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Abstract. Let q, ( t ,x ) ,  q 2 ( f , x )  belong to C(R,; W’.m(W:)), q,(t,x) = 0 for 1x1 > p with some 
p > 0 and let K,# be the corresponding generalized scattering kernels, i = I ,  2. We prove that 
if q, > q2 and if K: (s‘, -coo; s, U,) = K2# (s’, - w,; s, U,,) for some W,E Sz, then q ,  = qz .  As 
a corollary, we get the following result. Let V;(X)EL“(R’), V; has compact support and 
suppose that - A + V; has no bound states, i = 1,2. Let a, be the scattering amplitude related 
to V;, i = 1,2. Suppose that V, 2 & and for some coo we have a, (k ,  - wo,  wo) = a,&, - wo, 0,) 
for all k .  Then V, = V,. Finally we show that a(k, -0, U) determines uniquely the convex 
hull of the support of V.  

1. Introduction 

This paper is devoted to the problem of recovering the potential from the back-scattering 
data. We study both the wave equation with a time-dependent potential: 

U,, - AU + q(t, X)U = 0 (1) 

(- A + V(X) - k2)v = 0 X E R 3  ( 2 )  

tER, X E R 3  

and the stationary Schrodinger equation: 

with a potential V(x) depending only on x. We assume that q and V have compact spatial 
supports. Clearly, if q does not depend on t ,  equations (1) and (2) have equivalent 
scattering theories at least when q(x) has no bound states (see [l]). 

The main object in the scattering theory for (1) is the generalized scattering (echo) 
kernel K #  (s’, 0’; s, o) (see [2,3] and the next section), while with (2) we associate the 
scattering amplitude a(k, U’, w). Here (s, o) E R x S2  are the parameters of the incoming 
wave, while ( s ’ , w ’ ) ~ R  x S2 are those of the outgoing wave. It is well known that 
knowledge of a(k, o’, o) for all k ,  w’, o determines V(x) uniquely (see, e.g., [4]). In [3] 
we have proved that q(t, x) in (1) is uniquely determined by K #  (s’, U’ ;  s, 0). Both inverse 
problems are overdetermined and in fact the behaviour of a and K #  near the forward 
scattering direction o‘ = o is sufficient to recover V and q, respectively. 

The inverse back-scattering problem is to recover q(t,x) and V(x) if K #  and a are 
given for o‘ = - o. A formal solution to this problem for (2) has been given in [6] for 
small V. Major progress in the analysis of the inverse back-scattering problem has been 
made recently by Eskin and Ralston [7]. They have proved that for an open dense set 
of potentials (not necessarily of compact support) the mapping V(x) + a(k, - o, o) is a 
local homeomorphism. Nevertheless, the (global) uniqueness of the inverse back-scattering 
problem remains unsolved. Here we give a partial answer to this problem. Namely we 
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prove that if q1 and q2 (respectively, Vi and V,) have the same back-scattering data, then 
qi = q, (V, = V , )  under the additional assumption q1 2 q, (V, 2 V,). However, in 
contrast to [7], we do not require q1 - q2 (V, - V,) to be small. Finally, we show that the 
back-scattering amplitude a(k ,  - w ,  w )  determines uniquely the convex hull of supp V. 

The results of this paper have been announced in [ 5 ] .  

2. Assumptions and main results 

We impose the following conditions: 
Q1. q E  C(R,; Wi,n:(R:.)), q = q; 
Q2. there exists some p > 0 such that q(t,x) = 0 for 1x1 > p;  and respectively, 

V2. V has compact support. 
v 1 .  V E L “ ( R 3 ) ,  V = E 

Our principal results are the following theorems. 

Theorem 1. Let q, satisfy conditions Q1 and Q2 and denote by K,“ the corresponding 
generalized scattering kernels, i = 1,2.  Let q,  ( t ,  x) 2 q2(t ,  x) for t ,  6 t 6 t,, all x, where 
t2  - t i  > 4p. Suppose there exist w0€S2,  d > 2p, such that 

Kf (s’, - W O ;  3, 00) = K2# (s’, - 00; 3, 00) 

for Is’ - s/ < d, t l  + p < - s < t2 + p .  Then q1 ( t ,  x) = q2(t ,  x) for t l  + 2p < t < t, - 2p, 
all x. 

