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1. Introduction 

Consider the wave equation 

u.-- Au+q( t , x )  u=O (1.1) 

te]R, x~N", n > 3  odd. The potential q(t, x) depends on t and satisfies the 
following conditions: 

(i) qe C ~ (~t x ~-~:~), 
(ii) there exist some positive constants p, C, N such that q(t, x ) = 0  for 

Ixl >P  and Iq(t, x)l < C(1 + Itl) N. 
The aim of this paper is to prove that the potential q(t, x) is uniquely deter- 

mined by the scattering data. 
The inverse scattering problem for stationary (time independent) potentials 

q(x) has been attacked by many authors. The reader should consult [2], [,10], 
[18] and the references given there for the history and the recent progress in 
the analysis of this problem. Most of the works in this direction deal with 
the Schr6dinger equation. Nevertheless it is clear that the results obtained in 
these papers are applicable to the wave equation u , - A u + q ( x )  u=0.  It is 
known that for stationary potentials the uniqueness holds. The proof is based 
on the Born approximation of the scattering amplitude A(k, co', og) as k ~  
(see [-7], [,16], [-22]). 

The situation considerably changes when we deal with time dependent poten- 
tials. The techniques used in the papers cited above are not available in this 
case. One of the reasons is that we cannot use the tools from the spectral 
theory. The local energy decay for (1.1) was examined by Tamura [,28], while 
the existence of the scattering operator was proved in [,1], [8], [19], [20] for 
certain classes of potentials q(t, x). In [-8] Ferreira and Perla Menzala proved 
that if the scattering operators related to qi(t, x), i=  1, 2 coincide and if ql >~-~q2 
then ql=q2, provided that q~ are non-negative, "small"  in a suitable sense 
and qt=O(Itl -~) as l t l ~  o% 0<e__<l. Recently the author [23-26] extended 
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this result to a large class of potentials without assuming that the potentials 
are small. Nevertheless the problem of uniqueness was not completely solved 
because of the restriction ql > q2. 

The main purpose of this work is to prove the uniqueness of the inverse 
scattering problem for (1.1) assuming only (i) and (ii). It is important  to note 
that (i) and (ii) do not guarantee the existence of the scattering operator  S. 
Following Cooper and Strauss [5-1, [-6] for this reason we define a generalized 
scattering kernel K *  (s', co'; s, co), (s', S ) e ~ - ~  2 ,  ( O f ,  (D)~S n - I  x S n-1. This kernel 
describes the scattering of the plane waves 6(t + s - x .  co) by the potential. Here 
the unprimed variables denote the parameters of the incoming wave and the 
primed variables those of the outgoing wave. The kernel K *  will be shown 
to be smooth in co', s, co with values in the space of distributions ~'(IR~,) and 
C ~ off the diagonal (s', co')=(s, co). If the scattering operator S exists, K*  is 
the Scwartz kernel of the operator  S - I  in the Lax-Phillips translation represen- 
tation [14]. Our principal result is the following. 

Theorem 1.1. Let ql(t, x) and q2(t, x) be two potentials satisfying (i) and (ii) 
and let * ' ' K i (s, c9 ; s, co), i = 1, 2 be the corresponding generalized scattering kernels. 
Suppose there exist e > 0  and coo~S n-I  such that K~(s' ,  co,'" s, co)= K2* (s; co'; 
s, co) for Ico-cool<~, Ico'-cool<~, I s ' - s [<~ .  Then ql(t, x)=q2(t ,  x) for all t, 
X.  

The structure of the paper is as follows. Section 2 contains some basic facts 
which are necessary for our exposition. The generalized scattering kernel K *  
is introduced in Sect. 3. Next we examine the singularities of the solution u(t, 
x; s, co) of (1.1) which coincides with the plane wave ( f ( t + s - x . c o )  for t large 
negative. For  this reason in Theorem 4.1 we construct a parametrix for u(t, 
x; s, co) in the form of a progressive wave expansion. In particular, we prove 
that u(t, x; s, co)=5(t + s - x - c o ) + u ~ ( t ,  x; s, o9) where u~ is a locally bounded 
function. In Sect. 5 we derive a suitable representation of K # involving the 
solution u(t, x; s, co). As a consequence, for co' Jee) K*  has the form 

where 

K # (s', co'; s, co) = -- 2 - 1 ( 2 / l ; ) 1  - n ~(s n - 3 ) / 2  O(s,n - 1)/2 M(s', co'; s, co), 

1 
M(s',co';s, co)= ~ q ( x . c o - s , x )  dSx 

]co'-  col x-(~'-~o)=,' 

+ ~ q(x.o3'-- s', x) u~c(x.co'-- s', x; s, co) d x (i.2) 

(see Corollary 5.4). In Sect. 6 we prove Theorem 1.1. The main idea is the follow- 
ing. Let us examine the limit of Ico'-col M as (s', co')~(s, co). Since use is locally 
bounded, the second term in the right hand side of (1.2) gives no contribution 
to this limit. On the other hand, the limit of the first integral in (1.2) depends 
on the choice of the sequence (s', co') -~ (s, co). We set 

co' (~) = co cos # + a sin #, 

s ' ( # ) = s + a  sin #, (#, ~)elR 2, 
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where aeS "-~, a.co=O. Note that the primes here do not denote derivatives. 
Letting #--* O, we obtain that 

l i m l c o ' - c o l M =  ~ q(x.co-s,x)dS~. 
I * ~ 0  a . x = ~  

This relation allows us to determine the integrals of q over some characteristic 
rays. In this way the problem of uniqueness is reduced to the proof of the 
fact that these integrals determine q uniquely. Finally, in Sect. 7 we discuss 
briefly the connection between our time dependent approach and the Born 
approximation of the scattering amplitude for stationary potentials. 

