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Abstract. In this paper, we develop a general approach to prove stability for the non linear second
step of hybrid inverse problems with one internal measurement. We work with general functionals
of the form F = σ|∇u|p, 0 < p ≤ 1, where u is the solution of the elliptic partial differential equation
∇ · σ∇u = 0 on a bounded domain Ω with boundary conditions u|∂Ω = f . In the case p = 1 this
problem has application to Current Density Impedance Imaging, where F = σ|∇u| represents the
magnitude of the current density field. We prove stability of the linearization and Hölder conditional
stability for the non-linear problem of recovering σ from one internal measurement.
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1. Introduction

Couple-physics Inverse Problems or Hybrid Inverse Problems is a research area that is interested
in developing the mathematical framework for medical imaging modalities that combine the best
imaging properties of different types of waves (e.g., optical waves, electrical waves, pressure waves,
magnetic waves, shear waves, etc) [4,7,8,43]. In some applications of non-invasive medical imaging
modalities (e.g., cancer detection) there is need for high contrast and high resolution images. High
contrast discriminates between healthy and non-healthy tissue whereas high resolution is important
to detect anomalies at and early stage [10]. In some situation current methodologies (e.g., electrical
impedance tomography, optical tomography, ultrasound, magnetic resonance) focus only in a par-
ticular type of wave that can either recover high resolution or high contrast, but not both with the
required accuracy. For instance, electrical impedance tomography (EIT) and optical tomography
(OT) are high contrast modalities because they can detect small local variations in the electrical
and optical properties of a tissue. However because of their high instability they are characterized
by their low resolution images [13, 15]. On the other hand, ultrasound tomography and magnetic
resonance imaging are modalities that provide high resolution but not necessarily high enough con-
trast since the difference between the index of refraction of the healthy and non-healthy tissue is
very small [10].

The aim of hybrid inverse problems is to couple the physics of each wave to benefit from the
imaging advantages of each one. Some examples of this physical coupling are: (i) ultrasound
modulated electrical impedance tomography (UMEIT) also known as acoustic-electro tomography
(AET) or electro acoustic tomography (EAT) [3,4,16,22,23]; (ii) current density impedance imaging
(CDII) [18, 33–36]; and (iii) ultrasound modulated optical tomography (UMOT) also known as
acoustic optical tomography (AOT) [2,9, 11,12,37].

All of these hybrid inverse problems involve two steps. In the first step the high resolution
modality takes an input boundary measurements f and provides an output internal functional of
the form F = σ|∇u|p for p > 0, where u is the solution of the elliptic partial differential equation
∇ · σ∇u = 0 on a bounded domain Ω with boundary conditions u|∂Ω = f . Physically, σ is the
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unknown conductivity (or diffusion coefficient) and u is the electric potential (or photon-density) of
the tissue, depending on whether we are looking for electrical (or optical) properties of the tissue.
In the second step the high contrast modality recovers the conductivity (or diffusion coefficient)
σ from the knowledge of the internal functional σ|∇u|p for p > 0. Different values of p represent
different physical couplings, in the case of CDII, p equals 1, and in the case of UMEIT and UMOT,
p equals 2. Other internal functionals have been studied as well [11].

In this paper we develop a general approach to prove stability for the non linear second step of
these hybrid inverse problems. We work with general functionals of the form σ|∇u|p, 0 < p ≤ 1.
A unified manner of dealing with the linearization of this problem was proposed in [24], for the
cases 0 < p < 1 and 1 ≤ p ≤ 2. For 0 < p < 1 they consider the problem with one internal
measurement and for 1 ≤ p ≤ 2 they use two internal measurements. In both cases they prove that
the linearization is elliptic in the interior of the domain. This implies stability of the linearized
problem, up to a finite dimensional kernel, without necessarily having injectivity. The conductivity
σ in [24] is perturbed by functions δσ identically zero in a fixed neighborhood of the boundary.

As mentioned before, in the case p = 1 this problem has application to CDII. We denote by F =
|J| the magnitude of the current density field J = −σ∇u. In CDII we assumed that F is obtained
by boundary measurements. An important observation is that the magnitude of the current density
field does not necessarily depend on MRI [28, 36], as compared to Magnetic Resonance Electrical
Impedance Tomography (MREIT), where one component of the magnetic field is obtained from
boundary information by means of an MRI [25,26,29,44]. This may lead to simpler methodologies
to obtain F as suggested by [36].