As a consequence, if q1 2 q2 for all t ,  x and if K,# = K2# for all s’, s and w’ = - w = -ao, 
then q i  = q, for all t ,  x. 

Now suppose that q in (1) does not depend on t ,  i.e. we have q = V(x )  with 
some V satisfying conditions V1 and V2. Further suppose that - A  + V possesses 
no bound states. Then the scattering operator S related to (1) (see section 6) exists 
and the kernel of S - Id in the Lax-Phillips translation representation is given by 
S#  (s’ - s, w’,  w )  = K# (s’, w ’ ;  s, w). Moreover, up to some multiplication factors, the 
scattering amplitude a related to V coincides with the Fourier transform of S #  (s, w’, w )  
with respect to s, namely [3]: 

k 
271i 

- - a(k, U’, w )  = e-’ks S #  (s, w’, w )  ds. 

This fact enables us to prove the following. 

Theorem 2. Let x(x) satisfy V1 and V2 and suppose that - A + 5 has no bound states, 
i = 1,2. Let a, be the scattering amplitude related to y ,  i = 1,2. Suppose that V, 3 V ,  
and for some wo we have 

ai(k, -wo,wo) = a,(k, -wo,ao> for all k.  

Then V, = V, 

Let p(w) = inf{x w;  x E supp V }  be the support function of supp V. The technique 
developed for the proof of the theorems above enables us to get the following. 
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Corollary 3. Let V 2 0 satisfy V1 and V2. Then 

- 2p(w) = sup supp,S# (s, - 0,o). (3) 
Therefore, S #  (s, - w ,  w)  (respectively a(k, - w,  0)) determines uniquely the convex hull 
of suppv. 

It should be noted that (3) is well known in the case of scattering by a compact 
obstacle [SI. Moreover, in the obstacle case S#(s, - w , o )  has a singularity at 
s = - 2p(w). In the potential case under consideration S #  (s, - 0, w )  is smooth if V is 
smooth, so that there are no singularities. Nevertheless, for non-negative V we have 
S” (s, - a, a) = 0 for s > - 2p(w), while 

S # ( - 2 p - & , - a , a ) =  --a2 V(x)dx(l + O(E)) 

where p = p(w) .  The proof of corollary 3 is based on the above relation. 

as E - +  $ 0  1 871’ E U p e . w < p + e / 2  

3. Preliminary 

Denote by 2 the closure of Cr(R3) x Cc(R3)3f= ( f i , f 2 )  with respect to the energy 
norm 

llfll’ = 3 j (IVf,II’+ If2l2)dX. 
R3 

2 is a Hilbert space with energy scalar product [9]. Let Uo(t )  be the unitary group related 
to the Cauchy problem for the free wave equation nu = 0, where 0 = 8: - A x .  Fix q 
satisfying Q1 and 42 .  There exists a two-parameter family U(t ,  s) of bounded operators 
in 2, such that the solution of (1) with Cauchy data ( U ,  U , )  = f for t = s is given by 
u(t) = U(t ,  s ) f [2 ,3 ,  10, 1 I]. Here and in what follows we denote by u(t)  the pair (u(t ,  .), 
u,(t,  .)) for given function u(t ,x) .  The family U(t , s )  is jointly continuous in t ,  s; 
U(t ,  s)U(s,  r)  = U(t ,  r)  for all t ,  s, r; and 

forfED(A), where A is the generator of Uo(t) ,  given by Af = ( & , A A ) ,  D(A)  = { f e X ;  
( f 2 ,  A f , )  E 2} and Q ( t ) f =  (0, q(t ,  .)fl) (see [3, 10, 111). The principle of causality, which 
is valid for Uo( t )  and U(t ,  s), implies that supp U(t ,  s)fu supp Uo(t  - s ) f c  {x; there 
exists y ~ s u p p f s u c h  that Ix - yI < It - si}. This allows us to extend Uo(t )  and U(t ,  s) on 
the space zOc = { f E 2; q f E  2 for any q E Cc }. 