I would like to thank Vesselin Petkov for several helpful discussions during the preparation 
of this work. 

2. Preliminary Results 

We first recall some facts about the free wave equation [] u=0 ,  [] = ~ - / ~  
(see [14]). Denote by Yg=Ho(~")q)L20R ") the completion of the set C~(P,f) 
x Cg (N")~f= (fl ,  f2) with respect to the energy norm 

II fll -- {�89 I ( [v / l l  2 + [fel e) dx} x/a. 

is a Hilbert space with energy scalar product. It is well-known that for 
all R > 0, g e C~ (N") we have 

R 2 
I [g(x)[ 2dx< 2(n_2~flVg(x)l 2dx" (2.1) 

f~I<=R 

Estimate (2.1) shows that Ho(N")cL]or ). Denote by Uo(t)= exp(tA) the uni- 
tary group in 3/f with generator Af=( fz ,  Afx), D(A)={f=(fa, fi)e~cf; (fz, 
A f t ) e  Jr}. Then the solution of the Cauchy problem 

D u = 0 ,  

u(O,x)=fl(x), ut(O,x)=fg(x), f = ( f l , f 2 ) ~  

is given by n(t)=Uo(t)f. Here and in what follows we denote the pair (u(t,.), 
udt,-)) by u(0. The Huygens' principle says that supp Uo(O f c  {xE~.~n; Ix -y l  = It1 
for some y~supp f}. There exists a unitary map ~ . :  ~ ' ~ L 2 ( ~  x S "-1) called 
the free translation representation, such that (~ .  Uo(t)~.-1 k) (s, co)= k(s - t ,  co). 
For f~ C~ (~") x C~ (~") the map ~ .  is given by 

k (s, co) = (~ ,  f) (s, co) = c, ( - 0~" +1)/2 R f ,  + c3(~ " -1)/2 R f2), (2.2) 

where R g is the Radon transform of g and for simplicity of notations we set 
c, = 2-1 (2x)(t -n)/2, Cn = 2-1 (_27r)(1 -n)/2. The inverse map N~- * is given by 

(~21k)(x)=2c2 ~ (--~(sn-3)/2k(x.co, co), O~n-t)/2 k(x.co, co))dco. (2.3) 
1~I=1 
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Next we turn our attention to the perturbed Eq. (1.1). Following [12, Theo- 
rems 4.5 and 6.1] (see also [1], [24], [26]) it is easy to show that the solution 
of the Cauchy problem 

([[] + q(t, x)) u=0, 

U(B, x)=fl(X), utts, x)=f2(x), f = ( f l ,  f 2 ) E ~  

is given by u(t)= U(t, s)f. Here U(t, s) is a strongly continuous two-parameter 
family of operators in ~f satisfying the conditions 

a) U(t, s) U(s, r)= U(t, r) for all t, s, r; U(s, s)=I;  
f 

b) [IU(t, s)[[ ~exp ~V[t-s[ sup [q(z, x)l~; 
( s<<,c<t  ) 

X ~ R  n 

c) for feD(A) we have U(t, s) feD(A) and 

(did t) U (t, s) f = (A - Q (t)) U (t, s) f, 
(d/ds) U(t, s) f=  - U(t, s) (A - O(s)) f, 

where Q(t)f=(0, q(t, x) fl(x)). Note that Q(t) is a bounded operator in 3f  
in view of (2.1). 

The operatur U(t, s) admits the representation 

U(t, s)= Uo(t-s)+ ~ Vk(t, S), (2.4) 
k = l  

where 
t ~ 1  f f k -  1 

f I .. .  I 
$ S $ 

Uo(t-al)  Q(al). . .  Uo(ak-, --ak) Q(ak) Uo(ak--S) f, (2.5) 

k> 1 (see [12, Theorem 4.5], [24], [26]). The convergence of (2.4) follows from 
the estimate 

I[ Vk(t, s)[[ < [t-- s[g ks(s<_u~P<_t '[ /Ik 
k! Q(z)[I �9 

Expansion (2.4) shows that for (1.1) is valid the principle of causality. More 
precisely, causality means that 

supp U(t,s) f~{xElR"; Ix-yl<=lt-sl forsomeyEsuppf}. 

This property enables us to extend U(t, s) (and Uo(t)) on the space JC~loc={f; 
~ofE Jg for each ~0EC~(N")} by using a partition of unity. 

Below we recall some results of Cooper and Strauss [4], [5] which are 
necessary for our exposition. 

Definition2.1. The continuous function t~v( t )E~o~ is called outgoing if 
lim (v(t), Uo(t) g)=0 for each gEC~(IR") x C~0R"). 

t - - ~  - -  o0  
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Here (-,-) is the scalar product in ~r 

Theorem 2.2 [4], [5]. Let p(t, x)eL~o~(R; L20R")), p(t, x ) = 0  for Ixl >p. Then 
a) there exists a unique outgoing solution u(t)=(u, ut) of  the equation utt 

- A u = p ( t ,  x); 

b) there exists a unique function u* eL]oc(NxS"- l ) ,  called the asymptotic 
wave profile of  u, such that for each pair R1 < R2 we have 

, u t ( t , x ) - [ x l -<" - l ) /Zu* ( l x [ - t , ~ ) [Zdx  ~O,  as t  ~ o o ;  (2.6) 
R1 + t <  ]xl <R2+t 

c) the map p --* u* is continuous. 