The use of Current Density Imaging to image electrical conductivity goes back to [45]. Since
then, there is an extensive literature dealing with this problem from different points of view. In [20]
the authors reduced the MREIT conductivity imaging problem to the Neumann problem for the
1−Laplacian. Similarly, but in a more geometrical approach, in [35] the authors reduced the CDII
conductivity imaging problem to a variational problem associated to the Dirichlet problem for the
1−Laplacian in the Riemannian metric g = F 2/(n−1)I. In both cases, in the process of transforming
the initial inverse problem to the 1-Laplacian, infinitely many solutions are introduced and the
problem suffers in general from non-uniqueness [21,36].

To deal with these difficulties in [19], the authors proposed to assume knowledge of the magni-
tude of two current density fields F1 and F2, obtained from two boundary measurements. In [20]
uniqueness for the Neumann problem for the 1−Laplacian was proved in this case. To handle
the non-uniqueness, for the conductivity problem associated with the Dirichlet problem for the
1−Laplacian in the metric g when only one internal measurement is known, the authors introduced
a variational approach. The key observation is that equipotencial surfaces minimize the surface
area induced by the metric g. In [34] the authors proved that if if the data (f, F ) is admisible then
the solution of the inverse problem is unique. Conditional stability to recover the voltage potential
u was established in [41] for the case of planar conductivities.

We take a different approach. We do not reduce the problem to the p−Laplacian, and hence
we do not introduce additional solution to the inverse problem. For 0 < p ≤ 1, we show local
Hölder stability, and hence injectivity, for the non-linear problem and its linearization. We use
only one boundary measurement even in the case p = 1 (CDII). We allow perturbations in the
whole domain, with appropriate boundary conditions. Our approach is based on a factorization of
the linearization, see (1) below. Instead of analyzing the linearization using the pseudo-differential
calculus, we analyze the only non-trivial factor in the factorization, which happens to be a second
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order differential operator. Even though the uniqueness of the non-linear problem has been estab-
lished in [34], for the stability result, we need to prove injectivity (and stability) of the linearization
which does not follow from that for the non-linear problem.

In the appendix, we generalize the abstract stability approach in [40] to transfer conditional
stability of the linearization to conditional stability of the non-linear problem. The method of
linearization to study stability of general inverse problems was previously discussed in [27, 38, 39],
and since then it has been successfully used in the literature to investigate coefficient inverse
problems. In our case, the behavior of the linearized problem depends on whether 0 < p < 1,
p = 1, or p > 1 as has been noted before, see, e.g., [10, 24]. The case 0 < p < 1 is the simplest one
since the linearized operator becomes elliptic and thus stable. When p = 1, the linearized operator
can be considered as one parameter family of elliptic operators on a family of hypersurfaces allowing
us to show stability by superposition of elliptic operators. For completeness in the exposition we
analyze the case 0 < p < 1 as well even though it does not appear in applications to medical
imaging.

Our approach can also serve as a basis for numerical reconstruction. The inversion of the lin-
earization is explicit, with the most intensive step being solving an elliptic boundary value problem
(p < 1), or a family of elliptic ones on a family of surfaces (p = 1). In the latter case, one can
regularize and reduce to a single elliptic PDE. The inversion of the linearization can be used in an
iterative algorithm to solve the original non-linear equation.

There is an extensive bibliography in the case of m-multiple measurements (m = n + 1 for
n odd and m = n for n even) and under the assumption that the m gradients of the solutions
have maximal rank in Rn at every point x ∈ X the problem is well understood. A numerical
approach was proposed in [14]. In [6] the authors showed that one can obtained σ∇ui with multiple
measurements of the form σ∇ui ·∇uj . This previous simplification allowed them to proved stability
for the case α = 1. Under this same assumption over the gradients of the solutions and with general
measurements of the form σ2α∇ui·∇uj the authors in [30] proved Lipschitz stability for the problem.
Later in [31,32] they extended this results for the anisotropic case.

