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Abstract. We study the weighted light ray transform L of integrating functions on a
Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral Operator
and show that if there are no conjugate points, one can recover the spacelike singularities
of a function f from its the weighted light ray transform Lf by a suitable filtered back-
projection.

1. Introduction

Let g be a Lorentzian metric with signature (−,+, . . . ,+) on the manifold M of dimen-
sion 1 + n, n ≥ 2. We study the weighted Light Ray Transform

(1.1) Lκf(γ) =

∫
R
κ(γ(s), γ̇(s))f(γ(s)) ds,

of functions (or distributions) over light-like geodesics γ(s), known also as null geodesics.
There is no canonical unit speed parameterization as in the Riemannian case as discussed
below, and we have some freedom to chose parameterizations locally by smooth changes of
the variables. We are interested in microlocal invertibility of Lκ, that is, the description
of which part of the singularities of the function f can be reconstructed in a stable say
when Lκf is given. Observe that this property does not depend on the parameterization.
Here κ is a weight function, positively homogeneous in its second variable of degree zero,
which makes it parameterization independent. When κ = 1, we use the notation L. This
transform appears in the study of hyperbolic equations when we want to recover a potential
term, or other coefficients of the equation, from boundary or scattering information, see,
e.g., [34, 32, 31, 43, 44, 33, 1, 20, 23, 41, 21, 22, 3] for time dependent coefficients or
in Lorentzian setting, and also [2, 25] for time-independent ones. This problem arises in
medical ultrasound tomography (see Section 5 on applications for the details). The tensorial
version of inverse problem for the weighted Light Ray Transform arises in the recovery of
first order perturbations [41] and in linearized problem of recovery a Lorentzian metric
from remote measurements [23]. The latter is motivated by the problem of recovering the
topological defects in the early stages of the Universe from the red shift data of the cosmic
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background radiation collected by the Max Planck satellite. The light tray transform L
belongs to the class of the restricted X-ray transforms since the complex of geodesics is
restricted to the lower dimensional manifold g(γ̇, γ̇) = 0.

The goal of the paper is to study the microlocal invertibility of Lκ under some geometric
conditions. Injectivity of L on functions in the Minkowski case was proved in [34]. Support
theorems for analytic metrics and weights were proven in [35], see also [30] for a support
theorem of L on one-forms in the Minkowski case. Those results in particular imply injec-
tivity under some geometric conditions. Microlocal invertibility or the lack of it however
is important in order to understand the stability of that inversion. It is fairly obvious
that Lκf cannot “see” the wave front set WF(f), of the function f , in the timelike cone
because Lκ is smoothing there. This just follows from the inspection of the wave front
of the Schwartz kernel of Lκ, see also Theorem 2.1 for the Minkowski case. Microlocal
invertibility for Minkowski metrics was studied in [23, 42]. We show that in the general
Lorentzian setting, one can recover WF(f) in the spacelike cone if there are no conjugate
points. In relativistic setting, this roughly speaking means that given Lκf , one can deter-
mine the discontinuities (or the other singularities) of f that move slower than the speed of
light. Some restrictions are needed even in the Riemannian case. One possible approach is
to analyze the normal operator L′κLκ as in [9, 10, 12]. That operator is a Fourier Integral
Operator (FIO) associated with two intersecting Lagrangians, see [11] and the references
there for that class and the Ip,l calculus of such operators. The analysis of L′κLκ in the
Minkowski case for n = 2 is presented in [9, 10, 12] as an example illustrating a much
more general theory. Applying the Ip,l calculus to get more refined microlocal results how-
ever requires the cone condition which cannot be expected to hold on general Lorentzian
manifolds due to the lack of symmetry, as pointed out in [12]. We analyze Lκ as an FIO
and show that given any conically compact set K in the spacelike cone, one can choose a
suitable pseudodifferential operator (ΨDO) cutoff Q so that L′QL is a ΨDO elliptic in a
neighborhood of K; therefore we can recover the singularities of f from Xκf in K.

The paper is organized as follows. In section 2, we analyze the flat Minkowski case
where the formulas are more explicit. The Lorentzian case is studied in section 3, which
contains our main results. In section 4, we show that when n = 2, singularities can actually
cancel each other over pairs of conjugate points, similarly to the Riemannian case [24]. In
section 5, we present two applications where the light ray transform appears naturally and
our results can be applied: recovery of a time dependent potential in a wave equation in
Lorentzian geometry and recovery of a linearization of a time dependent sound speed near
a background stationary one.

2. The Minkowski case

Let g = −dt2 + (dx1)2 + · · ·+ (dxn)2 be the Minkowski metric in R1+n. Future pointing
lightlike geodesics (lines) are given by

(2.1) `z,θ(s) = (s, z + sθ)

with z ∈ Rn and |θ| = 1. This definition is based on parameterization of the lightlike
geodesics by their point of intersection with the spacelike hypersurface t = 0 and direction
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(1, θ). The parameterization (z, θ) defines a natural topology and a manifold structure of
the set of the future pointing lightlike geodesics, which we denote by M below. We define
the light ray transform

(2.2) Lf(z, θ) =

∫
R
f(s, z + sθ) ds, z ∈ Rn, θ ∈ Sn−1.

The lightlike geodesics can be reparameterized by shifting and rescaling s. Our choice is
based on having a unit orthogonal projection θ on t = 0 but if we choose another spacelike
hyperplane of hypersurface, this changes. Therefore, there is no canonical choice of the
parameter along the lightlike lines. Note also that the notion of unit projection θ is not
invariantly defined under Lorentzian transformations, but in a fixed coordinate system, the
scaling parameter 1 (i.e., dt/ds = 1) is a convenient choice. More generally, we could use
a parameterization locally near a lightlike geodesic γ0, by choosing initial points on any
hypersurface S transversal to γ0, and initial lightlike directions; and we can identify the
latter with their projections onto S. We will use such a choice in Section 3 below when we
consider more general Lorentzian manifolds.

Given a weight κ ∈ C∞(R×Rn×Sn−1), we can define the weighted version Lκ of L by

Lκf(z, θ) =

∫
R
κ(s, z + sθ, θ)f(s, z + sθ) ds, z ∈ Rn, θ ∈ Sn−1.

Under a smooth change of the parameterization s 7→ α(z, θ)s with some α > 0, the weight
is transformed into a new one: κ/α, and the microlocal properties we study remain un-
changed.

In the terminology of relativity theory, vectors v = (v0, v′) satisfying |v0| < |v′| (i.e.,
g(v, v) > 0) are called spacelike. The simplest example are vectors (0, v′), v′ 6= 0. Vectors
with |v0| > |v′| (i.e., g(v, v) < 0) are timelike; an example is (1, 0) which points along
the time axis. Lightlike vectors are those for which we have equality: g(v, v) = 0. For
covectors, the definition is the same but we replace g by g−1, which is consistent with the
operation of raising and lowering the indices. Of course, in the Minkowski case g and g−1

coincide. We say that a hypersurface is timelike, respectively spacelike, if its normal (which
is a covector) is spacelike, respectively timelike.

We introduce the following three microlocal regions of T ∗R1+n \ 0:

spacelike cone, Σs = {(t, x; τ, ξ); |τ | < |ξ|};
lightlike cone, Σl = {(t, x; τ, ξ); |τ | = |ξ|};
timelike cone, Σt = {(t, x; τ, ξ); |τ | > |ξ|}.

In the Minkowski case, we can think of them as products of R1+n and the corresponding
cones in the dual space R1+n.

2.1. Fourier Transform analysis. By the Fourier Slice Theorem, knowing the X-ray
transform for some direction ω recovers uniquely the Fourier transform f̂ , of function f ,
on ω⊥ if, say, f is compactly supported. More precisely, the Fourier Slice Theorem in our
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Figure 1. Knowing Lf(z, θ) for all z and a fixed θ recovers the Fourier
Transform of f in codirections conormal to the lightlike lines in that set.
Knowing it near some (z, θ) recovers WF(f) near those codirections along
the line.

case can be written as

(2.3) f̂ |τ+ξ·θ=0 = f̂(−θ · ξ, ξ) =

∫
Rn

e−iz·ξLf(z, θ) dz, ∀θ ∈ Sn−1.

The proof is immediate, and is in fact a consequence of the Fourier Slice Theorem in R1+n

for lines restricted to lightlike ones. The union of all (1, θ)⊥ for all unit θ is {|τ | ≤ |ξ|} (the
union Σs ∪ Σl of the spacelike and the lightlike cones), as is easy to see. This correlates
well with the theorems below. In particular, we see that knowing Lf for a distribution f
for which Lf is well defined, and so is its Fourier transform, recovers f̂ in the spacelike
cone Σs uniquely and in a stable way. Under the assumption that supp f is contained in
the cylinder |x| ≤ R for some R (and temperate w.r.t. t), one can use the analyticity of

the partial Fourier transform of f w.r.t. x to extend f̂ analytically to the timelike cone,
as well. This is how it has been shown in [34] that L is injective on such f . More general
support theorems and injectivity results, including such for analytic Lorentzian metrics,
can be found in [35].

2.2. The normal operator L′L. We formulate here a theorem about the Schwartz kernel
of the normal operator N = L′L, where L′ is the transpose in terms of distributions (the
same as the L2 adjoint L∗ because the kernel of L is real). The measure on Rn × Sn−1 is
the standard product one. One way to prove the theorem is to think of L as a weighted
version of the X-ray transform L with a distributional weight 2

√
2|ξ|δ(τ2 − |ξ|2) and use

the results about the weighted X-ray transform, see e.g. [37], and allow a singular weight
there. See also [36, 23].

Theorem 2.1. For every f ∈ C∞0 (R1+n),
(a)

L′Lf = N ∗ f, N (t, x) =
δ(t− |x|) + δ(t+ |x|)

|x|n−1
.

(b)

L′Lf = CnF−1
(|ξ|2 − τ2)

n−3
2

+

|ξ|n−2
Ff, Cn := 2π|Sn−2|.
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(c)

h(�)f = C−1n |Dx|n−2�
3−n
2

+ L′Lf,

where h is the Heaviside function, and � = ∂2t −∆z and F is the Fourier transform.

Before proving Theorem 2.1, we make some comments. Above, we used the notation
sm+ = max(sm, 0) with the convention that s0+ is the Heaviside function. In particular,

when n = 3, we get σ(L′L) = 4π2|ξ|−1h
(
|ξ|2 − τ2

)
. Then

h(�)f = (4π2)−1|Dz|L′Lf.
As we can expect, there is a conormal singularity of the symbol even away from ξ = 0 living
on the characteristic cone. Moreover, L′L is elliptic in the spacelike cone, and only there.
This shows that L′L is a formal ΨDO with a singular symbol having singularities conormal
to the light cone τ2 = |ξ|2, i.e., it is an FIO corresponding to two intersecting Lagrangians.
This is one of the main examples in [12]. The theorem shows that “singularities traveling
slower than light” can be recovered stably from Lf known globally. The ones traveling
faster cannot.