Note that condition (2.6) can be written in the following equivalent form 

u * (s, co) = lim t (" - x)/z ut (t, (t + s) o9), (2.7) 
t~oO 

where the convergence takes place in L]oc(R x S"- 1). 
There is another situation when the asymptotic wave profile exists. Let u(t) 

= Uo (t) f, f s  oY'. Setting 

u* = ( -  1) ~"- ~)/2~, f, (2.8) 

one can prove that (2.6) and (2.7) hold for t --+ _+ oe. Moreover, then the integra- 
tion in (2.6) can be taken over R"  and similarly (2.7) holds in L Z ( R x S  "-1) 
(see [14], [5]). 

3. The Generalized Scattering Kernel 

We are going to introduce the generalized scattering kernel K*.  Our definition 
(see also [26], [27]) is close to that given in [5], [6] in the case of scattering 
by a moving obstacle. Let hj(z)=z~/j! for z > 0  and hj(z)=0 otherwise. Then 
h)=hj_ l ,  ho is the Heaviside function. Denote by F(t, x; s, o9) the solution 
of the Cauchy problem 

(I--1 + q(t, x)) F=O,  

F[t<_s_p=hl ( t+s-x .o9) ,  (s, o9)~I1, x S "-1 . 

In other words, (F, I~ = U ( t, - s - p )  (h l ( - p -  x.  o9), ho ( -  p -x-co)). The function 
F~c(t, x; s, ~o)=F(t, x; s, o g ) - h l ( t + s - x . o g )  is the unique outgoing solution 
of the equation [S]F~c=-q(t, x)F(t, x; s, og)eC0R~xS,~,-1 ; L~oc(R,; La(R~))). 
By Theorem 2.2 the function F~ c has an asymptotic wave profile F~(s',  co'; s, 
og)e C(IR~ x S n-1 ; L]oc OR~, x S~71)) satisfying (2.6) and (2.7). We define 

K*  (s', co'; s, co)= 2 c~- 8~ + 1)/2 /~sc ~ (St, O9'; S, O9). (3.1) 

TO describe the role which plays K*  in the scattering theory for Eq. (1.1), 
consider the following situation. Let f~ovf be such that N,  f e C g ( R x S " - ~ ) ,  
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(N, f) (s, o~)= 0 for ]sl > R and set Vo (t)= Uo (t)f. Then Vo(t) vanishes in the back- 
ward cone I x ] < - t - R  [14], hence Vo(t) is a solution of (1.1) for t < - - R - - p .  
Denote by v(t) that solution of (1.1) which coincides with Vo(t ) for t < - - R - p .  
Then the function v(t)-Vo (t) is the outgoing solution of the equation [] (v-Vo) 
= - q v .  By Theorem 2.2 v - v  o has an asymptotic wave profile. Since v o is a 
free solution, there exists Vo ~ given by (2.8). Consequently, we can define v # =(v 
-Vo)  * + vg. Definition (3.1) of the generalized scattering kernel K e is motivated 
by the following. 

Proposition 3.1. Let v o and v be as above. Then 

v*(s',c~176 + S SK~(s',c~176176 dsd~,  
Io~[=a 

where the integral is to be considered in the distribution sense. 

Proof (following [5]). First we will show that 

v(t ,x)=vo(t ,x)--2c . ~ SF~c(t,x;s, co)O~"+"/2vg(s, co)dsdco. (3.2) 
ro~l= l 

Denote by vl(t, x) the right hand side of (3.2). Since F~c vanishes for s < - t - p  
and Vo ~ vanishes for [si>R, it follows that vl=vo for t < - R - p .  On the other 
hand, (2.3) and (2.8) yield 

Vo(t,x)=--2Cn ~ O~"-3)/2v~(x'co--t, eo) dco. 
I~i=1 

We have 

vl( t ,x)=vo(t ,x)+2c,  ~ ~hl(t+s-x'co)O(~'+l)/2vg(s,c~)dsd o3 
i~o]=l 

- 2 c ,  ~ jF(t ,x;s,  co)O(~+l)/2v~(s, co)dsdco 
i~ol=l 

= - 2 c ,  ~ ~F(t,x;s, co)~(~+l)/2v~(s, co)dsdco. 
Io~1=1 

Hence Vl(t, x) is a solution of (1.1) with Cauchy data v 1 =v 0 for t < - R - - p .  
This fact proves (3.2). Taking the asymptotic wave profiles of each side of (3.2) 
we complete the proof of the proposition. 

In the remainder of this section we will study the case when the scattering 
operator exists. The wave operators associated with (1.1) are 

O+ = s - l i m  U(O, - t )  Uo(-t), 
t --~ oO 

Wf-- lim Uo(--t ) U(t, 0) f, f~Ran  Y2+. 
t - ~ o o  

We say that the scattering operator S exists, if the limits (2 + and W exist defining 
bounded operators. Then we set S =  WO+. We refer to [1], [8], [19], [20] 
for sufficient conditions guaranteeing the existence of S. 
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Proposition 3.2. Suppose the scattering operator S exists. Then the distribution 
K*  is the Schwartz kernel of  the operator ~ , ( S - I )  ~ 1 

Proof. Let k e C ~ ( N  x S n-l)  and set f=N~-~ k, Vo(t)= Uo(t ) f. Let v(t) be related 
to %(0 as in Proposition 3.1. Obviously v(t)=U(t,  0) f2+ f. The definition of 
S implies that 

IIUo(t)Sf-v(t)ll ~ 0 ,  as t--* oo. 

