λ− λ0)−3. The residue, however, and the whole singular part cannot
have rank greater than the dimension µ(l) of the spherical harmonics, which is the
geometric multiplicity.

6. ITEs are not always TEs. We present here a simple example showing that
ITEs are not always TEs (the converse is clearly true). Take any solution u of
the Helmholtz equation (−∆ − λ2)u = 0 for some λ > 0 in Ω with the following
properties: u > 0 in Ω̄, u is C∞ outside Ω but has no extension as a solution in the
whole Rn. Such a solution u, λ and Ω are easy to construct; for example, if n = 3,
fix λ > 0 and take u = cos(λx)/|x| (the real part of the Green’s function, up to a
constant), and Ω can be any domain in the ball B(0, π/λ) so that 0 6∈ Ω̄. Now, take
φ ∈ C∞0 (Ω̄; R), and set v = u+ εφ. Then v solves

(−∆− λ2m)v = 0 in Ω with m := −∆(u+ εφ)

λ2(u+ εφ)
=
u− ελ−2∆φ

u+ εφ
.

When |ε| � 1, m is a well defined positive function in Ω̄ and λ is an ITE, because u
and v have the same Cauchy data on ∂Ω. On the other hand, λ is not a TE because
u does not extend as a solution in the whole Rn. If (−∆− λ2)φ 6≡ 0, then m 6≡ 1.
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about the multiplicity of the ITEs.
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