Below we are going to recall briefly the definition of the generalized scattering kernel 
K#(s’,  w’;s ,  0). Set A , ( ( )  = (‘/in! for ( 2 0, It,(() = 0 otherwise, n = 0,1, .  . . . Then 
hk = h,- and h, is the Heaviside function. Given (s, w )  E R x S2 ,  let wi ( t ,  x; s, w )  be the 
solutions of the Cauchy problems 

(0 + q( t , x ) )w-  = 0 r w+ I,< - s - p  = h, ( t  + s - x - 0) [ w - l t > - s + p  = h , ( - t  - s + x - w) 
(0 + q(t ,x))w+ = 0 

i.e. w* ( t ;  s, w )  = U(t ,  - s T p)(h, (- p f x w), k h,( - p f x - a)). Note that the prin- 
ciple of causality yields w+ ( t ,  x; s, w )  = 0 for t + s < x * w,  while w- ( t ,  x; s, w )  = 0 for 
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t + s > x U.  The function w: = w+ - h ,  ( t  + s - x w )  has an asymptotic wave profile 
w:,# (s’, w’ ;  s, w),  i.e. the limit 

w:,” (s’, U’;  s, w )  = lim t8, w: ( t ,  ( t  + $’)U’; s, w )  
1-m 

exists in L;oc(Rs, x S:.). We refer to [12] for the definition and the basic properties of the 
asymptotic wave profiles. It should be noted that if u(t)  = U,,(tyis a free solution, then 
the asymptotic wave profile 

U #  (s, w )  = lim td,u(t,  ( t  + s)w) 
1-03 

exists in L2(R,  x S:) and we have U #  = -9L 9f being the translation representer of 
f 191. - _ _  

The generalized scattering kernel K #  is given by 

(see [2,3]). The kernel K #  may also be characterized as follows. Let u+(t ,x;s,w) = 
B:w+ ( t ,  x; s, w )  be the solution of the problem 

(0 + q(t,x))u+ = 0 

U +  l r < - s - p  = 6(t + s - x - w). 

Then in an appropriate sense we have the following asymptotic expansion: 

as t ,  1x1 + co. If the scattering operator S exists, then K# is just the Schwartz kernel of 
9 ( S  - Zd)B-I [3]. 

4. Representation of K;’ - K2#. 

In [3] we derived the following representation of K” (s’, U‘; s, w): 

The integral above is to be considered in the distribution sense. It is easy to deduce from 
(4) that K” is a distribution in s’, s depending continuously on U’, w.  Moreover, 
K# (s’, 0‘; s, w )  = 0 fors’ > s + 2p. Below we are going to derive a similar representation 
for K,# - K2#, where K,# is related to q,, i = 1,2. Let also w‘, U,, Q( t , s )  be related to 
q l ,  i = 1,2. Denote for simplicity h(t)  = (h , ( t  + s - x - w), h,(t + s - x * w))EA?I,, 
(which depends also on s, 0). Set 

A t ,  $ 3  0) = (w: 0; s,o> - w: ( t ;  $5 01, Uo(tY)JY. 

where f E CT x CF is fixed and ( , )JY. is the scalar product in A?. Taking the limit t + cc, 
we get immediately 

lim p ( t , s , w )  = - js2 jR [w;t;: (s’, 0’; s, U )  - w;;: (s’, w’; s, u)]?@(s’, w’)ds’ do’. (5) 
1-cc 
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On the other hand, by Duhamel’s expression we get 

W: ( t ;  S, W )  - W: ( t ;  s, W )  = [U,  ( t ,  - s - p )  - U2(r, - s - p)]h( -. s - p )  

= - 1 ( t ,  a>[Qi (0) - Q 2  (011 Ul(a, - s - p)h( - s - p W .  
- j - p  

Therefore, 

(U2(t, 0)[Qi (0) - Q 2 ( 0 ) 1 ~ :  (ais, w), U o ( t l f ) x d ~ .  LP p ( t , s , o )  = - 

Let R > 0 be such that s u p p f c  B, = (x;lxl < R} and fix to > R + p .  Then 
f +  := Uo(t,)fE D”+ where is the outgoing space introduced by Lax and Phillips [9]. 
Assume in what follows that t > to .  Then Uo(t)f= Uo(t  - t , ) f+  = U;(to, t ) f +  (see 
[lo, 121). Therefore 

A t ,  s,o> = (U2(tOj 4[Ql (0) - Q2(0)lw: (0; s, ~ > , f +  )z do 
- A - p  

Lemma 4. Let gE A? and denote ZJ = [U*( t ,  s)g12, where U(t ,  s )  is the propagator related 
to a (possibly complex-valued) potential q. Then ZJ satisfies the following problem in the 
sense of distributions: 

(8% - A,y + q(s, X) )V  = 0 

vls=r = g2 
(7) 

vs I s= (  = Agi . 
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Recall that &?AT= -aJ@. Substituting the above expression into (6), we get for t > to 

x a: (&?J(s’, o‘)dt dx ds‘ do‘. 

