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CHAPTER I

Introduction

1. Typical examples

We start with the basics of the scattering theory in Rn, n ≥ 2. We are interested in
operators P that are compactly supported perturbations of the Laplacian −∆, satisfying
some additional reasonable “black box” assumptions. The most important examples are
potential scattering, obstacle scattering, and scattering by a metric.

In potential scattering, P is the Schrödinger operator

(1.1) P = −∆+ V,

where the potential V = V (x) ∈ L∞ is compactly supported. The perturbation of −∆ is in
a lower order term (−2 degrees lower), which means Euclidean geometry dictated by −∆.

The PDEs we study are either the wave equation

(1.2) (∂2t + P )u = 0

or the “stationary wave equation”; or the Helmholtz one

(1.3) (P − λ2)u = 0,

where λ is a spectral parameter, not necessarily real. Equation (1.3) is just a Fourier trans-
formed version of (1.2).

In obstacle scattering, we have a compact set O ⊂ Rn with a smooth boundary and some
choice of self-adjoint coercive boundary conditions on ∂O, usually Dirichlet or Neumann. We
can assume that the exterior Rn\O is connected (otherwise there will be connected bounded
components disjoint from the unbounded interior, playing no role in the scattering). Then
P = −∆ in Rn \ O with the corresponding boundary conditions. One can consider a more
general second order elliptic self-adjoint operator. The PDEs are still (1.2) or (1.3) but in
Rt × (Rn \ O)x, and Rn \ O, respectively.

In the scattering by a metric example, P = −∆g is the Laplace-Beltrami operator related
to a given Riemannian metric g in Rn so that g is Euclidean, i.e., g = δij, for |x| > R0 with
some R0 > 0. One can include lower order terms as well.

Another important example: transparent obstacle...
Scattering Theory studies solutions of time dependent equations like (1.2) or (1.3) for

large values of time t and/or large value of the spatial variable x. Inverse Scattering tries
to recover the operator P (i.e., the potential, or the obstacle, or the metric) from scattering
data (from the scattering operator, for example). In some applications, like astronomy or
quantum mechanics, inverse scattering is the only (more or less) way to see what is there.

The time dependent scattering theory deals with equations of the type (1.2). The sta-
tionary scattering theory studies equations without a time variable, like (1.2).
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2. ABSTRACT (TIME-DEPENDENT) SCATTERING THEORY; BRIEF INTRODUCTION v

2. Abstract (Time-Dependent) Scattering Theory; brief introduction

Reference: [14].
The time dependent scattering theory usually compares one unperturbed dynamics to

a perturbed one. Let P0 (say, P0 = −∆) and P be self-adjoint operators in a Hilbert
space H as in (1.1), and let the “free dynamics” U0(t) = exp(itP0) and the “perturbed one”
U(t) = exp(itP ) be the corresponding solution unitary groups (Stone’s theorem). We want
to compare U(t) to U0(t) for ±t≫ 1.

Take U(t)f , where f is the initial condition. We can expect that U(t) would look like a
“free solution” for ±t ≫ 1. In other words, given f , we would expect that there exist g±,
viewed as incoming/outgoing “profiles” of U(t)f at |t| ≫ 1, so that

(2.1) ∥U(t)f − U0(t)g±∥ → 0, ±t→ ∞.

This is equivalent to

∥g± − U0(−t)U(t)f∥ → 0, ±t→ ∞.

This is not guaranteed by any means; we expect to be true under “reasonable” assumptions.
Then

g± = W±(P0, P )f := lim
t→±

U0(−t)U(t)f.

Note that we have a strong limit here. It would be wrong to expect limit in the operator
norm. If W±(P0, P ) exist, we have scattering theory for P0 and P . This is equivalent to the
completeness property below. Then

(2.2) S : g− 7−→ g+

is the scattering operator. It is not well defined yet before we understand the properties of
the wave operators. Formally,

g+ = Sg− = W+(P0, P )W
−1
− (P0, P )g−

but this is a correct definition only if the wave operators have the completeness properties
below.

Proving existence of W±(P0, P )f is usually not easy. The following wave operators are
much easier to show that they exist

W±(P, P0)g := lim
t→±

U(−t)U0(t)g.

If they exist (as strong limits, again), we call them complete if

RanW−(P, P0) = RanW+(P, P0) = Hac.

The latter space corresponds to the absolutely continuous spectrum of P , by the spectral
theorem. If the completeness holds (the “= Hac” condition is not needed for this definition),
then the scattering operator is given by

Sg− = W−1
+ (P, P0)W−(P, P0)g−.

Now, this is a well defined operator. It is unitary.
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The main goal of Scattering Theory is to prove the existence of S, which can be done
by showing that the wave operators W±(P, P0) exists are a complete. It does not stop there
however. We want to know as much as we can about S, find a representation, etc.

The wave and the scattering operators were defined by a limit t→ ±∞. It is not obvious
that |x| large are involved there as well. The latter is true but implicit. Typical dynamics
U0(t) have the local energy decay property:

(2.3) ∥1KU0(t)f∥ → 0, as |t| → ∞
for any compact set K, where 1K is the multiplication by the characteristic function of K.
Then U0(t)g “goes to infinity” for any g; and if we want (2.1) to be true as well, so would
U(t)f .

3. A few remarks about the Stationary Scattering Theory

The Stationary Scattering Theory studies systems without an explicit time variable like
(1.1) for large values of the spatial variable x. The spectral parameter λ might vary; then we
want to know how everything depends on it; including what the analytic or the meromorphic
properties of the various objects (the natural version of the scattering operator S, for exam-
ple) are in the complex plane C. Of particular interests are the high-frequency asymptotics,
λ→ ∞.

The frequency λ > 0 might be fixed. Then we still have scattering theory.
It turns out that for many interesting systems (operators P ), the various scattering

objects associated with it have certain meromorphic extensions to C. Their poles are the
scattering poles or the resonances (there is a slight difference between those two notions).

Since there is no time involved, the behavior as |x| → ∞ is what determines the scattering
properties. We will see below that there is a natural notion of incoming and outgoing term
in that asymptotic behavior of the perturbed system; then the scattering matrix S(λ) is
defined as in (2.2), mapping the incoming term to the outgoing one.



CHAPTER II

Scattering Theory for compactly supported perturbations of the
Laplacian in Rn

1. The stationary Scattering Theory for the Laplacian in Rn

In these notes, the unperturbed operator is the Laplace operator P0 = −∆, although
in some important cases like elasticity, Maxwell’s equations, etc., we must make a different
choice. The goal of the stationary theory is to understand the large x behavior of the
perturbed system (1.3), and to compare it to that of the unperturbed one, corresponding to
P0. Even though that P0 = −∆ is a simple enough operator; we need first to understand
the behavior of solutions of the Helmholtz equation

(1.1) (−∆− λ2)u = 0, |x| ≫ 1

near infinity.

1.1. The free outgoing resolvent. A fundamental object is the free outgoing (or
incoming) resolvent. Take any solution of (1.1), multiply by a smooth cut-off χ equal to one
near infinity; and zero in a neighborhood of the compact set where (1.1) may not hold to get

(1.2) (−∆− λ2)χu = −[∆, χ]u, x ∈ Rn.

The r.h.s. depends on the values of u in some annulus R1 ≤ |x| ≤ R2 only. Alternatively, we
may want to solve a boundary value problem in the exterior of some sphere. We therefore
naturally get the following inhomogeneous equation

(1.3) (−∆− λ2)u = f, x ∈ Rn

where f is compactly supported. Clearly, there is no uniqueness of the solution of (1.3). The
homogeneous Helmholtz equation has infinitely many solutions, for example eiλx·ω, for any
unit ω, any linear combination of that; and more generally, any integral w.r.t. ω w.r.t. any
reasonable density on the unit sphere. Add any such solution to u in (1.3), and we still get
a solution. It turns out that there is unique outgoing/incoming choice however.

We will seek tempered solutions to (1.3). Take a Fourier transform of both sides (assume
f ∈ C∞

0 for now) to get

(1.4)
(
|ξ|2 − λ2

)
û = f̂ .

Divide to get

(1.5) û(ξ) =
f̂(ξ)

|ξ|2 − λ2
.

1
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The problem with this formula is that we are dividing by zero for ξ on the sphere |ξ| = |λ|,
when R ∋ λ ̸= 0 (we assume λ ̸= 0 in what follows). The singularity is bad enough to be not
locally integrable. The formula is OK however for λ ∈ C \R, and represents the resolvent
(−∆ − λ2)−1 in functional analysis sense. Note that −∆ naturally can be considered as a
self-adjoint operator on L2(Rn) with domain {f ∈ L2; ∆f ∈ L2}; and a conjugation with
the Fourier transform (scaled to a unitary one) reduces it to a multiplication by |ξ|2. Then
non-real λ’s are in the resolvent set and “in the Fourier domain”, the resolvent is just a
multiplication by (|ξ|2 − λ2)−1, i.e.,

(1.6) R0(λ) =
(
−∆− λ2

)−1
= F−1

(
|ξ|2 − λ2

)−1F , λ ̸∈ R.

The outgoing resolvent R0(λ) is defined as the analytic continuation of the operator (1.5)
from ℑλ > 0 to a small neighborhood (at least) of R in C. To justify this definition we need
to prove that such an extension exists in appropriate spaces. This is certainly not true if
R(λ) is considered as an operator on L2(Rn) because λ2 is in the spectrum [0,∞) of −∆ for
real λ. It is possible however of we shrink the domain and expand the range appropriately.

Theorem 1.1. Let n ≥ 3 be odd. Then the operator

R0(λ) =
(
−∆− λ2

)−1
: L2(Rn) → L2(Rn)

defined a priori for ℑλ > 0 extends to an entire operator-valued function

R0(λ) : L
2
comp(R

n) → L2
loc(R

n)

of λ in the whole complex plane C.

Note that the extension is not given by the formula (1.6) for ℑλ < 0! This would become
more explicit below. We could also extend the resolvent from ℑλ < 0 to C. That would give
us the incoming resolvent R−

0 (λ).
In even dimensions, the extension is to the logarithmic covering of the complex plane.
There are several ways to prove the theorem.

1.1.1. Time-dependent approach. See [26, Chapter 3]. We go back to the time-dependent
wave approach. In odd dimensions n ≥ 3, we have the strong Huygens’ Principle: if (∂2t −
∆)u = 0 and the support of the Cauchy data (u, ut)|t=0 is in the ball |x| ≤ R, then suppu(t, ·)
is in t−R < |x| < t+R. When t ≤ R, the first inequality carries no information but when
t > R it says that the wave has a “back front”. In even dimensions, we can only say that
suppu(t, ·) is in |x| < t+ R, which is just finite speed of propagation (speed ≤ 1), actually.
The strong Huygens’ Principle, valid in odd dimensions, can be interpreted as wave speed
equal to one exactly.

The analytic continuation of R0(λ) from ℑλ > 0 to C follows directly from the strong
Huygens’ Principle, as we will show below.

Recall the textbook Kirchoff’s formula for the solution of the wave equation in odd
dimensions n ≥ 3:

(1.7) (∂2t −∆)u = 0, (u, ut)|t=0 = (f1, f2).

The solution is given by

(1.8) u = ∂tU(t)f1 + U(t)f2,
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where

U(t)ψ(x) = Cn(t
−1∂t)

(n−3)/2tn−2

∫
|ω|=1

ψ(x+ tω)dω.

The strong Huygens’ Principle follow directly now from this formula.
The following formula relates the time-dependent theory and the stationary one:

(1.9) R0(λ)f =

∫ ∞

0

eiλtU(t)f dt, f ∈ L2, ℑλ > 0.

Indeed, |eiλt| = e−tℑλ decays exponentially with t. It enough to show that U(t)f grows
no faster than a polynomial in L2 to show that the integral is absolutely convergent. This
follows from the representation

U(t) =
sin(t

√
−∆)√

−∆

(which in turn follows from using the Fourier transform to solve the wave equation). Since
| sin(t|ξ|)|/|ξ| ≤ |t| for all t, ξ (easy to prove), we have ∥U(t)∥ ≤ C|t|. Apply −∆−λ2 to the
r.h.s. of (1.9) now; call it g. Use the fact that U(t)f solves the wave equation with initial
conditions (0, f) and integrate by parts. The latter is justified by the fact that all integrals
which arise are absolutely convergent. We will get (−∆ − λ2)g = f . For ℑλ > 0, this has
unique solution for g; namely g = R0(λ)f . This proves (1.9).

Now, it is enough to show that for any χ ∈ C∞
0 , the “cut-off resolvent” χR0(λ)χ has

entire continuation from ℑλ > 0 to C. This follows immediately from (1.9) and the strong
Huygens’ Principle. Indeed,

χR0(λ)χf =

∫ ∞

0

eiλtχU(t)χf dt, ℑλ > 0.

If suppχ ⊂ B(0, R) for some R (and such an R always exists), then U(t)χf = 0 for |x| ≤
t − R. Therefore, χU(t)χf = 0 for t > 2R, ∀x. The integral above is taken over the finite
interval t ∈ [0, 2R] only. Then it clearly extends to an entire function of λ.

Note that there is no clear choice which continuation to call incoming and which outgoing.
We could have started from ℑλ < 0 (which is our incoming choice now) as the physical half-
plane. Then we have the formula (1.9) again but with i replaced by −i. Then we show that
there is a homomorphic extension to C. We can easily declare this to be our outgoing choice;
and in fact, this is done in many papers. This discussion reveals something else. In (1.9),
t appears as the dual variable to λ because of the choice of the sign of the phase in eiλt.
In other words, the Helmholtz equation (1.3) is the inverse Fourier transform of the wave
equation (1.2). If we change that sign, we are thinking as λ as the dual variable to t, i.e., the
Helmholtz equation (1.3) is now the Fourier transform of the wave equation (1.2). In either
case, one of the equations is transformed into the other but with two different (adjoint to
each other) transforms. Which way to go is a matter of taste.

1.1.2. Explicit formula for R0(λ) in 3D. Another way to prove the analytic extension is
just to compute the Schwartz kernel R0(x− y, λ) (which is clearly a convolution, see below)
of R0(λ). By (1.6),

R0(x, λ) = cn

∫
eix·ξ

|ξ|2 − λ2
dξ, ℑλ > 0.
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The integral is a Fourier transform, and not absolutely convergent. When n = 3 at least,
one could pass to polar coordinates, modify the contour of integration in the integral w.r.t.
the radial variable to get the formula in Proposition 1.2 below. One can do the following
instead. The kernel R0(x, λ)f solves

(1.10) (−∆− λ2)R0 = δ,

and is clearly radially symmetric. Passing to polar coordinates, we get(
d2

dr2
+
n− 1

r

d

dr
+ λ2

)
R0 = 0, r > 0.

Since the polar change of variables is singular at r = 0, there is no simple way of including
the delta on the right at this point. The equation we got is of Bessel type and can be reduced
to the actual Bessel equation by the substitution R0 = r1−n/2ψ(r), see also [24, Ch.6.3]. Let
us consider the case n = 3 only. Then(

d2

dr2
+

2

r

d

dr
+ λ2

)
R0 = 0, r > 0,

and the substitution R = ϕ(r)/r (different form the one above!) reduces this to the equation

ψ′′ + λ2ψ = 0, r > 0

That substitution is in any PDE textbook as a way to solve the 3D wave equation. Now,
ψ = c1e

iλr + c2e
−iλr; therefore,

R0 = c1
eiλr

r
+ c2

e−iλr

r
, r = |x| > 0.

Remember, we need a kernel that is a tempered function of λ for ℑλ > 0, since by the spectral
theorem, ∥R0(λ)∥ ≤ |ℑλ2|−1. This eliminates the e−iλr term, so we get R0 = Ceiλr/r, r > 0,
n = 3. Recall that we do not really know that R0 solves (1.10). We derived this by assuming
that it does.

Now, we go back to Cartesian coordinates and look for a constant C (which may a priori
depend on λ!) so that

(1.11) (−∆− λ2)C
eiλr

r
= δ

(and we have an intelligent guess that such a constant must exist). If λ = 0, then the right
constant is C = (4π)−1 since it is well known that (4πr)−1 is a fundamental solution of −∆.
The expression we integrate is locally integrable; so it is a distribution. Use the Chain rule,
valid for distributions multiplied by a smooth function as well:

(∆ + λ2)
eiλr

r
=

(∆ + λ2)eiλr

r
+ 2(∂xe

iλr) · (∂x
1

r
) + eiλr∆

1

r

The first derivatives of r and 1/r can be computed in the classical way and the results are
locally integrable, therefore distributions as well (every distribution is differentiable but the
point here is how to compute the derivatives). Since ∆(4πr)−1 = −δ, we get

(∆ + λ2)
eiλr

r
=

(−λ2 + (2/r)(iλ) + λ2)eiλr

r
+ 2iλeiλr

x

r
·
(
− x

r2

)
+ eiλr(−4πδ).
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Therefore,

(∆ + λ2)
eiλr

r
= −4πδ,

so C = (4π)−1,
So we proved the following.

Proposition 1.2. For n = 3,

[R0(λ)f ](x) =

∫
eiλ|x−y|

4π|x− y|
f(y) dy.

The analytic extension from ℑλ > 0 to C follows immediately from this formula. The
Limiting Absorption Principle below gives another way to prove the existence of an analytic
extension.

1.2. The outgoing Green’s function. The kernel of R0(λ) is called the outgoing
Green’s function G0(x, y, λ) of the free Laplacian. Clearly, G0(x, y, λ) = R0(x− y, λ). As we
showed above,

(1.12) G0(x, y, λ) =
eiλ|x−y|

4π|x− y|
, n = 3.

In all dimensions, including even ones, G0 is expressed in terms of some Hankel function:

(1.13) G0(x, y, λ) =
1

2i
(2π)1−n/2λn−2(λr)1−n/2H

(1)
n/2−1(λr), r = |x− y|,

see [15].

1.3. Resolvent estimates.

Theorem 1.3. For any λ > 0 and any χ ∈ C∞
0 ,

∥χR0(λ)χ∥L2→L2 ≤ C

λ
.

Proof. We will prove it for n odd only, following [26].
Let U(t) be as above. By (1.9), if R is such that suppχ ⊂ B(0, R),

λχU(t)χf = χ

∫ 2R

0

λeiλtU(t)χf dt = χ

∫ 2R

0

1

i

d

dt
eiλtU(t)χf dt

= iχ2 + iχ

∫ 2R

0

eiλtU ′(t)χf dt.

We have U ′(t) = −i cos(t
√
−∆) = O(1) as an operator in L2. Therefore, the right-hand side

above is uniformly bounded in λ, which proves the theorem. □

It is worth noticing that

∥χR0(λ)χ∥L2→Hs ≤ C

λ1−s
, s = 0, 1, 2.

The proof can be found in [26]. The idea is, roughly speaking that to estimate the H2

norm, for example, we need to apply −∆ and estimate the result. Then we write −∆ =
(−∆− λ2) + λ2.
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1.4. The Limiting Absorption Principle. The microlocal view of the resolventR0(λ)
is the following. We have a Fourier multiplier with a symbol (|ξ|2 − z)−1, z = λ2, see (1.6),
where z = λ2. When ℜλ > 0 and 0 ≤ ℑλ ≪ 1, we have ℜz ≈ ℜλ2, ℑz = 2ℜλℑλ, so we
still have ℜz > 0, 0 < ℑz ≪ 1. The zeros of |ξ|2 − z then are simple (f(ξ) = 0 implies
df(ξ) ̸= 0). So the question is; how do we divide, in the Fourier domain, by functions with
simple zeros? A good reference for that is [4, XIV.14.2].

If f(x) is a function with a simple zero at, say, zero, then in some local coordinates wit
would look as f = t, where t is one of the variables. A known fact in theory of distributions
is that the limits

(t± i0)−1

exist in D′(R). Moreover,

(1.14)
1

t± i0
= pv

1

t
∓ iπδ(t).

In particular,
1

t+ i0
− 1

t− i0
= −2πiδ(t).

Now, this is also true if we set t = p(ξ), ξ ∈ Rn under the assumption dp(0) ̸= 0:

1

p(ξ) + i0
− 1

p(ξ)− i0
= −2πiδ(p(ξ)).

Recall that δ(p(ξ)) = |dp(ξ)|−1δp−1(0)(ξ). Apply this to p(ξ) = |ξ|2 − τ , τ > 0, to get

1

|ξ|2 − τ + i0
− 1

|ξ|2 − τ − i0
= −πi|ξ|−1δ|ξ|2=τ (ξ).

Set τ = λ2, λ > 0, to get

1

|ξ|2 − (λ+ i0)2
− 1

|ξ|2 + (λ+ i0)2
= πiλ−1δ|ξ|=λ(ξ).

By (1.6),

[R0(λ+ i0)f −R0(λ− i0)f ] (x) = πiλ−1(2π)−n

∫
|ξ|=λ

eix·ξf̂(ξ) dS(ξ)

= πiλ−1(2π)−nλn−1

∫
|θ|=1

eiλx·θf̂(λθ) dθ

=
i

2
(2π)−n+1λn−2

∫
|θ|=1

eiλx·θf̂(λθ) dθ

=
i

2
(2π)−n+1λn−2

∫∫
|θ|=1

eiλ(x−y)·θf(y) dθ dy.

Recall that we call R0(λ+ i0) just R0(λ). Then R0(λ+ i0) is the incoming resolvent, which
is easily seen to be R∗

0(λ) for λ ∈ R, and also R0(−λ).
We proved the following limiting absorption principle (Stone’s theorem in fact):
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Theorem 1.4. For λ ∈ R, n ≥ 2,

(1.15) R0(λ)f −R0(−λ)f =
i

2
(2π)−n+1λn−2

∫∫
|θ|=1

eiλ(x−y)·θf(y) dθ dy.

We proved the theorem for λ > 0. The proof for all real λ follows by analytic continuation
once we establish that the latter exists near the real axis (true in even dimensions as well
but we have to remove the origin then). We can continue analytically anywhere when the
right-hand side is analytic, of course.