Proof of Theorem 2.1. To compute the dual L′ of L, write

〈Lf, φ〉 =

∫
Sn−1

∫
Rn

∫
R
f(s, x+ sθ)φ(x, θ) ds dx dθ

=

∫
Sn−1

∫
Rn

∫
R
f(s, x)φ(x− sθ, θ) ds dx dθ.

Therefore,

(2.4) L′φ(t, x) =

∫
Sn−1

φ(x− tθ, θ) dθ, φ ∈ C∞0 (Rn × Sn−1).

In particular, this identity allows us to define L on E ′(R1+n) by duality.
By (1.1) and (2.4),

L′Lf(t, x) =

∫
Sn−1

∫
R
f(s, x− tθ + sθ) ds dθ

=

∫
Sn−1

(∫
s<t

+

∫
s>t

)
f(s, x− tθ + sθ) ds dθ.

For the first integral, we get∫
Sn−1

∫
s<t

f(s, x− tθ + sθ) dsdθ =

∫
Sn−1

∫ 0

−∞
f(t+ σ, x+ σθ) dσ dθ

=

∫
Sn−1

∫ ∞
0

f(t− σ, x+ σθ) dσ dθ

=

∫
Rn

f(t− |z|, x+ z)|z|1−n dz

=

∫
Rn

f(t− |x− x′|, x′)
|x− x′|n−1

dx′.

(2.5)



6 LASSAS, OKSANEN, P. STEFANOV, AND G. UHLMANN

For the second one, we have∫
Sn−1

∫
s>t

f(s, x− tθ + sθ) dsdθ =

∫
Sn−1

∫ ∞
0

f(t+ σ, x+ σθ) dσ dθ

=

∫
Rn

f(t+ |x− x′|, x′)
|x− x′|n−1

dx′.

This completes the proof of (a). To prove (b), one can take formally the Fourier transform
of N to get

(2.6) N̂ (τ, ξ) = 2π

∫
Sn−1

δ(τ + θ · ξ) dθ.

This representation can also be justified by writing (2.3) in the form

f̂(−θ · ξ, ξ) = Fz→ξLf(z, θ) =⇒ Lf(z, θ) = F−1ξ→z f̂(−θ · ξ, ξ).
Then

〈Lf, Lg〉 = (2π)−n
∫ ∫

Sn−1

f̂(−θ · ξ, ξ)ĝ(−θ · ξ, ξ) dθ dξ

= (2π)−n
∫ ∫

Sn−1

δ(τ + θ · ξ)f̂(τ, ξ)ĝ(τ, ξ) dθ dτ dξ.

(2.7)

Therefore, if we denote for a moment by K the integral in (2.6) but multiplied by (2π)−n

instead of 2π, we get 〈LF−1f̂ , LF−1ĝ〉 = 〈f̂ ,Kĝ〉; hence F∗−1L′LF−1 = K. Since F∗ =
(2π)1+nF−1, we get (2.6).

To compute N̂ explicitly, take a test function φ(τ, ξ) and write

〈N̂ , φ〉 = 2π

∫ ∫
Sn−1

δ(τ + θ · ξ)φ(τ, ξ) dθ dτ dξ = 2π

∫ ∫
Sn−1

φ(−θ · ξ, ξ) dθ dξ

= 2π

∫∫
F (s, ξ)φ(s, ξ) ds dξ

with F is the L1
loc function in (2.9) below. This proves (b).

Part (c) of the lemma follows directly from (b). �

We used the following lemma.

Lemma 2.1. For every ψ ∈ S(R1+n),

(2.8)

∫
Sn−1

ψ(θ · ξ) dθ = |Sn−2||ξ|2−n
∫
R
ψ(s)(|ξ|2 − s2)

n−3
2

+ ds, ξ 6= 0,

where |Sn−2| is the area of Sn−2 if n ≥ 3; equal to 2 when n = 2.

Note that the kernel

(2.9) F (s, ξ) := |Sn−2||ξ|2−n(|ξ|2 − s2)
n−3
2

+

is homogeneous of order −1 and as such, it is locally integrable. It has a unique extension
as a homogeneous distribution of order −1 given by an L1

loc function. Also, the l.h.s. of
(2.8) is a smooth function of ξ everywhere, including at ξ = 0.
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2.3. Lκ as an FIO. Theorem 2.1(c) implies some recovery of singularities results already.
If f ∈ E ′(R1+n) and Lκf ∈ C∞(Rn × Sn−1), then WF(f) does not contain spacelike
singularities (note that this argument requires global knowledge of Lκf). One the other
hand, one can easily construct functions of distributions with timelike singularities so that
Lκf = 0; for example take any non-smooth h ∈ E ′(R) with integral zero, then for any
a ∈ Rn with |a| < 1, for f = h(t+ x · a) we have Lf = 0; and

WF(f) = {(t, x, τ, ξ) | t = s− x · a, ξ = aτ, (s, τ) ∈WF(h)}.

Then |ξ| = |τ ||a| < |τ | is in the timelike cone. In particular, δ′(t) is in the kernel of Lκ and
has timelike singularities only.

We can get more precise statements by studying first the Schwartz kernel of Lκ. It is
given by

(2.10) Lκ(z, θ, t, x) = κ(t, x, θ)δ(x− z − tθ).

In other words, Lκ = κδX , where

X = {(z, θ, t, x)| x = z + tθ}

is the point-line relation. We write M = R1+n = R1+n
t,x and let M ∼= Rn

z × Sn−1θ be the
manifold of the lines in M . Clearly, X is a 2n-dimensional submanifold of the product
M×M ∼= Rn

z × Sn−1θ ×R1+n
t,x which itself is 3n-dimensional. Its conormal bundle is given

by

N∗X =
{

((z, θ, t, x), (ζ, θ̂, τ, ξ))
∣∣ x = z + tθ, ξ = −ζ, τ = −θ · ξ, θ̂ = t(−ξ + (ξ · θ)θ)

}
with θ̂ conormal to Sn−1 at θ. We consider N∗X as a subset of T ∗(M×M) \ 0. This is a
conical Lagrangian manifold which coincides with the wave front set of the kernel Lκ when
κ is nowhere vanishing; and includes the latter for general κ.

Note that (τ, ξ) is space or light-like on N∗X and it is the latter if and only if

ζ ‖ θ.(2.11)

Indeed, |τ | = |ξ| is equivalent with |θ · ζ| = |ζ| on N∗X. As will be explained below, the
relation (2.11) allows us to choose a microlocal cutoff on M so that when applied to Lκf ,
it cuts away the singularities in WF(f) near Σl. This will be useful in view of the singular
behavior near Σl, as illustrated for L′L in Theorem 2.1.

Let us also mention that |τ | = |ξ| is equivalent with −ξ + (ξ · θ)θ = 0 on N∗X. In

particular, θ̂ = 0 in this case. We will show, see Lemma 3.4 below, that on general
Lorentzian manifolds, (τ, ξ) being lightlike on N∗X is equivalent with ζ ‖ θ and θ̂ = 0 (or
rather its suitable reformulation in the more general context).

The canonical relation associated to Lκ is given by

C := N∗X ′ =
{

((z, θ, ζ, θ̂), (t, x, τ, ξ))∈ T ∗(M×M) \ 0
∣∣

x = z + tθ, τ = −θ · ξ, ζ = ξ, θ̂ = t(ξ − (ξ · θ)θ)
}
.

(2.12)
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Here we rearranged the variables to comply with the notational convention in [18]. If

one of the covectors (ζ, θ̂) and (τ, ξ) vanishes, then the other one does, too. Therefore,
C is a (homogeneous) canonical relation from T ∗M \ 0 to T ∗M\ 0 and it is also clearly
conically closed in T ∗(M × M) \ 0. Therefore, this, and the fact that its kernel is a
conormal distribution, show that Lκ is an FIO with the canonical relation C, see [18,
Chapter XXV.25.2]. In particular,

(2.13) WF(Lκf) ⊂ C ◦WF(f),

a statement independent of the FIO theory. In order to compute the order of Lκ, we can
write its Schwartz kernel as the oscillatory integral

κ(t, x, θ)

(2π)n

∫
Rn

ei(tθ·ξ+(z−x)·ξ)dξ,

see (2.10). Then the order m of Lκ satisfies, see [16, Def. 3.2.2],

0 = m+ (dim(M) + dim(M)− 2n)/4, that is, m = −n/4,(2.14)

because M = R1+n and M∼= Rn × Sn−1.
The relation C also allows the following interpretation: it consists of points and lightlike

lines through them; next, (τ, ξ) is conormal to (1, θ), i.e., to each such line `z,θ; and the

dual variables (ζ, θ̂) can be interpreted as projections of Jacobi fields along the line `z,θ
to its conormal bundle. This interpretation is discussed further in Section 3 below in the
context of general Lorentzian manifolds, see (3.8).

Let πM, πM be the natural projections of C onto T ∗M and T ∗M , respectively.

(2.15)

C

T ∗M T ∗M

πM πM

The dimensions from left to right are 4n − 2 ≥ 3n ≥ 2n + 2. The difference between two
consecutive terms is n − 2 and they are all equal when n = 2. The manifold Z can be
parameterized by (z, θ, t). Then C can be parameterized by

C0 = {(z, θ, t, ξ) ∈ Rn × Sn−1 ×R× (Rn \ 0)}.

.
We have

(2.16) πM((z, θ, ζ, θ̂), (t, x, τ, ξ)) = (z, θ, ζ, θ̂) = (z, θ, ξ, t(ξ − (ξ · θ)θ)).

This is a map from the 3n dimensional C to the 4n − 2 dimensional T ∗M. If n = 2,
πM is a local diffeomorphism when C is restricted to spacelike (τ, ξ). Indeed, we recall

that in that case ξ − (ξ · θ)θ 6= 0. Therefore, the equation θ̂ = t(ξ − (ξ · θ)θ) can be
solved for t. When n ≥ 3, dπM has full rank 3n away from the light-like cone, i.e., the
defect is (4n − 2) − 3n = n − 2 and in particular is injective there. The projection πM is
also injective, therefore, it is an immersion (on the spacelike cone). Next, there is t ∈ R
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such that θ̂ = t(ξ − (ξ · θ)θ) if and only if θ̂ is colinear with the projection of ζ = ξ to
θ⊥ = {ξ| ξ · θ = 0}, which describes the range of πM for (τ, ξ) spacelike.

If (τ, ξ) is lightlike, then the right-hand side of (2.16) reduces to (z, θ, ξ, 0). In particular,
for lightlike (τ j , ξj), j = 1, 2, the equation

πM((z, θ, ζ, θ̂), (t1, x1, τ
1, ξ1)) = πM((z, θ, ζ, θ̂), (t2, x2, τ

2, ξ2))(2.17)

is equivalent with (τ1, ξ1) = (τ2, ξ2) and both (tj , xj), j = 1, 2, lying on the line `z,θ.
For the second projection πM in (2.15) we get

πM ((z, θ, ζ, θ̂), (t, x, τ, ξ)) = (t, x, τ, ξ) = (t, z + tθ,−θ · ξ, ξ).(2.18)

Its differential has full rank for spacelike (τ, ξ). The projection πM is surjective onto the
spacelike cone, as well. Indeed, given (t, x, τ, ξ), we need to solve the equation given by
the second equality above for the parameters (z, t, θ, ξ). The variables t and ξ are obtained
trivially, and we need to solve x = z + tθ and τ = −θ · ξ for z and θ. For unit θ, the latter
equation has an (n− 2) dimensional sphere of solutions (the intersection of the unit sphere
with that plane in the θ space) when (τ, ξ) is spacelike. For each solution θ, we obtain z by
solving z+tθ = x. We can choose a locally smooth solution, which in particular shows that
the differential has full rank. If (τ, ξ) is lightlike, i.e., if |τ | = |ξ|, the equation τ = −θ · ξ
has a unique solution for θ given by θ = −sgn(τ) ξ/|ξ|. If (τ, ξ) is timelike, there are no
solutions.