Comparing this with ( 5 ) ,  we get 

w:;; (s’, 0‘; s, 0) - w;;; (s’, 0’; s, 0) 

1 
4n 

= --a:, jj (4 ,  - q,)(f, x)w: ( t ,  x; s, w)w; ( t ,  x ;  s’, 0’)dtdx 

therefore 

Kf (s’, W’ ; S, 0) - K2# (s’, U’ ; S, CO) 

(8) - - - {{ (4, - q2)(f, x)w: (f, x ;  s, w)w; ( t ,  x; s’, w’)dt dx. 8x2 ’ 
In particular, if U: = a2w: and U; = 83w; are the solutions to the problems 

(0 + q,(t, x))u; = 0 i.+ , I t < - s - p  = s(t + s - x 0) i 24,- I t >  - s + p  = 6( - t - s + x * 0) 

(0 + q1 (f, X->>u: = 0 

then we get 

1 
Kf - K?# = - 8 ,  j j ( q l  - q,)(t,x)u:(t,x;s,o)u,(t,x;s’,w’)dtdx. (9) 

Note that (9) reduces to (4) when q, = 0. Formula (8) (or (9)) is the desired representation 
ofKf-K: .  

5. Proof of theorem 1. 

Let q satisfy the regularity assumptions of theorem 1. We need to establish the following 
result before proceeding. 

Lemma 5. If t ,  x, s and w run over compact sets, then there exists a constant C > 0 such 
that 

Iw’(t ,x;s,o)-hh,(S-(t+s-x.o))l  < C h , ( i ( t + s - x a o ) ) .  

Proof. Since the proof of lemma 5 follows closely the proof of theorem 3.4 in [l  11, we 
shall only sketch it. Iterating Duhamel’s expression, we get 

X 

w+(r;s,o) = U(t ,  - s  - p ) h ( - s  - p )  = h(t) + h(t, - 3  - p)h( -s  - p )  (10) 
k = l  

where h(t)  = (h ,  ( t  + s - x - w), ho(t + s - x - 0)) and 

4(t, s ) f =  (- l), jst do, do,. . . jJuk-’ do, Uo(t  - ol)Q(ol)Uo(ol - 0 2 )  

uo(ok-1 - Ck)Q(ok>Uo<ok - s > f .  
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Next, using Kirchoff s formula for Uo(t ) ,  we estimate each term in (10) and summing up 
the corresponding estimates we prove the desired inequality for w+. The proof for w- 
is similar. 0 

Remark. It should be noted that for qEC" we have the following singular expansion 
modulo C": 

w+ ( t ,  x; s, w )  - h ,  ( t  + s - x . 0) + A,(t, x, o)h,(t + s - x W) 
J = 2  

(see [3] ) ,  where A ] E  C" (a similar expression holds for w- ). In this case the lemma follows 
immediately. Since in these arguments we need not use Kirchoff's formula, the lemma 
and the results of the paper are valid for arbitrary odd space dimension n b 3, provided 

Let q,  , q2 satisfy the assumptions of theorem 1 ,  and put q = q,  - q 2 .  We have 
q E  C". 

K;' (s', - 0,; s, 0,) = K2# (s', - w,; s, w,) provided 

t , + p <  - s < t , + p  1s' - SI < d. ( 1  1) 

Thus for such s, s' we have i?adj Z(s', - w,; s, wo)  = 0, where Z is the integral in (8). 
Since I($',  0'; s, w )  = 0 for s' > s + 2p and since d > 2p, we deduce I($',  - w,; s, 0,) = 0, 
i.e. 

q(t ,x)w:(t ,x;s,w,)w;(t ,x;s ' ,  -w0)dtdx = 0 IS 
provided that (1 1) is fulfilled. Set 

A ,  = { ( t ,  x); x ' 0 0  + + p 6 t 6 - x * 00 + t 2  - p ,  1x1 6 P ,  x * 00 6 ,U}. 