The operator on the right can be interpreted as a spectral projection, see [9]. The theorem
in particular shows that the difference between the outgoing continuation (from ℑλ > 0)
and the incoming one (from ℑλ < 0) to the real axis is a non-trivial operator.

Remark 1.1. The kernel in the integral above is just the Fourier transform of the delta
function on the unit sphere evaluated at ξ = −λ(x−y). This can be computed — that delta
function is a radial distribution, and then Fourier transform reduces to the Hankel transform
of order n− 1/2

F (ρ) = (2π)n/2ρn/2−1

∫ ∞

0

f(r)Jn/2−1(ρr)r
n/2 dr,

where F (ρ), ρ = |ξ|, is the Fourier transform of the radial function f(r). When f = δ(r−1),
we get

F (ρ) = (2π)n/2ρn/2−1Jn/2−1(ρ),

see http://math.unc.edu/Faculty/met/bessel.pdf. Then the integral in (1.15) is just

F (λ|x−y|) for λ > 0, compare it with (1.13). When n = 3, since ρ−1/2J1/2(ρ) =
√
2/π sin ρ/ρ,

we get (n = 3)

R0(λ)f −R0(−λ)f =
i

2π

∫
sin(λ|x− y|)

|x− y|
f(y) dy.

We could have obtained the same result by just subtracting R0(λ) in Proposition 1.2 and its
incoming version R0(−λ).

1.5. Asymptotics.

Theorem 1.5. For n ≥ 2 and any f ∈ E ′(Rn), we have
(a)

(1.16) [R0(λ)f ](rθ) =
eiλr

r(n−1)/2
h(r, θ),

h(r, θ) ∼
∞∑
j=0

r−jhj(θ), as r → ∞,

and

h0(θ) =
1

4πi

(
λ

2π

) 1
2
(n−3)

e
1
4
πi(n−1)f̂(λθ).

In particular, if n = 3, then

[R0(λ)f ](rθ) =
eiλr

4πr

(
f̂(λθ) +O

(
1

r

))
, as r → ∞.

http://math.unc.edu/Faculty/met/bessel.pdf
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(b) Next, u = R0(λ)f satisfies the following Sommerfeld radiation condition

(1.17) (∂r − iλ)u(rθ) = o
(
r−(n−1)/2

)
, r → ∞,

uniformly in θ ∈ Sn−1.

Proof. I will prove the n = 3 case only. For the general case, see e.g., [26].
For n = 3, write

|rθ − y| = r − θ · y +O(1/r), |rθ − y|−1 = r−1(1 +O(r−1)), r → ∞

and use Proposition 1.2 with x = rθ.
The proof of (b) follows directly by applying (∂r − iλ) to the kernel. Notice that we

actually get O
(
r−(n+1)/2

)
. □

1.6. Outgoing and incoming solutions.

Definition 1.6. Given λ ∈ C, we say that the function u is λ-outgoing (or simply,
outgoing, if λ is understood from the context), if there exists a > 0 and f ∈ E ′ such that
u||x|>a = R0(λ)f ||x|>a.

When n is even, one has to assume that λ belongs to the logarithmic covering of C,
actually. If we stay close to R, then there is no problem even then.

Clearly, any outgoing u solves (1.1). By elliptic regularity, it is real analytic for |x| ≫ 1.
One defines incoming solution in a similar way. Note that outgoing and incoming solutions
satisfy

(1.18) u = O(1/r(n−1)/2), r = |x| → ∞.

There are many solutions to the Helmholtz equation for |x| ≫ 1 which do not satisfy such
an estimate. For example, eiλρ·x, for ρ ∈ Cn is a solution whenever ρ21 + · · ·+ ρ2n = 1, and it
is exponentially increasing for ρ ̸∈ Rn; take for example ρ = (t, i

√
t2 − 1, 0, . . . , 0), t > 1.

We show below that the Sommerfeld radiation condition (1.17) guarantees the outgoing
properties of solutions to the Helmholtz equation. This condition is clearly satisfied by the
first term in (1.16) (as well as for the whole expansion, as we proved above). The incoming
condition is the same with iλ replaced by −iλ. Another way to think about it is the following.
Since t is the dual variable to λ, ∂t corresponds to −iλ. The Sommerfeld condition then say
that, up to lower order terms, (∂t + ∂r)v = 0, where v is the Fourier transform of u w.r.t. λ.
Then v = f(r − t) modulo lower order terms. This is a wave going to infinity, as t→ ∞, so
it deserves to be called outgoing. The incoming condition would be f(r + t).

Theorem 1.7. Let λ > 0. The function u is λ-outgoing if and only if u solves the
Helmholtz equation for |x| ≫ 1 and satisfies the Sommerfeld outgoing condition (1.17).
Moreover,

(a) For any compact set K ⊂ Rn with smooth boundary and connected complement and
for any h ∈ H3/2(∂K), the problem

(1.19) (−∆− λ2)u = 0 in Rn \K, u|∂K = h

has unique outgoing solution.
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(b) For any f ∈ L2
comp(R

n), the problem

(1.20) (−∆− λ2)u = f in Rn

has unique outgoing solution given by u = R0(λ)f .

We will start with the following uniqueness statement, see also (a). We follow [25, Ch. 9]
here.

Proposition 1.8. Let λ > 0. If

(1.21) (−∆− λ2)u = 0 in Rn \K, u|∂K = 0

and u satisfies (1.17), then u = 0.

Proof. Let SR = {|x| = R}. For R ≫ 1, SR ⊂ Rn \K, and

(1.22)

∫
Sr

|ur − iλu|2dS =

∫
SR

(
|ur|2 + λ2|u|2

)
dS − iλ

∫
SR

(uūr − ūur) dS.

The integral on the right vanishes because by Green’s formula∫
SR

(uūr − ūur) dS =

∫
∂K

(
u
∂ū

∂ν
− ū

∂u

∂ν

)
dS = 0.

On the other hand, by (1.17),∫
SR

|ur − iλu|2dS −→ 0, as R → ∞

because in polar coordinates, dS = Rn−1dS0, where dS0 is the natural measure on the unit
sphere. Then (1.22) implies

(1.23)

∫
SR

|u|2 dS −→ 0, as R → ∞.

The proof is completed by the following lemma. □

Lemma 1.9. If u solves the Helmholtz equation (−∆ − λ2)u = 0 for |x| > R0 > 0 and
(1.23) holds, then u = 0 for |x| > R0.

Proof. Any such solution u has the representation (1.12). By Parseval’s identity,∣∣alm(λ)h(1)l (λr) + blm(λ)C2h
(2)
l (λr)

∣∣2 = o(r(n−1)/2), as r → ∞.

It is easy to see, using (1.9) in Chapter V, that no non-trivial linear combination satisfies
this, thus alm = blm = 0. □

Proof of Theorem 1.7. We start with (b). Clearly, R0(λ)f is an outgoing solution,
by definition, satisfies the Sommerfeld radiation condition (1.17), by Theorem 1.5; therefore
it is unique by what we just proved. This in particular proves the “only if” part of the first
statement of the theorem.

The proof of the existence part of (b) will be given in Theorem 3.1, see also [25], pp.147–
151. We first show there that the problem is uniquely solvable for ℑλ > 0 by reducing it to
a problem for the inhomogeneous equation (1.20) outside K with a compactly supported f
and zero Dirichlet data on ∂K. Then we can just apply the resolvent (−∆D − λ2)−1, where
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∆D is the Dirichlet realization of the Laplacian. Then we show that the limiting absorption
principle applies, and we can take the limit ℑλ→ 0+.

Finally, we need to prove the “if” statement. Let u solve the Helmholtz equation for
|x| ≫ 1 and satisfy (1.17). Then it solves (1.2) as well. Then by (b), u = −R0(λ)[∆, χ]u.
Therefore, u is outgoing. □

1.7. Far field pattern. Our definition of incoming/outgoing solutions, combined with
Theorem 1.5, implies the following.

Corollary 1.10. Every outgoing (incoming) solution u satisfies the following asymp-
totic

(1.24) u(x) =
e±iλ|x|

|x|(n−1)/2
h(x/|x|) +O

(
1

|x|(n+1)/2

)
, as |x| → ∞

with some h ∈ C∞(Sn−1).

The function h is called the applied literature the far field pattern of u. Equation (1.2)
and Theorem 1.5 imply the following

(1.25) f(θ) = cn(λ)F([∆, χ]u)(λθ), cn(λ) = − 1

4πi

(
λ

2π

) 1
2
(n−3)

e
1
4
πi(n−1),

where χ ∈ C∞
0 is such that u solves the Helmholtz equation on suppχ. This shows that h is

actually a real analytic function of θ.

Theorem 1.11 (The Rellich Iniqueness Theorem). Let u be an outgoing (incoming)
solution with zero far field pattern. Then suppu is compact.

Proof. It follows directly from Lemma 1.9. In this case, it is even simpler because
blm = 0. □

1.8. The absolute scattering matrix. We follow [9] here. For any unit θ, the function
eiλθ·x solves the Helmholtz equation. Those functions are viewed as harmonic plane waves
“moving” in the direction θ. Their Fourier transform in λ, up to a constant factor, is
δ(t− x · ω), known as plane waves.

Clearly,

(1.26)

∫
Sn−1

eiλθ·xg(θ) dθ

is also a solution of the Helmholtz equation in Rn for any g ∈ D′(Sn−1) (the integral is
understood in distributional sense). In fact, all tempered solutions u of the Helmholtz
equation in Rn are of that type for λ > 0. Indeed, any such u has a Fourier transform û and
the latter solves (|ξ|2 − λ2)û(ξ) = 0. Therefore, û is supported on λSn−1. Since |ξ|2 − λ2 has
simple zeros on the sphere λSn−1, û is a delta-type of distribution on it.



1. THE STATIONARY SCATTERING THEORY FOR THE LAPLACIAN IN Rn 11

Lemma 1.12. For λ > 0,∫
Sn−1

eiλθ·xg(θ) dθ ∼ e
1
4
π(n−1)i(2π)(n−1)/2 e−iλ|x|

(λ|x|)(n−1)/2

∑
j≥0

|x|−jh−j (x/|x|)

+ e−
1
4
π(n−1)i(2π)(n−1)/2 eiλ|x|

(λ|x|)(n−1)/2

∑
j≥0

|x|−jh+j (x/|x|),

as |x| → ∞, where, in particular, h±0 (ω) = g(±ω), and h±j for j ≥ 1 are given by linear
combinations of certain derivatives of g(±θ).

The proof is based on the stationary phase method. The phase λrθ · ω (we set x = rω)
has stationary points at θ = ±ω.

Note that in particular,∫
Sn−1

eiλθ·xg(θ) dθ = (2πi)(n−1)/2

(
e−iλ|x|

(λ|x|)(n−1)/2
g
(
− x

|x|

)
+

eiλ|x|

(λ|x|)(n−1)/2
(−i)n−1g

( x

|x|

))
+O

(
1

|x|(n+1)/2

)
.

(1.27)

As in the time dependent case, we want to define the scattering operator as the operator
mapping the incoming part of any solution to its the outgoing one. Here we do not have a
perturbed dynamics yet but the question is still meaningful one. In the classical Newtonian
case, where the dynamics is given by (x, v) 7→ (x+tv, v), the incoming and the outgoing parts
can be both associated with the same point in the phase space: (x, v). Then the scattering
operator S would be identity, S = I. This has a lot to do with the way we parametrize the
incoming and the outgoing points and directions. We could also think of −v as an incoming
direction — where we have to look at to see the particle coming. Then S = −I.

Relation (1.27) shows that the incoming-to-outgoing maps would be

g(ω) 7−→ (−i)n−1g(−ω)

as the following lemma shows.

Lemma 1.13. For each λ > 0 and for each h ∈ C∞(Sn−1), there is a unique solution u
of the Helmholtz equation in Rn so that

(1.28) u(rθ) =
e−iλr

r(n−1)/2
h(θ) +

eiλr

r(n−1)/2
h̃(θ) +O

(
1

r(n+1)/2

)
and necessarily,

(1.29) h̃(θ) = (−i)n−1h(−θ).

The map (1.29) is the absolute scattering matrix (the term “matrix” comes from physics).
We would expect to be identity but it is not. On the other hand, it is a unitary isomorphism
in L2(Sn−1). Once and tweak a bit the definition of what is considered incoming and outgoing
patterns (see (1.28)) to make it exactly identity.
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Proof. The existence follows from (1.27): u is given by the l.h.s. of (1.27) with g being
a multiple of h(−θ). To prove the uniqueness, let u1 and u2 be two such solutions. Then
v = u1 − u2 would be an outgoing solution in the whole space Rn. Then both (a) and (b)
of Theorem 1.1 hold. Take x ̸= 0 then, to deduce 2clm = alm = blm, by (1.8). On the other
hand, blm = 0 since u is outgoing. Then blm = 0 as well. □
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2. Potential Scattering

The first scattering problem we consider is the stationary scattering theory for the “sta-
tionary Schrödinger equation”

(2.1)
(
−∆+ V (x)− λ2

)
u = 0 in Rn.

Here, the potential V will be assumed to be real-valued and in L∞
comp but sometimes we may

assume higher regularity, like C∞
0 (Rn). The compactness of the support is not so essential

as long as V is short-range

(2.2) |V (x)| ≤ C(1 + |x|)−1−ε, ε > 0.

This condition can be relaxed a bit but when ε = 0, or more generally, for −1 < ε < 0, the
potential is called long-range and the whole theory needs to redone.

Equation (2.1) is related to the wave equation

(2.3) (∂2t −∆+ V )u = 0

through the Fourier transform Fλ→t; and to the Schrödinger equation

(2.4) (−i∂t −∆+ V )u = 0

through the Fourier transform Fλ2→t. The links to the time-dependent scattering theory in
each case will be discussed later.

2.1. The perturbed resolvent R(λ). Note first that P = −∆ + V is a self-adjoint
(with the same domain as −∆). It is actually a relatively compact perturbation of the latter
and as such, the essential spectrum of P is the same as that of −∆, namely, [0,∞). The
whole spectrum is in [−C0,∞), where −C0 ≤ 0 is such that −C0 ≤ V . Then the true
resolvent

R(λ) = (−∆+ V − λ2)−1

exists for λ away from the spectrum. If V can take negative values, it is possible, in principle,
that P would have negative eigenvalues −µj. Then ℑλ > 0 is not sufficient for λ to be in the
resolvent set since at the points λj = i

√
µj, the resolvent would have a pole. For ℑλ >

√
C0

this cannot happen however.
Sometimes, complex values potentials are of interest as well. Then P is not self-adjoint

anymore but (P − λ2)−1 can be shown to exist for ℑλ ≫ 0 as well, as the first part of the
theorem below asserts.

Theorem 2.1. Let V ∈ L∞
comp(R

n;C), and let n ≥ 3 be odd. Then
(a) the resolvent R(λ) is a meromorphic family of operators in ℑλ > 0 (and also, in

ℑλ < 0).
(b) R(λ) extends as a meromorphic operator-valued function

R(λ) : L2
comp(R

n) → L2
loc(R

n)

from ℑλ > 0 to the whole complex plane C.
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(c) The following estimate holds: for any χ ∈ C∞
0 ,

∥χR(λ)χ∥ ≤ C

λ
, λ > 0.

Note that when V is real-valued, (a) is trivial, and R(λ) is actually without poles there,
as we already mentioned.

Proof. First we show that R(λ) exists for ℑλ≫ 1. If course, for real-valued potentials,
this is trivial. If there were a resolvent for some λ, then it would satisfy the resolvent identity

(2.5) R(λ)−R0(λ) = −R(λ)V R0(λ).

This, and some of its versions, is known as the Lipmann-Schwinger equation. Hence,

(2.6) R(λ)(I + V R0(λ)) = R0(λ).

If we can invert I + V R0(λ), we are done, and we can write

(2.7) R(λ) = R0(λ)(I + V R0(λ))
−1.

One can check directly that this is a left and right inverse. On the other hand,

∥R0(λ)∥ ≤ 1/dist(ℑλ2,R+) ≤ 1/|ℑλ|2,

therefore, for ℑλ ≫ 1, I + V R0(λ) is invertible, indeed. For ℑλ > 0, V R0(λ) is compact,
and the analytic Fredholm theorem completes the proof of (a).

To prove (b), we would like to apply the analytic Fredholm theorem again. Note first that
we cannot apply it directly to (2.7) because we have proved existence of analytic extension
of V R0(λ) only as an operator from L2

comp(R
n) to L2 but not from L2 to itself (the latter

is not true). Instead, we will do the following. Choose χ ∈ C∞
0 so that χV = V . Then by

(2.5),

R(λ)χ−R0(λ)χ = −R(λ)χV R0(λ)χ.

Therefore,

R(λ)χ (I + V R0(λ)χ) = R0(λ)χ.

For ℑλ≫ 1, the operator I + V R0(λ)χ is invertible by the arguments above. Then

(2.8) R(λ)χ = R0(λ)χ (I + V R0(λ)χ)
−1 : L2(Rn) 7−→ L2

loc(R
n).

We are ready to apply the analytic Fredholm theorem now. The operator V R0(λ)χ
is compact, depends analytically on λ ∈ C, and I + V R0(λ)χ is invertible for ℑλ ≫ 1.
Therefore, χR(λ)χ extends to a meromorphic family.

Part (c) follows from (2.8) and Theorem 1.3 directly because ∥(I + V R0(λ)χ)
−1∥ ≤ 2 for

λ≫ 1. □

Remark 2.1. Note that we can get (2.8) by expanding (2.7) in Neumann series for
ℑλ≫ 0 and applying χ to the right. Indeed, for ℑλ≫ 0,

(2.9) R(λ) = R0(λ) +R0(λ)V R0(λ) +R0(λ)V R0(λ)V R0(λ) + . . . .
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Therefore,

R(λ)χ = R0(λ)χ−R0(λ)χV R0(λ)χ+R0(λ)χV R0(λ)χV R0(λ)χ+ . . .

= R0(λ)χ (I− V R0(λ)χ+ V R0(λ)χV R0(λ)χ+ . . . )

= R0(λ)χ (I + V R0(λ)χ)
−1

for ℑλ ≫ 0, and by meromorphic continuation, is true everywhere. We also note for future
reference that the same arguments imply the following

(2.10) χR(λ) = (I + χR0(λ)V )−1 χR0(λ).

Definition 2.2. The poles of R(λ) are called (scattering) resonances. The multiplicity
m(λ) of each resonance is given by

m(λ) = rank

∮
|ζ−λ|=ε

R(ζ) dζ,

where the circle |ζ − λ| = ε > 0 is so small that λ is the only pole inside it.

When V is real-valued, the only resonances in ℑλ > 0 are the ones corresponding to
negative eigenvalues, λj = i

√
µj. Also, there are no resonances on R \ 0, see [26].

Theorem 2.3. Let L∞
comp(R

n) be real valued. Then
(a) There are no non-trivial outgoing solutions of (2.1).
(b) There are no non-zero real scattering poles.

Proof. For (a), we follow the proof of Proposition 1.8. Let u be an outgoing solutions
of (2.1). We start with (1.22). The integral in the r.h.s. there vanishes as well; to see that,
we integrate ū(∆+V −λ2)u = 0 over the ball B(0, R). Then we arrive at (1.23). Lemma 1.9
then implies that u = 0 for |x| ≫ 1. By unique continuation, u = 0 everywhere.

To prove (b), it is enough to show that I + χR0(λ)V , see (2.10), is invertible. Since the
operator V R0(λ)χ is compact, it is enough to show that I + χR0(λ)V has a trivial kernel.

Let

(2.11) (I + χR0(λ)V )ψ = 0, ψ ∈ L2.

Then the outgoing function v := −R0(λ)V ψ solves (−∆−λ2)v+V ψ = 0. By (2.11), ψ = χv,
therefore,

(−∆+ V − λ2)v = 0.

By (a), v = 0. □

2.2. The “naive” scattering theory. The scattering amplitude. We start with
an intuitive view of scattering theory which is dominant in (some of) the physical and in
(most of) the applied math literature.

The “harmonic plane wave” solutions of the Helmholtz equation eiλx·θ, |θ| = 1, are
viewed as elementary waves “propagating” in the direction θ. They are neither incoming
nor outgoing. Even though there is no time in the stationary theory, we are thinking about
(2.1) as an inverse (by the choice of our convention) Fourier transformed version of the wave
equation (2.3). Then (2π)−nFλ→te

iλx·θ = δ(t−x·θ); and the later is a “plane wave” moving in
the direction θ. It is an analog of the classical particles x = tθ moving in the same direction.
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So we illuminate the system with the harmonic plane wave eiλx·θ, let it interact with the
potential, and look for the difference usc = u − eiλx·θ, where u is the solution; as a sign of
how the potential has interacted with that illumination. This intuitive view of the scattering
process suggests that we should require usc to be outgoing. If V = 0, usc = 0. The large |x|
limit (the far-field pattern) of usc is our scattering data, called the scattering amplitude a.
The latter is a function of the incoming direction θ, the frequency/energy λ and the outgoing
direction ω = x/|x|, i.e., a = a(λ, θ, ω). The scattering amplitude is basically the kernel of
the scattering operator S minus identity, as we will see later.

The discussion above suggests the following. We should look for a solution u(x, θ, λ) of
(2.1) of the form

(2.12) u = eiλx·θ + usc,

with usc outgoing. Then usc is the outgoing solution of

(2.13) (−∆+ V − λ2)usc = −V eiλx·θ.
Then

(2.14) usc = −R(λ)
(
V eiλx·θ

)
,

where, somewhat incorrectly, R(λ)
(
V eiλx·θ

)
stands for R(λ) applied to the function x →

V (x)eiλx·θ. Indeed, by (2.8), for any compactly supported f , R(λ) is outgoing.
Another equation for usc can be obtained by writing

(−∆− λ2)usc = −V u.
Since usc is outgoing, we get

(2.15) usc = −R0(λ)V u,

therefore,

(2.16) u(x, θ, λ) = eiλx·θ −
∫
G0(x, y, λ)V (y)u(y, θ, λ) dy,

which is the classical Lippmann-Schwinger equation in quantum mechanics. Recall that if
n = 3, the kernel G0 of R0 takes the simple form (1.12).