Thus the asymptotic wave profiles of Uo(t) S f  and v(t) must coincide. Combining 
(2.8) and Proposition 3.1 we find 

(N.  SI)(s ' ,co' )=(N.f) (s ' ,co' )+ ~ ~Ke(s' ,co';s ,  co)(~.f)(s ,  co) dsdco,  
Io~1=1 

which yields the required result. 

4. Construction of Parametrix for u~c 

An important role in our analysis plays the function u~c defined by usa(t, x; 
S, c o ) - -  - -  ~s 2 / ]sc( t  ' X ;  S, co). Clearly u~(t, x; s, co)=u(t, x; s, ro)-c~(t+s-x.co) ,  where 
u(t, x; s, co) solves the Cauchy problem 

([B + q(t, x)) u =0, 

ult< _~_p=b(t + s-- x.co). (4.1) 

Note that by causality u, use and F~c vanish for t+s<x .co .  A priori us~ is a 
distribution. Below we prove that in fact use is a function which is continuous 
for t + s > x . c o  and it has a jump at t+s=x .co .  The next theorem could be 
considered as a generalization of the corresponding result in 1-17] (see also 
I-3]) established for stationary potentials. 

Recall the functions hi(z ) introduced in Sect. 2. We are looking for an approx- 
imative solution uN of the problem (4.1) in the form of the progressive wave 
expansion 

N 

uN(t, x; s, co)=c~(t +s- -x .co)+ ~, Aj(t, x, co) hj(t +s--x.co). 
j=0 

For convenience denote h_ 1 = 6 and hj = hj(t + s - x .  co). We have 

N N 

( R  + q) uN = -- ~ (V~ -- co 0,). (Vx + co Or) (A 1 h 1) + q 6 + q ~, Aj hj 
j = o  j = o  

N N 

= 2  ~ [(O~+ co.S7~) Aj] hj_ 1 + ~" [(VI +q) Aj] hj+q6.  
j = o  j = o  
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Equating singular coefficients we obtain the following transport equations for 
Aj 

2(~ + co. V~) A o = -- q, 

2(at+co.V, )Aj= - ( V I + q ) A j _ ~ ,  j =  1, 2, ..., N. 

These equations can be solved setting 

Ao(t,x,  co )=- -~  -oo q(t + a , x  +aco)da,  

1 i Aj(t ,x ,  c 9 ) = - ~ - o o  ( V l + q ) A i - l ( t + a ' x + a c o ' c o ) d a '  j = l ,  . . . ,N.  

Clearly, 

Aj(t ,x,  co)=O for x . c o < - - p  andfor  [x-(x .co)col>p.  (4.2) 

Thus we obtain (VI+q)uN=[(VI+q)AN]  hN. This equality shows that the 
remainder R N = u - u N  solves the Cauchy problem 

(IN +q)R~=-[([S] +q)AN] hN, RNl,<-s-p=0. (4.3) 

Observe that the right hand side of (4.3) is supported in the compact set {x~N.'; 
-p<x .co<=t+s ,  Ix-(x.co) col<p} in view of (4.2). Hence it belongs to C(Nt 
xlRsxS~o-1; H/V(~)), where H N is the Sobolev space. Since [N+q(t, x) is a 
strictly hyperbolic operator, the above Cauchy problem has a unique solution 
RN~ C(~.t ; H N+ 10R~) ) c~ C 1 (~t ; HN(IR~)) (see [11, Theorem 23.2.3]). Moreover, 
R N depends continuously on s, co. Thus we have proved 

Theorem 4.1. For each integer N we have 

N 
u(t, x; s, co)=b(t + s- -x 'co)+ ~ Aj(t, x, co) hj(t + s--x'CO)+ RN(t, x, s, co), 

j = 0  

where R N ~ C (~t  x P'~s x S~- 1 ; H N + 1 ~k~)). 

Following similar arguments, it is easy to prove that R N depends smoothly 
on t, s, co with derivatives ~ ~ ~ R N belonging to H"(P-~,) with r e = N +  1 - ~  

-/~-I~1. 
Corollary 4.2. u~c(t, x; s, co)=Ao(t, x, co) h o ( t + s - x . c o ) + R o ( t ,  x, s, co), where 
R o is continuous in t, x, s, co. Moreover, supp u~ ~ {x; [xl =< t + s + 2 p, x. co =< t + s}. 

N 
Proof Fix N >  n/2--1. Then R o = ~ Aj h j+ RN. Since the sum is continuous 

j = l  

function, it is sufficient to examine R N. Clearly R N depends continuously on 
x provided t, s, co are fixed. Furthermore, 

IRN(t, x, s, CO)-- RN(to, Xo, So, COo)[ < IRN(to, x, So, COo)-- RN(to, Xo, So, COo)] 

+ IRN(t, X, S, CO)--RN(tO, X, SO, COo)l" 
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The first term tends to zero, as x--* Xo, while the second one can be estimated 
by 

c II/~N(t, ", s, co)-/~N(to, ~ So, coo)llL~~ 

< c IS(1 + l~  12)- N- ~d ~] ~/2 l[ RN ( t , . ,  s, co)-  RN ( to , ' ,  so, coo)l[ ~,,~, (R-~ 

which goes to zero, as t--* to, s ~ So, co ~ coo in view of Theorem 4.1. Here/~N 
denotes the Fourier transform of R~ with respect to x. 