1.1. Main results. Let Ω be a bounded simply connected open set of Rn with smooth boundary.
Consider the strictly elliptic boundary value problem

(1) ∇ · σ∇u = 0 in Ω, u|∂Ω = f,

where σ is a function in C2(Ω) such that σ > 0 in Ω and f ∈ C2,α(∂Ω), 0 < α < 1. By the Schauder
estimates, u ∈ C2(Ω). We say u is σ−harmonic if it satisfies equation (1). We address the question
of whether we can determine σ, in a stable way, from the functional F : C2(Ω)→ C(Ω̄) defined by

F (σ) = σ|∇u|p,
with p > 0 is fixed. This problem has different behavior depending on whether 0 < p < 1, p = 1 or
p > 1.

We study stability of the non-linear problem by proving first stability for the linearization, see
section 2, and then using Theorem A.1. The latter is a generalization of the main result in [40],
that allows to obtain stability for the non-linear problem from stability of the linearized problem.
Our main theorem about stability for the linearized problem is the following.

Theorem 1.1 (Stability of the linearization). Let u0 be σ0−harmonic with ∇u0 6= 0 in Ω and let
dσ0F be the differential of F at σ0.

• Case 0 < p < 1: there exist C > 0 such that

‖h‖ ≤ C‖dσ0F (h)‖H1(Ω) for every h ∈ H1
0 (Ω);
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• Case p = 1: for any α1 ∈ [0, 1), there exist C > 0 such that if (1− α1)s1 ≥ 2

(2) ‖h‖ ≤ C‖dσ0F (h)‖α1

H1(Ω)
‖h‖1−α1

Hs1 (Ω) for every h ∈ Hs1(Ω) ∩H1
0 (Ω);

where ν(x) denotes the outer-normal vector to the boundary.

This together with Theorem A.1 gives our main result about stability for the non-linear problem.

Theorem 1.2 (Stability for the non-linear map F , case 0 < p ≤ 1). Let 0 < p ≤ 1. Let u0 be
σ0−harmonic with ∇u0 6= 0 in Ω. For any 0 < θ < 1, there exist s > 0 so that if ‖σ‖Hs(Ω) < L for
some L > 0, there exist ε > 0 such that

‖σ − σ0‖C2(Ω̄) < ε

implies

(3) ‖σ − σ0‖L2(Ω) < C‖F (σ)− F (σ0)‖θL2(Ω).

Remark 1. In the case of R2 we can satisfy ∇u0 6= 0 in Ω by imposing conditions on f . For instance
in [1] and [33] the authors showed if Ω is simply connected in R2, σ0 ∈ Cα(Ω) 0 < α < 1 and u0|∂Ω

is continuous and two-to-one map, except possibly at its maximum and minimum. Then |∇u| > 0
in Ω.

Acknowledments. The authors would like to thank Adrian Nachman for his advice. This work
started when the second author was visiting the Fields Institute in Toronto.

2. Linearization

We start by considering the linearized version of this problem. Denote by dFσ0 the Gâteux
derivative of F at some fixed σ0. For σ in a C2-neighborhood of σ0 we get

(4) F (σ) = F (σ0) + dFσ0(σ − σ0) +

∫ 1

0
(1− t)d2Fσ0+t(σ−σ0)(σ − σ0, σ − σ0)dt

where dFσ0 is given by

(5) dFσ0(h) = h|∇u0|p + p|∇u0|p−2σ0∇u0 · ∇v0(h)

and d2Fσt by

d2Fσt(h, h) = p|∇ut|p−2 (h∇ut · ∇vt(h) +∇vt(h) · ∇vt(h) +∇ut · ∇wt(h))

+ p(p− 2)|∇ut|p−4(∇ut · ∇vt(h))2,
(6)

for h = σ − σ0 ∈ C2(Ω) and σt = σ0 + t(σ − σ0) for 0 ≤ t ≤ 1 and ut, vt and wt solving

(7)

∇ · σt∇ut = 0

∇ · σt∇vt = −∇ · h∇ut
∇ · σt∇wt = −2∇ · h∇vt

in Ω,

in Ω,

in Ω,

ut|∂Ω = f ;

vt|∂Ω = 0;

wt|∂Ω = 0;

for 0 ≤ t ≤ 1.
Let

Rσ0(h) =

∫ 1

0
(1− t)d2Fσ0+th(h, h)dt ∀h ∈ C2(Ω),

we claim that

(8) ‖Rσ0(h)‖ ≤ Cσ0‖h‖2C2(Ω)
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where

Cσ0 = C sup
0≤t≤1

(
(2p+ 1)‖∇ut‖pC2(Ω)

+ p(p− 2)‖∇ut‖2p−2

C2(Ω)

)
with C depending only on Ω and the dimension n. Assuming the claim then dFσ0 is a linearization
of F at σ0 with a quadratic remainder as in (24).