Since usc is outgoing, it has a far field pattern, see (1.7). Therefore, there exists a function
a(θ, ω, λ), where ω = x/|x|, so that

(2.17) u(x, θ, λ) = eiλx·θ +
eiλ|x|

|x|(n−1)/2
a(x/|x|, θ, λ) +O

(
1

|x|(n+1)/2

)
, as |x| → ∞.

Definition 2.4. The function a(ω, θ, λ), where (ω, θ, λ) ∈ Sn−1 × Sn−1 × R+ is called
the scattering amplitude associated with V .

In other words, the scattering amplitude is what controls the first non-trivial term in the
expansion of u as |x| → ∞, up to the obligatory factor |x|−(n−1)/2.

To obtain a representation of a, we take the far-field pattern of the integral term in (2.16).
By Theorem 1.5,

(2.18) a(ω, θ, λ) = − 1

4πi

(
λ

2π

) 1
2
(n−3)

e
1
4
πi(n−1)

∫
e−iλω·yV (y)u(y, θ, λ) dy.
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Of course, the interesting part is the integral there, and very often, the scattering amplitude
is just defined as

(2.19) a0(ω, θ, λ) =

∫
e−iλω·xV (x)u(x, θ, λ) dx.

We will call a0 the reduced scattering amplitude. The representation (2.19), together with
the formulas (2.12) and (2.14) allow us to express the reduced scattering amplitude a0 directly
trough the resolvent R(λ):

(2.20) a0(ω, θ, λ) =

∫
e−iλω·xV (x)

(
(I−R(λ)V )eiλx·θ

)
dx.

We therefore get the following.

Proposition 2.5. Let n ≥ 3 be odd. Then the scattering amplitude a(ω, θ, λ) extends
to a meromorphic functions of λ ∈ C with possible poles at the scattering resonances, with
values in the real-analytic function of (θ, ω) .

In particular, away from the scattering poles, a is analytic w.r.t. all of its variables.
Actually, one can take θ and ω in the complex manifold ξ2 = 1. Note that this representation
does not prove that a must have a pole at each scattering pole — in principle, the singular
part of R(λ) may cancel by the integration. In fact, this cannot happen in ℑλ < 0 but this
will be established later.

2.3. The relative and the absolute scattering matrix. The “naive” scattering
theory does not go further — if we can determine the scattering effect of the potential for
every illumination θ ∈ Sn−1, we have full scattering data, intuitively. We now relate the
scattering amplitude to the scattering matrix, defined similarly to section 1.8.

By (1.27) and (2.17), for any g ∈ C∞(Sn−1),∫
Sn−1

u(x, θ, λ)g(θ) dθ

= (2πi)(n−1)/2

(
e−iλ|x|

(λ|x|)(n−1)/2
g
(
− x

|x|

)
+

eiλ|x|

(λ|x|)(n−1)/2

[
(−i)n−1g

( x

|x|

)
+ λ(n−1)/2

∫
Sn−1

a(x/|x|, θ, λ)g(θ) dθ
])

+O

(
1

|x|(n+1)/2

)
, as |x| → ∞.

(2.21)

Therefore, the l.h.s. above is a sum of an outgoing and an incoming functions; with corre-
sponding far-field patterns g(−ω) and (−i)n−1g(ω) + λ(n−1)/2a(ω, θ, λ). This motivates the
following.

Definition 2.6.
(a) The absolute scattering matrix is the map

Sabs(λ) : g(ω) 7−→ (−i)n−1g(−ω) + λ(n−1)/2

∫
Sn−1

a(−ω, θ, λ)g(θ) dθ.
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(b) The (relative) scattering matrix is the map

S(λ) : g(ω) 7−→ g(ω) + in−1λ(n−1)/2

∫
Sn−1

a(ω, θ, λ)g(θ) dθ.

Note that the scattering matrix is the inverse of the absolute one for V = 0 composed
with Sabs(λ). In particular, if V = 0, then S(λ) = I which restores the harmony.

Theorem 2.7. For any λ > 0 and any h ∈ C∞(Sn−1), there is unique solution v of (2.1)
so that

(2.22) v(rω) =
e−iλr

r(n−1)/2
h(ω) +

eiλr

r(n−1)/2
h̃(ω, λ) +O

(
1

r(n+1)/2

)
,

where, necessarily,
h̃(·, λ) = Sabs(λ)h.

Proof. The solution v is given by the integral in (2.21). The uniqueness follows from
Theorem 2.3(a). □

This theorem and its proof is an analog of the completeness property of the wave opera-
tors.

We list some properties of the scattering matrix.

Theorem 2.8. Let n ≥ 3 be odd and let V ∈ L∞
comp(R

n) be complex-valued. Then S(λ)
is meromorphic with poles of finite rank and satisfies

S−1(λ) = S(−λ), λ ∈ C.

There are finitely many poles in ℑλ ≥ 0; and for any pole in ℑλ > 0, λ2 is in the spectrum
of −∆+ V .

If V is real valued, then
S−1(λ) = S(λ̄)∗, λ ∈ C.

In particular, S(λ) is unitary on R and analytic on R.

Definition 2.9. The poles of the scattering matrix S(λ) are called scattering poles.

The scattering poles and the resonances coincide with a possible exception of finitely
many on the imaginary axis. This will be shown later (hopefully).
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3. Obstacle Scattering

Let O be a bounded compact (non-empty) set with smooth boundary and a connected
exterior Ω = Rn \ O. We study the Helmholtz equation in Ω with Dirichlet boundary
conditions (Neumann boundary conditions are treated similarly)

(3.1) (−∆− λ2)u = 0 in Ω, u|∂Ω = 0.

If we send a harmonic plane wave eiλθ·x, it will reflect from the obstacle, producing a response
u = eiλθ·x + usc as before. We think of usc as the scattered wave, which reflected off ∂Ω and
propagates to infinity.

3.1. The resolvent. Let ∆D be the natural self-adjoint realization of ∆D corresponding
to the Dirichlet boundary condition. In particular, the domain of ∆D is given by

D(∆D) = H2(Ω) ∩H1
0 (Ω).

The spectrum of −∆D coincides with [0,∞). Then the resolvent

R(λ) = (−∆D − λ2)−1

exists for ℑλ > 0. We will show below that for n odd, it extends meromorhically to C. The
proof of this will given in the more general black-box setting later but we will present the
classical approach below which has its own merits. We refer also to [25, IX.7].

Theorem 3.1. For n ≥ 3 odd, the resolvent R(λ) : L2
comp(Ω) → L2

loc(Ω) extends mero-
morphically from ℑλ > 0 to C with poles in ℑλ < 0.

As before, the resonances are defined as the poles of R(λ).
Instead of studying the problem

(3.2) (−∆− λ2)u = h, in Ω, u|∂Ω = 0,

we will study the homogeneous Helmholtz equation in Ω with prescribed data on ∂Ω:

(3.3) (−∆− λ2)u = 0 in Ω, u|∂Ω = f.

Clearly, each one can easily be converted into the other.
We define the usual single and double layer potentials by

SL(f)(x) =

∫
∂Ω

G0(x, y, λ)f(y) dSy, DL(f)(x) =

∫
∂Ω

∂νyG0(x, y, λ)f(y) dSy.

Here, ν is the outer unit normal and we recall the notation G0(x, y, λ) for the kernel of R0(λ).
Each of those integrals is a solution of the Helmholtz equation away from ∂Ω for any f ∈
D′(∂Ω). Formally restricted to x ∈ ∂Ω, ∂νyG has a singularity of the kind dist(x, y)2−n, which
is integrable on ∂Ω. On the other hand, ∂yG0(x, y, λ) a singularity of the kind dist(x, y)1−n

which is not integrable on ∂Ω, but ∂νyG0(x, y, λ) has a weaker one, same as G0(x, y, λ).
Therefore, the following operators are well-defined on ∂Ω, and are in fact compact ones on
L2(∂Ω):

Kf(x) =

∫
∂Ω

G0(x, y, λ)f(y) dSy, Nf(x) =

∫
∂Ω

∂νyG0(x, y, λ)f(y) dSy, x ∈ ∂Ω.
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If we let subscripts ± denote limits to ∂Ω from the interior, and, respectively, from the
exterior of ∂Ω, it is known that

(3.4) SL+ = SL− = K, DL± = ±1

2
I +N.

We are looking for solutions of (3.3) of the form

u = DL(g)

(or u = SL(h) or any linear combination of both). Then g has to solve

f =
1

2
g +Ng =⇒ (I + 2N)g = 2f.

If we can invert the Fredholm operator I + 2N , we would get

(3.5) u = 2DL(λ)(I + 2N(λ))−1.

We indicated above the fact that both operators depend on λ and in fact, they are entire
functions of λ ∈ C.

Lemma 3.2. (I + 2N(λ))−1 is a meromorphic operator-valued function of λ ∈ C with
poles in ℑλ ≤ 0. The real poles are at λ such that λ2 is a Neumann eigenvalue of −∆ in O.

Proof. Since N(λ) is compact, I + 2N(λ) is invertible if and only if the equation (I +
2N(λ))g = 0 has the trivial solution g = 0. Let g be a solution to that equation, and consider
u = DL(λ)g defined away from ∂Ω. It solves the Helmholtz equation there. In Ω, it satisfies
the zero boundary condition. For λ ̸= 0, it is outgoing, and by Theorem 1.7(a), u = 0 in Ω.
For λ = 0 this follows by the maximum principle. For ℑλ > 0, λ2 is in the resolvent set of
−∆D, therefore u = 0 then as well. Then ∂νu+ = 0 on ∂Ω.

It is well known that the interior and the exterior normal derivatives of a double layer
potential coincide. Hence, for ℑλ ≥ 0, ∂νu− on ∂Ω as well. Therefore, u|O is a Neumann
eigenfunction of −∆ with eigenvalue λ2.

We therefore proved that (I+2N(λ))−1 exists for ℑλ ≥ 0 with the exception of λ for which
λ2 is an interior Neumann eigenvalue. By the analytic Fredholm theorem, (I + 2N(λ))−1

extends to a meromorphic function on C. □

Proof of Theorem 3.1. Now, assume that λ0 is an interior Neumann eigenvalue of
−∆. Then (I + 2N(λ))−1 has a pole at λ = λ0, and near λ0, we have the Laurent expansion

(3.6) (I + 2N(λ))−1 = A0(λ) +
N∑
j=1

1

(λ− λ0)j
Aj,

with A0(λ) holomorphic there, and N < ∞ (the latter follows from the analytic Fredholm
theorem, part of the definition of a meromorphic function). Since

N(λ)−N(λ0) = (λ− λ0)

∫ 1

0

N ′(λ0 + s(λ− λ0)) ds,
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we have N(λ) = N(λ0) + (λ − λ0)N1(λ). Apply I + 2N(λ) = I + 2N(λ0) + 2(λ − λ0)N1(λ)
to (3.6). On the left, we get identity; on the right, the most singular term would be

1

(λ− λ0)N
(I + 2N(λ0))AN .

Than term must vanish, therefore,

(I + 2N(λ0))AN = 0.

Choose f ∈ L2(∂Ω) and let g = ANf . Then we are in the situation above, and we get
u := DL(λ0)g = 0 in Ω. If the r.h.s. of (3.5) had a pole at λ = λ0, its most singular part
would be

1

(λ− λ0)N
DL(λ0)AN : L2(∂Ω) → L2

loc(Ω),

and we just established that this operator vanishes. Therefore, even though (I + 2N(λ))−1

does have poles for λ square root of an interior Neumann eigenvalue, the operator DL(λ)(I+
2N(λ))−1 does not — they are canceled by DL(λ). □

3.1.1. The “naive” obstacle scattering theory and the scattering amplitude. We are look-
ing again for a solution u(x, θ, λ) of (3.1) of the form

(3.7) u = eiλx·θ + usc,

with usc outgoing. Then usc is the outgoing solution of

(3.8) (−∆− λ2)usc = 0, usc|∂Ω = −eiλx·θ.
This solution is well defined for λ away from the resonances as we just showed. Being
outgoing, it has a far field pattern; therefore u satisfies (2.17) and we can define the scattering
amplitude as in Definition 2.4.

Recall the notation G0(x, y, λ) for the kernel of R0(λ). Applying Green’s theorem, we
get

usc(x) =

∫
∂Ω

(
(∂νyG0)(x, y, λ)usc(y)−G0(x, y, λ)∂νusc(y)

)
dSy, x ∈ Ω,

where we suppressed the dependence of usc on θ and λ. Here ν is the outer unit normal to
O (and inner for Ω). We take the asymptotic |x| → ∞ using Theorem 1.5. Its proof (which
we did for n = 3 only) easily implies an asymptotic expansion for ∂νyG0(x, y, λ) as well. We
get

a(ω, θ, λ) =
1

4π

(
iλ

2π

) 1
2
(n−3) ∫

∂Ω

(
usc(y)∂νye

−iλy·ω − e−iλy·ω∂νusc(y)
)
dSy.

We proved the following.

Theorem 3.3. We have

a(ω, θ, λ) =
−1

4π

(
iλ

2π

) 1
2
(n−3) ∫

∂Ω

(
iλω · ν(y)e−iλy·(ω−θ) + e−iλy·ω∂νusc(y, θ, λ)

)
dSy.

We see again that a(ω, θ, λ) extends to a meromorphic function of λ with possible poles
at the resonances, with values in analytic functions of (θ, ω).
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3.1.2. The outgoing DN map. Let u be the outgoing solution to (3.3). Set

N(λ)f =
∂u

∂ν

∣∣∣
∂Ω
.

It is a well defined operator from Hs(∂Ω) to Hs−1(∂Ω) for s > 1 (at least, very often s = 1/2
actually), meromorphically depending on λ, with possible poles at the resonances. With its
aid, the formula above can be written as

a(ω, θ, λ) =
−1

4π

(
iλ

2π

) 1
2
(n−3) ∫

∂Ω

(
iλω · ν(y)e−iλy·(ω−θ) + e−iλy·ωN(λ)eiλ•·θ

)
dSy.
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4. Scattering by Metrics

Let gij(x) be a Riemannian metric equal to the Euclidean one for large |x|, say, |x| > R0

for some R0 > 0. The Laplace-Beltrami operator is given by

∆g :=
1√
det g

∂xigij
√
det g∂xj .

Then we consider the equation (−∆g−λ2)u = 0. We could consider the more general second
order elliptic operator

P = −c−2∆g,A := c2
1√
det g

(∂xi − Aj) g
ij
√

det g (∂xj − Aj) + q,

where the “magnetic field” A(x) = (A1(x), . . . , An(x)) and the “electric field” q(x) vanish
outside the ball B(0, R). We also assume that the “acoustic speed” c(x) equals 1 outside
that ball.

The reason to include c in the above definition is to have a direct way to treat both the
operator c2∆ and ∆g. Clearly, modulo first order terms, P coincides with −∆c−2g, so the
metric which determines the high-frequency properties of P is c−2g.

Since P is written in (almost) divergence form, when all coefficients are real (which we
assume), P is self-adjoint on the space L2(Rn; c−2

√
det g dx). Its essential spectrum is again

[0,∞). One can define the resolvent

R(λ) = (P − λ2)−1, ℑλ > 0.

The meromorphic extension properties will be proved in the next section. Note that even
though P is a compactly supported perturbation of −∆, the difference P − (∆) is not of
lower order. Many properties are much closer to those of obstacle scattering than to the
potential one.
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5. Black Box Scattering

We present here the black box scattering framework introduced by Sjöstrand and Zworski
[17]. It turns out that many (but not all!) properties like the existence of a meromorphic
extension, some basic properties of the scattering matrix and amplitude, and even some
properties of the resonances are the same for potential, obstacle scattering, and for general
second order self-adjoint operators. This suggests that there might be a uniform approach
which combines them all. Such an approach is the black box scattering framework.

At the beginning, we follow [16].
Let H and HR0 be two complex Hilbert spaces so that

H = HR0 ⊕ L2(Rn \B(0, R0)),

where R0 > 0. In potential scattering, HR0 = L2(B(0, R0)), in obstacle one, HR0 =
L2(B(0, R0)\O), where O ⊂ B(0, R0); and in the metric case, HR0 = L2(Rn; c−2

√
det g dx).

Other examples are a compact manifolds with boundary (and possible “holes” and “han-
dles”) glued to the exterior of B(0, R0).

We denote by 1B(0,R0) (or u|B(0,R0)), and by 1Rn\B(0,R0) (or u|Rn\B(0,R0)) the projections
to the first or the second component in the orthogonal decomposition above, respectively.
Note that the former notation can be misleading: u|B(0,R0)) is the projection to HR0 which
may not be a space of functions defined on B(0, R0). Multiplication by C∞

0 (Rn) functions

χ is well-defined when χ is constant near B(0, R0). We set

Hcomp = {u ∈ H; u|Rn\B(0,R0) has bounded support}
Hloc = HR0 ⊕ L2

loc(R
n \B(0, R0))

We define P now as a self-adjoint operator on H with domain D(P ). We want first P to
be equal to −∆ outside Ω:

(5.1) Pu|Rn\B(0,R0) = −∆|Rn\B(0,R0).

This needs to be complemented by the assumption that if u ∈ D(P ), then its restriction to
Rn \ B(0, R0) is in H2; and that any u ∈ H2(Rn \ B(0, R0) vanishing near B(0, R0) is in
D(P ) as well.

The second essential property replaces the requirement that P is elliptic (the latter does
not actually make sense in this abstract setting):

(5.2) 1B(0,R0)(P − i)−1 is compact on H.
Note that this condition is fulfilled in potential and in obstacle scattering.

Theorem 5.1.
(a) P can have only discrete spectrum in (−∞, 0).
(b) (P − λ2)−1 : Hcomp 7→ Hloc has a meromorphic extension from {ℑλ > 0; λ2 ̸∈

spec(P ) ∩ (−∞, 0)} to C, when n ≥ 3 is odd; and to the logarithmic covering of C when n
is even.

Proof. The first step is to show that (5.2) implies the following more general property:

(5.3) 1B(0,R)(P − z)−1 is compact on H for any R ≥ R0 and any z ∈ ρ(P ),
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where ρ(P ) is the resolvent set of P .
Indeed, by the resolvent identity,

(5.4) 1B(0,R0)(P − z)−1 = 1B(0,R0)(P − z0)
−1 − 1B(0,R0)(P − z0)

−1(z0 − z)(P − z)−1

for any z0 and z in the resolvent set. Take z0 = i to conclude that 1B(0,R0)(P − z)−1 is
compact. Also, (P − z)−11B(0,R0) is compact, being adjoint to a compact operator.

Next, to show that we can replace R0 with any R > R0, notice that

1B(0,R)\B(0,R0)(P − z)−1

is compact because 1B(0,R) : H
2(Rn \B(0, R0)) → L2(Rn \B(0, R0)) is compact.

Next step is to construct an “approximate” resolvent. We use Sjöstrand’s notation here:
for any functions χ1, χ2, we say that χ1 ≺ χ2 is χ2 = 1 near suppχ1 (with χ1 ∈ C∞

0 ). Choose
χ0, χ1, χ2 in C∞

0 so that 1B(0,R) ≺ χ0 ≺ χ1 ≺ χ2 (the first relation has a natural meaning).
Then we set

(5.5) Q(λ) = (1− χ0)R0(λ)(1− χ1) + χ2R(λ0)χ1,

where λ0 with λ20 ∈ ρ(P ) will be chosen later, and ℑλ > 0. Roughly speaking, Q(λ) is like
R0(λ) outside the black box, and equal to R(λ0) (with λ0 fixed) near the black box. We
would like the latter to be R(λ) but we have not proved its meromorphic continuation yet
— actually, we are trying to prove it now. The compactness of the difference, with a cutoff
applied to the left, see (5.4), will give us a compact operator error only.

Apply P − λ2 to the first operator on the r.h.s. of (5.5):

(P − λ2)(1− χ0)R0(λ)(1− χ1) = 1− χ1 + [∆, χ0]R0(λ)(1− χ1) = 1− χ1 +K0(λ),

where K0(λ) is compact. Next,

(P − λ2)χ2R(λ0)χ1 = χ2(P − λ2)R(λ0)χ1 − [∆, χ2]R(λ0)χ1

= χ1 + χ2(λ
2
0 − λ2)R(λ0)χ1 − [∆, χ2]R(λ0)χ1

= χ1 +K1(λ, λ0),

where K2(λ, λ0) is compact as well.
So we get

(P − λ2)Q = I +K(λ, λ0), K := K0(λ) +K1(λ, λ0).

Clearly, K depends analytically on λ in ℑλ > 0. We only need to show that I +K(λ, λ0) is
invertible for some λ, with suitably chosen (but fixed) λ0. Then we can apply the analytic
Fredholm theorem.

We chose λ0 = eiπ/4µ, µ > 0; then λ20 = iµ2. Then we claim that

K(λ0, λ0) = O(|λ0|−1) : H → H.
By the spectral theorem,

R(λ0) = O(|λ0|−2) : H → H, R(λ0) = O(1) : H → D(P ).

The most difficult term to handle is [∆, χ2]R(λ0)χ1, see the definition of K1(λ). Note that
1 − χ0 = 1 on the support of the coefficients of [∆, χ2]. Then we have the same estimates
for (1 − χ0)R(λ0) and H, D(P ) replaced by L2 and H2, respectively. By interpolation (or
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by applying the spectral theorem again), (1− χ0)R(λ0) = O(1/|λ0|) : H → H2. We treat in
the same way the other terms in K(λ0, λ0) to get

K(λ0, λ0) = O(1/|λ0|) : H → H.
We choose and fix λ0 so that that norm is less than 1/2. Then (I + K(λ, λ0))

−1 exists for
λ = λ0. By the analytic Fredholm theorem, it extends to a meromorphic family in ℑλ > 0
(with the singular part in the Laurent expansion operators of finite rank). Note that at this
point we cannot (and should not be able to) make the same conclusion for λ in ℑλ < 0
because the first term in the definition of Q(λ) is analytic only in ℑλ > 0.