If n = 2, πM is a local diffeomorphism and it is 2-to-1 in the spacelike cone because
τ = −θ · ξ has two solutions for θ ∈ S1: θ± = ±

√
1− τ2/|ξ|2(ξ⊥/|ξ|)− τξ/|ξ|2 for spacelike

(τ, ξ) with some fixed choice of the rotation by π/2 to define ξ⊥. This describes the non-
uniqueness class of πM .

We summarize the properties of the projections πM and πM as follows.

Lemma 2.2. The differential dπM is injective and the differential dπM is surjective at
(z, θ, t, ξ) ∈ C0, with ξ spacelike. The projection πM is injective on the set of points
(z, θ, t, ξ) ∈ C0, with ξ spacelike. The projection πM is surjective onto Σs.

Let us also summarize the properties of C considered as a relation (a multi-valued map
C = πM ◦ π−1M ).

Lemma 2.3. C has domain Σs ∪ Σl. For every (t, x, τ, ξ) ∈ Σs, C(t, x, τ, ξ) is the set of
all (x− tθ, θ, ξ, t(ξ − (ξ · θ)θ)) with θ ∈ Sn−1 a solution of (τ, ξ) · (1, θ) = 0.

(a) If n = 2, then C is a local diffeomorphism from Σs to T ∗M\ 0, and a 1-to-2 map
globally on Σs.

(b) If n ≥ 3, for every (t, x, τ, ξ) ∈ Σs, C(t, x, τ, ξ) is diffeomorphic to Sn−2.

For every (t, x, τ, ξ) ∈ Σl, C(t, x, τ, ξ) = (x − tθ, θ, ξ, 0), where θ = −sgn(τ)ξ/|ξ|. In

particular, C(Σl) =
{

(z, θ, ζ, θ̂)
∣∣ ζ ‖ θ, θ̂ = 0

}
\ 0.

In particular, this proposition says that WF(f) in the spacelike cone may affect WF(Lκf)
at all lightlike lines ` through the base point and normal to its the covector there.

The properties of C−1 are summarized as follows.
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Lemma 2.4. C−1 has domain in T ∗M\ 0 consisting of all (z, θ, ζ, θ̂) so that θ̂ is colinear
with the projection of ζ to θ⊥. Its range is Σs ∪Σl. The points mapped to Σl are the ones
with θ ‖ ζ. For every (z, θ, ζ, θ̂) in the domain with θ 6 ‖ ζ, we have

C−1(z, θ, ζ, θ̂) = (t, z + tθ,−θ · ζ, ζ),

where t is the unique solution to θ̂ = t(ξ − (ξ · θ)θ).

When n = 2, the colinearity condition is automatically satisfied. Indeed, the space θ⊥
is one dimensional then and therefore any θ̂ ∈ T ∗θ S1 ∼= θ⊥ is colinear with the projection
of ζ to θ⊥. When n ≥ 3, unlike C, the relation C−1 is a map away from θ ‖ ζ. It is not
injective by Lemma 2.3.

Most importantly for the purposes of the present paper, the composition C−1◦C reduces
to the identity on Σs. This can be deduced directly from Lemma 2.2, as will be done in
the proof of Lemma 3.11 in the general Lorentzian context, however, we will give here a
proof based on Lemmas 2.3 and 2.4.

Lemma 2.5. For every (t, x, τ, ξ) ∈ Σs it holds that (C−1 ◦ C)(t, x, τ, ξ) = (t, x, τ, ξ).

Proof. From Lemma 2.3,

C(t, x, τ, ξ) = {(z, θ, ξ, θ̂) | z = x− tθ, θ̂ = t(ξ − (ξ · θ)θ), θ ∈ Sn−1, −θ · ξ = −τ},

and from Lemma 2.4, for (z, θ, ξ, θ̂) ∈ C(t, x, τ, ξ),

C−1(z, θ, ξ, θ̂) = (t, x, τ, ξ).

�

2.4. Recovery of spacelike singularities. Lemma 2.5 suggests that the composition of
Lκ with its transpose L′κ could be a pseudodifferential operator when restricted on Σs. On
the other hand, by Propositions 2.3 and 2.4, C maps the lightlike cone to {ζ ‖ θ}, and C−1

maps the latter to the former. As anticipated above, this suggests that we could cut the
data Lκf microlocally near {ζ ‖ θ} to apply a cutoff to WF(f) near Σl. This is not an
automatic application of Egorov’s theorem however because C and C−1 are singular near
the lightlike cone (and its image under C) and Lκ is not a classical FIO there, in sense
that the associated canonical relation is not a canonical graph. Next theorem gives local
recovery of space like singularities from local data. It is similar to Proposition 11.4 in our
previous paper [23].

Theorem 2.2. Let Q = q(z, θ,Dz) be a ΨDO in M with a symbol q(z, θ, ζ) of order zero

(independent of θ̂) supported in {|θ · ζ| < |ζ|}. Then L′κQLκ is a ΨDO in M of order −1
with essential support in the spacelike cone.

Suppose, moreover, that κ is nowhere vanishing. Let U ⊂ Rn × Sn−1 be a neighborhood
of (z0, θ0) ∈ Rn × Sn−1, and let (t0, x0, τ

0, ξ0) ∈ Σs ∩N∗`z0,θ0. Then Q can be chosen so
that its essential support is contained also in U × (Rn \ 0) and that L′κQLκ is elliptic at
(t0, x0, τ

0, ξ0).
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Proof. The Schwartz kernel Lκ of Lκ has a wave front set N∗Z and C is its relation, see
also (2.13). We can always assume that the essential support ess-sup(Q) of Q is conically
compact. The twisted wave front set of the Schwartz kernel of Q as a relation is identity
restricted to ess-sup(Q). Then its composition with the relation C is C again with its
image restricted by Q to ess-sup(Q) which is contained in the conic set {|θ · ζ| < |ζ|}. By
(2.12), this implies |τ | < |ξ| near the wave front of the kernel of QLκ. Therefore, QLκ is
smoothing in a conic neighborhood of Σl ∪ Σt, and so is L′κQLκ.

The composition L′κQLκ can be analyzed by using the the transversal intersection cal-
culus in the case n = 2, and the clean intersection calculus in the case n = 3. As the
composition C−1 ◦C is the identity on Σs, the calculi imply that L′κQLκ is a ΨDO of order
−1. We will focus on the more complicated case n ≥ 3, and justify the application of the
clean intersection calculus in the next section.

Writing σ[·] for the principal symbol map, it holds that σ[L′κQLκ] is obtained from
σ[L′κ] = κ, σ[Q] and σ[Lκ] = κ by an integration reducing the excess, see [17, Theo-
rem 25.2.3]. We will choose Q so that σ[Q] is non-negative. As κ is nowhere vanishing,
σ[L′κQLκ] is positive at (t0, x0, τ

0, ξ0) if and only if the integral of σ[Q] does not vanish
over the fiber C(t0, x0, τ

0, ξ0).
We set ζ0 = ξ0 and choose Q so that σ[Q](z0, θ0, ζ0) > 0. It holds that

(z0, θ0, ζ
0, θ̂0) ∈ C(t0, x0, τ

0, ξ0),

where θ̂0 = t0(ξ0 − (ξ0 · θ0)θ0). Indeed, this follows from Lemma 2.3 since the assumption
(t0, x0, τ

0, ξ0) ∈ N∗`z0,θ0 implies that x0 = z0 + t0θ0 and (τ0, ξ0) · (1, θ0) = 0. Therefore,
σ[Q] does not vanish identically on C(t0, x0, τ

0, ξ0).
It still remains to show that the choice σ[Q](z0, θ0, ζ0) > 0 is compatible with the re-

quirement that ess-sup(Q) ⊂ {|θ · ζ| < |ζ|}. This follows, since together with ζ0 = ξ0 and
(t0, x0, τ

0, ξ0) ∈ Σs, the orthogonality (τ0, ξ0) · (1, θ0) = 0 implies that

|θ0 · ζ0| = |τ0| < |ξ0| = |ζ0|.

�

As a corollary, we have the following global result saying that the space like singularities
can be recovered.

Corollary 2.1. Let Lκf ∈ C∞(M) and assume that κ vanishes nowhere. Then it holds
that WF(f) ∩ Σs = ∅.

Proof. For any (t0, x0, τ
0, ξ0) ∈ Σs we can choose a lightlike line `z0,θ0 such that (t0, x0, τ

0, ξ0)
is in N∗`z0,θ0 . Then the previous corollary implies that (t0, x0, τ

0, ξ0) /∈WF(f). �

By combining Theorem 2.2 with a microlocal partition of unity, we can recover, not only
WF(f), but a smoothened version of f with the singularities cut off (in a smooth way) in
any predetermined neighborhood of Σt ∪Σl. This can be viewed as a regularized inversion
of Lκ with the regularization cutting away from the ill posed region Σt and its boundary
Σl.
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Let us also give a more explicit construction as follows. We can choose φ ∈ C∞0 (R) such
that φ = 1 on [0, 1 − ε] and φ = 0 on [1 − ε/2,∞). Let Q be the zeroth order ΨDO with
symbol φ(|θ · ζ|/|ζ|) cut off smoothly near the origin (which is actually not needed). Then
L′κQLκ is a ΨDO of order −1, elliptic away from a neighborhood of Σt ∪ Σl determined
by ε. When κ = 1, one can compute L′QL directly. Since |θ · ζ|/|ζ| is a Fourier multiplier
w.r.t. z only, it is enough to express QLf by taking the Fourier transform of Lf w.r.t. z
only. Then from (2.7) we get

L′QL = F−1φ(|τ |/|ξ|)
|ξ|

(
|1− τ2/|ξ|2

)n−3
2 F .

Therefore,

φ(|Dt|/|Dx|)f = |Dx|
(
1−D2

t /|Dx|2
) 2

n−3

+
L′QLf.

2.5. The clean intersection calculus. We assume that n ≥ 3, and show here that
the clean intersection calculus can be applied to L′κQLκ in Theorem 2.2. The traditional
formulation of this calculus considers the composition A1A2 of two properly supported
Fourier integral operators A1 and A2 such that the composition C1 ◦C2 of their canonical
relations

C1 ⊂ (T ∗X \ 0)× (T ∗Y \ 0), C2 ⊂ (T ∗Y \ 0)× (T ∗Z \ 0),

is clean, proper and connected [18, Th. 25.2.3]. Here X, Y and Z are smooth manifolds.
The operators A1 = L′κ and A2 = QLκ do not quite satisfy the assumptions of the calculus,
since the composition C−1 ◦ C is clean only away from Σl. Also, as a canonical relation,
C must be closed in T ∗(M×M) \ 0, and we can not simply apply the calculus with C
replaced by C \ (T ∗M× Σl).