A ,  is a non-empty compact set (because t ,  - t ,  > 4p) for - p  < p < p.  Let 
po = sup{p; q(t, x) = 0 for (t, x) EA, ) .  Assume that q does not vanish identically on A , .  
Then - p < po  < p .  Choose E E (0, p - po)  and set s' = s - 2p, - E .  Note that the choice 
of E ,  p, yields Is' - s/ < 2p, thus (1 1) holds. Therefore, (12)  implies 

q(t ,  X)W; (t, X; 3, w,)w, ( t ,  X; - 2 , ~ o  - E ,  - w,)dt dx = 0 (13) b, 
for t ,  + p < - s  < t, + p .  Assume that t ,  + p < - 3  < t ,  - p - 2p0 - E .  Then the 
integration above is taken over the set 

Q(s) = {(t, x); p, < x w, < min(t + s, - t - s + 2p0 + E), 1x1 < pj 

because of the inclusions 

suppw;(t ,x;s,w,)c { ( t , x ) ; t + s ~ x . w , )  

suppw;(t,x;s-2po-E, - U o }  c { ( t , x ) ; t + s - 2 p 0 - E <  - x . w , >  

suppq( t ,x )nA,= {(t,x)x.wobpo, 1x1 <PI. 

supp w: (t, x; s, 0,) n supp w; ( t ,  x; s - 2p0 - E,  - wo)  c A ,  

Let t ,  + p < - s < t ,  - p - 2p, - E ,  ( t ,  x) E Q(s). Then t, x, s run over bounded sets 
and according to lemma 5 there exists 6 > 0, such that 

w:(t ,x;s ,w,)  > 0 

w; (t, x; s - 2p0 - E ,  - WO) > 0 

for 0 < t + s - x * w o  < 6 

for - 6  < t + s - 2p0 - E + x * wo < 0. 
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We may assume that E < 6 ,  thus w: ( t ,  x; s, w o )  > 0 and w; ( t ,  x; s - 2p0 - E ,  -ao) > 0 
for (t, x)  ER(^), t ,  + p < - s < t ,  - p - 2p0 - E .  Moreover, we have q(t ,  x) 0 for 
( t ,  x) E R(s). Therefore, each integrand in (1 3) is non-negative and, moreover, w: , w; are 
positive in Q(s). Hence, q(t,x) = 0 for ( t , x ) ~ Q ( s ) .  Letting s run over the interval 
t ,  + p < --s  < t, - p - 2,u0 - E ,  we get 

hence q = 0 on A p , + , ,  which contradicts the choice of p 0 .  The proof of theorem 1 is 
complete. 

6. The stationary case 

Suppose that q in (1) is time independent, i.e. we have q = V(x) with some V satisfying 
V1 and V2. Then K #  depends merely on s’ - s and we have 

K# (s’, w’ ;  s, w )  = S” (s’ - s, w‘, w )  

where S” (s, U’, w )  = K #  (s, 0‘; 0, w). Assume that - A  + V has no bound states. Let 
U(t )  be the propagator related to (1) with q = V. Then the scattering operator 

S =  s-limUo(-t)U(2t)Uo(-t) 
1” 

exists [l] and S” (s’ - s, U’, w )  is the kernel of 9?(S - Id)9?-’ [3]. Thus S” (s, w’, o) is a 
tempered distribution with respect to s, depending continuously on w’, w .  We have [3] 

e-iksS# (s, U’, w)ds. k 
2rci 

_ _  

Therefore, a(k, - coo, w o )  determines K” (s’, - 0,; s, coo) uniquely. Hence theorem 2 
follows from theorem 1 for VE WiSm((lw3) with compact support. Consider the more general 
case q = VEL“(R’). Then, if U(t )  is the group related to (l), we have (d/dt)U(t) f = 
( A  - Q ) U ( t ) f =  U ( t ) ( A  - Q ) f f o r f ~ D ( A )  even under that weaker assumption on q. 
Thus the proof of theorem 1 goes without any modifications for stationary q E L ” ( R 3 )  

0 

Finally, let us prove corollary 3. Although it follows immediately from the arguments 
above, we wish to get more information about the behaviour of S“ (s, - w,  w )  near 
s = -2p(w). We have the following. 