To prove the last assertion of the corollary, it is sufficient to consider the 
support of Fsr Duhamel's principle implies that 

t 

(F~c,~tF~c)=-- S U(t,a)Q(a)h(a)da, 
- -s - -p  

where h(a)=(hl(a+s-x.co),  ho(a+s-x.co)). According to (ii), Q(a) h(a) van- 
ishes for Ixl > p. By causality F~c = 0 for Ixl > t + s + 2p. This completes the proof 
of the corollary. 

5. Representation of the Generalized Scattering Kernel 

In this section we obtain a representation formula for K ~ involving the solution 
u(t, x; s, co) of the Cauchy problem (4.1). 

Lemma 5.1. Let p and u ~ be the same as in Theorem 2.2. Then 
a) if p ~ C ~ we have 

u ~ (s, co)=c2 ~"-  l~/2 S p ( x . c o -  s, x) dx, 

b) for arbitrary peLaloc(~; L2(~")) the above formula is valid in the following 
generalized sense: 

Iu~(s, co)~,(s)ds=c, Ifp(t,x)O]"-~)/Z~(x.co-t)dtdx (5.1) 

for each ~k (s) E Cy (IR). 

Proof The outgoing solution u(t) of the equation V3u=p(t, x) has the form 
[4], [5] 

n(t)= i Uo(t-z)p(z)dT, 
- - c o  

where p(z) =(0, p(z,. )). Fix R~ < R  2 and set 

--RI  + p 

f =  I Uo(-~)p(z)dz 
- - R 2 - p  
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and denote v(t)= Uo(t) f. Huygens' principle implies that v(t)=u(t)  for R l + t  
< [ x [ < R 2 + t .  Hence v~(s, co)=u#(s, co) for RI<=s<=R 2. On the other hand, 
by (2.2) we get 

v e (s, co) = (-- 1) (n- 1)/2 (~n f) (S, co) = C~- 0~ n- 1)/2 

For  R~ ~s<=R 2 w e  obtain 

- R I  + p 

I i p ( x . c o - s , x ) d S ~ d z .  
- - R 2 - - R  x 'cO=S+Z 

u ~ (s, co) = v ~ (s, co) = c 2  a~n- 1)/2 ~ p ( x .  co - s, x)  d x.  

Since the numbers R1 < R2 are arbitrary, we complete the proof of (a). To prove 
(b), choose a sequence paeC ~, pk=0 for I x I > p + l ,  Pk--'P in L~oo(R; L20R")), 
as k -~ ~ .  Then u~ ~ u # in L]oc (R x S"- 1) and by (a) we have 

u~ (s, co) ~ (s) d s = C n ~ p~ (t, x) r ~ (x'co -- t) d t d x. 

Letting k -~ ~ ,  we see that the left hand side of the above equality tends weakly 
to the left hand side of (5.1), while the second term above tends to the second 
term in (5.1) uniformly in toeS"-1.  This completes the proof of the lemma. 

Remark. A straightforward proof  of (a) in the case n = 3 can be found in [4]. 
Now we are ready to derive the desired representation formula for K ~. 

Recall the equality []  F~c = --qF. By Lemma 5.1 for each q)(s')e C~ (R) we have 

# ' ' ~ '- co) q~(s')ds' ( K  (s,co ;s, co),q)(s')>=2cf ~"+l)/2~F~(s',co ,s, 

= - 2 e 2 0~" +1)/2 ~ q (t, x) r ( t ,  x ;  s, co) ( -  a~,)~"-1)/2 q~ (x .  co' - t) d t d x.  (5.2) 

Here and in what follows we denote by ( f ,  q~> the action of the distribution 
f on the test function q~. Applying the results of the preceding section it is 
easy to show that (5.2) depends smoothly on co', s, co. Thus we have proved 

T h e o r e m  5.2. K *  admits the following representation 

K ~ (s', co'; s, co) = -- 2-1 (2 n) l - ,  ~ q (t, x) 0~"- 3)/2 u (t, x; s, co) 

�9 8~" , -1) /2~( t+s ' -x .co ' )d tdx ,  (5.3) 

where u(t, x; s, co) is the solution of the Cauehy problem (4.1). Moreover, K ~  (s ', 
'" co )~C (So~, 1 c o , s ,  o~ " -  x~xS~- ; ~ ' ( R ~ , ) ) .  

Remark 1. Integral (5.3) is to be considered in the sense of (5.2) 

Remark 2. A similar formula was found by Morawetz [17] for stationary poten- 
tials. Representations of this kind for scattering by obstacles were established 
in [6], [15]. 

Corollary 5.3. K ~ (s', co'; s, co) = 0 for s' > s + ~ [co' -- co[. 

Proof  Assume s' > s + p lco'--co[, [xl < p, t + s ' -  x.co'=O. Then s'-- s > x.(co'--co), 
hence t + s - - x . c o < O  and by causality the solution u(t, x; s, co) in integral (5.3) 
vanishes. 
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F o r m u l a  (5.3) can be wri t ten in the following useful form. 

Corol la ry  5.4. For o9'4= oo we have 

K~ (s,, co , s, co)= 2 ( , -  3)/2 0( , -  1)/2 [ 
1 

'" - 2 c .  a, 5, [Ico'-col 5 
X " ((O" - -  r = S" - -  S 

+~q(x. co'--s', x) u~c(x, co'--s', x; s, co) dx]. 