The proof of [18, Th. 25.2.3] uses a microlocal partition of unity, subordinate to a cover
Γj , j = 1, 2, . . . , of the intersection X ∩ Y where

X = C1 × C2, Y = T ∗X × diag(T ∗Y )× T ∗Z,

and diag(T ∗Y ) = {(p, p); p ∈ T ∗Y }. We write K1 for the Schwartz kernel of A1, and recall
that the essential support of A1 is given by

ess-sup(A1) = WF′(K1) = {(x, ξ, y,−η) | (x, ξ, y, η) ∈WF(K1)}.

For the local step of the proof, it is enough to assume that the composition C1 ◦C2 is clean
in each Γj that intersect the product ess-sup(A1)× ess-sup(A2). The composition C1 ◦C2

being clean in Γj means that X ∩ Y ∩ Γj is a smooth manifold and that

Tp(X ∩ Y) = TpX ∩ TpY, p ∈ X ∩ Y ∩ Γj .(2.19)

The local step implies that (C1 ◦ C2)
′ is locally a conic Lagrangian manifold, how-

ever, global assumptions are needed, for example, to guarantee that it does not have
self-intersections. The assumptions that C1 ◦ C2 is proper and connected are used in the
proof [18, Th. 25.2.3] to show that C1 ◦C2 is an embedded submanifold of T ∗(X ×Z) \ 0,
and closed as its subset.
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In our case, A1 = L′κ and A2 = QLκ,

X = C−1 × C, Y = T ∗M × diag(T ∗M)× T ∗M,

and ess-sup(A2) ⊂ Σs due to the microlocal cutoff Q. Thus we need to consider the
condition (2.19) only for

Γj ⊂ T ∗M × diag(T ∗M)× Σs(2.20)

As for the global structure of C−1 ◦C, we already know that A1A2 is smoothing in a conic
neighborhood of Σl ∪ Σt, and that C−1 ◦ C is the identity on Σs. In particular, C−1 ◦ C
is an embedded submanifold of T ∗(M ×M) \ 0 in a neighborhood of ess-sup(A1A2), and
closed as its subset.

Let us now show that (2.19) holds for (2.20). We write C = X ∩Y ∩Γj and C̃ = C ∩ Γ̃j ,

where Γ̃j is the projection of Γj on T ∗M×Σs. Also, we use ∼= to denote that two manifolds

or vector spaces are isomorphic. Let (t̃, x̃, τ̃ , ξ̃; z, θ, ζ, θ̂; z, θ, ζ, θ̂; t, x, τ, ξ) ∈ C. Since

(t̃, x̃, τ̃ , ξ̃) = C−1(z, θ, ζ, θ̂) = (t, x, τ, ξ)

and (τ, ξ) is spacelike, Lemma 2.4 implies that (t̃, x̃, τ̃ , ξ̃) = (t, x, τ, ξ). This again implies

that C ∼= diag(C̃) ∼= C̃, in particular, C is a smooth manifold. Moreover, X ∼= C2. Let

p ∈ C̃ and observe that for (δp, δq) in T(p,p)X ∼= TpC × TpC it holds that (δp, δq) ∈ T(p,p)Y
if and only if

dπMδp = dπMδq.

Since dπM is injective (again due to (τ, ξ) being spacelike), we have δp = δq for all (δp, δq)
in T(p,p)X ∩ T(p,p)Y. Therefore

T(p,p)X ∩ T(p,p)Y ∼= TpC̃ ∼= T(p,p)C.
Keeping track of the diffeomorphisms used above, this shows (2.19). We have shown
that the clean intersection calculus applies, and therefore L′κQLκ is a pseudodifferential
operator.

To establish that L′κQLκ has order −1, we need to verify also that the order m = −n/4
of Lκ and the excess e of the clean intersection satisfy 2m+ e/2 = −1. We write

Π : C → T ∗(M ×M) \ 0

for the natural projection, and Cγ = Π−1({γ}) for its fibers. The excess e coincides with

dim(Cγ), and using again the identification C ∼= C̃, we see that for all γ ∈ Π(C) there is
(t, x, τ, ξ) ∈ Σs such that

Cγ ∼= {(t, x, τ, ξ; z, θ, ζ, θ̂); (z, θ, ζ, θ̂) ∈ C(t, x, τ, ξ)} ∼= C(t, x, τ, ξ) ∼= Sn−2,

where the last identification is given by part (b) of Lemma 2.3. Hence e = n−2 and indeed
2m+ e/2 = −1.

We remark that, in the context of [18, Th. 25.2.3], the composition C1 ◦ C2 being con-
nected means that the fibers Cγ are connected (when C is taken to be the whole intersection
X ∩Y). As we are assuming that n > 2, the fibers Cγ are connected in our particular case.
With a suitable cutoff, this can be arranged also in the more general Lorentzian context
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considered next, however, analogously to the above discussion, such connectedness is not
essential. Even when not connected, the fibers Cγ are smooth manifolds, since the projec-
tion Π has constant rank by [17, Th. 21.2.14].

3. The Lorentzian case

Our aim is to prove an analogue of Theorem 2.2 in a more general Lorentzian context.
Toward this end, we will consider the light ray transform on a Lorentzian manifold (M, g),
localized near a lightlike geodesic segment γ0 : [0, `] → M , the analogue of `z0,θ0 in Theo-
rem 2.2. We parameterize lightlike geodesics near γ0 by choosing a spacelike hypersurface
H containing γ0(0) and semigeodesic coordinates associated to H,

(3.1) (t, z) ∈ (−T, T )× Z, Z ⊂ Rn,

so that in the coordinates H = {t = 0} and g = −dt2 + g′, with g′ = g′(t, z) a Riemannian
metric on Z that depends smoothly on t. Moreover, the coordinates are chosen so that
γ0(0) = 0 and γ̇0(0) = (1, θ0) where, writing h = g′(0, ·), it holds that (θ0, θ0)h = 1. Then
we choose local coordinates of the form

(3.2) (z, a) ∈ Z ×A, A ⊂ Rn−1,

on the unit sphere bundle SZ with respect to h, so that writing

Z ×A 3 (z, a) 7→ (z, θ(z, a)) ∈ SZ(3.3)

for the coordinate map, it holds that θ0 = θ(0, 0). We write γz,a for the geodesic γ satisfying
γ(0) = (0, z) and γ̇(0) = (1, θ(z, a)), and use also the notation M = Z × A. Analogously
to (2.1), this parametrization gives the smooth manifold structure in the space of lightlike
geodesics near γ0.

Let Ω ⊂M be open and relatively compact, and suppose that the end points γ0(0) and
γ0(`) are outside Ω. By making Z and A smaller, we suppose without loss of generality
that the end points γz,a(0) and γz,a(`) are outside Ω for all (z, a) ∈M. In what follows we
consider the local version of the light ray transform defined as follows

Lκf(γ) =

∫ `

0
κ(γ(s), γ̇(s))f(γ(s)) ds, f ∈ C∞0 (Ω), γ = γz,a, (z, a) ∈M.(3.4)

Observe that, given a geodesic γ : R → M , the integral
∫
R f(γ(s)) ds may not be well-

defined even for f ∈ C∞0 (Ω) if γ returns to Ω infinitely often. We note that if (M, g) is
globally hyperbolic, Lκf(γ) can be defined for all f ∈ C∞0 (M). However, in this paper
we consider only the local version (3.4) in order to avoid making global assumptions on
(M, g).

Note that the coordinates (3.1) are valid locally only; and we cannot use them in our
analysis of the contributions of possible conjugate points on the geodesics γz,a. They are
used only to parametrize these geodesics. Moreover, the parametrization and, in particular,
the normalization of γ̇(0), is not invariant. It depends on the choice of H and the coordi-

nates (3.1)–(3.2). On the other hand, if H̃ is another spacelike hypersurface intersecting

γ0, then the lightlike geodesic flow provides a natural map from TH to TH̃, however, the
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projections of the tangents of the geodesics γz,a onto TH̃ may not be of unit length. If
the geodesics γz,a are re-parameterized so that the projections are unit, then the weight κ
is multiplied by a smooth Jacobian. While this would change Lκ, it would not change its
microlocal properties. We will use this fact later to choose H in a convenient way.

θ(z, a)

γz,a

H

K

z

∂
∂t

γ̇z,a(0)

Figure 2. Parameterization of lightlike geodesics near γ0.

3.1. Point-geodesic relation. The point-geodesic relation

(3.5) X = {(z, a, x) ∈M× Ω| x = γz,a(s) for some s ∈ (0, `)}
is a smooth 2n dimensional submanifold of the 3n dimensional M× Ω, parameterized by
the map (z, a, s) 7→ (z, a, γz,a(s)). Writing x = γz,a(s), this map has differential Id 0 0

0 Id 0
∂x/∂z ∂x/∂a γ̇z,a(s)

dz
da
ds


which has maximal rank 2n. The conormal bundle N∗X at any point is the space conormal
to the range of that differential; that is, it is described by the kernel of its adjoint. Therefore,
the canonical relation C := N∗X ′ ⊂ T ∗(M× Ω) \ 0 is given by

C =
{(

(z, a, ζ, α), (x, ξ)
)∣∣ x = γz,a(s), 〈ξ, γ̇z,a(s)〉 = 0, ζj = 〈ξ, ∂zjγz,a(s)〉,

j = 1, . . . , n, αk = 〈ξ, ∂akγz,a(s)〉, k = 1, . . . , n− 1, s ∈ (0, `)
}
.

(3.6)

Clearly ζ = 0 and α = 0 if ξ = 0. It follows from Lemma 3.1 below that also the converse
holds. Therefore C is closed in T ∗(M×Ω) \ 0, and Lκ is a Fourier integral operator. The
Schwartz kernel of Lκ is a conormal distribution on X with the (un-reduced) symbol κ,
and by [17, Th. 18.2.8], the order m of Lκ is satisfies

0 = m+ (3n− 2n)/4, that is m = −n/4.
As in the Minkowski case, the covector ξ must be lightlike or spacelike at x as a con-

sequence of 〈ξ, γ̇z,a(s)〉 = 0. Relation (2.13) holds in this case as well and it shows that
timelike singularities of f do not affect WF(Lκf), that is, they are invisible. Moreover,
the dimensions of the manifolds in the diagram (2.15) are unchanged from the Minkowski
case.
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The canonical relation C is parameterized by

C0 = {(z, a, s, ξ) ∈M× (0, `)× T ∗γz,a(s)Ω | ξ 6= 0, 〈ξ, γ̇z,a(s)〉 = 0}.

More precisely, C0 is a 3n-dimensional smooth manifold and, in view of the definition (3.6),
there is a diffeomorphism between C0 and C.