To show (8) we estimate (6) using inequalities (9) and (10). These last two inequalities are
consequence of (7) and elliptic regularity [17]. Let C > 0 be a constant depending on Ω and the
dimension n, using the convention that C can increase from step to step we have

‖∇vt‖C1,α(Ω) ≤ ‖vt‖C2,α(Ω) for α ∈ (0, 1)

≤ C‖∇ · h∇ut‖C0,α(Ω) ≤ C‖h∇ut‖C1,α(Ω) for α ∈ (0, 1)

≤ C‖h‖C2(Ω) · ‖∇ut‖C2(Ω),

(9)

and

‖∇wt‖ ≤ C‖∇wt‖C1,α(Ω) ≤ ‖wt‖C2,α(Ω) for α ∈ (0, 1)

≤ C‖∇ · h∇vt‖C0,α(Ω) ≤ C‖h∇vt‖C1,α(Ω) for α ∈ (0, 1)

≤ C‖h‖2
C2(Ω)

· ‖∇ut‖C2(Ω),

(10)

where the last inequality follows by (9).

Decomposition of the Linearization. We decompose the linearization (4) and describe the
geometry of dFσ0 in more detail in the following two propositions. This analysis holds for any
p > 0.

Proposition 2.1. Let u0 be σ0-harmonic with ∇u0 6= 0 in Ω, then

(11) σ0T0
dFσ0(ρ)

σ0|∇u0|p
= −L∆−1

σ0,D
σ0T0ρ for ρ = (σ − σ0)/σ0 ∈ C2(Ω),

where T0 = ∇u0 · ∇ is a transport operator along the gradient field of u0, ∆σ,D is the Dirichlet
realization of ∆σ := ∇ · σ∇ in Ω and L is a differential operator given by

Lv := −∇ · σ0∇v + p∇ ·
(
σ0
∇u0 · ∇v
|∇u0|2

∇u0

)
.

Proof. Since ∇u0 6= 0 in Ω we can write (5) as

(12) dFσ0(ρ) = σ0|∇u0|p
(
ρ+ p

∇u0 · ∇v0(ρ)

|∇u0|2

)
.

Solving (12) for the free ρ term and plugging that into the second equation in (7) we get

Lv0 = ∇ ·
(

dFσ0(ρ)

|∇u0|p
∇u0

)
in Ω, v0|∂Ω = 0.

The solution v0 of the second equation in (7) satisfies

∇ · σ0∇v0 = −∇ · (σ − σ0)∇u0 = −σ0∇u0 · ∇ρ

and is a linear operator in ρ that can be written as v0 = −∆−1
σ0,D

σ0T0ρ. So we get

−L∆−1
σ0,D

σ0T0ρ = ∇ ·
(

dFσ0(ρ)

|∇u0|p
∇u0

)
= σ0∇u0 · ∇

(
dFσ0(ρ)

σ0|∇u0|p

)
.

�
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Notice that in the r.h.s. of (11), the only non-trivial operator in terms of injectivity is the second
order differential operator L. We focus our attention on understanding this operator. Denote by
Π0ω = (∇u0 ·ω/|∇u0|2)∇u0 the orthogonal projection of the covector ω onto ∇u0 in the Euclidean
metric. Then Π⊥ := Id − Π0 is the orthogonal projection on the orthogonal complement of ∇u0.
Take a test function φ ∈ C∞0 (Ω), and compute

(Lv, φ) = (σ0∇v,∇φ)− p(σ0Π0∇v,∇φ),

= (σ0Π⊥∇v,Π⊥∇φ) + (1− p) (σ0Π0∇v,Π0∇φ) .
(13)

We therefore get
L = (Π⊥∇)′ · σ0(Π⊥∇) + (1− p)(Π0∇)′ · σ0(Π0∇),

where the prime stands for transpose in distribution sense.