We now write (with the notation K(λ) = K(λ, λ0))

(P − λ2)−1 = Q(λ)(I +K(λ))−1, ℑλ > 0.

So far, we did not prove many new meromorphic properties of (P − λ2)−1 but we did prove
some new ones. We know that (P − λ2)−1 is an analytic function in ℑλ > 0 with possible
singularities at λon iR so that λ2 is in the (negative) spectrum of P . Now, we see that the
negative part of the spectrum of P must be discrete, which proves (a).

To prove the meromorphic extension to ℑλ ≤ 0, as in (b), it is enough to show that
R(λ)χ : H → Hloc has this property, for any χ ∈ C∞

0 . If we expand (I + K(λ))−1 in
Neumann series, for λ close to λ0, we get

(I +K)−1 = I−K +K2 − . . . .

A quick inspection of the definition ofK reveals that it is a sum of terms all having a compact
cut-off on the left; more precisely, their range is always in Hcomp; with support in suppχ2.
One of them however, [∆, χ0]R0(λ)(1− χ1), does not have such a cut-off on the right. Since
we always apply it to functions supported in suppχ2, except for the K term, we can just
replace K with K(1−χ), where χ2 ≺ χ, and this would affect the K term only but not Kj,
j ≥ 2. Therefore,

(I +K)−1 = (I +Kχ)−1(1−K(1− χ)).

This is true for λ near λ0 but also in ℑλ > 0 away from the poles, by analytic continuation.
We can apply the analytic Fredholm theorem again (note thatKχ now is an analytic function
of λ in C, if n is odd, and in the logarithmic cover of C, if n is even), to conclude that R(λ)
has the claimed meromorphic extension (in the sense of (b)) given by

R(λ) = Q(λ)(I +K(λ)χ)−1(I−K(λ)(1− χ)).

□

As before, the poles of R(λ) are called resonances. Some authors exclude those in ℑλ > 0
which come from the spectrum.

Proposition 5.2.
(a) For any f ∈ Hcomp and any λ not a resonance, the function u = R(λ)f is λ-outgoing.

Moreover, if χ is a smooth cut-off function such that χ = 1 for |x| > a, and χ = 0 in a
neighborhood of B(0, R0) and supp f , then we have R(λ)f ||x|>a = −R0(λ)[∆, χ]R(λ)f ||x|>a.

(b) Assume that u ∈ Dloc(P ), (P − λ2)u = f ∈ Hcomp, λ is not a resonance, and u is
λ-outgoing. Then u = R(λ)f .
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(c) Assume that u ∈ Dloc(P ), (P − λ2)u = 0 for 0 ̸= λ ∈ R, and u is λ-outgoing. Then
u has compact support.

Proof. We will use the observation (1.2). Let 1B(0,R0) ≺ 1− χ ∈ C∞
0 . For ℑλ > 0,

(−∆− λ2)χ = −[∆, χ] + χ(−∆− λ2) = −[∆, χ] + χ(P − λ2).

Apply R0(λ) on the left and R(λ) on the right to get

(5.6) χR(λ) = −R0(λ)[∆, χ]R(λ) +R0(λ)χ.

This can be extended meromorphically to the “non-physical sheet” considering both sides
above as operators from Hcomp to Hloc This proves (a). In particular, this show that for any
f ∈ E ′, R(λ)f is outgoing.

For the proof of (b), see [16, 20].
Consider (c). As in (1.22), we get∫

Sr

|ur − iλu|2dS =

∫
SR

(
|ur|2 + λ2|u|2

)
dS − iλ

∫
SR

(uūr − ūur) dS.

The integral on the right vanishes because by Green’s formula∫
SR

(uūr − ūur) dS = (1B(0,R)(P − λ2)u, u)− (1B(0,R)u, (P − λ2)u), R > R0,

which is easy to justify in the black-box framework. Then we show in the same way that
u = 0 for |x| > R0. □

Theorem 5.3. Let λ ∈ R \ {0} be a resonance. Then λ2 is an eigenvalue of P and there
exists a compactly supported eigenfunction corresponding to λ2.

Proof. We will actually prove something more. Let λ0 be such a resonance. Then R(λ0)
has a non-trivial Laurent expansion of the kind (3.6). Let AN be as there. In the same way,
we show that (P − λ20)AN = 0. Since AN ̸= 0, there exists f ∈ Hcomp so that u := ANf ̸= 0.
Then (P − λ20)u = 0. Such functions are called resonant states.

By (5.6), u is outgoing. By Proposition 5.2(c), it has compact support. Then u, which a
priori is in Hloc only, is actually in H and is therefore an eigenfunction. □

In most typical situations, P has no positive eigenvalues; then there are no real non-zero
resonances.

5.1. The scattering amplitude. Similarly to what we did before, we can build the
“naive” scattering theory in the general black-box setting.

Let 1B(0,R0) ≺ 1 − χ1 ∈ C∞
0 . For any θ ∈ Sn−1, λ > 0, we are looking for a solution

u(x, θ, λ) ∈ Dloc(P ) of
(P − λ2)u = 0

so that

(5.7) u = χ1e
iλθ·x + usc

with usc outgoing. Then usc must solve

(P − λ2)usc = [∆, χ1]e
iλθ·x.
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By Proposition 5.2(b) above,

usc = R(λ)[∆, χ1]e
iλθ·x.

if λ > 0 is not a resonances. Choose χ2 ∈ C∞ so that χ2(x) = 0 for |x| ≫ 1 and χ = 0 on
supp(1− χ1). Then by Proposition 5.2(a),

χ2usc = −R0(λ)[∆, χ2]R(λ)[∆, χ1]e
iλθ·x.

Take the asymptotic x = rω, r → ∞. By Theorem 1.5,

usc(rω, θ, λ) = − e
1
4
πi(n−1)

4πir(n−1)/2

(
λ

2π

) 1
2
(n−3)

×
∫
e−iλω·xR0(λ)[∆, χ2]R(λ)[∆, χ1]e

iλθ·•dx+O

(
1

r(n+1)/2

)
.

We define the scattering amplitude a in the same way as in (2.17). Then

(5.8) a(ω, θ, λ) = −e
1
4
πi(n−1)

4πi

(
λ

2π

) 1
2
(n−3) ∫

e−iλω·x[∆, χ2]R(λ)[∆, χ1]e
iλθ·•dx.

This formula allows us to compute the scattering amplitude a knowing the resolvent R(λ). In
particular, we get that, as before, λ 7→ a(ω, θ, λ) extends meromorphically from the physical
sheet to the non-physical one with values analytic functions of (ω, θ) and possible poles at
the resonances.

Set

(5.9) (E±f)(ω) =

∫
e±iλω·xf(x) dx = f̂(∓λω), E± : S ′(Rn) → C∞(Sn−1),

The transpose operators are given by

(5.10) (E ′
±ϕ)(x) =

∫
Sn−1

e±iλω·xϕ(ω) dω, E± : D′(Sn−1) → S(Rn).

Let us now view the scattering amplitude a(ω, θ, λ) as a kernel of an operator A(λ) :
C∞(Sn−1) → C∞(Sn−1). Then

(5.11) A(λ) = −e
1
4
πi(n−1)

4πi

(
λ

2π

) 1
2
(n−3)

E−(λ)[∆, χ2]R(λ)[∆, χ1]E
′
+(λ).

This formula appeared for the first time in [13], to my knowledge. I am following [20] here.
An even closer look at that formula reveals that

A(λ) = c(λ)E−(λ)[∆, χ2]R(λ) (E+(λ)[∆, χ1])
′ .

This shows that we should probably try to understand the operator E−(λ)[∆, χ2] better.
Take the Schwartz kernel G(x, y, λ) of R(λ). Then the kernel of E−(λ)[∆, χ2]R(λ) is just the
far field pattern ofG(x, y, λ) w.r.t. the x variable. The kernel of E−(λ)[∆, χ2]R(λ) (E+(λ)[∆, χ1])

′

is then the far field pattern of the result w.r.t. the y variable; and that is the scattering am-
plitude, up to the factor c(λ). We will make this more precise later, when we discuss inverse
scattering in the black-box setting.
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5.1.1. Asymptotics of R(λ)f . Similarly to Theorem 1.5, we can derive asymptotics for
R(λ)f with f compactly supported.

Theorem 5.4. For any f ∈ E ′(Rn),

[R(λ)f ](rθ) =
1

4πi

(
λ

2π

) 1
2
(n−3)

e
1
4
πi(n−1) eiλr

r(n−1)/2

∫
ū(y,−θ,−λ)f(y) dy.

Proof. By Proposition 5.2, one needs to know the asymptotic of R0(λ)g for g compactly
supported only. Then Theorem 1.5 implies (f can be a distribution there)

[R(λ)f ](rθ) =− 1

4πi

(
λ

2π

) 1
2
(n−3)

e
1
4
πi(n−1)

× eiλr

r(n−1)/2

∫
e−iλθ·y ([∆, χ]R(λ)f) (y) dy +O

(
r−

n−3
2

)
.

Note that R∗(λ) = R(−λ̄), i.e., for the Green’s function G(x, y, λ) (the Schwartz kernel) we

have G(y, x, λ) = G(x, y,−λ̄). Since [∆, χ] is formally skew self-adjoint in L2, for λ real we
get ∫

e−iλθ·y (R(λ)f) (y) dy =

∫
f(y)

(
R(−λ)[∆, χ]eiλθ·•

)
(y) dy

= −
∫
f(y)ūsc(x,−θ,−λ) dy,

where usc is related to χ instead of χ1. We can replace ūsc by ū, see (5.7), if χ has support
separated from that of f . □

Note that if P preserves real functions, i.e., Pf = P f̄ , then G(x, y, λ) = G(y, x, λ) and
we can replace ū(x,−θ,−λ) by u(x,−θ, λ).

What needs to be added: the general properties of the scattering amplitude,
etc., are the same as in the potential scattering case. Wave operators and their
kernels, etc.



CHAPTER III

Introduction to the Time-Dependent Scattering Theory for the
perturbed wave equation in R×Rn

1. Introduction

I will present some basic facts about the time-dependent scattering theory for the per-
turbed wave equation in R × Rn. I will not get into the whole Lax-Phillips theory. I am
following here Friedlander, Lax-Phillips and Cooper-Strauss.

The time-dependent theory is most of its part equivalent to the stationary one, roughly
speaking. In some sense, it is more intuitive — one has the notion of time and there is finite
speed of propagation. Some phenomena like time-depending perturbations are naturally
better described by the time-dependent theory.

The analog of the Helmholtz equation, describing propagation of “free waves”, is the
wave equation

(1.1) (∂2t −∆)u = 0, t ∈ R, x ∈ Rn.

One of the basic examples of a perturbed system is the wave equation with a compactly
supported potential

(1.2) (∂2t −∆+ V (x))u = 0.

Another one, in obstacle scattering, is equation (1.1) in the exterior Ω of a compactly sup-
ported obstacle with, say, Dirichlet boundary conditions on it. An important example is the
acoustic wave equation

(1.3) (∂2t − c2(x)∆)u = 0

with c > 0 equal to 1 for large |x|. One can involve a metric equal to the Euclidean for large
|x|, etc.

Another class of examples involve time-depending perturbations, for example,

(1.4) (∂2t −∆+ q(t, x))u = 0,

where q(t, x) = 0 for |x| > R0, R0 > 0. In the previous examples, one can take an inverse
Fourier transform w.r.t. t to get a stationary problem. Here, we can still do this but we
will get a convolution w.r.t. the spectral variable λ. This is related to the fact that time-
dependent perturbations do not preserve the frequency, in general. Another example is the
obstacle problem for an obstacle which moves and changes shape as well.

30
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2. Scattering for the “free” wave equation

2.1. Basic facts about the wave equation. The natural Cauchy problem for the
wave equation is the following

(2.1) (∂2t −∆)u = 0, (u, ut)|t=0 = (f1, f2).

This problem is solvable for any (f1, f2) ∈ D′(Rn) × D′(Rn), and there are those explicit
textbook formulas.

One basic property is finite speed of propagation:

(2.2) suppu(t, ·) ⊂ (supp f ∪ supp g) +B(0, |t|).

Physically, this means that “signals” propagate with speed one or less. Another basic prop-
erty is the Huygens’ Principle valid in dimensions n ≥ 3, odd:

(2.3) suppu(t, ·) ⊂ (supp f ∪ supp g) + S(0, |t|),

where S(0, r) stands for the sphere |x| = r. Physically, this means that “signals” propagate
with speed one exactly.

Another basic property is energy preservation: the energy

(2.4) E(u(t, ·)) := 1

2

∫ (
|∇xu|2 + |ut|2

)
dx

(if finite), is independent of t. We will make this more precise below.
The following formalism is very convenient. We convert the wave equation into a system

by setting u(t) = (u, ut); then

(2.5) ∂tu = Au, A :=

(
0 1
∆ 0

)
.

The natural energy space of states of finite energy is defined as the completion of C∞
0 ×C∞

0

under the energy norm

∥f∥2H =
1

2

∫ (
|∇f1|2 + |f2|2

)
dx, f := (f1, f2).

In particular, the first term defines the Dirichlet space HD(R
n) with norm ∥∇f∥L2 . Surpris-

ingly, when n = 2, that space contains elements that are not distributions [8]. When n ≥ 3,
they are locally in L2, as it follows from the following Poincaré inequality∫

|x|<R

|g|2 dx ≤ R2

2(n− 2)

∫
|∇g|2 dx.

The operator A naturally extends to a skew-selfadjoint one (i.e, iA is self-adjoint) on H.
Then by Stone’s theorem, U0(t) = etA is a well-defined strongly continuous unitary group,
and the solution of (2.1) is given by u(t) = U0(t)f . The unitarity means energy conservation,
in particular.

We define Hloc in the usual way. By the finite speed of propagation, the Cauchy problem
(2.1) has a well defined solution in Hloc if the Cauchy data f is in Hloc only. We view
those solutions as ones with (possibly) infinite energy but locally finite one. Then u ∈
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C(R; Hloc) and the wave equation is solved in distribution sense. One can easily extend this
to distributions.

2.2. Plane waves, translation representation and asymptotic wave profiles of
free solutions. The harmonic plane waves eiλω·x played a fundamental role in the stationary
theory. The time dependent analog are the plane waves

δ(t− ω · x),

where δ is the Dirac delta function. They solve the wave equation, obviously. They can be
thought of as, well, plane waves propagating in the direction ω with speed one. If we replace
t by t+ s there, we can think of s as the delay time. The plane wave above is the Schwartz
kernel of the Radon transform

Rf(s, ω) =

∫
δ(t− ω · x)f(x) dx =

∫
x·ω=s

f(x) dSx.

For any density g(ω, s) (which can be a distribution as well), the superposition

(2.6) u(t, x) :=

∫
R×Sn−1

δ(t+ s− ω · x)g(s, ω) dω ds =

∫
Sn−1

g(ω · x− t, ω) dω

is still a solution of the wave equation. The expression above can be recognized as the the
transpose R′ of the Radon transform applied to gt(s, ω) := g(s− t, ω). The following natural
question arises: are all solutions, in some space, at least, given by superpositions of the kind
(2.6)? If so, then (u, ut)|t=0 should be able to generate all possible Cauchy data in that
space. By (2.6),

(u, ut)|t=0 = (R′g,−R′∂sg) = (f1, f2).

We assume n ≥ 3 odd from now on. The first impression is that those equations form an over-
determined system. This not the case however. It is known that with the right choice of the

constant, cn∂
(n−1)/2
s R : L2(Rn) → L2

e(R×Sn−1) is unitary and surjective, where the subscript

e stands for the even functions in that space. Then so is cn∂
(n−1)/2
s R′ : L2

e(R × Sn−1) →
L2(Rn). This suggests that we should look for g of the kind g = cn∂

(n−3)/2
s (k,−∂sk). The

removal of one s-derivative can be explained by the fact that we need the second component

to be in L2, not the first one. Since R′g = R′ge, the equation cnR
′∂

(n−3)/2
s k = f1 determines

uniquely the even part of k. The equation −cnR′∂
(n−1)/2
s k = f2 determines uniquely the odd

part. All this motivates the choice of R below.
One of the first things we need to understand is the behavior of the solutions of the

wave equation at infinity. In [8], Lax and Phillips defined the free translation representation
R : H → L2(R× Sn−1) as follows

(2.7) k(s, ω) = Rf(s, ω) = cn(−∂(n+1)/2
s Rf1 + ∂(n−1)/2

s Rf2),

where R is the Radon transform and cn = 2−1(2π)(1−n)/2, c−n = 2−1(−2π)(1−n)/2. The inverse
is given by

(2.8) R−1k(x) = 2c−n

∫
Sn−1

(
−∂(n−3)/2

s k(x · ω, ω), ∂(n−1)/2
s k(x · ω, ω)

)
dω.
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The map R is unitary, and (RU0(t)R−1k)(s, ω) = k(s− t, ω), which explains the name. We
also set

(2.9) u♯(s, ω) = (−1)(n−1)/2k(s, ω)

and call u♯ the asymptotic wave profile of the solution u(t) = U0(t)f . This name is justified
by the theorem below, and it is the analog of the far free pattern for solutions of the free
wave equation.

Theorem 2.1 (Lax-Phillips, [8]). Let u(t) = U0(t)f , f ∈ H. Then

(2.10)

∫ ∣∣∣ut − |x|−(n−1)/2u♯
(
|x| − t,

x

|x|

)∣∣∣2 dx→ 0, as |t| → ∞.

Sketch of the proof. Let k be the translation representation of u, see (2.7). Then
U0(t)f = R−1k(· − t, ·). In particular,

(2.11) ut =

∫
Sn−1

h(ω · x− t, ω) dω, h := c−n ∂
(n−1)/2
s k.

We will assume in the rest of the proof that h is regular enough to justify the limits below,
and in particular that h has compact support. We need to compute the limit

lim
t→∞

t(n−1)/2ut(t, (t+ s)θ),

i.e.,

lim
t→∞

t(n−1)/2

∫
Sn−1

h((t+ s)ω · θ − t, ω) dω.

As |t| → ∞, the leading term in the argument of h is t(ω ·θ−1), which vanishes when ω ̸= θ.
Then the behavior when θ is close to ω would determine the limit (this is our “stationary
phase argument”). It is straightforward to see that if we just replace ω by theta in the second
argument of h, we get an o(1) term as |t| → ∞. Make this substitution and set ρ = ω · θ to
get that the limit above equals the limit of

|Sn−2|
∫ 1

−1

h((t+ s)(ρ− 1) + s, θ)(1− ρ2)(n−3)/2 dρ.

Set τ = |t+ s|(ρ− 1) to get

2(n−3)/2|Sn−2||t+ s|(1−n)/2

∫ ∞

0

h(s∓ τ, θ)τ (n−3)/2(1 + η) dτ,

where η → 0 as |t+s| → ∞. Recall the definition (2.11) of h, and integrate by parts (n−1)/2
times to complete the proof. □

Remark 2.1. In [8], the factor (−1)(n−1)/2 is missing from (2.9), i.e., u♯ = k. Cooper
and Strauss in [2] claim that this factor must be present in (2.9). I follow their suggestion
but I cannot (yet) guarantee that they are right. One has to check whether c−n is the right
constant in (2.8) first.
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2.3. Outgoing solutions and their asymptotic wave profiles. We follow here [1,
2]. Given u(t, x), we will use the notation u(t) := (u(t, ·), ut(t, ·)).

Definition 2.2. The function u(t) ∈ C(R; Hloc) is called outgoing if limt→−∞(u(t), U0(t)g) =
0 for each g ∈ C∞

0 (Rn)× C∞
0 (Rn).

In this definition, u(t) does not need to be a solution of the wave equation (anywhere).
On the other hand, if u(t, x) solves the wave equation in |x| > ρ for some ρ > 0, then, see
[1, 2], u is outgoing if and only if for any T ∈ R, U0(t − T )u(T ) = 0 in the forward cone
|x| < t− T − ρ.

On simple example of non-trivial outgoing solutions (for |x| > ρ) is the following. The
time-dependent analog of the non-homogeneous Helmholtz equation (∆ − λ2)u = f is the
source equation

(2.12) (∂2t −∆)u = p(t, x) in R×Rn.

Solve that equation with Cauchy data

(u, ut)|t=t0 = (0, 0),

where the source p satisfies p ∈ L1(R; L2(Rn)). By Duhamel’s formula,

u(t) =

∫ t

t0

U0(t− s)p(s) ds, p(s) := (0, p(s, ·)).

The latter is well-defined in Hloc by finite speed of propagation. The solution for t < 0 is
just zero. Then u is outgoing in a trivial way. Moreover, this is the unique outgoing solution
of (2.12). Indeed, take the difference v of any two. Then v(t) = U0(t)f , where f is the initial
condition. Then 0 = limt→−∞(v(t), U0(t)g) = (f ,g), for any test function g; therefore, f = 0
and then v = 0.

This can be generalized as follows.

Theorem 2.3 ([1, 2]). Let p ∈ L1
loc(R; L2(Rn)) and assume that for each t,

(2.13) lim
T→−∞

∫ t

T

U0(−s)p(s) ds exists in Hloc

Then there exists a unique outgoing solution u ∈ C(R; Hloc) of (2.12) given by

u(t) =

∫ t

−∞
U0(t− s)p(s) ds, p(s) := (0, p(s, ·).

Remark 2.2. Clearly, p ∈ L1((−∞, a); L2(Rn)) for any a would guarantee the regularity
assumption on p and (2.13).

Proof. The absolute convergence of the integral in H0
loc follows from the assumptions.