3.2. Variations of the geodesics γz,a. Let us consider the Jacobi fields associated to
the variations through the geodesics γz,a, (z, a) ∈ Z ×A,

(3.7) Mj(s; z, a) = ∂zjγz,a(s), j = 1, . . . , n, Jk(s; z, a) = ∂akγz,a(s), k = 1, . . . , n− 1.

Observe that by (3.6), it holds on C that

(3.8) ζj = 〈ξ,Mj(s; z, a)〉, αk = 〈ξ, Jk(s; z, a)〉,

that is, the dual variables ζ and α are given by projections of the Jacobi fields Mj and Jk
to ξ.

For a vector field J along a curve γ, we use the shorthand notation J ′(s) = ∇sJ(s) for
the covariant derivative ∇s = ∇γ̇ along γ. We write also

γ̇(s)⊥ = {v ∈ Tγ(s)M | (v, γ̇(s))g = 0}.

Since every Jacobi field along a null geodesic is a certain variation of the latter, the lemma
below in particular characterizes the Cauchy data (J, J ′) of such fields at any point.

Lemma 3.1. Let (z, a) ∈ M and write γ = γz,a. Write Γ(s) = sγ̇(s), and consider the
Jacobi fields J := span{M1, . . . ,Mn, J1, . . . , Jn−1, γ̇,Γ} along γ. Then for any s ∈ [0, `] it
holds that

{(J(s), J ′(s))| J ∈ J } = {(V,W ) ∈ (Tγ(s)M)2|W ∈ γ̇(s)⊥}.
In particular, {J(s)| J ∈ J } = Tγ(s)M .

Proof. Let us begin by showing that (J ′(0), γ̇(0))g = 0 for J ∈ J . Consider the curve
r 7→ (0, z + rej) in coordinates (3.1), where z ∈ Z is fixed and ej is the n-dimensional
vector with 1 in the jth position, all other entries zero, and denote by ∇zj the covariant
derivative along this curve. Using the symmetry property ∇s∂zjγ = ∇zj∂sγ, we see that

(3.9)
(
Mj(0),M ′j(0)

)
= ((0, ej), (0,∇zjθ)),

(
Jk(0), J ′k(0)

)
=
(
(0, 0), (0, ∂akθ)

)
,

where θ is the map defined by (3.3). Hence (M ′j(0), γ̇(0))g = (∇zjθ, θ)h = ∂zj (θ, θ)h/2 = 0.

Similarly also (J ′k(0), γ̇(0))g = 0. Finally, as γ̇′ = 0 and Γ′ = γ̇, we have shown that
(J ′(0), γ̇(0))g = 0 for J ∈ J .

Recall that ∂s(J
′(s), γ̇(s))g = 0 for any Jacobi field J along γ. Therefore (J ′, γ̇)g = 0

identically on [0, `] for J ∈ J . In particular,

(3.10) J(s) := {(J(s), J ′(s))| J ∈ J } ⊂ {(V,W ) ∈ (Tγ(s)M)2|W ∈ γ̇(s)⊥}.

The vectors (J(0), J ′(0)), J ∈ J , are linearly independent, as can be seen from (3.9)
and from

(γ̇(0), γ′′(0)) = ((1, θ), 0), (Γ(0),Γ′(0)) = (0, (1, θ)).
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As Jacobi fields satisfy a linear second order differential equation, it follows that the di-
mension of J is 2n+ 1 and that the same is true for J(s), s ∈ [0, `]. The claim follows from
(3.10) since both the spaces there have the same dimension. �

For fixed s1, s2 ∈ [0, `], consider the spaces

(3.11) Js1 = {J ∈ J | J(s1) = 0}, J ′s1,s2 = {J ′| J ∈ Js1 ∩ Js2},
and set for every s ∈ [0, `]

(3.12) Js1(s) = {J(s)| J ∈ Js1}, J ′s1,s2(s) = {J ′(s)| J ′ ∈ J ′s1,s2}.

Lemma 3.1 implies that J ′s1,s2(s) ⊂ γ̇(s)⊥. The same is true for Js1(s) since

∂s(J, γ̇)g = (J ′, γ̇)g = 0, J ∈ J ,
and (J(s1), γ̇(s1))g = 0 for J ∈ Js1 . To summarize, for every s ∈ [0, `],

(3.13) Js1(s) ∪ J ′s1,s2(s) ⊂ γ̇(s)⊥,

and in particular, both spaces consist of spacelike or lightlike vectors. Furthermore, γ̇(s) ∈
Js1(s) if and only s 6= s1, because (s− s1)γ̇(s) ∈ Js1 . On the other hand, γ̇(s) ∈ J ′s1,s2(s)
if and only s = s1 = s2.

We will need below the following simple lemma.

Lemma 3.2. If two lightlike vectors v, w ∈ TxM satisfy (v, w)g = 0 then they are parallel.

Proof. We can choose local coordinates so that g coincides with the Minkowski metric at
x. Then v and w are parallel with vectors of the form (1, θ) and (1, ω) with θ and ω unit
vectors. Now (v, w)g = 0 implies that ω · θ = 1, and thus ω and θ must be parallel. �

We will need the following property: for any Jacobi fields I, J along a geodesic γ, the
Wronskian

(3.14) (I, J ′)g − (I ′, J)g is constant along γ,

see e.g. [29, p. 274].

Lemma 3.3. Let (z, a) ∈M and write γ = γz,a. Then for every s1, s2 ∈ [0, `], we have

(i) Js1(s2) and J ′s1,s2(s2) are mutually orthogonal with respect to g,
(ii) Js1(s2) ∩ J ′s1,s2(s2) = {0},

(iii) Js1(s2) + J ′s1,s2(s2) = γ̇(s2)
⊥.

Proof. Note first that if s2 = s1, then Js1(s2) = {0} and J ′s1,s2(s2) = γ̇(s0)
⊥ by Lemma 3.1.

Therefore the lemma holds in this case, and we can assume s2 6= s1 in what follows.
For w ∈ Tγ(s2)M with w ∈ J ′s1,s2(s2), let I ∈ Js1 be the Jacobi field with Cauchy data

(0, w) at s = s2. (If I 6= 0, then γ(s1) and γ(s2) are conjugate along γ.) By (3.14), for
every J ∈ Js1 , we get (w, J(s2))g = (I ′(s1), J(s1))g − (I(s1), J

′(s1))g = 0, therefore, w is
orthogonal to Js1(s2). This proves (i).

To prove (ii), assume that w ∈ Js1(s2) ∩ J ′s1,s2(s2). Then w is orthogonal to itself by
(i), therefore it is lightlike. By (3.13) it is also perpendicular to the lightlike vector γ̇(s2),
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and Lemma 3.2 implies that w must be parallel to γ̇(s2). That is, w = λγ̇(s2) with some
λ ∈ R. Since w ∈ J ′s1(s2), then there is J ∈ Js1 with Cauchy data (0, λγ̇(s2)) at s = s2;
but then J(s) = λ(s − s2)γ̇(s). Now J ∈ Js1 and s1 6= s2 imply λ = 0, hence J = 0 and
also w = 0.

Consider now (iii). We write W = Js1(s2) + J ′s1,s2(s2). As W ⊂ γ̇(s2)
⊥ by (3.13),

it remains to show the opposite inclusion. We will establish this by showing that W⊥ is
contained in Rγ̇(s2) := {λγ̇(s2)| λ ∈ R}. Then γ̇(s2)

⊥ ⊂ (W⊥)⊥ and (iii) follows from
(W⊥)⊥ = W , see e.g. [29, Lemma 22, p. 49] for the latter fact.

Let w ∈W⊥ and let I be the Jacobi field with Cauchy data (0, w) at s = s2. As w is in
particular orthogonal to Js1(s2), by using (3.14) we get for every J ∈ Js1 ,

(I(s1), J
′(s1))g = (I(s2), J

′(s2))g − (I ′(s2), J(s2))g = 0.

Recall that by Lemma 3.1, {J ′(s1)| J ∈ Js1} = J ′s1,s1(s1) = γ̇(s0)
⊥. Therefore I(s1) is in

(γ̇(s1)
⊥)⊥ = Rγ̇(s1) and we write I(s1) = λγ̇(s1). Then for the Jacobi field

K(s) = I(s) + λ
s− s2
s2 − s1

γ̇(s)

it holds that K(s1) = 0 and K(s2) = 0. Writing u = K ′(s2) and µ = λ(s− s0)−1, we have
u ∈ J ′s1,s2(s2) and u = w + µγ̇(s).

Let us now use the fact that w is orthogonal to the whole W . It follows from (3.13) that
Rγ̇(s2) ⊂ W⊥ and therefore also u = w + µγ̇(s) ∈ W⊥. But u ∈ J ′s1,s2(s2) ⊂ W , and u
must be lightlike. Lemma 3.1 implies that (u, γ̇(s))g = 0 and then u ∈ Rγ̇(s) by Lemma
3.2. Hence also w ∈ Rγ̇(s). �

We will denote by ζ∗ ∈ TzZ the image of ζ ∈ T ∗z Z, with z ∈ Z, under the canonical

isomorphism induced by h, i.e., ζj∗ = hjkζk. Analogously for ξ ∈ T ∗xM , with x ∈ M , we

denote by ξ∗ ∈ TxM the vector defined by ξj∗ = gjkξk.
Recall that in the Minkowski case the lightlike covectors on the canonical relation are

characterized by (2.11), or equivalently by ξ ‖ θ. These two characterizations have the
following analogues in the present context.

Lemma 3.4. Let (z, a, s, ξ) ∈ C0. Then the following three conditions are equivalent:

(i) ξ is lightlike,
(ii) ξ∗ is parallel to γ̇z,a(s),
(iii) ζ∗ is parallel to θ(z, a) and α = 0 where ζ and α are given by (3.8).

Proof. We will suppress (z, a) in the notation below. Let us suppose first that ξ∗ is lightlike
and show that ξ∗ is parallel to γ̇(s). As (ξ∗, γ̇(s))g = 〈ξ, γ̇(s)〉 = 0, Lemma 3.2 implies that
ξ∗ is parallel to γ̇(s).

Let us now suppose that ξ∗ = λγ̇(s) for some λ ∈ R, and show that ζ∗ = λθ and α = 0.
Lemma 3.1 implies ∂s(Mj(s), γ̇(s))g = (M ′j(s), γ̇(s))g = 0. Hence using also (3.9)

ζj = λ(γ̇(s),Mj(s))g = λ(γ̇(0),Mj(0))g = λ((1, θ), (0, ej))g = λθkhkj .

This establishes ζ∗ = λθ. Analogously, αk = λ(γ̇(0), Jk(0))g = 0 since Jk(0) = 0.
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Let us now suppose that ζ∗ = λθ and α = 0 and show that ξ∗ = λγ̇(s). The equations
in the previous step imply that

(ξ∗,Mj(s))g = ζj = λ(γ̇(s),Mj(s))g, (ξ∗, Jk(s))g = αk = 0 = λ(γ̇(0), Jk(0))g.