Example 1. σ0 = 1, f = xn. Then u0 = xn and −L = ∆x′ + (1− p)∂2
xn , where x = (x′, xn). Notice

that for 0 ≤ p < 1, L is an elliptic operator; for p = 1, L becomes the restriction of the Laplacian
on the planes xn = const.; and for p > 1, L is a hyperbolic operator.

Motivated by this example we find a local representation for L. We use the convention that
Greek superscripts and subscripts run from 1 to n− 1.

Proposition 2.2. Let u0 ∈ C2(Ω) be σ0-harmonic, with ∇u0(x0) 6= 0 for x0 ∈ Ω. There exist local
coordinates (y′, yn) near x0 such that

(14) dx2 = c2(dyn)2 + gαβdyαdyβ, gαβ :=
∑
i

∂xi

∂yα
∂xi

∂yβ
,

where c = |∇u0|−1. In this coordinates

(15) L = −Q+ (1− p) 1√
det g

∂

∂yn
c−2σ0

√
det g

∂

∂yn
,

where Q is a second order elliptic positively defined differential operator in the variables y′ smoothly
dependent on yn; in fact, Q is the restriction of ∆σ0 on the level surfaces u0 = const.

Proof. Notice first that u0 trivially solves the eikonal equation c2|∇φ|2 = 1 for the speed c =
|∇u0|−1. Near some point x0, we can assume that u(x0) = a; then u0(x) is the signed distance
from x to the level surface u0 = a. Choose local coordinates y′ on this level curve, and set
yn = u0(x). Then y = (y′, yn) are boundary local coordinates to u0 = a and in those coordinates,
the metric c−2dx2 takes the form

gijdx
idxj = (dyn)2 + c−2gαβdyαdyβ, gαβ :=

n∑
i=1

∂xi

∂yα
∂xi

∂yβ
.

Then
dx2 = c2(dyn)2 + gαβdyαdyβ.

Let φ ∈ C∞0 (Ω), using (13), we get that near x0

Π0∇x = c−1 (0, . . . , ∂/∂yn) .

Locally near x0 we get,

(Lv, φ) =

∫
σ0

(
n∑
i=1

∂v

∂xi
∂φ̄

∂xi
− p ∂v

∂yn
∂φ̄

∂yn

)
dx

=

∫
σ0

(
gαβ

∂v

∂yα
∂φ̄

∂yβ
+ (1− p)c−2 ∂v

∂yn
∂φ̄

∂yn

)
| det(dx/dy)|dy.

(16)
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Hence

L = − 1√
det g

(
∂

∂yβ
σ0g

αβ
√

det g
∂

∂yα
+ (1− p) ∂

∂yn
c−2σ0

√
det g

∂

∂yn

)
,

which proves (15). �

Remark 2. In the two dimensional case we can get an explicit local coordinate system by taking
y2 = u0(x) and y1 = ũ0, with ũ0 ∈ H1(Ω) be any the σ0-harmonic conjugate of u0, that is
∇ũ0 = (σ∇u0)⊥, where (a, b)⊥ = (b,−a). The level curves of v0 (stream lines) are perpendicular
to the level curves of u0 (equipotential lines), see [5] for details.

Remark 3. Notice that if p < 1, L is elliptic (and positive); if p > 1, L is hyperbolic; and when
p = 1, the operator L = Q(yn) can be considered as a one parameter family of elliptic operators
on the level surfaces of u0.

3. Stability estimates

We first provide a conditional stability estimate for the linearized problem of recovering σ from
σ|∇u|p in (1) for p > 0. We address this question by using decomposition (11).

The proof of Theorem 1.1 is divided in some lemmas about the stability of the different operators
in the decomposition (11), we start with the differential operator L

Lemma 3.1. Let u0 be σ0−harmonic, with ∇u0 6= 0 in Ω, then

• Case 0 < p < 1: There exist C > 0 depending on σ, n, Ω and u0 such that

(17) ‖v‖H2(Ω) ≤ C‖Lv‖, for v ∈ H1
0 (Ω) ∩H2(Ω).

• Case p = 1: there exist C > 0 such that

‖v‖2L2(Ω) ≤ C(Lv, v), for v ∈ C∞(Ω̄) with v|∂Ω = 0.

Proof. The proof for the elliptic case 0 < p < 1 is an immediate consequence of elliptic theory (see
for instance Theorem 8.12 in [17]) and injectivity of L with Dirichlet boundary conditions. The
latter follows from integration by parts, see (13). We get that Lv = 0 with v = 0 on ∂Ω implies

Π⊥∇v = Π0∇v = 0 =⇒ ∇v = 0.