To show that u is outgoing, for g ∈ C∞
0 × C∞

0 , consider

(u(t), U0(t)g) =

∫ t

−∞
(U0(t− s)p(s), U0(t)g) ds =

∫ t

−∞
(U0(−s)p(s),g) ds.

The latter converges to 0 by assumption. □

The following theorem is the analog of the asymptotics of R0(λ)f at infinity.
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Theorem 2.4. Let n ≥ 3 be odd. Let p ∈ L1
loc(R; L2(Rn)) with p(t, x) = 0 for |x| > ρ.

Let u be the unique outgoing solution of (2.12).
(a) Then there is a unique function u♯ ∈ L2

loc(R × Sn−1) such that for all R1 < R2 we
have ∫

R1+t<|x|<R2+t

∣∣∣∣ut(t, x)− |x|−(n−1)/2u♯
(
|x| − t,

x

|x|

)∣∣∣∣2 dx→ 0, as t→ ∞.

(b) If p ∈ C∞
0 ,

(2.14) u♯(s, ω) = c−n ∂
(n−1)/2
s

∫
p(ω · x− s, x) dx

(c) The map p→ u♯ is continuous.

Remark 2.3. For general p as in the theorem, u♯ is still given by (2.14) but the derivative
is in distribution sense; by (b), the result is in L2

loc(R× Sn−1). Another way to write (2.14)
is

(2.15)

∫
u♯(s, ω)ϕ(s) ds = cn

∫∫
p(t, x)(∂(n−1)/2

s ϕ)(ω · x− s, x) dt ds, ∀ψ(s) ∈ C∞
0 (R).

Proof. Motivated by Theorem 2.3, for fixed R1 < R2, set

f =

∫ −R1+ρ

−R2−ρ

U0(−τ)p(τ) dτ, v(t) = U0(t)f .

By Huygens’ principle, v(t) = u(t) for R1 + t < |x| < R2 + t. Therefore, v does have an
asymptotic wave profile, and v♯(s, ω) = u♯(s, ω) for R1 < s < R2. On the other hand, we
have a formula for v♯, (2.8) and (2.9) which say

v♯(s, ω) = (−1)(n−1)/2(Rf)(s, ω)

= c−n ∂
(n−1)/2
s

∫ −R1+ρ

−R2−ρ

∫
x·ω=s+τ

p(x · ω − s, x) dSx dτ.

Then

u♯(s, ω)|R1<s<R2 = v♯(s, ω) = c−n ∂
(n−1)/2
s

∫
p(x · ω − s, x) dx.

Since R1 < R2 are arbitrary, this, combined with Theorem 2.3, proves (a); and (b) for
p ∈ C∞

0 .
The proof of (c) is straightforward: use (2.14) and take Fourier transform w.r.t. s. In

particular, we get that the map p→ u♯ can be extended continuously in those spaces. □

3. Scattering for time-dependent potentials

3.1. Introduction. We consider now the wave equation with time dependent potential
q(t, x)

(3.1) (∂2t −∆+ q(t, x))u = 0.
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Scattering theory for it is interesting even when q is time independent despite having the
stationary approach developed in the previous chapter. We assume q ∈ C∞ (this assumption
is too strong) and that

q(t, x) = 0 for |x| > ρ

for some ρ > 0.
Similarly to the stationary case, we send a plane wave δ(t+s−x ·ω) to the perturbation,

let it interact with the potential, and measure that asymptotic wave profile u♯sc(s
′, ω′; s, ω)

of the scattered wave usc in the direction ω′ with “delay” s′.
We should then solve the problem

(3.2) (∂2t −∆+ q(t, x))u = 0, u|t<−s−ρ = δ(t+ s− x · ω)
first with (s, ω) ∈ R× Sn−1 parameters. Then we set

(3.3) usc = u− δ(t+ s− x · ω).
The distribution usc would be automatically outgoing since it vanishes for t ≪ 0. Then we
could compute the asymptotic wave profile of usc, which would give us the analog of the
scattering amplitude. As in the stationary case, we expect this to be “essentially” the kernel
of the scattering operator minus identity.

The difficulty with this program is that u is necessarily a distribution, and although usc
is a function, it does not belong to the energy space even locally. This is not such a major
problem — we can think as (u(t, x; s, ω), ut(t, x; s, ω) as distribution in the (s, ω) variables
with values in Hloc. It is more convenient however to do the following. Let hj(t) = h(t)tj/j!,
j = 1, 2 . . . , where h is the Heaviside function; and we also set h−1 = δ . Then h′j = hj−1,
j = 0, 1, 2, . . . . We solve

(3.4) (∂2t −∆+ q(t, x))Γ = 0, u|t<−s−ρ = h1(t+ s− x · ω)
first (notice that h1(t+ s− x · ω) is locally in the energy space now), set

(3.5) Γsc = Γ− h1(t+ s− x · ω),
compute the asymptotic wave profile Γ♯(s′, ω′; s, ω) of Γsc, and differentiate the result twice
w.r.t. s to get the analog of the scattering amplitude. In particular, then

(3.6) u(t, x; s, ω) = ∂2sΓ(t, x; s, ω), usc(t, x; s, ω) = ∂2sΓsc(t, x; s, ω).

will be well defined as distributions.

3.2. Existence of dynamics. By [7], see also [14, X.12], the solution to

(3.7) (∂2t −∆+ q(t, x))u = 0, (u, ut)|t=s = (f1, f2)

is given by u(t) = U(t, s)f , where f = (f1, f2) and U(t, s) is a two-parameter strongly
continuous group of bounded operators with the properties

(i) U(t, s)U(s, r) = U(s, r) for all t, s, r; and U(t, t) = I,
(ii) ∥U(t, s)∥ ≤ exp

{
C|t− s| sups≤τ≤t, x∈Rn |q(τ, x)|

}
,

(iii) for any f ∈ D(A), we have U(t, s)f ∈ D(A) and

d

dt
U(t, s)f = (A−Q(t))U(t, s)f ,

d

ds
U(t, s)f = −U(t, s)(A−Q(t))f ,
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where Q(t)f = (0, q(t, ·)f1) (and Q(t) is clearly bounded).
The two-parameter semi-group admits the expansion

(3.8) U(t, s) = U0(t− s) +
∞∑
k=1

Vk(t, s),

where

Vk(t, s)f = (−1)k
∫ t

s

ds1

∫ s1

s

dsk· · ·
∫ sk−1

s

dsk

× U0(t− s1)Q(s1) . . . U0(sk−1 − sk)Q(sk)U0(sk − s)f , k ≫ 1.

This expansion is an iterated version of the Duhamel’s formula

U(t, s) = U0(t− s) +

∫ t

s

U(t, σ)Q(σ)U0(σ − s) dσ

= U0(t− s) +

∫ t

s

U0(t− σ)Q(σ)U(σ, s) dσ.

(3.9)

The convergence of (3.8) follows from the estimate

∥Vk(t, s)∥ ≤ |t− s|k

k!

(
sup
s≤τ≤t

∥Q(τ)∥
)k

.

In particular, we get that we still have the finite speed of propagation property:

suppU(t, s)f ⊂ supp f +B(0, |t− s|).
As before, the finite speed of propagation allows us to can extend U(t, s) to the space Hloc

by a partition of unity.
Finally, notice that when q is time independent, then U(t, s) depends on the difference

t − s only, i.e., U(t, s) = U(t − s) where U is a group. It is not unitary however (unless
q = 0) in the space H. If we redefine the energy norm by

(3.10) ∥f∥2Hq =

∫ (
|∇f1|2 + q|f1|2 + |f2|2

)
dx,

(we need to know that it is a norm however, and q ≥ 0 suffices for that), then U(t) is unitary
in Hq.

3.3. The scattering amplitude and the scattering kernel. We are ready to fulfill
our program now. Let Γ solve (3.4). Since the Cauchy data (h1(t+s−c ·ω), h0(t+s−c ·ω)),
for say, t = −s − ρ − 1, is in Hloc, a solution (Γ,Γt) with locally finite energy exists. Then
Γsc is clearly outgoing. It solves the Cauchy problem

(3.11) (∂2t −∆+ q(t, x))Γsc = −qΓ, Γsc|t<−s−ρ = 0.

By Theorem 2.4, Γsc has an asymptotic wave profile Γ♯
sc given by

Γ♯
sc(s

′, ω′; s, ω) = −c−n ∂
(n−1)/2
s′

∫
q(x · ω′ − s′, x)Γ(x · ω′ − s′, x; s, ω) dx

= −c−n ∂
(n−1)/2
s′

∫
q(t, x)Γ(t, x; s, ω)δ(t+ s′ − x · ω′) dt dx.
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Differentiate twice w.r.t. s, see (3.6), to get u♯

u♯sc(s
′, ω′; s, ω) = −c−n ∂

(n−1)/2
s′

∫
q(t, x)u(t, x; s, ω)δ(t+ s′ − x · ω′) dt dx.

Definition 3.1. The scattering amplitude A♯ is given by

(3.12) A♯(s′, ω′; s, ω) =

∫
q(t, x)u(t, x; s, ω)δ(t+ s′ − x · ω′) dt dx,

where u solves (3.2).

By the finite speed of propagation, u(t, x; s, ω) = 0 for x · ω > t + s. Therefore, the
integrand vanishes outside of the region x · (ω − ω′) ≤ s − s′. The l.h.s. has a lower bound
−2ρ on supp q; therefore,

(3.13) suppA♯ ⊂ {s′ ≤ s+ ρ|ω − ω′|} ⊂ {s′ ≤ s+ 2ρ}.
Note that A and u♯ can be reconstructed from each other thanks to that support property.

We turn our attention now to the analog if scattering operator S, see (2.2) in Chapter I.
Since the perturbed dynamics is a two-parameter group, we need to generalize the notion of
the wave operators and the scattering scattering operator.

Definition 3.2. We wave operators Ω− and W+ in H are defined as the strong limits

Ω− = s - lim
t→−∞

U(0, t)U0(t); W+f = lim
t→∞

U0(−t)U(t, 0)f ; f ∈ RanΩ−

if they exist and define continuous operators. In the latter case, the scattering operator S is
defined by

S = W+Ω−.

This definition also makes sense on Hloc.

Theorem 3.3.
(a) The wave operator Ω− : Hcomp → H exists and

(3.14) U(t, 0)Ω−f = 2c−n

∫
R×Sn−1

u(t, x; s, ω)∂(n−3)/2
s (Rf)(s, ω) ds dω.

(b) The wave operator W+ : H → Hloc exists
(c) The scattering operator S : Hcomp → Hloc exists and

(3.15) R(S − I)R−1 = −2−1(2π)1−n∂
(n−1)/2
s′ ∂(n−3)/2

s A,

where A is the operator with kernel A♯.

Proof. Let k ∈ L2
comp(R×Sn−1), with k = 0 for |s| > R with some R, and let f = R−1k.

Then for t < −R − ρ := t0, U(0, t)U0(t)f = U(0, t0)U0(t0)f . In particular, the limit defining
Ω−f exists trivially and U(t, 0)Ω−f = U(t, t0)U0(t0)f . The r.h.s. of the latter solves the
perturbed wave equation and equals U0(t0)f = R−1k(· − t0, ·) for t = t0. To prove (3.14), we
need to show that the r.h.s. of (3.14), call it v(t), has the same initial condition for t ≤ t0.

For t ≤ t0, u(t, x; s, ω) = δ(t+ s− x · ω). Then by (2.8),

v(t) = 2c−n

∫
R×Sn−1

δ(t+ s− x · ω)∂(n−3)/2
s k(s, ω) ds dω = (R−1k)1(· − t, ·),
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which proves (a).
Express u as in (3.3) and plug in the formula above:

v(t) = v0(t)− 2cn

∫
R×Sn−1

usc(t, x; s, ω)∂
(n−3)/2
s v♯0(s, ω) ds dω,

where v(t) = U(t, 0)Ω−f , v0(t) = U0(t)f . Take asymptotic wave profiles of both sides to get

(3.16) v♯(s′, ω′) = v♯0(s
′, ω′) + 2c−n

∫
R×Sn−1

∂(n−3)/2
s u♯sc(s

′, ω′; s, ω)v♯0(s, ω) ds dω

in L2
loc(R× Sn−1).
To prove (b), fix R > 0 and let 1B(0,R) be the characteristic function of that ball. By

(3.9)

(3.17) 1B(0,R)U0(−t)U(t, s) = 1B(0,R)U0(−s) + 1B(0,R)

∫ t

s

U0(−σ)Q(σ)U(σ, s) dσ.

By Huygens’ principle, 1B(0,R)U0(−σ)Q(σ) = 0 for σ > R+ρ. For t > R+ρ then the integral
above is independent of t and therefore the strong limit 1B(0,R)W+ exists in a trivial way.

Next, for any R1 < R2, ∥1B(0,R2)\B(0,R2)(U0(t)Sf − v(t))∥ → 0, as t → ∞. Then U0(t)Sf
and v(t) have the same asymptotic wave profiles. Then, by (2.9) and (3.16),

RSf(s′, ω′) = Rf(s′, ω′) + 2c−n

∫
R×Sn−1

∂(n−3)/2
s u♯sc(s

′, ω′; s, ω)(Rf)(s, ω) ds dω.

The proof now follows from the definition of the scattering amplitude. □

The theorem shows that even though S may not always exist in the energy space, it
always does as S : Hcomp → Hloc. The scattering amplitude A♯ is “essentially” the kernel of
S − I in the translation representation. The kernel of S itself is called the scattering kernel
and is given by

S(s′, ω′; s, ω) = δ(s′ − s)δω(ω
′)− 2−1(2π)1−n∂

(n−1)/2
s′ ∂(n−3)/2

s A(s′, ω′; s, ω).

3.4. Time-independent potentials; connection to the stationary theory. When
q = q(x) is independent of t, the solution is represented by a unitary group Ũ(t). Assume
for simplicity that −∆+ q is a positive operator (q ≥ 0 would suffice for that). Then A−Q
is skew-self-adjoint in Hq, see (3.10), and therefore generates a unitary group Ũ(t). Clearly,
U(t, s) = U(t− s).

The scattering kernel and the scattering amplitude are then of convolution type w.r.t.
the time variable, i.e.,

(3.18) S(s′, ω′; s, ω) = S̃(s′ − s, ω′, ω),

where S̃(s′, ω′, ω) = S(s′, ω′; 0, ω); and similarly for the (time-dependent) scattering am-
plitude A♯. Another way to say this is that the scattering operator commutes with time
translations.

Theorem 3.4. Let q(x) be time-independent. Then the wave operators

Ω± : H → Hq
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are isometries and the scattering operator S defined in Theorem 3.3 extends to a unitary
operator on H.

Proof. The groups U0(t) and U(t) are unitary but in their own spaces only, H and
Hq. The norms in those spaces however coincide outside B(0, ρ). Therefore, by the proof
of Theorem 3.3, ∥Ω−f∥Hq = ∥f∥H. Therefore, Ω− : H → Hq extends to an isometry (not
necessarily surjective).

The scattering operator in Theorem 3.3(c) clearly extends to a bounded operator on H.
We have

∥U0(−t)U(t)Ω−f − Sf∥H → ∞, as t→ ∞,

therefore,

∥U(t)Ω−f − U0(t)Sf∥H → ∞, as t→ ∞
Since Sf ∈ H, it is easy to get by the Huygens’ principle that the energy of U0(t)Sf in
B(0, ρ) decays as t→ ∞. Then the same must be true for U(t)Ω−f . This yields

∥U(t)Ω−f∥H = ∥U0(t)Sf∥Hq + o(1), as t→ ∞,

therefore, ∥Ω−f∥Hq = ∥Sf∥H. □

We now connect the scattering solutions usc(x, θ, λ), see (2.12) in Chapter II to the
their time-dependent analogs usc(t, x; s, ω), see (3.3). Since we assume now that q is time-
independent, then usc will depend on t − s only, i.e., usc(t, x; s, ω) = vsc(t − s, x, ω) with
vsc(t, x, ω) = usc(t− s, x; 0, ω). We have

Proposition 3.5.

(3.19) usc(x, θ, λ) =

∫
eiλtvsc(t, x, θ) dt.

Proof. Recall that v = δ(t − x · θ) + vsc(t, x, θ) with vsc = 0 for t ≪ 0. Therefore, the
r.h.s. Usc of (3.19) extends analytically to complex λ with ℑλ > 0. Clearly,

eiλθ·x =

∫
eiλtδ(t− x · θ) dt.

Therefore, for the distribution U defined as in (3.19) with vsc replaced by v, we get that U
solves the (−∆+ q − λ2)U = 0, and Usc = U − eiλθ·x is outgoing in stationary sense. Such a
solution is unique however, so we get Usc = usc. □

In the stationary case, the time-dependent scattering amplitude A♯ depends on s′−s only
(as a function of (s′, s). Set A♯(s′, ω′; s, ω) = a♯(s′, ω′, ω). Since the stationary scattering
amplitude a and the time-dependent one a♯ can be expressed in terms of the outgoing
solutions, see (2.19) in Chapter II and (3.12), we also get

Proposition 3.6.

(3.20) a0(ω, θ, λ) =

∫
eiλta♯(s, ω, θ) ds,

where a0 is the normalized stationary scattering amplitude.
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Warning: poor notation for the various scattering amplitudes!
Let us apply the proposition to the representation (3.15) which we rewrite in our case

(q = q(x)) as

R(S − I)R−1 = −2−1(2π)1−n(−1)(n−3)/2∂n−2
s′ a♯,

where (another bad notation!), a♯ is the operator with kernel a♯(s′ − s, ω′, ω). We get a
convolution w.r.t. the s variable which can be expected, see (3.18). Let F∗

1 be adjoint the
Fourier transform in the s-variable, as in (3.20). Since convolution becomes multiplication
in the Fourier domain, we get[

F∗
1R(S − I)R−1F1h

]
(θ, λ) = −2−1(2π)2−n(−1)(n−3)/2(−iλ)n−2

∫
Sn−1

a0(ω, θ, λ)h(θ, λ) dθ.

The kernel of R is “essentially” that of the Radon transform, δ(s−x ·θ). Composed with F∗
1 ,

it becomes “essentially” eiλx·θ. This is the kernel of the spectral projections E+, see (5.9) in
Chapter II. Therefore, ignoring the monomial (in λ) factor above and the matrix structure
of S, we get

E+(λ)(S − I)E ′
+(λ)h ” = ”

∫
Sn−1

a0(ω, θ, λ)h(θ) dθ.

In particular, the scattering operator S and the scattering matrix S(λ) are related by

E+(λ)SE
′
+(λ) ” = ” S(λ).

This connects the fundamental objects in the time dependent theory, the scattering operator
S to the fundamental object in the stationary one, the scattering matrix S(λ).

Note to myself: rewrite this.

4. Scattering for the time-dependent Schrödinger equation (a few remarks
only)

Consider the time-dependent Schrödinger equation

(4.1)
1

i
∂tu = (−∆+ V )u,

where V is a potential as above. The natural energy space now is L2(Rn) (and in particular,
the norm is independent of V ). The “Hamiltonian” H = −∆ + V extends naturally to a
self-adjoint one (V is real), Set H0 = −∆. By Stone’s theorem, the following two unitary
groups are well defined

U0(t) = eitH0 , U(t) = eitH

and represent the solution groups of (4.1) (with V = 0 for U0). The scattering operators are
defined as above.

Scattering theory for (4.1) can be related to that of the acoustic equation. Note that for
the generator A, see (2.5), we have

(4.2) A2 :=

(
0 ∆
∆ 0

)
.
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We get a similar expression if we replace ∆ by ∆ + V . This allow to prove that (see [8],
Chapter VI)

SSchr(z) = S(
√
z),

where SSchr is the scattering matrix for (4.1) (which needs to be defined first), and S(λ) is
the scattering matrix for the acoustic equation. We will not go into details. Another way to
get that relation is to relate (4.1) to the Helmholtz type of equation (−∆+ V − z)v = 0 by
taking the Fourier transform Ft→ z (which requires some work, of course) and then setting
z = λ2 to use the link between the time-dependent theory for the acoustic equation and the
stationary one for (−∆ + V − λ2)v = 0. In fact, the stationary theory can be considered
as a stationary version of both the acoustic and the Schrödinger equations. This is a bit
surprising because the latter two PDEs have very different properties in terms of finite speed
of propagation, etc.



CHAPTER IV

Inverse Scattering

1. Introduction

Inverse scattering tries to recover the perturbation: the potential, the obstacle, etc., from
scattering data. The latter means either the (whole) scattering operator/matrix/amplitude,
or some partial information about it; like S(λ) for a fixed λ.

The main questions are uniqueness, stability and reconstruction. Another important
question is range characterization — what functions can be the scattering amplitude of a
C∞

0 potential, for example.

2. Inverse potential scattering

2.1. High frequency asymptotics and Born approximation. Uniqueness and
recovery. A basic question is to understand the high-frequency behavior λ → ∞ of the
scattering amplitude. This is the semi-classical regime as well, when h = 1/λ→ ∞.

Theorem 2.1. Let V ∈ L∞
comp(R

n). Then

a0(ω, θ, λ) = V̂ (λ(ω − θ)) +O(1/λ), as λ→ ∞
with the remainder uniform in θ, ω.

Proof. Follows directly from (2.20) and Theorem 2.1 (or from (2.18), (2.16) and The-
orem 1.3). □

Note first that the asymptotic above would not be so interesting if ω and θ are kept
fixed because for V ∈ C∞

0 , first term on the right would decay faster that the remainder,
if ω ̸= θ. On the other hand, we can choose sequences (ωk, θk, λk) with λ → ∞ so that
ξk = λk(ωk − θk) stays bounded. Moreover, for each ξ we can choose sequences so that
ξ = λk(ωk − θk), λk → ∞, and then necessarily, θk − ωk → 0. Therefore, we can recover q̂
from knowing a0.