Moreover, (ξ∗, γ̇(s))g = 0 = λ(γ̇(s), γ̇(s))g. By Lemma 3.1, {J(s)| J ∈ J } = Tγ(s)M , and
hence ξ∗ = λγ̇(s). This again implies that ξ∗ is lightlike. �

3.3. The projection πM. We analyze πM next. We have

(3.15) πM
(
(z, a, ζ, α), (x, ξ)

)
= (z, a, ζ, α).

Since C is parameterized by (z, a, s, ξ) ∈ C0, we view πM as a function of those parameters.
As before, this projection is a map from the 3n dimensional C to the 4n−2 dimensional

T ∗M. To see whether πM is injective, let the right-hand side of (3.15) be given. This
means in particular that the geodesic γz,a is fixed. We want to find out whether the
defining equations of C, that is,

(3.16) ζj = 〈ξ,Mj(s; z, a)〉, αk = 〈ξ, Jk(s; z, a)〉, 〈ξ, γ̇z,a(s)〉 = 0,

have more than one solution for s and ξ.

Lemma 3.5. Let (z, a) ∈M, s1 6= s2, J ′ ∈ J ′s1,s2, and let λ ∈ R. Then

ξj∗ = J ′(sj) + λγ̇(sj), j = 1, 2,

satisfy

(3.17) 〈ξ1,Mj(s1; z, a)〉 = 〈ξ2,Mj(s2; z, a)〉 〈ξ1, Jk(s1; z, a)〉 = 〈ξ2, Jk(s2; z, a)〉,

and 〈ξj , γ̇z,a(sj)〉 = 0, j = 1, 2.

Proof. The claimed equations are linear, so it is enough to verify that the choices ξj∗ = J ′(sj)

and ξj∗ = γ̇(sj) satisfy them. We begin with the former choice. By (3.14) it holds that〈
ξ1,Mj(s1)

〉
= (J ′(s1),Mj(s1))g − (J(s1),M

′
j(s1))g

= (J ′(s2),Mj(s2))g − (J(s2),M
′
j(s2))g =

〈
ξ2,Mj(s2)

〉
,

and analogously
〈
ξ1, Jk(s1)

〉
=
〈
ξ2, Jk(s2)

〉
. The last equation follows from (3.13). Let

us now consider the choice ξj∗ = γ̇(sj). By Lemma 3.1 the scalar products (M ′j , γ̇)g and

(J ′k, γ̇)g and vanish identically. Thus (Mj , γ̇)g is constant along γ, and the same holds
for (Jk, γ̇)g. Therefore γ̇(s1) and γ̇(s2) solve (3.17). The last equation holds since γ is
lightlike. �

Lemma 3.6. Let (z, a, ζ, α) ∈ T ∗M and let (sj , ξ
j) ∈ [0, `] × T ∗γz,a(sj)M , j = 1, 2, solve

(3.16). Then the following hold:

(i) Either both ξ1 and ξ2 are spacelike or they are both lightlike.
(ii) If s1 = s2 then ξ1 = ξ2.
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(iii) If s1 6= s2 then there are unique J ′ ∈ J ′s1,s2 and λ ∈ R such that

ξj∗ = J ′(sj) + λγ̇(sj), j = 1, 2.

Moreover, ξ1 and ξ2 are spacelike if and only if J ′ 6= 0.

Let us remark that the case J ′ = 0 in (iii) is the analogue of the fact that in the
Minkowski case, equation (2.17) for lightlike (τ j , ξj) is equivalent with (τ1, ξ1) = (τ2, ξ2)
and both (tj , xj), j = 1, 2, lying on the same line `z,θ.

Proof. We will again suppress (z, a) in the notation below. We will begin by proving (i).
Recall that 〈ξj , γ̇(sj)〉 = 0 implies that ξj is lightlike or spacelike. It is enough to show
that ξ1 being lightlike implies that also ξ2 is lightlike. So suppose that ξ1 is lightlike. Then
Lemma 3.4 implies that ζ∗ is parallel to θ and α = 0. Therefore ξ2 is lightlike by the same
lemma.

Let us now show (ii). When s1 = s2, equation (3.16) implies that〈
ξ1,Mj(s1)

〉
=
〈
ξ2,Mj(s1)

〉
,
〈
ξ1, Jk(s1)

〉
=
〈
ξ2, Jk(s1)

〉
,
〈
ξ1, γ̇(s1)

〉
=
〈
ξ2, γ̇(s1)

〉
,

and, as {J(s1)| J ∈ J } = Tγ(s1)M by Lemma 3.1, it holds that ξ1 = ξ2.

We turn to (iii). As ξ2∗ ∈ γ̇(s2)
⊥, there are unique u ∈ Js1(s2) and w ∈ J ′s1,s2(s2) such

that ξ2∗ = u+ w by Lemma 3.3. As (sj , ξ
j) solve (3.16), it holds that for all J ∈ Js1 that

0 = (ξ1∗ , J(s1))g = (ξ2∗ , J(s2))g.

In other words, ξ2∗ ∈ Js1(s2)
⊥. By (i) of Lemma 3.3, also w ∈ Js1(s2)

⊥. Therefore

u = ξ2∗ − w ∈ Js1(s2) ∩ Js1(s2)
⊥

and u must be lightlike. As u is orthogonal to γ̇(s2) by (3.13), it follows from Lemma 3.2
that u = λγ̇(s2) for some λ ∈ R. Let J be the Jacobi field with Cauchy data (0, w) at

s = s2. Then J(s1) = 0 since w ∈ J ′s1,s2(s2). Setting ξ̃1∗ = J ′(s1) +λγ̇(s1), the covectors ξ̃1

and ξ2 give a solution to (3.17) by Lemma 3.5. It then follows from part (ii) that ξ1 = ξ̃1.
Clearly both ξj , j = 1, 2, are lightlike if J ′ = 0. On the other hand, if ξj , j = 1, 2

are lightlike, then ξj∗ ∈ γ̇(sj)
⊥, applying Lemma 3.2, implies that J ′(sj) = µγ̇(sj) for some

µ ∈ R. Now J(s1) = 0 and J ′(s1) = µγ̇(s1) imply that J(s) = µ(s−s1)γ̇(s), and J(s2) = 0
implies that µ = 0. �

The above lemma says in particular that if there are two distinct solutions (sj , ξ
j),

j = 1, 2, to (3.16) and if ξ1 is spacelike then γz,a(s1) and γz,a(s2) are conjugate along γz,a.
By Lemma 3.5 the converse holds as well. Indeed, if γz,a(s1) and γz,a(s2) are conjugate

along γz,a then there is non-zero J ′ ∈ J ′s1,s2 and for any λ ∈ R the vectors ξj∗ in Lemma 3.5
are spacelike solutions to (3.17).

The characterization of the pairs (ξ1, ξ2) is related to that in the Riemannian case, see
[39, Theorem 4.2] where the conjugate points are assumed to be of fold type; see also [15]
for a more general case.

We will finish our study of πM by showing that dπM is injective in the spacelike cone.
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Lemma 3.7. Let p0 := ((z0, a0, ζ
0, α0), (x0, ξ

0)) ∈ C and suppose that ξ0 is spacelike.
Then dπM is injective at p0.

Proof. After reparametrization, we can assume x0 ∈ H, x0 = (0, z0) = (0, 0) in the semi-
geodesic coordinates (3.1), and a0 = 0. In particular, we can consider x = (x0, x′) near x0
as a point in (−T, T )×Z. We write also ξ0 = (ξ00 , ξ

0′). Then the points (z, a, s, ξ) in C0 near
(0, ξ0) can be parameterized by (z, a, s, ξ′) ∈ Z×A×R×Rn by setting ξ = (ξ0(z, a, s, ξ

′), ξ′)
where ξ0(z, a, s, ξ

′) is the unique solution to 〈ξ, γ̇z,a(s)〉 = 0 near ξ00 . Indeed, this follows
from the implicit function theorem since ∂ξ0 〈ξ, γ̇0(0)〉 = 1.

Using the above parameterization, we write πM(z, a, s, ξ′) = (z, a, ζ, α) with ζ and α as
in (3.8). To show that dπM is injective at p0, it is enough to show that ∂(ζ, α)/∂(s, ξ′) is

injective at (0, ξ0
′
). Moreover, using (3.9), we have at (0, ξ0

′
),

∂ζ

∂ξ′
=

M
1
1 (0) · · · M1

n(0)
...

. . .
...

M1
n(0) · · · Mn

n (0)

 = Id.

As also ∂α/∂ξ′ = 0 there, it is enough to show that ∂α/∂s 6= 0. Using once again (3.9), it

holds at (0, ξ0
′
) that

∂αk
∂s

= (∇sξ∗, Jk)g + (ξ∗,∇sJk)g = (ξ0∗
′
, ∂akθ)h.

To get a contradiction, suppose that (ξ0∗
′
, ∂akθ)h = 0, k = 1, . . . , n − 1. As the vectors

∂akθ, k = 1, . . . , n − 1, span the tangent space of the unit sphere Sz0Z at θ0, the vector

ξ0∗
′

must be parallel to θ0. But then
〈
ξ0, γ̇0(0)

〉
= 0 implies that ξ0∗ is parallel to (1, θ0), a

contradiction with ξ0 being spacelike. �

3.4. The projection πM . As above, we regard the projection πM in (2.15) as a map of
C parameterized by (z, a, s, ξ) ∈ C0 to T ∗M . We have

πM
(
(z, a, ζ, α), (x, ξ)

)
= (x, ξ) = (γz,a(s), ξ),

with ξ conormal to γ̇z,a(s). It maps the 3n dimensional C to the 2n+ 2 dimensional T ∗M .
Moreover, πM is surjective in the sense that there are (z, a, s) ∈ Z ×A× (0, `) satisfying

(3.18) x = γz,a(s), 〈ξ, γ̇z,a(s)〉 = 0,

assuming that (x, ξ) ∈ Σs is close to N∗γ0. Indeed, as in the Minkowski case, solving
for η∗ = γ̇z,a(s) modulo rescaling in the second equation in (3.18), we obtain a (n − 2)-
dimensional sphere of lightlike solutions when ξ is spacelike; and two distinct vectors when
n = 2. Moreover, when x is close to γ0(s0) for some s0 ∈ (0, `) and ξ is close to N∗γ0(s0)γ0, we

can choose η∗ near γ̇0(s0). Then finding z and a is straightforward because H is transversal
to γ0.

It follows from [18, Prop. 25.3.7] that the differential dπM is surjective whenever dπM
is injective. Let us, however, show this also directly for a point p0 as in Lemma 3.7. We
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re-parametrize again as in Lemma 3.7. Then at (0, ξ0
′
)

dπM =
∂(x0, x′, ξ0, ξ

′)

∂(z, a, s, ξ′)
=


0 0 1 0
Id 0 ∂x′/∂s 0

∂ξ0/∂z ∂ξ0/∂a ∂ξ0/∂s ∂ξ0/∂ξ
′

0 0 0 Id

 ,

and we see that dπM is surjective if and only if ∂ξ0/∂a 6= 0. It follows from 〈ξ, γ̇z,a(s)〉 = 0
and (3.9) that

0 =
∂ξ0
∂ak

+
〈
ξ0, ∂ak γ̇0

〉
=
∂ξ0
∂ak

+ (ξ0∗
′
, ∂akθ)h.