Proof Inser t ing the equal i ty F = F~ c + hi (t + s -  x .  co) in (5.2) we find 

( K  e (s', co'; s, co), q) (s ' ) )=  11 + I 2 ,  

where  

Ia = - 2 c  2 O~ " -  3)/2 SSq(x. co'-s', x)u,c(x, co'-s', x; s, co) 

�9 ( -  g~,)("- 1)/2 q~(s') dx ds', 

I2 = - 2 c ,  2 at,"+ 1)/2 SSq(t, x ) h l ( t + s - x . c o )  

. ( _ @ ) ~ , -  1)/2 q~(x.co ' - t )dxdt  

= - 2 c, 2 ~ " -  3)/2 5 q (x- co - s, x) ( -  as,)("- 1)/2 ~o (x. (co' - co) + s) d x. 
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q(x 'co-s ,x )dSx  

(5.4) 

(5.5) 

(5.6) 

Let  us represent  N "  as a union of the planes {x; x . (co ' -co)=s ' -s} ,  s'elR. Then  
12 becomes  

q(x'co--s,x) 

(5.7) 

1 
12 = _ 2 c  2 0~.-3)/2 Ico'-col j" J" 

x . ( o g '  - - ~ ) = s ' - - s  

�9 (--0~,) ("- 1)/2 ~o(s') dSxds' 

C o m b i n i n g  (5.5), (5.6) and  (5.7), we comple te  the p roo f  of  (5.4). 

Remark. Apply ing  the results of  Sect. 4 to (5.3) or  (5.4), it is not  ha rd  to see 
that  K *~ is Coo o f f the  d iagonal  (s', co')=(s,  co). 

6. P r o o f  of  Theorem 1.1 

Deno t e  by  M(s', co'; s, co) the expression in the square  bracke ts  in (5.4). As 
we have  just  shown, M is C ~ for (s', co')+(s, co). We are going to examine  
the limit of  [co'-co[ M(s', co'; s, co) as (s', co')--+(s, co). Since M is s ingular  at  
this point ,  the limit will depend  on the choice of  the sequence (s', co'). Fix (s, 
co)~N x S"-  1 and  let a ~ S " -  1, a .  co = 0. Set 

co' (p) = co cos/~ + a sin p, 

s ' ( # ) = s +  c( s in# ,  (~,/z)~]R 2. 
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By Corol lary  4.2 the funct ion us~ is locally bounded.  Hence the second integral 
t COt in (5.4) remains bounded  when s, co are fixed and s ,  run over bounded  

sets. Consequently,  

lim Ico'(~)-- col M(s'(#), co'(#); s, co) = lim S q(x .co - s ,  x) dS~ 
# ' * 0  'u--+O x . ( a - o 9  t a n # / 2 ) = a  
# * 0  

= ~ q ( x . c o - s , x ) d S x .  (6.1) 
x ,a=ol  

Now, let q~ and q2 be the potentials  of Theorem 1.1. Denote  by M i the 
function M related to % i = 1, 2. We first claim that  

MI(s' ,  co'; s, co)= M2 (s' , co'; s, o)) 

for I s ' -  sl < el , lco'-cool < e~ , lco-coo[ < el , co' # co (6.2) 

with some positive el < e. Indeed, fix co', co so that  co' 4= co, l eo ' -  cool < v, l c o -  cool < v 
with 0 < v < ~. Then  l co' - col < 2 v. The  assumptions of Theorem 1.1 imply 

a~n-3)/za~n,-1)/2(M1-M2)=O for I s ' - s l < ~ ,  

M I = M 2 = 0  for s ' > s + 2 v p .  

(6.3) 

(6.4) 

Choosing v so that  2p v < ~/2, it is easy to derive from (6.3) and (6.4) that  M1 = M 2  

for [ s ' - s l<e ,  [co'-coo]<V, [co-coo[<V, co'#co. Of  course, the same is t rue for 
co'=co. This proves (6.2). F o r  convenience we denote  q = q l - q 2 .  Combining  
(6.1) and (6.2) we find 

q(x'co-s, x) dSx=O (6.5) 
x.a=o~ 

for all (s, 0~)e]R 2, (co, a)GSn- l xS  n-1 such that  I co -coo l<e l ,  a . co=0 .  Fix (s, 
co) so that  [co-coo[ < e 1- Given a e S"-1 o r thogona l  to co, denote  by X~o, ~ = {x e lR"; 
x . c o = x . a = 0 }  the hyperplane in P," o r thogona l  to co and a. Setting x = e a  
+ /?co+y ,  y e Z  . . . .  we write (6.5) in the form 

P 

S ~ q ( f l - s ,  cxa+fico+y)df ldSy=O for aa_l_co, (6.6) 
X~,a - p  

where dSy is the surface measure on Z,~,a. Consider  the function 

P 

Qs, o,(z)= S q( f i - s , z+ f l co )d f l ,  
--p 

z z Z ~ = { x ; x . c o = 0 } .  
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Letting a run over the set {aeS"-l; a.co=0}, we deduce from (6.6) that the 
integrals of the function Q,,,(z) over each hyperplane in Z~o vanish. Hence Q,,,o 
=0, i.e. 

P 

q(f l-  s, c~a + fie) + y) d fi=O (6.7) 
--p 

for fo~--C~ol < ~ ,  all s, aa• y e ~ , ~ .  
We wish to show that (6.7) implies q=0.  To do this we realize below the 

following idea (see also [9, Proposition 7.5]). By (ii), q65p,(~,+1), hence the 
Fourier transform c~(z, 4) is well-defined. Let us write formally 

__ - i t z - i x . ~  O(z,~)--S~e q(t ,x)dtdx.  (6.8) 

Introduce new variables fl, s, a, y, such that 

t =  f l - -  S~ 

x=/3co+aa+y, (fl, s, a)E]R 3 , yEZo,,a. 