Then v = 0.
We now consider the case p = 1. There exists an open bounded Ω1 containing Ω and a C2

extension of u0 to Ω1 denoted by u1 such that ∇u1 6= 0 on Ω1. We extend v as zero in Ω1 \ Ω.
Let x0 ∈ Ω, and denote by Γ0 the level surface of u1 in Ω1 containing x0. Clearly Γ0 is bounded
and closed in Ω1, hence a compact subset of Rn. Its restriction to the interior is an open surface
(locally given by u0 = const. with ∇u0 6= 0). Note that any such level surface may have points on
∂Ω, where it is not transversal to ∂Ω.

Let y = (y′, yn) be local boundary normal coordinates for x0 ∈ Γ0 as in (14). By compactness
we can define these coordinates to an open neighborhood of Γ0 ∩ Ω contained in Ω1. In these
coordinates we can write this open neighborhood as Γ̃0 × (a0 − ε0, a0 + ε0), for Γ̃0 = Γ0 ∩ Ω̃, where

Ω b Ω̃ b Ω1; a0 = u0(x0); and ε0 < min{dist(∂Ω, ∂Ω̃), dist(∂Ω̃, ∂Ω1)}. Using representation (16),

ellipticity of (1), and Poincaré inequality on Γ̃0, we see that for each x0 ∈ Ω there exist ε0 such



8 CARLOS MONTALTO AND PLAMEN STEFANOV

that for all 0 < ε < ε0

a0+ε∫
a0−ε

∫
Γ̃0

Lvv|det(dx/dy)| dy′dyn =

a0+ε∫
a0−ε

∫
Γ̃0

σ0g
αβ ∂v

∂yα
∂v̄

∂yβ
| det(dx/dy)|dy′dyn

≥ 1

C

a0+ε∫
a0−ε

∫
Γ̃0

|∇y′v(y′, yn)|2dy′ dyn

≥ 1

C

a0+ε∫
a0−ε

∫
Γ̃0

|v(y′, yn)|2dy′ dyn ≥ 1

C
‖v‖L2(Γ̃0×(a0−ε,a0+ε)).

(18)

By compactness of Ω we can find finitely many neighborhoods of level curves of u0, such that
(18) holds in each of them and their union contains Ω, since (18) holds for all 0 < ε < ε0 we can take
them to be disjoint. Adding all this estimates we prove the lemma in the p = 1 case as well. �

Lemma 3.2. Let u0 be σ0−harmonic, with ∇u0 6= 0 in Ω, then there exist C > 0 depending on u0

and Ω such that

(19) ‖h‖ ≤ C‖∇u0 · ∇h‖ for h|∂Ω = 0,

where ν(x) denotes the outer-normal vector to the boundary.

Proof. There exist an open bounded Ω1 containing Ω and a C2 extension of u0 to Ω1 denoted by
u1 such that ∇u1 6= 0 on Ω1. We extend h as zero in Ω1 \ Ω. This extension commutes with the
differential because h = 0 on ∂Ω. Let x0 ∈ Ω, denote by Γ0 the level surface of u1 in Ω1 containing
x0. We work in y = (y′, yn), local boundary normal coordinates for x0 = (y′0, y

n
0 ) as in (14). Notice

that since ∇u1 6= 0 in Ω1, these coordinates can be extended through the integral curves of the
gradient field of u0.

Figure 1. Tubular neighborhood Tx0 of integral curve of ∇u0 from xa = x(a) to
xb = x(b).
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Let x(t) : I → Ω1 be a parametrization of the integral curve of ∇u1 such that x(0) = x0,
ẋ(t) = ∇u0(x(t)), and I is the entire interval of definition of the integral curve. Denote by x+

0 the
first point on that the integral curve, starting from x0 and traveling in the same direction of the
flow, hits the boundary ∂Ω1. Similarly denote by x−0 first point on that the integral curve, starting
from x0 and traveling in the opposite direction of the flow hits the boundary ∂Ω1. We know that
x±0 exist because since

d

dt
u(x(t)) = ∇u0(x(t)) · ẋ(t) = ‖∇u0(x(t))‖2 > 1/C > 0,

then u(x(t)) is strictly increasing along the integral curve x(t); and u cannot grow indefinitely in
Ω1. This implies that the integral curve in Ω1 cannot intersect themselves, and cannot be infinite.