We showed in Lemma 3.7 that (ξ0∗
′
, ∂akθ)h can not vanish for all k = 1, . . . , n− 1 when ξ0

is spacelike. Thus dπM is surjective in this case.

3.5. Conclusions. Analogously to Lemma 2.2, we summarize the results above:

Lemma 3.8. The differential dπM is injective and the differential dπM is surjective at
(z, a, s, ξ) ∈ C0, with ξ spacelike. The projection πM is injective in a neighborhood of the
set of points (0, 0, s, ξ) ∈ C0, with ξ spacelike, if and only if there are no conjugate points
on γ0. The projection πM is surjective onto a neighborhood of Σs ∩N∗γ0 in Σs.

We have also the following partial analogues of Lemmas 2.3 and 2.4, where write again
C = πM ◦ π−1M .

Lemma 3.9. For all (x, ξ) in a small enough neighborhood of Σs ∩ N∗γ0 in Σs it holds
that C(x, ξ) is the (n− 2)-dimensional manifold given by

{(z, a, ζ, α) ∈ T ∗M| (3.18) and (3.8) hold for some s ∈ (0, `)}.

Proof. If ((z, a, ζ, α), (x, ξ)) ∈ π−1M (x, ξ), then (z, a) satisfies (3.18) for some s ∈ (0, `). By
the argument above, the solutions to this equation form a (n − 2)-dimensional manifold.
For each solution (z, a), the parameter s is fixed by x = γz,a(s), and then ζ and α are given
by (3.8). �

Lemma 3.10. Suppose that (z, a, ζ, α) ∈ T ∗M is in the domain of C−1 and not in the set

L = {(z, a, ζ, α) ∈ T ∗M| ζ∗||θ(z, a), α = 0}.(3.19)

Suppose, furthermore, that there are no conjugate points on γ0. Then C−1(z, a, ζ, α) =
(γz,a(s), ξ) where (s, ξ) is the unique solution of (3.16).

Proof. If ((z, a, ζ, α), (x, ξ)) ∈ π−1M (z, a, ζ, α), then ξ is spacelike by Lemma 3.4. It follows
from Lemma 3.6 that (3.16) has a unique solution (s, ξ). Finally x = γz,a(s) by (3.6). �

The analogue of Lemma 2.5 reads:

Lemma 3.11. Suppose that there are no conjugate points on γ0. For all (x, ξ) in a small
enough neighborhood of Σs ∩N∗γ0 in Σs it holds that (C−1 ◦ C)(x, ξ) = (x, ξ).

Proof. By Lemma 3.8, the projection πM is injective near the non-empty set π−1M (x, ξ).

Therefore (C−1 ◦ C)(x, ξ) = (πM ◦ π−1M )(x, ξ) = (x, ξ). �
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For a set V ⊂ T ∗M \ 0 we denote by Vc the conical set generated by V, that is,

Vc = {(x, λξ) ∈ T ∗M \ 0| (x, ξ) ∈ V, λ > 0}.
Similarly to Theorem 2.2, we have:

Theorem 3.1. Suppose that there are no conjugate points on γ0. Then there is a ze-
roth order pseudodifferential operator χ on Z ×A such that L′κχLκ is a pseudodifferential
operator of order −1 with essential support in the spacelike cone.

Suppose, moreover, that κ is nowhere vanishing. Then for any (x0, ξ
0) ∈ Σs ∩N∗γ0 the

operator χ can be chosen so that L′κχLκ is elliptic at (x0, ξ
0).

Proof. Let (x0, ξ
0) ∈ T ∗Ω∩Σs∩N∗γ0 and let s0 ∈ (0, `) satisfy x = γ0(s0). Writing z0 = 0

and a0 = 0 we have (z0, a0, s0, ξ
0) ∈ C0. We define also ζ0 = ζ and α0 = α where ζ and α

are given by (3.8) with ξ = ξ0, s = s0, z = z0 and a = a0.
Lemma 3.4 implies that (z0, a0, ζ

0, α0) is outside the set L defined by (3.19). We choose a
neighborhood U ⊂ T ∗M of (z0, a0, ζ

0, α0) such that U is compact and U∩L = ∅. Moreover,
we choose χ so that χ = 1 near (z0, a0, ζ

0, α0) and so that it is essentially supported in Uc.
The closed set π−1M (Σl) is disjoint from the closed set π−1M (U) by Lemma 3.4. We will

show next that there is a conical neighborhood W of π−1M (Σl) such that W ∩ π−1M (U) = ∅.
It is enough to show that π−1M (U) is bounded. This boils down showing that there is C > 0

such that all (z, a, s, ξ) ∈ π−1M (U) satisfy |ξ| ≤ C. Consider the map F taking (z, a, s, ξ) to
the point in R2n with the coordinates

〈ξ,M1(z, a, s)〉 , . . . , 〈ξ,Mn(z, a, s)〉 , 〈ξ, J1(z, a, s)〉 , . . . , 〈ξ, Jn−1(z, a, s)〉 , 〈ξ, γ̇z,a(s)〉 .
Clearly F is homogeneous of degree one in ξ, and by (3.6),

F (π−1M (U)) = {(ζ, α, 0) | (z, a, ζ, α) ∈ U for some (z, a)}.

But this set is bounded due to U being compact. Therefore also π−1M (U) is bounded.
As dπM is surjective, πM is an open map and πM (W ) is a neighborhood of Σl, considered

as a subset of the range πM (C0). We may choose a pseudodifferential operator χ̃ so that
χ̃ = 1 near Σl and that is essentially supported in πM (W ). Then χLκ(1−χ̃) = χLκ modulo
a smoothing operator. Moreover, Lκ(1− χ̃) is smoothing on Σl.

We can now apply the clean intersection calculus: the proof that (2.19) holds for (2.20) is
in verbatim the same as in the Minkowski case, except that we invoke Lemma 3.10 instead
of Lemma 2.4. Also C−1 ◦ C has the same global structure. Furthermore, the order is
computed as in the Minkowski case, except that Lemma 3.9 is used instead of Lemma 2.3.

For the claimed ellipticity, we choose χ so that σ[χ] is non-negative. Note that the
point (z0, a0, ζ

0, α0) is on the fiber C(x0, ξ
0). As χ = 1 near (z0, a0, ζ

0, α0), the integral
of σ[χ] does not vanish over the fiber C(x0, ξ

0). The ellipticity follows again from [17,
Theorem 25.2.3]. �

Examples of metrics which do not allow conjugate points along lightlike geodesics include
the Minkowski metric, product type of metrics −dt2 + g(x) with g having no conjugate
points, the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric −dt2 + a2(t)dx2 with

a > 0, and in particular the Einstein-de Sitter metric corresponding to a(t) = t2/3; as well
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as metric conformal to them and small perturbations of all those examples on compact
manifolds. Of course, any Lorentizan metric is free of conjugate points on small enough
subset of M . We refer to [23] for the conformal invariance of this problem: the FLRW
metric can be transformed into a2(s)(−ds2 + dx2) after a change of variables s = s(t)
solving ds/dt = a−1(t). Next two metrics conformal to each other have the same lightlike
geodesics as smooth curves, but possibly parameterized differently, which does not change
the property of existence or not of conjugate points. Going back to the original parame-
terization would multiply the weight κ by a smooth non-vanishing factor, which would not
change our conclusions.

4. Cancellation of singularities in two dimensions

Non-detectability and invisibility results have been extensively studied for inverse prob-
lems, see [5, 6, 7, 8] and references therein. For the Riemannian geodesic ray transform, it
was shown in [24], see also [14], that in presence of conjugate points, singularities cannot be
resolved locally, at least, i.e., knowing the ray transform near a single (directed) geodesic.
We will prove an analogous result in the Lorentzian case in 1 + 2 dimensions.

We will review some of the results in section 3 emphasizing on the specifics for the
n = 2 case. The point-geodesic relation X, see (3.5), is 4-dimensional, and all manifolds
in the diagram (2.15) (valid in the variable curvature case as well) are 6 dimensional. The
projection πM is a local diffeomorphism in a neighborhood of a point (γ0, γ̂

0, x0, ξ
0) ∈ C

with (x0, ξ
0) spacelike (here, γ̂ is a dual variable to γ = (z, a)), if and only if there are no

points on γ0 conjugate to x0. The projection πM is also a local diffeomorphism under the
same non-conjugacy condition. As a result, the canonical relation C = πM ◦ π−1M is a local
diffeomorphism from Σs to its image. The composition as in Theorem 2.2 then follows
without the need to invoke the clean intersection calculus.

We take a closer look at the geometry of the conjugate points when n = 2. Two points
along a geodesic are conjugate when there exists a non-zero Jacobi field vanishing at those
points. This property is invariant under rescaling and shifting of the parameter s of γ(s),
so we can take s1 = 0. A basis for J0 (the Jacobi fields vanishing at 0, see (3.11)), in local
coordinates, is given by J1, see (3.7), and sγ̇(s). Since the second one does not vanish at
s 6= 0, a conjugate point could be at most at of order 1, that is, the Jacobi fields J with
J(0) = J(1) = 0 form an one-dimensional linear space, also true pointwise. One the other
hand, at any point γ(s), the conormal bundle to γ is two-dimensional; and this is true for
its restriction to the spacelike cone as well.

Proposition 4.1. C(x, ξ) = C(y, η) if and only of there is a lightlike geodesic joining x
and y, that is, γ(0) = x, γ(1) = y, so that

(a) x and y are conjugate to each other on γ,
(b) ξ∗ = J ′(0) + λγ̇(0), η∗ = J ′(1) + λγ̇(1) with some λ ∈ R, where J is a Jacobi field

with J(0) = J(1) = 0.

The proposition follows from Lemma 3.6. Note that the proposition is consistent with
the observation that at every point of γ, its conormal bundle is two-dimensional: the Jacobi
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field J in the lemma is scaled so that the proposition holds, and λ is responsible for the
second dimension.

Assume that γ0 : [0, `] → M is a lightlike geodesic with endpoints outside Ω, where
f ∈ E ′(Ω). Assume that x1 := γ0(s1) and x2 := γ0(s2) are conjugate along γ0. Let Vj ,
j = 1, 2 be conic sets in T ∗M defined as the covectors (γ(s), ξ) for s close to sj and ξ
any spacelike covectors at γ(s). Then C is a diffeomorphism from Vj to its image if Vj
is small enough. We can choose Vj so that C(V1) = C(V2) =: V ⊂ T ∗M and so that
Vj projected to the base M is a neighborhood of xj . Set Cj = C|Vj , j = 1, 2 and define

C21 := C−12 ◦ C1 : V1 → V2. Then C21 is the canonical relation of L−12 L1 where Lj is L
microlocalized to Vj , j = 1, 2.

Assume that f = f1 + f2 with fj supported near xj but away from the endpoints of γj ,
j = 1, 2.

Theorem 4.1. Suppose that κ does not vanish near x1 and x2. Let fj ∈ E ′(Ω) with
WF(fj) ⊂ Vj with Vj as above and small enough, j = 1, 2. Then

L(f1 + f2) ∈ Hs(V)

if and only if

f2 + L−12 L1f1 ∈ Hs−1/2(V1),

where the inverses are microlocal parametrices.