Proposition 6. Let q = V satisfy V1 and V2. Let ,u be such that V(x) = 0 for x o < p .  
Then S #  (s, -0, o) = 0 for s > - 2p and if Vis non-negative near the plane x - o = ,u 
we have 

with compact support. This completes the proof of theorem 2. 

V(x)dx(l + O(E)) as E -.+ + 0. 

Proof. Since q = V is stationary, we have w(t,  x; s, o) = w(t + s, x; 0,o) and (8) reduces 
to the following: 

S” (3, - o, o) = - V(x)w+ ( t ,  x; 0, w)h, ( -  t - s - x - w)dtdx 

1 
8n2 

= - - 8,’ j V(x)T( - s - x o, x, w)dx. 
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Here r ( t ,  x, w )  = a,wf(t, x; 0, w )  is the solution of the problem 

(0 + vir  = o I- = h, ( t -x .w)  for t < - p  

Similarly to lemma 5, we have r = h,(t - x - w )  + l-3c(t, x, w),  where lrsc(t, x, w)l 6 
Ch, (t - x * o) with C > 0 independent of t, x, w ,  if t and x run over compact sets. 
Therefore, if s is bounded we have S" (s, - w ,  w )  = - ( I ,  + Z2)/8n2, where 

V(x)rSc( - s - x - w,  x, w)dx. 
Y ' O <  - 4 2  

I ,  = j V(x)dx 1 2  = [ 
T.W < - d 2  

Hence I ,  = I2 = 0 for s > - 2 p  while for s < - 2p we have 

V(x)dx. I p < r ' w < - 1 / 2  
1121 d c j V(x)hl(- s - x o)dx 6 C( - s - 2 ~ )  

p < x . o <  -s/2 

Let us demonstrate corollary 3. Take p = p ( o )  and assume that S#  (s, - U,  w )  = 0 
for s < - 2 p  - 6 with some 6 > 0. Then 

V(x)dx(l + O(E)) = 0 for 0 < E < 6. I fi  < * . U  < P + E / 2  

s p < x .w < p + El2 

Choose 6 small enough to have 1 + O(E) > 0. Then 

V(x)dx = 0 

for all sufficiently small positive E .  Since V 2 0 in the integral above, we get a contradiction 
with the choice of p. 

Remark. Let qi = V;,  i = 1,2 be two stationary potentials satisfying V1 and V2. Then we 
have (9). We shall show that in this case (9) leads to a useful formula for the difference 
a,  - a2 (see (15) below). Since q, are stationary, it follows that 

U: (t, x; s, w) = ii: (t + s, x, w )  U; ( t ,  x; s, w )  = ii; (t + s, x, w )  

where ii: , ii; solve the problems 

(0 + q2(x)F; = 0 

ii; = 6 ( t  - x * 0). 

(0 + ql(x))G = 0 

ii: I t <  - p  = 6(t - x - 0) '[ 
Moreover, we have ii; ( t ,  x, w )  = ii: (- t, x,  - 0). Therefore, (9) reduces to the following: 

s;' (s, o', w )  - s: (s, U', 0) 

1 
8n2 

- - - - B jj (V, - V,)(x)ii: ( t ,  x ,  w)ii: (- t - s, x, - w')dt dx. (14) 

Let $,(k,x,w) be the generalized eigenfunction of - A  + y defined as the outgoing 
solution of the problem 

( - A  - k2 + Y(x))$~ = 0 

$J = exp(ikw - x) + O(lxl-') as 1x1 + CO 
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where j = 1,2. Suppose that - A  + have no bound states. Then [3] $](IC, x, U )  = 
exp(ikt)G; ( t ,  x, o)dt .  Taking the Fourier transform with respect to s in (14), we obtain 

ai ( k ,  0 ’ 5  - a2(k, 0 ’ 9  U)  = - - (V, ( x )  - V,(x))$I ( k ,  X ,  w)$2(k, X, - o’)dx. (1 5 )  471 ‘ i ’  

471 ‘ i  
Note that if V, 0, then (15) reduces to the well known formula 

a, ( k ,  w’, o) = - - V) (x)$, ( k ,  x, o) exp( - iko’ * x) dx. (16) 

Hence, (15) can be considered as a generalization of (16). We hope that (15) might be 
useful for solving other inverse scattering problems. 
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