Corollary 2.2.
V̂ (ξ) = lim

ξ=λ(ω−θ)
λ→∞

a0(ω, θ, λ).

In particular, this solves the inverse scattering problem: recover V from a. The compact
support assumption is too strong here; short range is enough.

Let us look closer at the estimates leading to the theorem. By (2.10) in Chapter II, if
V = 0 outside the ball B(0, ρ), then

∥1B(0,ρ)R(λ)1B(0,ρ)∥ ≤ C

λ

(
1− Cλ−1∥V ∥L∞

)−1
, when ∥V ∥L∞ ≤ λ/C,

43
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with some absolute constant C = C(n). In particular,

∥1B(0,ρ)R(λ)1B(0,ρ)∥ ≤ C

λ
, when ∥V ∥L∞ ≤ λ/C

with C replaced by 2C. Then, see (2.14) in Chapter II,

(2.1) ∥usc∥L2(B(0,ρ)) ≤
C

λ
∥V ∥L∞ , when ∥V ∥L∞ ≤ λ/C.

Then by (2.19) in Chapter II,

(2.2) max
ω,θ

∣∣∣a0(ω, θ, λ)− V̂ (λ(ω − θ))
∣∣∣ ≤ C

λ
∥V ∥2L∞ , when ∥V ∥L∞ ≤ λ/C.

This is actually a linearization of a0 as a function of V , known as the Born approximation.
Note that λ can be fixed there. Also, note that we actually proved that estimate with
∥V ∥L∞∥V ∥L2 on the right, which is a slightly stronger estimate.

2.2. Stability. Since we have an explicit recovery formula “of stable type”, stability
follows easily. The following lemma is very useful.

Lemma 2.3. Let V , Ṽ be two potentials in L∞
comp(R

n). Then for the corresponding scat-
tering amplitudes a0, ã0, we have

a0(ω, θ, λ)− ã0(ω, θ, λ) =

∫ (
V (x)− Ṽ (x)

)
ũ(x,−ω, λ)u(x, θ, λ) dx,

where u, ũ are the corresponding “perturbed plane waves”.

Proof. This is essentially a consequence of the resolvent identity

R(λ)− R̃(λ) = R(λ)(V − Ṽ )R̃(λ)

written in terms of the Schwartz kernels G and G̃ of the resolvents:

G(x, y, λ)− G̃(x, y, λ) =

∫
G(x, z, λ)(V (z)− Ṽ (z))G̃(z, y, λ) dz.

Next, we take the asymptotics x = rω, r → ∞ and y = r′θ, r′ → ∞. [this needs to be
done]

We will give a more direct but less intuitive proof, following [19]. With u0(x, θ, λ) :=
eiλθ·x, write

a0(ω, θ, λ) =

∫
u0(x,−ω, λ)V (x)u(x, θ, λ) dx

=

∫
(ũ− ũsc)(x,−ω, λ)V (x)u(x, θ, λ) dx

=

∫
ũ(x,−ω, λ)V (x)u(x, θ, λ) dx+M,

(2.3)
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where, by (2.15),

M = −
∫
ũsc(x,−ω, λ)V (x)u(x, θ, λ) dx

=

∫
[R0(λ)Ṽ ũ(·,−ω, λ)]V (x)u(x, θ, λ) dx.

Since the kernel of R0(λ) is symmetric, when V = Ṽ , we get a(ω, θ, λ) = a(−θ,−ω, λ). In
the same way, we get

ã0(ω, θ, λ) = ã(−θ,−ω, λ) =
∫
u(x, θ, λ)Ṽ (x)ũ(x,−ω, λ) dx+ M̃,(2.4)

where

M̃ =

∫
[R0(λ)V u(·,−θ, λ)]Ṽ (x)ũ(x,−ω, λ) dx =M.

Subtract (2.4) from (2.3) to complete the proof. □

We now apply (2.1) to u and ũ. Set q = V − Ṽ . Then

q̂(λ(ω − θ)) = a0 − ã0 +R,

where

|R| ≤ C

λ
∥q∥L∞

and C > 0 depends on a-priori upper bounds on ∥V ∥L∞ and ∥Ṽ ∥L∞ . Given ξ ̸= 0, choose
λn → ∞, ωn and θn so that ξ = λn(ωn − θn). One way to do this is to fix a unit ω0 ⊥ ξ and
to set

ωn =
√

1− 1/(4n2)ω0 +
1

2n|ξ|
ξ,

θn =
√
1− 1/(4n2)ω0 −

1

2n|ξ|
ξ,

λn = n|ξ|.

Then

|q̂(ξ)| ≤ ∥a0 − ã0∥L∞ +
C

n|ξ|
∥q∥L∞ .

We can take the limit n → ∞ here but the norm ∥a − a0∥L∞ is not such a good candidate
— it can be even infinite if λ = 0 is a pole! Instead, let us assume that we want to obtain
an estimate with a0 restricted to λ ≥ λ0 for some λ0 > 0. Then n|ξ| ≥ λ0, and

|q̂(ξ)| ≤ ∥a0 − ã0∥L∞(λ>λ0) +
C

n|ξ|
∥q∥L∞ , n|ξ| ≥ λ0, ξ ̸= 0.

Now, we for any fixed ξ ̸= 0 we can take the limit n→ ∞ to obtain the following.

Theorem 2.4. For V , Ṽ as above, for any λ0 > 0,

∥F(V − Ṽ )∥L∞ ≤ ∥a0 − ã0∥L∞(λ>λ0).
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The l.h.s. above is clearly a norm. If we need a more conventional one, we need to use
interpolation and a priori compactness assumption. Then we will get a conditional Hölder
stability estimate.

Note that the Lemma 2.3 was not really needed here but it will be needed later.

2.3. Inverse potential scattering at a fixed frequency. Calderón’s problem.
Assume that we know the scattering amplitude a0(λ, ω, θ) in potential scattering for a fixed
frequency λ > 0 only, and all θ, ω. It turns out that we can still recover V but the proof is
much more delicate and the recovery is unstable.

If we just count the number of the variables, a0(λ, ω, θ) depends on 2n−2 (one-dimensional)
variables, while V depends on n. Then 2n−2 > n if n ≥ 3. This make the problem formally
overdetermined in dimension n ≥ 3. When n = 2, 2n− 2 = n. The problem is then formally
determined. We can expect n = 2 to be a harder case, and that is actually true. We will
restric the exposition to n ≥ 3.

The main uniqueness result of this section is the following.

Theorem 2.5. Let V and Ṽ be in L∞
comp(R

n), n ≥ 3. For a fixed λ0 > 0, assume

a0(λ0, ω, θ) = ã0(λ0, ω, θ).

Then V = Ṽ .

2.3.1. Calderón’s problem. This problem is closely related to the Calderón’s inverse bound-
ary value problem. We will formulate the version of this problem related to the Schrödinger
operator only. Let Ω be a bounded domain with a smooth boundary ∂Ω. Assume that λ20 is
not a Dirichlet eigenvalue for the operator −∆+ V − λ20 in Ω. Given f , let v be the unique
solution of the IVP

(−∆+ V − λ20)v = 0 in Ω,

v = f on ∂Ω.

Then we define the Dirichlet-to-Neumann map Λ by

Λf = ∂νv|∂Ω,

where ν is the exterior unit normal. Then Λ : H3/2(∂Ω) → H1/2(∂Ω).
The Calderón’s problem in this setting is: does Λ uniquely determine V ? Note that one

can replace V there by V − λ20 and require that 0 is not an Dirichlet eigenvalue. The latter
requirement can be avoided if we replace Λ with the set of Cauchy data.

The next theorem is due to Sylvester and Uhlmann [23].

Theorem 2.6. Let V and Ṽ be in L∞(Ω), n ≥ 3, and assume that λ0 > 0 is not a
Dirichlet eigenvalue associated with neither potential. If

Λ = Λ̃,

then V = Ṽ .

We will prove Theorem 2.6 first and then reduce the proof of Theorem 2.5 to it.
The first step of the proof is the following “Alessndrini identity” (compare with Lemma 2.3).
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Lemma 2.7. Let V and Ṽ be two potentials in L∞(Ω) so that 0 is not a Dirichlet eigen-
value for −∆+ V nor for −∆+ Ṽ . Let Λ, Λ̃ be the corresponding DN maps. Then for any
f , f̃ in H3/2(∂Ω), ∫

∂Ω

f(Λ− Λ̃)f̃ dS =

∫
Ω

(V − Ṽ )uũ dx,

where u is the solution of (∆+V )u = 0, u = f on ∂Ω; and ũ is the solution of (∆+ Ṽ )ũ = 0,

ũ = f̃ on ∂Ω.

Proof. By the Green’s formula,∫
Ω

(V − Ṽ )uũ dx = −
∫
Ω

((∆u)ũ− u∆ũ) dx = −
∫
∂Ω

((Λf)f̃ − f Λ̃f̃)dS.

If we take Ṽ = V , we see that Λ has a symmetric kernel. This observation, and the formula
above complete the proof. □

2.3.2. Complex geometric optics. To prove Theorem 2.6, it remains to show that the
products uũ of various solutions u and ũ form a dense set. This fact is based on the so-called
complex geometric optics, developed in [23]. As explained above, we can assume λ0 = 0
but in fact the construction below can be done for any fixed λ0 ∈ R. The idea goes back
to Calderón. He linearized the problem near V = 0 to reduce the problem to the following:
let q = V − Ṽ be orthogonal (in L2(Ω)) to the product of any pair of harmonic functions;
is it true that q = 0? He suggested the following: choose u = eζ1·x, ũ = eζ2·x, where ζ1, ζ2
are in Cn and ζ21 = ζ22 = 0. Here, ζ2 = ζ21 + · · · + ζ2n. Clearly, u and ũ are harmonic. Then
uũ = e(ζ1+ζ2)·x, and we get ∫

q(x)e(ζ1+ζ2)·xdx = 0

for any such ζ1, ζ2. Fix ξ ∈ Rn and choose

(2.5) ζ1,2 =
1

2
(±η − iξ), where η ∈ Rn, η ⊥ ξ, |η| = |ξ|.

Then ζ21 = ζ22 = 0 and ζ1 + ζ2 = −iξ, and we get q̂(ξ) = 0, ∀ξ, therefore, q = 0.
When V ̸= 0, u = eζ·x do not solve (−∆+ V )u = 0. Uhlmann and Sylvester’s idea was

to construct solutions which look like the Calderón’s harmonic ones only asymptotically in
the sense

(2.6) u = eζ·x(1 +O(|ζ|−1), ζ → ∞.

Theorem 2.8. Let ρ > 0, n ≥ 2. There is a constant C0 = C0(n) > 0 so that if
∥V ∥L∞ < C0|ζ|, suppV ⊂ B(0, ρ) and ζ2 = 0, then there exists a solution u(x, ζ) of the
equation

(2.7) (−∆+ V )u = 0 in Rn

satisfying

u(x, ζ) = eζ·x (1 + u0(x, ζ)) , where ∥u0∥L2(B(0,2ρ) ≤
C

|ρ|
.



48 IV. INVERSE SCATTERING

We will only sketch the proof. First, conjugate−∆+V with the operator of multiplication
by eζ·x to get

e−ζ·x(−∆+ V )eζ·x = −∆− 2ζ · ∂ + V.

Then u0 solves

(2.8) (−∆− 2ζ · ∂ + V )u0 = −V.

To “invert” the operator −∆− 2ζ · ∂ + V , we will first “invert” −∆ζ := −∆− 2ζ · ∂. More
precisely, we want to define an operator G(ζ) so that −∆ζG(ζ) = I. Clearly, G(ζ) is not
uniquely defined, so we have to make some choices. The symbol of −∆ζ is given by

σ(−∆ζ) = |ξ|2 − 2iζ · ξ

Assuming that we work with tempered distributions, we can use Fourier transform, and
attempt to define G(ζ) as the Fourier multiplier with (|ξ|2 − 2iζ · ξ)−1. The problem here is
that |ξ|2 − 2iζ · ξ has zeros. Let us look at them closely.

One example of ζ with ζ2 = 0 is ζ = λ(1, i, 0, . . . , 0). In fact, all other ζ’s are equivalent
to this, after a rotation. Indeed, write ζ = ℜζ + iℑζ. Then ζ2 = |ℜζ|2 − |ℑζ|2 + 2iℜζ · ℑζ.
Therefore, ζ2 = 0 is equivalent to

|ℜζ| = |ℑζ|, ℜζ · ℑζ = 0.

Now, if ζ ̸= 0, we can choose a unitary linear transformation so that ℜζ/|ℜζ| and ℑζ/|ℑζ|
are first two vectors of the new basis, thus proving our claim. Next, under such unitary trans-
formations U , ζ · x = (Uζ) · (Ux), therefore we can always assume that ζ = λ(1, i, 0, . . . , 0).

Then

−∆ζ = −∆− 2λ∂1 − 2λi∂2, σ(−∆ζ) = |ξ|2 − 2iλξ1 + 2λξ2.

The characteristic variety Σ = {σ(−∆ζ) = 0} is then given by the codimension 2 manifold

Σ = {ξ1 = 0, (ξ2 + λ)2 + ξ32 + . . . ξ2n = λ2}.

This is the intersection of the plane ξ1 = 0 and the ball B((0, λ, 0, . . . ), λ). In R3, for
example, it the 1D circle ξ1 = 0, (ξ2 + λ)2 + ξ23 = λ2.

Compare this with the Helmholtz operator −∆ + λ2. Its symbol is |ξ|2 − λ2 and its
characteristic variety is the (codimension 1) sphere |ξ| = λ.

Near Σ, in local coordinates, σ(−∆ζ) is given by ξ1 + iξ2. In fact, this is the so-called
normal form of σ(−∆ζ). On the other hand, the symbol of the Helmholtz operator is ξ1 in
local coordinates. This reveals the differences between the two cases: (ξ1 + iξ2)

−1 is locally
integrable near ξ1 = ξ2 = 0: indeed, for n = 2, the modulus of this function is |ξ|−1; and for
n ≥ 3, we first integrate w.r.t. (ξ1, ξ2). On the other hand, ξ−1

1 is not locally integrable and
we needed to consider the regularizations in (1.14), Chapter II.

Note also that in both cases, λ is a large parameter, and the semi-classical calculus is
a more appropriate tool, with h = 1/λ. Then the principal (and the full) symbol of −∆ζ

is |ξ|2 − 2iξ1 + 2λξ2, while its classical principal symbol would be |ξ|2 only. The principal
symbol of the Helmholtz operator is then |ξ|2 − 1. The characteristic varieties are as above
with λ substituted by λ = 1.
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This discussion brings us to the following candidate for a right inverse of −∆ζ , called
in the literature also the complex geometric optics Green’s function (also identified with its
kernel), is

G(ζ) = F−1
(
|ξ|2 − 2iζ · ξ

)−1F .
This Green’s function was also studied by Faddeev. The multiplier in the middle of the r.h.s.
is locally L1 and globally tempered; and therefore G(ζ) : S → S ′, at least. Next theorem
proves something more; and provides a bound of the kind O(|ζ|−1) of the norm. Recall that
the weighted L2 spaces L2

δ(R
n) are defined through the norm

∥f∥2L2
δ
=

∫ (
1 + |x|2

)δ |f(x)|2 dx.
Similarly, one defines the weighted Sobolev spaces Hm

δ (Rn), m = 0, 1, . . . by the norm

∥f∥2Hm
δ
=

∑
|α|≤m

∥Dαf∥2L2
δ
.

Theorem 2.9 ([23]). Let ζ2 = 0, 0 < β ≤ |ζ|, −1 < δ < 0. Then
(a) There exists C(β, δ) > 0 so that

(2.9) ∥G(ζ)f∥L2
δ
≤ C(β, δ)

|ζ|
∥f∥L2

δ+1
.

(b) For any f ∈ L2
δ, there is a unique w ∈ L2

δ+1 solving

−∆ζw = f.

Moreover, w = G(ζ)f , and

∥w∥L2
δ
≤ C(β, δ)

|ζ|
∥f∥L2

δ+1
.

Sketch of the proof. We will leave part (a) without a proof (see [23]]). The main
idea is to prove (2.9) first for the normal form of −∆ζ first; i.e., for the Fourier multiplier
(ξ1 + iξ2)

−1. The latter (in 2D) is a convolution with the inverse Fourier transform of
(ξ1 + iξ2)

−1; and a direct computation shows this to be (x1 + ix2)−1. Next, convolution with
the latter can be estimated directly. The next step of the proof if to localize G(ζ)f , for
ζ = λ(1, i, 0 . . . ) in the Fourier domain near Σ; to apply the normal form estimate there;
and to estimate the part away from Σ. The resulting estimate would be O(1/λ), which also
implies O(1/|ζ|).

The uniqueness part (b) follows from [3, Thm 7.1.27]. Indeed, under the assumption
w ∈ L2

δ+1 (the uniqueness is claimed there only and not true in general, for example, we can
add any constant to w), ŵ is well defined. Then ŵ(ξ) = 0 on Σ. Hörmander’s lemma then
implies w = 0. □

Let us return now to the proof of Theorem 2.8. We want to solve (2.8). It is not uniquely
solvable for sure but we only need to find a solution u0 = O(|ζ|−1). We look for a solution
u0 of the form u0 = G(ζ)w. Then

(I + V G0(ζ))w = −V.
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Then

(2.10) V G0(ζ) : L
2
δ → L2

δ = O(|ζ|−1), |ζ| ≫ 1.

We can therefore use Neumann series to invert (I+V G0(ζ)) for |ζ| ≫ 1, the resolvent would
be O(1), and

w = −(I + V G0(ζ))
−1V.

A priori, w ∈ L2
δ with no other control on the large |x| behavior but we can see directly

from (2.10) that w is supported in B(0, ρ). Note that resemblance with (2.13), (2.14) in
Chapter II! In potential stationary scattering, to define usc, we need to invert the operator
(I + V R0(λ), see (2.7) in Chapter II. When λ≫ 1, this follows from the a priori estimate of
R0(λ) of the kind O(1/λ).

Now, we can set

u0 = −G(ζ)(I + V G0(ζ))
−1V,

and this proves Theorem 2.8.
2.3.3. Uniqueness for Calderón’s problem.

Proof of Theorem 2.6 . We will use the geometric optics solutions constructed in
Theorem 2.8 in the identity of Lemma 2.7. Since Λ = Λ̃, with q := V − Ṽ , we get∫

q(x)uũ dx = 0

for anyH2(Ω) solution u of (−∆+V )u = 0 in Ω, and anyH2(Ω) solution ũ of (−∆+Ṽ )ũ = 0.
Note that the geometric optics solutions constructed in Theorem 2.8 are in H2(Ω) since they
solve (2.7). Choose ζ1, ζ2 with

(2.11) ζ21 = ζ22 = 0

and let u(x, ζ1), ũ(x, ζ2) be the corresponding solutions. Then∫
q(x)e(ζ1+ζ2)·x(1 + u0(x, ζ1))(1 + ũ0(x, ζ2)) dx = 0.

Therefore,

(2.12)

∫
q(x)e(ζ1+ζ2)·x dx = −

∫
q(x)e(ζ1+ζ2)·x (u0(x, ζ1) + ũ0(x, ζ2) + u0(x, ζ1)ũ0(x, ζ2)) dx.

We would like to choose appropriate ζ1, ζ2 and take the limits

(2.13) |ζ1| → ∞, |ζ2| → ∞.

On the left, we want to obtain the Fourier transform of q, i.e., for any fixed in advance ξ,
we need

(2.14) ζ1 + ζ2 = −iξ.

If we choose them as in (2.5), then we cannot control |ζj|, j = 1, 2 because there, |ζj| = |ξ|2/2,
which is fixed. It is easy to see that in R2, this is the only choice up to the change of the
sign of η there. This is the reason we required n ≥ 3. This does not mean, of course, that
the theorem is not true in 2D (it is). It only means that we cannot prove it that way.
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To choose ζ1, ζ2 satisfying (2.11), (2.13) and (2.14), we proceed as follows. Since n ≥ 3,
given ξ ̸= 0, we can choose real vectors η and p so that (ξ, η, p) form an orthogonal triple
and |η|2 = |p|2 + |ξ|2/4. Then we set

ζ1,2 = ±η ± ip− iξ/2.

Then (2.11) holds; to satisfy (2.13), we will take a sequence of p’s (and hence of η’s) so that
|p| → ∞. Then we would also have (2.14), as desired, and by (2.12),

|q̂(ξ)| ≤ C
(
|ζ1|−1 + |ζ2|−1 + |ζ1|−1|ζ2|−1

)
.

Take the limit (2.13) to get q̂(ξ) = 0 for any ξ ̸= 0. This implies q = 0. □

2.3.4. Proof of Theorem 2.5. Follows from Theorem 2.6 (uniqueness for the Calderón
problem) and Theorem 5.1 (the inverse scattering problem can be reduced, and is actually
equivalent, to the Calderón problem).

2.3.5. Stability analysis. The Calderón problem is very unstable, and the inverse scatter-
ing one at a fixed energy is even worse. Alessandrini proved the following stability estimate

(2.15) ∥V − Ṽ ∥L∞ ≤ C
∣∣∣log ∥Λ− Λ̃∥H3/2→H1/2

∣∣∣−µ

, 0 < µ < 1

for all V and Ṽ in L∞(B(0, R0) near (in L
∞(B(0, R0)) some fixed V0 under the assumptions

that 0 is not a Dirichlet eigenvalue for V0; and also assuming the following a priori bound

(2.16) ∥V ∥Ck + ∥Ṽ ∥Ck ≤ A

with some fixed k ≫ 1 and some A > 0. Moreover, it has been shown [ref] that this is the
best estimate one can get. The condition (2.16) is of compactness type since it guarantees
that the set of all V satisfying it, supported in B(0, R0), is compact in L∞(B(0, R0). By a
functional analysis argument, an injective map A between two Banach spaces, restricted to
a compact set K, has a bounded inverse form A(K) to K. The stability estimate above is a
qualitative result; estimating the modulus of continuity to be at least

ϕ(t) =

(
log

1

ϵ

)−µ

, t > 0.