The proof is immediate given the properties of Lj above which make Lj elliptic FIOs of
order −1/2 with diffeomorphic canonical relations. The significance of the theorem is that
given f1 with spacelike singularities near x2 in a neighborhood of the conormal bundle to γ
at x1, one can also construct f2 singular near x2 so that L(f1+f2) is smooth. This statement
is symmetric w.r.t. s1 and s2, of course. Therefore, the singularity in the light ray transform
that is produced by f1 is cancelled by the singularity produced by f2. On a manifold that
contains many conjugate points, Theorem 4.1 can be considered as a cloaking result for
the singularities. For instance, on a Lorentzian manifold (M, g), that is conformal to the
product space (R × Sn,−dt2 + g

Sn ), any space-like element ((t1, y1), (τ1, η1)) ∈ WF(f1)
can be cancelled by a function f2 that is supported near a point (t2, y2), where t2 =
t1 + (2π+ 1)m, m ∈ Z, and y2 is an antipodal point to y1. Also, observe that the function
f2 that hides an element of the wave front set of f1 can be supported either in the future
or in the past of the support of function f1. This has similar spirit to results on cloaking
for the Helmholtz equation by anomalous localized resonance [28] and the active cloaking
results [4], where scattered field produced by an object is cancelled by a metamaterial
object or an active source that located near the object.

Theorem 4.1 also describes the microlocal kernel of L in V1 ∪ V2.

5. Applications

We discuss two application we already mentioned in the introduction.
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5.1. A time dependent potential. Let �g be the wave operator related to a Lorentzian
metric g on M with a timelike boundary ∂M :

(5.1) �gu = | det g|−
1
2∂xi(|det g|

1
2 gij∂xju).

One can introduce a magnetic field A as in [41] but to keep it simple, we assume that
A = 0. We assume that there is a smooth real valued function t so that its level sets are
compact and spacelike. Set Mab = {a ≤ t ≤ b} with some a < b. By [17], see also [41], the
following problem is well posed

(5.2) (�g + q)u = 0 in M, u|t<a = 0, u|∂M = f,

where q is a smooth potential in M and f ∈ Hs(∂M), s ≥ 1 is a given function with f = 0
for t < 0. We have u ∈ Hs(M) and the DN map Λ : f 7→ ∂νu|∂M is well defined, where ∂ν
is the conormal derivative. As shown in [41], the second term in the singular expansion of
Λ recovers algorithmically and stably the light ray transform Lq of q. By our results, in
absence of conjugate points along lightlike geodesics, one can recover (stably) the spacelike
singularities of q. We can interpret those as the singularities moving slower that light.

A special case is to assume that M is the cylinder M = [a, b]×M ′ where M ′ is compact
with a boundary and g = −dt2 + g′(x), where g0 is a (time independent) Riemannian
metric on M ′. Assume that q = q(t, x), x ∈M . Then the future pointing lighlike geodesics
in M are given by (t, γ′(t)), up to a reparameteriation, where γ′ are unit speed geodesics
in M . Then Λ recovers

Lq =

∫
q(t, γ′(t)) dt

for various γ′. This transform has been studied in [3]. An even more special case is to
assume that g′ is Euclidean. This leads us to the Minkowski light ray transform studied in
section 2. This problem was considered in [34].

5.2. Time dependent speed. Assume again that M is the cylinder M = [a, b]×M ′ where
M ′ is compact with a boundary and g = −dt2+g′(t, x), with g′ a Riemannian metric on M ′

depending smoothly on the time variable. Here and below, we follow the same notational
convention as above — primes denote projections onto the last n components of the 1 + n
dimensional vectors of covectors. Locally, every Lorentzian metric can be put in this form,.
As shown in [41], the Dirichlet-to-Neumann map Λ for the wave operator �g + q is an FIO
of order zero away from the diagonal, with the canonical relation equal to the lens relation
L associated with g. In particular, we recover L. The linearization of L near a fixed g′ is a
light ray transform but it involves derivatives of the perturbation δg′, see, for example, [40]
for the time independent case. Instead of linearizing L, we will linearize the travel times
between boundary points, defined locally as we explain below.

Let (t1, x1) and (t2, x2) be the endpoints of a lightlike geodesic γ0(t) in M , transversal
to the boundary at both ends, with t1 < t2 and x1 ∈ ∂M1, x2 ∈ ∂M1. We parameterize the
lightlike geodesics γ(s) near γ0 by initial points (t1, x) on t = t1 (here, x plays the role of
z before), and we require γ̇(0) = (1, θ) where γ′(0) = θ must be unit in the metric g′(t1, ·).
Assume now that (t1, x1) and (t2, x2) are not conjugate along γ0. Fix (t1, x1) and denote
temporarily the geodesics issued from this point in the direction (1, θ) by γ(s, θ).
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As before, we can parameterize θ locally by a ∈ Rn−1. By the non-conjugate assumption,
the differential dγ(s, θ(a))/d(s, a) is injective at (s, a) = (0, a0), where a0 corresponds
to θ0 := γ̇′0(0). By Lemma 3.3 its range is γ̇(t2)

⊥, which is also the tangent space at
γ(s, θ(a)) of the lighlike cone (or flowout) with vertex γ(0, θ(a0)). The projection of γ̇(t2)

⊥

to its last n variables, i.e., to the tangent space spanned by ∂x1 , . . . , ∂xn , is in direction
transversal to γ̇(t2)

⊥, since ∂/∂t does not belong to the latter; hence it is also a hyperplane
of dimension n. Therefore, dγ′(s, θ(a)))/d(s, a) is an invertible n×n Jacobian, and the map
(s, θ) 7→ γ′0(s, θ) is a local diffeomorphism, smoothly depending on (t1, x1). In particular,
given x close to x2, one can define the local travel time τ(t1, x1, x) from (t1, x1) to x by
setting x = γ′0(s, θ), solving for s and θ and then plugging them into the zeroth component
of γ0(s, θ). Restricting x to ∂M ′, we get the travel times τ(t, x, y) (since we can vary
(t1, x1) as well) for (t, x, y) close to (t1, x1, x2), satisfying τ(t1, x1, x2) = t2. Note that we
defined τ using geodesics close to γ0 only. In the applied literature, those times are also
called arrival times since they correspond to times a wave produced by a point source at
(t, x) arrives at y.

Assume now that we have a fixed background g′0 which is stationary, i.e., g′0 = g′0(x)
and g0 := −dt2 + g′0(x). Then the future pointing light geodesics for g0, parameterized as
above, take the form γ(s) = (s, γ′(s)), where γ′ are unit speed geodesics in the metric g′0.
The non-conjugacy assumption we made is equivalent to x1 and x2 not being conjugate
along γ′0. Then τ(t, x1, y) = τ ′(x1, y)+t, where τ ′ is the localized (Riemannian) travel time
defined similarly to the one above, see also [38].

We want to linearize the travel times τ for a family of metrics gε = −dt2 + g′ε(t, x) near
g0. We write γ(s, ε) for the null geodesics associated to gε and use an analogous notation
for the local travel times. Let γ(s, ε) be a smooth variation of γ0(s) with |ε| � 1 so that
γ(s, 0) = γ0(s); with the same endpoints for all s in the following sense:

(5.3) γ(0, ε) = (t1, x1) and γ(t2 − t1, ε) = (τ(t1, x1, x2, ε), x2)

with τ(t1, x1, x2, 0) = τ0(t1, x1, x2), where τ0 corresponds to g0. The second identity in
(5.3) says that γ′(s) = x2 for s = t2− t1 (rather for some ε–dependent s). This can always
be achieved by parameterizing γ(·, ε) appropriately, depending on ε.

Set

E0(ε) :=

∫ t2−t1

0
(g0)ij(γ(s, ε))γ̇i(s, ε)γ̇j(s, ε) ds,(5.4)

E(ε) :=

∫ t2−t1

0
(gε)ij(γ(s, ε))γ̇i(s, ε)γ̇j(s, ε) ds,

where the integrands are written in local coordinates. Then writing Dεdt = Dtdε, with Dε

and Ds being covariant derivatives with respect to metric g0, and integrating by parts, we
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get

E′0(0) = 2

∫ t2−t1

0
g0(Dε|ε=0γ̇(s, ε), γ̇(s, 0)) ds

= 2

∫ t2−t1

0
g0(Dsdε|ε=0γ(s, ε), γ̇0(s)) ds

= 2

∫ t2−t1

0
dsg0(dε|ε=0γ(s, ε), γ̇0(s)) ds

= −2dε|ε=0τ(t1, x1, x2, ε).

(5.5)

The last equality follows by differentiating the second identity in (5.3) w.r.t. ε at ε = 0.
As curves γ(s, ε) are null-geodesics with respect the metric gε, we see that E(ε) = 0.

Writing g′ε(t, x) = g′0(x) + εh(t, x) and using the calculation in (5.5), we get

0 = E′(0) = 2

∫ t2−t1

0
g0(Dε|ε=0γ̇(s, ε), γ̇(s, 0)) ds+ dε

∫ t2−t1

0
gε(γ̇0(s), γ̇0(s)) ds

∣∣∣∣
ε=0

= −2dε|ε=0τ(t1, x1, x2, ε) +

∫ t2−t1

0
h(γ̇0(s), γ̇0(s)) ds.

(5.6)

This yields

(5.7)
d

dε

∣∣∣
ε=0

τ(t1, x1, x2, ε) =
1

2

∫ t2−t1

0
h(γ̇0(s), γ̇0(s)) ds.

Therefore, the linearization of the travel times, up to the constant factor 1/2 is the tensorial
lightlike transform written in local coordinates in the form

L(2)h(γ) =

∫
hij(γ(s))γ̇i(s)γ̇j(s) ds,

where, in this particular application, the symmetric tensor h satisfies h0j = 0. Recall that
γ runs over null geodesics for the metric g0 = −dt2 + g′0(x) between points of [a, b]× ∂M ′.
In particular, if g′0(t, x) = c−20 (x)dx2, and

gε = −dt2 +
1

(c0(x) + (δc)(t, x))2
dx2,

is a the Lorentzian metric corresponding to the perturbed time-dependent speed c0(x) +
(δc)(t, x), then in linearization, we get the scalar light ray transform Lf , see (3.4), of

f(t, x) := −2c−30 (x)δc(t, x).

The problem of recovering the perturbation of the wave speed δc is encountered in the
ultrasound imaging methods in medical imaging. When δc = δc(x) is independent of
time, the waves that travel through the medium and collect information along geodesics
γ of g′0(x) are used in Transmission Ultrasound Tomography. This imaging modality has
been used since the pioneering study of J. Greenleaf [13] on 1980’s. The case when the
perturbation of the wave speed δc(x, t) depends on time is studied in Doppler ultrasound
tomography, see [26, 19] and references there in. The methods developed in this paper
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could be applicable in transmission ultrasound imaging of moving tissues and organs, e.g.
in the analogous imaging tasks where the backscattering measurements are presently used
in Doppler echocardiography, where the Doppler ultrasound tomography is used to examine
the heart [27].
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