Consider a tubular neighborhood of the integral curve x(t) as x−0 < a ≤ t ≤ b < x+
0 ,

Tx0 = {(y′, yn) ∈ Ω1 : |y′ − y′0| < δ0, a ≤ t ≤ b},

where δ0 > 0 is small enough so that Tx0 ∩ {yn = a} and Tx0 ∩ {yn = b} are contained in Ω1 \Ω as
shown in Figure 1. Since h = 0 in Ω1 \ Ω, we can write

h(y′, yn) =

∫ yn

a
(∇u0 · ∇h)(y′, t)dt for (y′, yn) ∈ Tx0 .

Using the Cauchy inequality we get that for δ0 ≥ δ > 0,

‖h(y)‖2L2(Tx0 ) =

∫
|y′−y′0|<δ

∫ b

a

∣∣∣∣∫ yn

a
(∇u0 · ∇h)(y′, t)dt

∣∣∣∣2 dyn dy′

≤
∫
|y′−y′0|<δ

∫ b

a

∫ yn

a
|(∇u0 · ∇h)(y′, t)|2dt dyn,dy′

≤ (b− a)‖∇u0 · ∇h‖L2(Tx0 ) ≤ C‖∇u0 · ∇h‖.

(20)

We used here the L2(Tx0) norm in the y variables (without the Jacobian coming from the change
of the variables) but that norm is equivalent to the original one. By the compactness of Ω, we can
find Tx0 , Tx1 , . . . , Txm such that their union covers Ω. Since the right-hand side in (20) does not
depends on this collection of tubular neighborhoods we use a partition of unity subordinated to
this covering to prove (19). �

We now present the proof for the theorem of conditional stability for the linearized problem.

Proof of Theorem 1.1. We first consider the case p = 1. Let h ∈ C2(Ω) and denote ρ = (σ −
σ0)/σ0 = h/σ0. By Lemma 3.2, definition of v0 = u − u0, and interpolation estimate in section
4.3.1 in [42] we have

‖ρ‖ ≤ C‖σ0∇u0 · ∇ρ‖ ≤ C‖v0‖H2(Ω) ≤ C‖v0‖α1 · ‖v0‖1−α1

Hs(Ω).(21)

Using Proposition 2.1 and Lemma 3.1, we also obtain

‖v0‖ ≤ C‖Lv0‖ ≤ C
∣∣∣∣∣∣∣∣∇u0 · ∇

(
dFσ0(ρ)

σ0‖∇u0‖

)∣∣∣∣∣∣∣∣ ≤ C‖dFσ0(ρ)‖H1(Ω).(22)

Finally, combining inequalities (21) and (22) we proof the theorem in the case p = 1. For the case
0 < p < 1, we use the same reasoning and the better estimate (17) in Lemma 3.1 to conclude. �

We now present the proof of our main result as a consequence of Theorem A and Theorem 1.1
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Proof of Theorem 1.2. Let 0 < θ < 1, 1 > β > max{θ, 1/2} and α1 as in (2). We apply Theorem
A taking

B′′′1 = Hs(Ω), B′′1 = Hs1(Ω), B1 = C2(Ω), B′ = L2(Ω),

B′′2 = B′2 = B2 = H1(Ω),

with

(23) (1− µ1)s1 >
n

2
+ 2, (1− µ2)s2 = 1, (1− µ3)s = s1, for µ1, µ2 ∈ (0, 1).

We choose 0 < µ = α1µ1µ2 < min{1/2, β} by taking µ1 = α1 small enough, we then take µ3 as

1 > µ3 =
β − µ
β(1− µ)

>
1− 2µ

1− µ
> 0,

under the penalty of making s large enough.
First notice that as a consequence of (4) and (8) the differential of F and σ0, dσ0F , is a lin-

earization with quadratic remainder as in (24). Second, conditional stability for the linearizion is
consequence of Theorem 1.1, with α1 = 1 in the case 0 < p < 1 and 0 < α1 < 1 for p = 1. Notice
that s1 = n+4