This function tends to 0 as t → 0 very slowly, slower than tα for any α > 0. Since this
rate cannot be improved, this analysis actually proves that Calderón’s problem is a very
(exponentially) unstable one. Stability estimates requiring an additional a priori estimate
like (2.16) are called conditional stability estimates. They are the most common ones for
many non-linear inverse problems. Unconditional estimates are rare, and the most common
stability for ”stable” non-linear problems is a conditional stability of Hölder type, when the
modulus of continuity is

ϕ(t) = tα, 0 < α ≤ 1.

When α = 1, it is called Lipschitz stability.
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2.4. Concluding remarks. While the high-frequency asymptotic, and thus the unique-
ness result (for all frequencies) can, and has been, be easily generalized to non-compactly
supported short-range potentials, the fixed energy problem is quite different. There are
counter-examples of polynomially decaying short-range potentials for which the uniqueness
fails. The uniqueness has been extended to exponentially decaying potentials by Eskin-
Ralston, see also Vasy-Uhlmann. [ref]
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2.5. Inverse back-scattering. The inverse back-scattering problem in potential scat-
tering consists of the following: can we recover the potential V from the scattering amplitude
a at ω = −θ, for all θ and λ > 0? In other words, is the map

V (x) 7−→ a(−θ, θ, λ)
injective? This corresponds to measuring the scattered field at the same point (at infinity)
at which the signal is sent. As usual, we start with counting the variables. The potential
depends on n variables, and so does the back-scattering amplitude. This makes the problem
formally determined and it is an indication that it would be harder than many formally
overdetermined problems. In fact, uniqueness for the problem is still an open question, even
for V ∈ C∞

0 . Partial results exist however.
Perhaps the second thing to do is to try the Born approximation (2.2). Ignoring the error

term, we get

a0(−ω, ω, λ) ≈ V̂ (−2λθ).

Since we “know” that for every λ > 0 and every θ ∈ Sn−1, setting ξ = −2λω, we get the
Fourier transform of V for every ξ ̸= 0, and that determines V uniquely. In some circles,
this actually passes for a proof.

For small V , one can do the following. Let n = 3. Then the explicit form of the kernel
G0 of R0(λ), see (1.12) in Chapter II, yields

∥χR0(λ)χ∥ ≤ C

for any compactly supported cut-off χ, uniformly in λ. Then the series (2.9) in the same
chapter converge for all λ > 0, as an operator from L2(K) to itself for any compact set K.
Then by the representation formulas (2.18), (2.20) there,

a0(ω, θ, λ) =

∫
e−iλω·xV (x) (I−R0(λ)V −R0(λ)V R0(λ)V − . . . ) eiλθ·• dx.

Set ω = −θ to get the following.

Theorem 2.10. For any R0 > 0 there exists a constant C > 0 so that if V ∈ L∞(R3)
and suppV ⊂ B(0, R0), then

V̂ (−2λθ) = a0(−θ, θ, λ) +O(∥V ∥2L∞),

with the estimate on the remainder uniform in λ > 0 and θ.

This does not prove uniqueness, and does not even imply that if the back-scattering
amplitude vanishes, then V = 0 because the natural norm for V̂ is the L2 one but on the
right, we have the L∞ one, which is stronger.

We will sketch here the approach in [19] to prove that for generic V ’s including small ones,
there is local uniqueness. A more general result, which a much longer proof, was presented
by Eskin and Ralston. They actually characterized the range of the inverse back-scattering
transform, assuming that V belongs to a suitable space of short range potentials.

Let W := W 4,∞
(0) (B(0, R0) be the Banach space of all functions in the real W 4,∞

(0) (R3)

space (the theorem is true for complex potentials as well) supported in B(0, R0).
The main result is the following.
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Theorem 2.11. There exists and open and dense set O in W including 0, so that for
any V0 ∈ O, there exists ε > 0 with the following property. If

∥V − V0∥W < ε, ∥Ṽ − V0∥W < ε,

and if
a0(−θ, θ, λ) = ã0(−θ, θ, λ),

then V = Ṽ .

Our starting formula point is the formula in Lemma 2.3. Assuming the same data, we
get

0 =

∫
e2iλθ·x(V − Ṽ )(x) dx+

∫ [
(uũ)(x, θ, λ)− e2iλθ·x

]
(V − Ṽ )(x) dx.

Set ξ = −2λθ and let χ ∈ C∞
0 be such that

(2.17) χ(x) = 1 for |x| ≤ 1, χ(x) = 0 for |χ| ≥ 2, and 0 ≤ χ ≤ 1.

Set χa(ξ) = χ(ξ/a), χR0(x) = χ(x/R0). Denote q := V − Ṽ . We get

0 = Fq(ξ) +
∫ [

(uũ)
(
x,− ξ

|ξ|
,
|ξ|
2

)
− e−iξ·x

]
χR0(x)q(x) dx.

Apply the operator χR0F−1(1 − χa), with some a > 0, to both sides. The low-frequency
cut-off 1− χa can be explained by the fact that we have high-frequency control of u but no
low-frequency one. Note that

χR0F−1(1− χa)q = q − χR0F−1χaFq.
We therefore get AV,Ṽ q = 0, where

AV,Ṽ q = q − χR0F−1χaFq

+ χR0F−1(1− χa)

∫ [
(uũ)

(
x,− ξ

|ξ|
,
|ξ|
2

)
− e−iξ·x

]
χR0(x)q(x) dx.

We therefore reduced the non-linear problem to a pseudo-linear one. If we can show that
AV,Ṽ is injective, say on L2, we proved uniqueness. Note that the latter problem is not
equivalent to the original one. We cannot exclude the possibility that AV,Ṽ is not injective

but we still have uniqueness — i.e., that V − Ṽ is not in the kernel.

Lemma 2.12. The operator

A0,0 := I− χR0F−1χaF
is invertible on L2(Rn).

Proof. Clearly, the operator χR0F−1χaF is compact. Then it is enough to show that
A0,0 has a trivial null-space. If A0,0f = 0, then

∥f∥ = ∥χR0F−1χaFf∥ ≤ ∥F−1χaFf∥ ≤ ∥χaFf∥ ≤ ∥f̂∥ = ∥f∥,
where F is normalized so that it is unitary. Then all the inequalities above are actually
equalities. Then χaf̂ = f̂ , and χR0f = f . Then both f and f̂ have compact support;
therefore, f = 0. □
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Next, we show that the operator

Kf := χR0F−1(1− χa)

∫ [
(uũ)

(
x,− ξ

|ξ|
,
|ξ|
2

)
− e−iξ·x

]
χR0(x)q(x) dx

is compact. This would show that the operator AV,Ṽ is Fredholm. While this would not
prove injectivity, it would show at least that the kernel is finitely dimensional.

The operator K is actually a ΨDO of order −1, when V and Ṽ are in C∞
0 , and the

cutoff χR0 makes it compact. The proof of that would require to study an infinite expansion
of u and would require infinite smoothness. For our purposes, a finite expansion would be
enough.

We have

u
(
x,− ξ

|ξ|
,
|ξ|
2

)
= e−iξ·x + usc

(
x,− ξ

|ξ|
,
|ξ|
2

)
.

The estimate we have on usc = O(|ξ|−1) however does not seem to be not enough to show
compactness. Indeed, K = χR0F−1K̃, where

f 7−→ K̃f(ξ) := (1− χa)

∫ [
(uũ)

(
x,− ξ

|ξ|
,
|ξ|
2

)
− e−iξ·x

]
χR0(x)q(x) dx.

We would get that the kernel K̃(ξ, x) of K̃ satisfies the estimate

|K̃(x, ξ)| ≤ (1− χa(ξ))χR0(x)

|ξ|2
.

That estimate alone is not enough to claim compactness, or even boundedness (which does
not mean it is not true). One of the ways to prove that we have a compact operator is to
show that the kernel is Hilbert-Schmidt. The O(|ξ|−2) decay is not sufficient for that; but
O(|ξ|−k), with k > n/2 would be. Actually, the reason for our troubles is that we neglect
the oscillatory behavior of usc, and we are trying to estimate it with brute force.

The strategy now is the following. We will compute explicitly the second term in the
expansion of u, i.e., the leading one in the expansion of usc, as λ → ∞. We will estimate
its contribution using its explicit form, which would have an oscillatory behavior. For the
remainder, we gained a power of |ξ|−1, which is enough to claim that it contributes a Hilbert-
Schmidt operator when n = 2 and n = 3. In higher dimensions, we need to study higher
order terms.

2.5.1. High-frequency expansion of u(x, θ, λ). We stick to the 3D case here, but general-
izations to higher dimensions are immediate.

Define the so-called beam transform Bf of f :

Bf(x, θ) =

∫ 0

−∞
f(x+ sθ) ds.

The next proposition is a typical geometric optics construction.

Proposition 2.13. Let V ∈ W 4,∞(R3) and V = 0 for |x| > R0. Then

u(x, θ, λ) = eiλθ·x − i

2λ
eiλθ·xBV (x, θ) +R(x, θ, λ),
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where

∥R(x, θ, λ)∥L2(B(0,2R0)) ≤
C

λ2
, ∥R(x, θ, λ)∥L∞(B(0,2R0)) ≤

C

λ
.

Moreover, if V belongs to the ball ∥V ∥W 4,∞ ≤ M with some fixed M > 0, and λ > C0M
with some absolute constant C0 > 0, then the constant C above can be chosen uniformly,
depending on R0 and M only.

Proof. By the Lippmann-Schwinger equation (2.16) in Chapter II, u = u0 −R0(λ)V u,
where u0 := eiλθ·x. Iterate this to get

u = u0 −R0(λ)V u0 +R0(λ)V R0(λ)V u.

Therefore,

R = −R0(λ)V u0 +
i

2λ
BV u0 +R0(λ)V R0(λ)V u.

The last term is easy to estimate because χR0(λ)χ = O(λ−1) for any compactly supported
cutoff χ. Moreover,

∥R0(λ)∥L2(K)→L∞(K) = O(1)

for any compact set K, which proves the second estimate for that term.
It remains to estimate

−R0(λ)V u0 +
i

2λ
BV u0.

Let χ ∈ C∞
0 be a cut-off function so that χ = 1 on B(0, 3R0). Note that BV solves the

transport equation θ · ∂xBV = V . Since χV = V , we get

(−∆− λ2)

(
−R0(λ)V u0 +

i

2λ
χBV u0

)
= − i

2λ
∆(χBV )u0 + (θ · χ)(BV )u0.

Since −R0(λ)V u0 +
i
2λ
χBV u0 is outgoing,

−R0(λ)V u0 +
i

2λ
χBV u0 = R0(λ)

(
− i

2λ
∆(χBV )u0 + (θ · ∂xχ)(BV )u0

)
.

The first term on the right can now be estimated right away as before. The second term is

R0(λ)[(θ · ∂xχ)(BV )u0] =
1

4π

∫
eiλ(|x−y|+y·θ)

|x− y|
(θ · ∂xχ)(y)(BV )(y, θ) dy.

The phase is ϕ = |x− y|+ y · θ. To apply the stationary phase, compute

∂yϕ =
y − x

|y − x|
+ θ.

On the support of the integrand, that differential does not vanish, and in fact, θ · (y−x) > 0.
Then we can integrate by parts once to estimate the integral by O(λ−2) in the L∞(B(0, 2R0)
norm. □

Warning: poor notation. R0 stands both for a radius of a ball where suppV is included,
and for the free resolvent. Another poor notation: R stands for the remainder term above,
and for the resolvent.

Proposition 2.14. AV,Ṽ : L2(R3) → L2(R3) is bounded; moreover, AV,Ṽ − I is compact.
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Sketch of the proof. It is enough to show that K is compact. The representation

above allows us to estimate each term in (uũ)
(
x,− ξ

|ξ| ,
|ξ|
2

)
− e−iξ·x and show that they con-

tribute compact operators. The RR̃ term decays like |x∥−4, which is enough to claim that
it gives us a Hilbert-Schmidt operator. Terms involving BV are not Hilbert-Schmidt. A
typical operator that we need to study is the following

f 7−→ F−11− χa(ξ)

|ξ|

∫
e−ix·ξ(BV )

(
x,− ξ

|ξ|

)
χR0(x)f(x) dx.

To prove compactness of the latter, it is enough to prove that the operator

f 7−→ F−1(1− χa)

∫
e−ix·ξ(BV )

(
x,− ξ

|ξ|

)
χR0(x)f(x) dx

is bounded. The operator adjoint to it is a formal ΨDO with symbol CχR0(x)(BV̄ )(x,−ξ/|ξ|)(1−
χa(ξ)). If V is smooth, it is an actual ΨDO of order −1, and the cut-off χR0 makes it
compact. Theorem 18.1.11’ in [5] however guarantees boundedness even under the finite
regularity conditions we have. □

The progress we made so far shows that the uniqueness question can be resolved if we
show that

AV,Ṽ q = 0 =⇒ q = 0,

and this is a Fredholm equation. In particular, we get immediately that the kernel must be
finite dimensional. The next step is to apply the analytic Fredholm theorem. For that, we
need an analytic dependence of a parameter.

Proposition 2.15. The map

W ×W ∋ (V, Ṽ ) 7→ AV,Ṽ ∈ L(L2, L2)

is analytic.

Sketch of the proof. The notion of analyticity in this setting can be found in Reed
and Simon. We need to prove that (a) ∥AV+zh,Ṽ+zh̃∥ is uniformly bounded for z ∈ C

small enough and all h, h̃ with ∥h∥W ≤ 1, ∥h̃∥W ≤ 1 (easy to see); and (b) that the map

z 7→ AV+zh,Ṽ+zh̃ is analytic for any such h, h̃ and z near z = 0.
Inspecting the proof above, we see that we need to prove analyticity of uV+zh, where the

subscript indicates the dependence on the potential. Let χ be the characteristic function of
B(0, R0), and denote for a moment χu by u again, and χR0(λ)χ by R0(λ) again. By the
Lippmann-Schwinger equation,

u = u0 −R0(λ)V u.

For uV+zh we have

uV+zh =
[
I + z(I +R0(λ)V )−1R0(λ)h

]−1
(I +R0(λ)V )−1u0.

We will use our freedom to control a now. Choose a so that for λ > a/2, we have ∥R0(λ)∥ ≤
(2M)−1, ∥(I +R0(λ)V )−1∥ ≤ 2, where M is an a priori bound of ∥V ∥W and |̃V ∥W . Then we
can use a Neumann series above, and prove analyticity. □
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Sketch of the proof of Theorem 2.11. Let

O = {V ∈ W ; AV,V is an isomorphism}.
First, O is open because AV,V depends continuously on V . Next, O is dense by the analytic
Fredholm theorem. Indeed, the operator

AzV,zV

depends analytically on z for |z| < 2 a fixed V with ∥V ∥W ≤ M and a = a(M). When
z = 0, it is invertible by Lemma 2.12. By the analytic Fredholm theorem, it is invertible
with a possible exception of a discrete set of z’s. If z = 1 is not one of those exceptional
point, we are done. If it is, for any ε > 0, there is a real z with |z − 1| < ε not in that set.
Then AzV,zV with that z will be invertible, i.e., zV ∈ O. Note that we showed in particular
that 0 ∈ O. □

2.5.2. Stability analysis. This is a stable problem in the sense, that there is Hölder type
of conditional stability. This, for example, follows from the fact that the linearization is
stable (Fredholm), and by an abstract approach to stability, see [22].
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2.6. Inverse scattering for time-dependent potentials.

3. Inverse Obstacle Scattering

3.1. Uniqueness with full all data. Recall that an obstacle O ⊂ Rn is a compact set
with smooth (C2 is enough) boundary and connected complement.

The following theorem by Schiffer can be found in [8].

Theorem 3.1. Let O, Õ be two obstacles with a(ω, θ, λ) = ã(ω, θ, λ) for all λ > 0, ω
and θ in Sn−1. Then O = Õ.

Of course, it would be enough to require that the scattering amplitudes are equal for an
open set of (ω, θ, λ); then we can use analytic continuation.

Proof. Let u(x, θ, λ), ũ(x, θ, λ) be the scattering solutions defined before. The Rellich
uniqueness theorem, applied for any fixed λ and θ implies that

u(x, θ, λ) = ũ(x, θ, λ), |x| ≫ 1.

This can even be done in a constructive (but unstable) way, as shown in section 5.2. Let
Ω+ be the connected unbounded component of Rn \ (O ∪ Õ). Set Ω− = Rn \ Ω̄+. Then
Ω̄− ⊃ O ∪ Õ. Note that Ω− is an open set containing the interior of O ∪ Õ but also all
components of Rn \ (O ∪ Õ) disconnected from infinity. Since u is an analytic function of x
outside Ω+, we get

u(x, θ, λ) = ũ(x, θ, λ), x ∈ ∂Ω+

Assume O ̸= Õ. Then either Ω− \ O is a nonempty open set, or Ω− \ Õ is. Assume the
former. Let G be any connected component of Ω− \ O. Then u = 0 on ∂Ω. Therefore, u
solves the problem

(−∆− λ2)u = 0 in G, u|∂G = 0.

Note that ∂G may not be smooth but this is still a well posed problem. We know that u
cannot be identically zero in G because otherwise, it should be zero for large |x|. Therefore,
λ2 is an eigenvalue of the Dirichlet Laplacian in D, and that is true for any λ. That could
only happen for a discrete number of λ’s, however. □

3.2. Uniqueness with partial data. There are several refinements of the uniqueness
result. It is enough to know the scattering amplitude for all ω, a fixed λ0 > 0, and N incident
directions θ; or for all ω, a fixed θ0, and N frequencies λ ≤ λ0, where N is greater than
the number of the Dirichlet eigenvalues λ2 ≤ λ20 of the Laplacian in a ball containing the
obstacle. [refs] This requires an a priori knowledge of the size of the obstacle. In particular,
if we fix either θ or λ, we get uniqueness for small enough obstacles. In 3D, the upper bound
is given by λR < π, where R is the radius of such a ball. Those results are based on the
following observation: We want to exclude the possibility that λ2 is a Dirichlet eigenvalue in
some domain D ⊂ (O\Õ)∪ (Õ \O), as above. If we have an a priori bound on the diameter
of the smallest ball including both obstacles, we can use the monotonicity of the Dirichlet
eigenvalues w.r.t. the domain (the smaller the domain, the larger the eigenvalues, as follows
from the mini-max principle).
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One open inverse problem in obstacle scattering is the following: Can we determine O
from a(ω, θ0, λ0) known for all outgoing directions ω but for a fixed incident one θ and a
fixed frequency λ0 > 0? As we mentioned above, if the obstacle is a priori small enough, we
can. In [21], we proved that there is local uniqueness result.

Theorem 3.2. Fix λ0 > 0, θ0 ∈ Sn−1. Let O− ⊂ O+ be two obstacles and assume that
Vol(O+ \ O−) < ωnλ

−n
0 . Let O− ⊂ Oj ⊂ O+, j = 1, 2, be two other obstacles and assume

that AO1(ω, θ0, λ0) = AO2(ω, θ0, λ0). Then O1 = O2.

Here, ωn is the volume of the unit ball in Rn. The proof is based on the observation that
we only need the volume of the domain to be small to claim that the eigenvalues are large,
and therefore exceed λ0; the smallness of the diameter is not needed.

3.3. Inverse scattering for strictly convex obstacles and high-frequency asymp-
totics. The theorems above are not constructive, and the problem is unstable. Assuming
strict convexity (this condition can be relaxed a bit), we have an explicit and stable recon-
struction. This was first done by Majda.

The starting point is Theorem 3.3 in Chapter II for the scattering amplitude for the
Dirichlet problem:

a(ω, θ, λ) =
−1

4πi

(
λ

2π

) 1
2
(n−3)

e
1
4
πi(n−1)

∫
∂Ω

(
iλω · ν(y)e−iλy·(ω−θ) + e−iλy·ω∂νusc(y, θ, λ)

)
dSy.

If we knew ∂νusc, we would have an expression for a which we could analyze and try to
recover ∂Ω. In the applied literature, one uses the Kirchhoff approximation:

∂νusc|∂O ≈ −iλ|ν · θ|eiλy·θ, as λ→ ∞.

Assume ν · θ < 0. This approximation is based on the fact that usc satisfies the boundary
condition usc = −eiλy·θ on ∂Ω. If we formally extend this away from the boundary and
differentiate, we would almost get the approximation , but with the wrong sign. The reason
for the sign to be exactly the opposite of what this naive (and wrong) arguments suggests is
that the wave gets reflected, and that reflection inverts the sign of the normal component of
θ. It does more than this, of course, because the boundary is curved and the reflected wave
is not that simple anymore. We will justify the Kirchhoff approximation below.

The function usc is the outgoing solution of

(−∆− λ2)usc = 0 in Ω = Rn \ O, usc|∂Ω = −e−iλx·θ.

Assume θ0 · ν(x0) < 0 (a ray with incident direction θ0 hits ∂Ω transversely at x0), and we
are going to work with (x, θ) near (x0, θ0). The geometric optics construction now works in
the following way. We are looking for a parametrix of the form

usc = eiλϕ(x,θ)(a0 + λ−1a1 + . . . ),

with a phase function ϕ(x, θ) and amplitudes aj = aj(x, θ) which we will compute. Plug into
the equation and equate the leading powers of λ to get the eikonal equation

|∂ϕ|2 = 1, ϕ|∂Ω = x · θ,
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and the first transport one:

(2(∂ϕ) · ∂ +∆ϕ)a0 = 0, a0|∂Ω = −1.