Clearly, d t d x = d fl d s d a dSy and (6.8) becomes (formally) 

~(z, 4)= S ~ e - i ~ q ( f l - s ,  f lco+aa+y)dfldsdadSy, 

(6.9) 

where the phase function q~=fl(z+~.o2)-sz+o~a.~+y.4 does not depend on 
/3 if z + 4" co = 0. In this case q = 0 in view of (6.7). Thus we obtain that ~ vanishes 
in the interior of the set U =  U {(z, 4); z+~-co=0}.  Then exploiting the 

Io,-o, ol <ca 
fact that 0 is analytic with respect to 4, we can show that q=0.  If q(t, x) is 
compactly supported in t these arguments prove Theorem 1.1. 

To justify these considerations in the general case, fix aeS"-1, so that a.COo 
= 0 and for simplicity denote N = Zo~o,,. Put 

co (p) = coo cos p + a sin p, 

a(p)= -coo sin p + a  cosp. 

Clearly [co(P)[ = [a(p)[ = 1, co (p )La(p )  and IP[ <e l  implies Io)(p)--COoJ < ~ i .  Relation 
(6.7) yields 

P 

S q(fl--s, ea(p)+fico(p)+y)d/3=O (6.10) 
p 

for all (s, ~)~x 2, yEZ, [p[<e 1. Fix ZoEN. and choose ~o~1t" such that Zo 
+ ~o-coo =0, ~o.a>0.  Then 

~o=C*oa--zoO~o+Yo, yo~Z, c%>0. 
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By the implicit function theorem there exist functions a=a(z ,  ~), y=y(z ,  ~), 
p=p(z ,  4) defined in some neighborhood ]Z-Zo]<V, 14-~o]<V of (%, ~o) such 
that a=ao ,  Y=Yo,  p = 0  for (z, ~)=(%, 4o) and 

4=aa(p)--zco(p)+ y, y~S, (6.11) 

(then z+~.co=0) .  Moreover, the Jacobian [O(z, ~)/O(z, a, y, p)[ is equal to ~. 
Let q~('c, 4)~C~(]R • R ") be supported in the set [Z-Zo[<V, 14-4o1<V. Then 

(O(z, Q, q)(z, Q ) = f l q ( t , x )  l ~ ~I e-'t~-':'r .... "P) 

�9 q~(z, ~(z, a, y, p)) a d z  da dSr dp dt dx, (6.12) 

where 4(z, a, y, p) is determined by (6.11). Here the integration in z, a, p is 
taken over small neighborhoods of %, ao, 0 and y e n  belongs to some neighbor- 
hood of Yo. Choosing a new constant v >0,  we can assume that the support 
of q~ is so small that (z, 4(z, a, y, p))esupp (p implies IPl <el"  

We will change the order of integration dp dt d x ~ d t  dx  dp in (6.12). 
To justify this, it is sufficient to prove that the function 

f ( t ,  x, p)=q(t, x) ~ ~Ie -it~-i~r .... Y'P) ~o(z, r :t, y, p)) adz  da dS, 
Ic 

satisfies the estimate 

If(t, x, P)I = C(1 + t2) - 1 for all t, x, p. 

Indeed, according to (ii) we have 

1(1 + t2)f(t,  x, P)I 

~.  " y, p)) ada dSy _-<C(l+tZ) I+N sup , ~ t ~ e  -'x'r .... r'P)~0(z, 4(z,a, 
Ixl_<p z 

_-__ cl  sup sup I f1(1- + "  e -ixe  . . . .  , , p )  q~(z, 4(z, a, y, p))[ ~da dSr. 
I x l  < p "c ,~ 

(6.13) 

Here ~ - . t  denotes the Fourier transform with respect to z. The inequalities 
above lead immediately to (6.13). Changing the order of integration we write 
(6.12) in the form 

. . . .  

! J 

A second change of variables (see (6.9)) 

t = f l - -  S, 

x=flco(p)+a' a(p)+ y', (fl, s ,~')eR 3, y'eS, 
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yields 

(0(z,~),q)(z,~)) = ~ {I...~[~q(fl-s, flco(p)+e'a(p)+y')dfl] 
Ipl<~l 

" e -i(-sz+ac'a+y''y) (p('c, ~(T, e, y, p)) a d z  d e  dSy ds  de '  dSy,} dp. 

Here we have used the fact that the phase function - s z + e ' e + y ' . y  does not 
depend on ft. By (6.10) the integral in the square brackets above vanishes. Thus 
we have proved that for each ZoeN there exists ~oslR" and v>0 such that 
for each (p('c, ~)eC~(N. n+l) supported in {(% ~); I~-%l<v,  I~-~ol<v} we have 
(O(z, ~), (p('c, 4))=0. Let (p(z, ~)=~,(z) r/(~), where ~keC~~ ~b(z)=O for Iz 
-Zol>V, t/eC~ (/R"), q(r for I~-~ol>v. Then 

( O(z, ~), O(z) rl(r ) =I~ q(t, x) ~e  -i'*-i~'r O(z) rl(r ) dz d ~ dt dx 
= ~ q(t, x) ~ e -i~'r ~(t) rl(~) d ~ dt dx 
= ~,~_~r x) ~(t) dt) rl(~)d~. 

Hence the Fourier transform 

F(~)=~_.r q(t, x) ~(t)dt) 

vanishes for J~-~ol < v. Since the last integral is compactly supported function, 
it follows that F(~) is real analytic. Hence F(~)= 0 for all ~. Consequently, 

(o~t__,~q)('c,x)=O for Iz--%l<v, allx. 