2(1−α1) >
2

1−α1
. Third, interpolation estimates follow by (23). Finally, continuity of

dFσ0 : C2(Ω) → H1(Ω) follows by (5) and (9). Hence by Theorem A, for any L > 0 there exist
ε > 0 and C > 0, so that for any σ with

‖σ − σ0‖C2(Ω) < ε, ‖σ‖Hs(Ω) ≤ L,

one has

‖σ − σ0‖C2(Ω) ≤ C‖F (σ)− F (σ0)‖β
H1(Ω)

< C‖F (σ)− F (σ0)‖θH1(Ω).

which proofs (3). �

Appendix A. Stability of non-linear inverse problems by linearization

The following conditional stability Theorem through linearization is a generalization of Theorem
2 in [40].

Theorem A.1. Let F : B1 → B2 be a continuous non-linear map between two Banach spaces.
Assume the there exist Banach spaces B′′′1 ⊂ B′′1 ⊂ B1 ⊂ B′1 and B′′2 ⊂ B′2 ⊂ B2 that satisfy the
following:

(1) α-order linearization: for σ0 ∈ B1 there exist dFσ0 : B1 → B2 linear map and α > 1 such
that

(24) F (σ) = F (σ0) + dFσ0(σ − σ0) +Rσ0(σ − σ0), with ‖Rσ0 , (σ − σ0)‖B2 ≤ Cσ0‖σ − σ0‖αB1
,

for σ in some B1-neighborhood of σ0. We say that dFσ0 is the differential of F at σ0 with
remainder of order α.

(2) conditional stability of linearization: there exist C > 0 such that

‖h‖B′1 ≤ C‖dFσ0h‖
α1

B′2
‖h‖1−α1

B′′1
for α1 ∈ (0, 1].

(3) interpolation estimates: there exist C > 0 such that

‖g‖B′2 ≤ C‖g‖
µ2

B2
‖g‖1−µ2

B′′2
, ‖h‖B1 ≤ C‖h‖

µ1

B′1
‖h‖1−µ1

B′′1
, ‖h‖B′′1 ≤ C‖h‖

µ3

B1
‖h‖1−µ3

B′′′1

for µ1, µ2 ∈ (0, 1] and 1 ≥ µ3 ≥ max{0, (1− αµ)/(1− µ)} where µ = α1µ1µ2.
(4) continuity of dFσ0: the differential dFσ0 is continuous from B′′1 to B′′2 .
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Then we have local conditional stability. For any L > 0 there exist ε > 0 and C > 0, so that for
any σ with

‖σ − σ0‖B1 < ε, ‖σ‖B′′′1
≤ L,

one has

(25) ‖σ − σ0‖B1 ≤ C‖F (σ)− F (σ0)‖βB2
.

where β = µ/(1 − µ3(1 − µ)). In particular one has Lipschitz stability (i.e., β = 1) when µ3 = 1,
this happens for example when B′′′1 = B′1.

Proof. Let L > 0, we use the Hölder inequality (a + b)η ≤ aη + bη for a, b ≥ 0 and 0 < η < 1. the
following inequalities follow easily from the hypothesis

‖σ − σ0‖B1 ≤ C‖σ − σ0‖µ1

B′1
‖σ − σ0‖1−µ1

B′′1

≤ C‖dFσ0(σ − σ0)‖µ1α1

B′2
· ‖σ − σ0‖1−α1µ1

B′′1

≤ C‖dFσ0(σ − σ0)‖µB2
· ‖dFσ0(σ − σ0)‖α1µ1(1−µ2)

B′′2
· ‖σ − σ0‖1−α1µ1

B′′1

≤ C
(
‖F (σ)− F (σ0)‖B2 + Cσ0‖σ − σ0‖αB1

)µ · ‖σ − σ0‖1−µB′′1
≤ C · L(1−µ3)(1−µ)

(
‖F (σ)− F (σ0)‖µB2

+ Cσ0‖σ − σ0‖αµB1

)
· ‖σ − σ0‖µ3(1−µ)

B1
.

Hence we obtain

‖σ − σ0‖1−µ3(1−µ)
B1

(1− Cσ0‖σ − σ0‖µ3(µ−1)+αµ−1
B1

) ≤ C‖F (σ)− F (σ0)‖µB2

by hypothesis µ3(1− µ) + αµ− 1 ≥ 0 then there exist ε > 0 so that (25) holds. �
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