The boundary condition for ϕ allows us to compute the tangential gradient ∂′ϕ = θ′ on ∂Ω,
where θ′ = θ′(x) is the tangential projection of θ on ∂Ω at x. Since the total gradient is a
unit vector, we have two choices for ∂ϕ|∂Ω: one of them is just θ, which points inside; and
the other one is θ reflected off ∂Ω by the laws of geometric optics: same tangential projection
and the opposite normal one. We chose the second one to be able to satisfy the outgoing
condition. In particular, we get

∂νϕ|∂Ω = −∂νx · θ|∂Ω = −ν · θ.
The parametrix can be justified as usual: solve the PDE asymptotically and estimate the
error by standard estimates. Then the discussion above implies

∂νusc|∂Ω = iλ(∂νϕ)e
iλϕ(x,θ)a0|∂Ω +O(λ−1) = −iλν · θeiλx·θ +O(1),

as claimed.
The Kirchhoff approximation allows us to express the reduced scattering amplitude a0

(the integral terms above) as

a0 =

∫
∂Ω

(
iλω · ν(y)e−iλy·(ω−θ) − e−iλy·ωiλν(y) · θeiλy·θ

)
dSy +O(1),

therefore,

a0 = iλ

∫
∂Ω

e−iλy·(ω−θ)(ω − θ) · ν(y) dSy +O(λ−1),

[needs to be completed]
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4. Inverse Scattering by metrics

5. Inverse Boundary Value Problems and Inverse Black Box Scattering

5.1. From the far filed to the near field and back; uniqueness. Let P be an
operator satisfying the black-box scattering assumptions in section 5, Chapter II. We want
to link the inverse problem of “finding the black box” to a certain related inverse boundary
value problem.

Let Ω ⊂ B(0, R) be a bounded open set with smooth boundary, diffeomorphic to a ball.
It would be enough to choose Ω = B(0, R1), R1 > R0. By (5.3) in Chapter II, 1Ω(P + i)−1 is
compact on H. Using standard elliptic theory, we can show that the boundary value problem

(5.1) (P − λ2)u = 0 in Ω, u|∂Ω = f

is of Fredholm type and it is uniquely solvable, if λ2 is not a Dirichlet eigenvalue of P in Ω.
Recall that here “in Ω” is actually means that we work in the Hilbert space HR0 ⊕ L2(Ω \
B(0, R0)) which we intuitively think of as being L2(Ω). The non-eigenvalue condition can be
achieved by perturbing the boundary of Ω a bit by the strict monotonicity of the eigenvalues
w.r.t. the domain [needs to be expanded]. Then we have a well defined DN map Λ = Λ(λ)
on ∂Ω.

The inverse boundary value problem in this setting can be formulated as follows. Given
(HR0 , P ) and (H̃R0 , P̃ ), does Λ = Λ̃ (for a fixed or for a range of frequencies λ) imply that
(HR0 , P ) and (H̃R0 , P̃ ) are unitarily equivalent? We will leave that definition a bit vague on
purpose. In potential scattering, we want to show that V = Ṽ . In obstacle scattering, we
want to show that g = ψ∗g̃, where ψ is a diffeomorphism in Ω fixing ∂Ω. If P is a general
second order elliptic operator, we want to show invariance under gauge transformations, etc.

The goal of this section is to show that the inverse scattering problem of recovery of
(HR0 , P ) from the scattering amplitude a0(ω, θ, λ) and from the DN map are equivalent,
without attempting to solve either one. Moreover, we show that those two problems are
related in an explicit way.

Theorem 5.1. Fix λ2 not a Dirichlet eigenvalue of P in Ω. Then the DN map Λ(λ)
determines the scattering amplitude a0(λ, ·, ·) uniquely and vice versa.

Proof. We will give a short uniqueness but not constructive proof. Let P and P̃ be two
black-box operators, and let Λ and Λ̃; and a0 and ã0 be the corresponding DN maps and
scattering amplitudes.

Assume Λ = Λ̃ first. Let u, ũ be the corresponding scattering solutions. Let v be the
solution of the BVP

(P̃ − λ2)v = 0 in Ω, v|∂Ω = u.

If we replace P̃ by P , we would get u, of course. Then u and v have the same Dirichlet data
on ∂Ω; but they also have the same (interior) Neumann one since Λ = Λ̃. Set

w := v in Ω; w := u in Rn \ Ω.

Then (P̃ − λ2)w = 0 away from ∂Ω but since the Cauchy data of w of both sides of ∂Ω is
the same, we also get (P̃ − λ2)w = 0 globally. Then we get two solutions, ũ and w, of the
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scattering problem for P̃ of the kind eiλθ·x+outgoing; and we know that there is unique one.
Therefore, w = ũ, hence u = ũ for large |x|. The asymptotic of that gives us a0 = ã0,

Assume now a0 = ã0. Then u− ũ = O(|x|−(n+1)/2) as |x| → ∞, see (2.17) in Chapter II.
Then by Lemma 1.9 there, ũ−u = 0 for |x| > R0 (the situation is even simpler here because
ũ−u = 0 is outgoing; in some papers, this is the actual formulation of the Rellich theorem).
Then Λ = Λ̃ on the span of u(·, θ, λ) in, say, H3/2(∂Ω). The proof would be complete if we
show that that span is dense. □

Lemma 5.2. Fix λ ̸= 0 so that λ2 is not a Dirichlet eigenvalue of P in Ω. Then the set
{u(·, θ, λ), θ ∈ Sn−1} is dense in Hs(∂Ω) for any s.

Proof. Take ϕ ∈ C∞(∂Ω). It is enough to prove the following∫
∂Ω

u(x, θ, λ)ϕ(x) dSx = 0, ∀θ ∈ Sn−1 =⇒ ϕ = 0.

This would prove density in L2(Ω) because ϕ ∈ C∞(∂Ω) is dense there. It would also prove
density in Hs(Ω) if we replace ϕ by (1−∆∂Ω)

sϕ, where ∆∂Ω is the Laplace-Beltrami operator
on ∂Ω. Then we would get (1−∆∂Ω)

sϕ = 0, hence ϕ = 0.
Without loss of generality we may assume that we have ū(x,−θ,−λ) above. Then we can

think about the integral above as the far field pattern of v := R(λ)ϕδ∂Ω, see Theorem (5.4),
i.e., the far field pattern of

v :=

∫
∂Ω

G(x, y, λ)ϕ(y) dSy.

This is a simple layer potential with kernel G. Since G − G0 is smooth (actually, analytic)
near ∂Ω, then the jump relations (3.4) still hold. In particular, v is continuous across
∂Ω. By the Rellich uniqueness theorem, Theorem 1.11, v has compact support. Since it is
harmonic outside Ω, it actually vanishes there. By continuity, v|∂Ω = 0. Inside Ω, v solves
(P − λ2)v = 0. Since λ2 is not a Dirichlet eigenvalue of P in Ω, v = 0 in Ω, as well. Then,
in Rn,

0 = (P − λ2)v = ϕδ∂Ω,

therefore, ϕ = 0. □

5.2. Constructive Rellich theorem. The Rellich uniqueness theorem, Theorem 1.11
says that for every outgoing u, the far field pattern of u determines uniquely u away from
the black box. This can be done in a constructive way, using the decomposition in spherical
harmonics and Hankel functions, see Chapter V.

Recall that by Corollary 1.10, for any outgoing u, we have

(5.2) u(rω) =
eiλr

r(n−1)/2
g(ω) +O(r−(n+1)/2),

where g(θ) is the far field pattern of u. On the other hand, by Theorem 1.1 in Chapter V,

(5.3) u(rω) =
∑
l,m

alm(λ)h
(1)
l (λr)Y m

l (ω),
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with some coefficients alm(λ). Let us expand g in spherical harmonics:

g(ω) =
∑
l,m

glmY
m
l (ω), glm = (g, Y m

l )L2(Sn−1).

Then by (5.2),

(5.4) u(rω) =
eiλr

r(n−1)/2

∑
l,m

glmY
m
l (ω) +O(r−(n+1)/2),

On the other hand, for each (l,m), and λ > 0 fixed,

(u(r·), Y m
l )L2(Sn−1) = alm(λ)h

(1)
l (λr)

= alm(λ)e
−i(2l+n−1)π/4 eiλr

(λr)(n−1)/2
+O(r−(n+1)/2), r → ∞,

by (1.9) in Chapter V. Compare this with (5.4) to get the following

(5.5) glm = e−i(2l+n−1)π/4λ−(n−1)/2alm.

Proposition 5.3. Fix λ > 0 and let u be outgoing. Then u can be reconstructed from
its far field pattern h by means of (5.3) , with coefficients alm obtained from the Fourier
coefficients glm of g as in (5.5).

Note that this reconstruction is highly unstable. For (5.3) to converge at any fixed r, the
coefficients alm have to decay super-exponentially to be able to compensate for the faster
than exponential growth of hl(λr) as l → ∞, see (1.1) in Chapter V for the 3D case. If
h is a far field pattern of some outgoing solution in |x| > R0, then this must be true for
r > R0. This shows first that the Fourier coefficients of possible far field patterns decay
super-exponentially. This should not be so unexpected because possible far field patterns
must be analytic functions. Next, small changes in those coefficients (say, in l2), when l ≫ 1,
would not only lead to big changes in u, but they may destroy the convergence of (5.3) in
the first place. On the other hand, the stability of the map h 7→ u||x|>R0 holds if we consider
glm as members of some Sobolev space of sequences with an exponentially decaying weight,
dictated by (1.1) in Chapter V. For more details, we refer to [18].

The step h 7→ u||x|>R0 can be stabilized under some a priori assumptions, for example
that u extends to |x| ≤ R−1 with R−1 < R0 as a solution of the Helmholtz equation and is
a priori bounded there. We refer also to [6].

5.3. From the scattering amplitude to the Green’s function away from the
black box. The analysis above allows us to reconstruct explicitly Green’s function G(x, y, λ)
(the Schwartz kernel of R(λ) for |x| > R0, |y| > R0 from the scattering amplitude a(ω, θ, λ).
Recall that we already have an explicit way to get a from G(x, y, λ) known near the black
box, see (5.6) in Chapter II. The Green’s function can be also explicitly connected to the
DN map Λ on any domain Ω ⊃ B(0, R0) as above [10]. This would make to step a0 7→ Λ
constructive.

Consider G(x, y, λ) − G0(x, y, λ). It is an analytic function in B(0, R0) × B(0, R0). We
can view it as (R(λ) − R0(λ))δy. For R(λ)δy, we have the expansion of Theorem 5.4 in
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Chapter II. For R0(λ)δy, we have the expansion in Theorem 1.5 in that chapter (f̂ = 1 in
our case now). Subtract those two asymptotics to get

G(x, y, λ)−G0(x, y, λ) = cn(λ)
eiλ|y|

|y|(n−1)/2
ūsc

(
x,− y

|y|
,−λ

)
(1 +O(1/|y|)),

cn(λ) :=
1

4π

(
iλ

2π

) 1
2
(n−3)

.

(5.6)

We can now use the asymptotic of usc as |x| → ∞, see (5.6) and (2.17) in Chapter II, to get
the following.

Theorem 5.4. For |x| > R0, |y| > R0,

G(x, y, λ)−G0(x, y, λ) =cn(λ)
eiλ|x|

|x|(n−1)/2

eiλ|y|

|y|(n−1)/2

× ā
( x

|x|
,− y

|y|
,−λ

)
(1 +O(1/|y|))(1 +O(1/|x|)).

(5.7)

This theorem shows that G, known outside the black-box, determines a uniquely by
taking the asymptotics |x| → ∞, |y| → ∞. The converse can be done in an explicit way as
well.

Let alml′m′ be the Fourier coefficients of ā(θ,−θ′,−λ). For operators P with the property
Pf = P f̄ , those coefficients are the same as those of a(θ,−θ′, λ). In other words.

alml′m′ =

∫∫
Sn−1×Sn−1

ā(θ,−θ′,−λ)Ȳ m
l (θ)Ȳ m′

l′ (θ′) dθdθ′.

By (5.6) and Proposition 5.3,

G(x, y, λ)−G0(x, y, λ) =
∑
lm

γlmh
(1)
l (λ|y|)Y m

l (y/|y|)

with

e−i(2l+n−1)π/4λ−(n−1)/2γlm(x, λ) = cn(λ)

∫
Sn−1

usc(x,−θ′,−λ)Ȳ m′

l′ (θ′) dθ′.

Apply Proposition 5.3 again in the x variable to get

γlm(x, λ) =
∑
l′m′

γlml′m′h
(1)
l′ (λ|x|)Y m′

l′ (x/|x|),

where

γlml′m′ = c′n(λ)

∫∫
Sn−1×Sn−1

ā(θ,−θ′,−λ)Ȳ m
l (θ)Ȳ m′

l′ (θ′) dθdθ′ = c′n(λ)alml′m′ .

with e−i(2l+n−1)π/4λ−(n−1)/2c′n(λ) = c2n(λ). All this implies the following.

Theorem 5.5. For |x| > R0, |y| > R0,

G(x, y, λ)−G0(x, y, λ)

= c′n(λ)
∑

lml′m′

alml′m′h
(1)
l′ (λ|x|)Y m′

l′ (x/|x|)h(1)l (λ|y|)Y m
l (y/|y|),(5.8)
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where alml′m′ are the Fourier coefficients of the scattering amplitude ā(θ,−θ′,−λ).

This gives an explicit formula for recovering G(x, y, λ) for x, y outside the black box,
knowing the scattering amplitude, for any fixed λ > 0.

[Next: Nachman’s formula connecting G and Λ]



CHAPTER V

Appendix

1. Spherical harmonics, Hankel functions and radial separation of variables for
the Helmholtz equation

1.1. Spherical harmonics and Hankel functions. We will recall some facts about
separation of variables in polar coordinates for the Laplace operator, see e.g., Folland’s book
on PDEs. If n = 2, then the Laplacian (with negative sign in front) on S1 is just −d2/dθ2,
where θ is the polar angle, and the eigenvalues are l2, l = 0, 1, . . . with eigenfunctions 1 for
l = 0 and eλlθ, e−λlθ for λ > 0. Clearly, all positive eigenvalues are of multiplicity two, and
the eigenfunction expansion is just the classical Fourier series.

Let n ≥ 3 now. Denote by Y m
l , l = 0, 1, . . . , m = 1, . . .m(l), an orthonormal set of

spherical harmonics on Sn−1. They are the eigenfunctions of the Laplacian ∆Sn−1 on Sn−1.
We have

−∆Sn−1Y m
l = l(l + n− 2)Y m

l , l = 0, 1, . . . ; m = 1, . . . ,m(l).

For each l, the multiplicity of the eigenvalue

(1.1) µ(l) = l(l + n− 2)

is given by

(1.2) m(l) =
2l + n− 2

n− 2

(
l + n− 3

n− 3

)
=

2ln−2

(n− 2)!

(
1 +O(l−1)

)
.

If n = 3, then the eigenvalues are l(l + 1) of multiplicities m(l) = 2l + 1.
Let u solve the Helmholtz equation

(1.3) (−∆− λ2)u = 0

in some radially symmetric domain. We want to find representation of u in polar coordinates
r > 0, ω ∈ Sn−1. We need to keep in mind that r = 0 is a singular point for the polar change
of variables, and all traps that this can possibly cause.

We are looking first for solutions of the form u = R(r)Ω(ω). Plug in the Helmholtz
equation and use the standard separation of variables techniques to get that possible solutions
are of the form u = R(r)Y m

l (ω), where Y m
l is any of the spherical harmonics, and R(r)

(depending on l but not on m) solves the ODE

(1.4) R′′ +
n− 1

r
R′ +

(
λ2 − µ(l)

r2

)
R = 0

in view of the formula for ∆ in polar coordinates

(1.5) ∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 .

67
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Equation (1.4) (after we multiply by r2) resembles the Bessel equation

(1.6) z2
d2y

dz2
+ z

dy

dz
+ (z2 − α2)y = 0.

To put it in that form, notice first that there is certain homogeneity there w.r.t. r: if we
replace r by λr, λ becomes 1 and the rest does not change. So is natural to look for a solution
which is a function of λr. Next, we really want the second term to be (1/r)d/dr after the
change, not (n−1) times that. This suggests the change of variables R(r) = (λr)αv(λr), and
a simple computation yields α = 1 − n/2. So we look for a solution R(r) = (λr)1−n/2v(λr)
to get

z2v′′ + zv′ +
(
z2 −

(
µ(l) + n2/4− n+ 1

))
v = 0

with v = v(z), z = λr. By (1.1), we can write the latter as

z2v′′ + zv′ +
(
z2 − (l + n/2− 1)2

)
v = 0.

Therefore, the general solution is any linear combination of two linearly independent Bessel

functions like (λr)1−n/2H
(1,2)
l+n/2−1(λr), (λr)

1−n/2Jl+n/2−1(λr), etc. It is convenient to set (note

that the definition depends on n)

(1.7) h
(k)
l (z) =

√
π

2
z1−n/2H

(k)
l+n/2−1(z), k = 1, 2, jl(z) =

√
π

2
z1−n/2Jl+n/2−1(z).

It is well known that

(1.8) jl =
1

2
h
(1)
l +

1

2
h
(2)
l .

Of those three Bessel functions, only jl is not singular at 0; and this is in fact a defining

property of jl. On the other hand, when ν is a half-integer, H
(1)
ν (z) and H

(2)
ν (z) are rational

functions multiplied by e±iz with pole at z = 0 (only). The Hankel functions have the
asymptotic

H(1)
ν (z) =

(
2

πz

) 1
2

ei(z−νπ/2−π/4) +O(z−3/2), as z → ∞.

Then

(1.9) h
(1)
l (z) = e−i(2l+n−1)π/4 eiz

z(n−1)/2

(
1 +O

(
1

z

))
, as z → ∞,

and h
(2)
l (z) is just the conjugate of h

(1)
l (z) (for z real). In particular, when n = 3 (remember

that h
(1)
l depends on n as well),

(1.10) h
(1)
l (z) = (−i)l+1 e

iz

z
+O

(
1

z2

)
, as z → ∞.
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1.2. Radial separation of variables for the Helmholtz equation.

Theorem 1.1. Let n ≥ 3.
(a) Let u solve the Helmholtz equation in the ball |x| < R0 with some R0. Then

(1.11) u(rω) =
∑
l,m

clm(λ)jl(λr)Y
m
l (ω),

0 < r < R0, ω ∈ Sn−1, with some coefficients clm(λ).
(b) Let u solve the Helmholtz equation in the annulus R0 < |x| < R1 with some 0 ≤ R0 <

R1. Then

(1.12) u(rω) =
∑
l,m

(
alm(λ)h

(1)
l (λr) + blm(λ)C2h

(2)
l (λr)

)
Y m
l (ω),

R0 < r < R1, ω ∈ Sn−1, with some coefficients alm(λ), blm(λ).
(c) If R1 = ∞, and u is outgoing, then blm(λ) = 0; if u is incoming, then alm(λ) = 0.

Proof. Let u solve the Helmholtz equation for |x| < R0 with some R0 > 0. Fix l and
m and set

f(r) =

∫
Sn−1

u(rω)Ȳ m
l (ω) dω.

Then f solves the ODE (1.4) for 0 < r < R0 and can therefore be represented as a linear
combination of jl(λr) and another linearly independent modified Bessel function of λr, say
h(1)(λr). Only the first term remains bounded when r → 0. Therefore, f(r) = clm(λ)jl(λr).
Thus any solution u of the Helmholtz equation (−∆− λ2)u = 0 near 0 has the form (1.11).
The convergence follows from the fact that ω 7→ u(rω) is clearly in L2(Sn−1), for 0 < r < R0;
and the above series is just an eigenfunction expansion for any such r.

On the other hand, let u solve the Helmholtz equation for |x| > R0 with some R0 > 0.
Then f defined as above solves the ODE (1.4) again for r > R0 and can therefore be
represented as the following linear combination

f(r) = alm(λ)h
(1)
l (λr) + blm(λ)C2h

(2)
l (λr).

Neither term can be discarded without additional a priori knowledge. Then we get (1.12)
with the same remark about the convergence.

Assume now that u above is outgoing, see Definition 1.6. Then for any m, l, the function
f defined above satisfies f(r) = eir/r(n−1)/2 + O(r−(n+1)/2), as r → ∞, by Theorem 1.5. By

(1.9), only h
(1)
l (λr) has this behavior and no other non-trivial combination of the two Hankel

functions has this asymptotic. Therefore, blm = 0. Similarly, if u is incoming, alm = 0. □

Remark 1.1. Just because the series (1.12) converges for R0 < r < R1 does not mean
that it will converge for all or even some r > R1. Very strong, super-exponential decay of the
coefficients alm and blm with respect to l is needed to guarantee convergence for all r > R1,
see, e.g., [18].

Remark 1.2. The previous remark is related to the following. The behavior of the Hankel
functions when l → ∞, which determines the convergence of the series, and the behavior as
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z → ∞ “cannot be commuted”. Another way to say the that is that the asymptotic (1.9) is
not uniform w.r.t. l as l → ∞. In fact, when n = 3, we have the following

(1.13) h
(1)
l (z) ∼ −(2/e)1/2z−1

(
2l + 1

ez

)l

, as l → ∞.

This is super-exponentially increasing with l and it can not be obtained from the leading

term in (1.10) by taking the limit l → ∞. What we have is a family of functions h
(1)
l (z)

(and H
(1)
α (z)) with two parameters, z and l, respectively α. The latter solves the Bessel

equation (1.6). If you consider α there as a large parameter, then that equation is elliptic
in semi-classical sense when |α| > z > 0; and it is of hyperbolic type when |α| < z. The
asymptotic (1.10) is then in the hyperbolic regime, and the leading term is oscillating; while
the asymptotic (1.13) is in the elliptic one; and the leading term is of exponential type.
Detailed two-parameter asymptotic expansions of the Bessel functions (for z complex!) can
be found in works by Olver, see [11] and the references there, written in the 50s(!!).
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2(4):675–711, 2001. MR1852923.
[14] M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis, self-adjointness.

Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
[15] A. Ruiz. Harmonic Analysis and Inverse Problems. http://www.uam.es/gruposinv/inversos/publicaciones/Inverseproblems.pdf.
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