Since Zo is arbitrary, we obtain q=0. This completes the proof of Theorem 1.1. 

7. The Stationary Case 

In this section we assume q(x) stationary (time-independent). In this case we 
obtain a simple recovering procedure for q(x). At the end of the section we 
make a connection with the proof of the uniqueness of the inverse scattering 
problem for stationary potentials based on high-frequency asymptotics of the 
scattering amplitude. 

The introduction of K ~ in this case is simplified as follows. Let F(t, x, 
co) be the solution of the Cauchy problem 

([Z + q(x))/~=0, 

ffl~< _p=hl ( t -  x'co) 

and set ~c(t, x, co)=iP(t, x, co)-ht(t-x.co).  The generalized scattering kernel 
we define by (see (3.1)) 

g *  (s, co', co)= (2 n) (x- n>/20(s n -  1/2 Fss~ (S, CO', CO), 

where for each cotS"-1, ~ (s, co', co) is the asymptotic wave profile of ~c- 
It is not hard to see that the kernel K # (s', co'; s, co) introduced in Sect. 3 depends 
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merely on s ' - s  in the stationary case and we have K * ( s ' - s ,  co', co)=K~(s ', 
r co, s, co). Theorem 1.1 then reduces to the following 

Corollary 7.1. Assume qi(x)e C~ ~R"), n >__ 3 odd and let K2i ~ (s, co', co) be the general- 
ized scattering kernels related to q~, i = 1, 2. Suppose there exist e > 0 and coo ~ S" - ~ 
such that 

R~(s ,  CO',CO)=K~(s, CO',CO) for Isl<~, ico-cool<~, Ico'-cool<~. 

Then ql =q2- 

Suppose further, we know the kernel/s (s, co', co) for all incident directions 
co, lco'-col<e, Isl<~ with some e>0.  Then we shall obtain explicit formulae 
for recovering q(x). By Theorem 5.2 we have 

t R e (s, co', co) = ( - 1) (" - 1)/z 2-1 (2 re) 1 -" ~3~- 2 M (s, 09, co), (7.1) 

where 

/~r (s, co', co)= ~q(x) u(x .co'--s, x, co) dx. (7.2) 

depend smoothly on co', co with values in ~'(IR~) and for co':t:co h )  and /s 
or s 4 0  they are smooth functions. For coeS ~-l, O<[co'--co]<e, ]s]<e let us 
define 

Ml(s, co',co)=2(-1)("-l)/2(2~z)"-I f d s l  ds2 ... ds,_2K*(s,_z,co' ,co).  
s t~ 1 s n  3 

(7.3) 

By the arguments following (6.1) we see that for Ico '-col<v=min(e,  e/4p) M11 
coincides with ~ .  Put 

co' (/~) = co cos p + a sin #, 

s(/~)=a sin #, aES "- l ,  a-co=0, (e,#)MR 2. 

By (6.1) we can find 

(7.4) 

J(a, a)= lim ico'(#)-co] M1 (s(g), co'(/~), co)= ~ q(x) dSx. (7.5) 
# - ~ 0  a . x = o t  
~ 0  

When co runs o v e r  S "-1 we can determine J(a, ~) for all ae S  "-1, o~elR. Thus 
we obtain the Radon transform of q(x). The potential q can then be recovered 
by [9] 

q(x)=2-1(2rc)i-"(--1)("-l)/zA~"-l~/2 ~ J(a ,a .x )da .  
] a l = a  

Here J(a, ~) is related to R * (s, co', co) via (7.3) and (7.5). 
In the remainder of this section we shall discuss briefly the connection be- 

tween our time dependent approach and the stationary scattering theory for 
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time independent potentials. In particular, we shall show that Corollary 7.1 
and the recovering procedure described above are closely related to the Born 
approximation of the scattering amplitude at high frequencies. Assume for sim- 
plicity n=3  and q(x)>O. Then the scattering operator associated with the per- 
turbed wave equation 

(D +q(x)) u =0 (7.6) 

is known to exists [13], [14], [21] and by Proposition 3.2 the distribution 
.K* ( s ' - s ,  co', co) is the Schwartz kernel of Y l , ( S - 1 )  ~;-1. Thus /s M) 
is tempered with respect to s and the scattering matrix related to (7.6) is given 
by 

S(k, co', co)= 6(co'--co) + J e -ik~ I~ # (s, co', co) ds. 

We define the scattering amplitude by 

1 
A(k, co, co)= ~J-- re-lk~ - , ' -- M(s,  co, co) ds. (7.7) 

By (7.1) A and/s  are related by 

k 
27zi 

- - -  A (k, co', co)= j e-ik~ R e  (s, co', co) ds. 

Substituting (7.2) into (7.7) we see that 

A (k, co', 6o)= - ~  j e -ik'~ q(x) v(k, x, co) d x, (7.8) 

where v(k, x, co)=j exp(ikt)  u(t, x, co) dr. Duhamel's principle applied to u(t, 
x, co) implies that 

u(t ,x ,  c o ) = 6 ( t - - x . w ) - j E + ( t - z , x ) * [ q ( x ) u ( z , x ,  co)]dz, (7.9) 

where E + (t, x) = (47z Ix J)- 16 ( t -  Ix l) and the star denotes convolution with respect 
to x. Taking the inverse Fourier transform with respect to t in (7.9) we obtain 
that v(k, x, co) solves the Lippmann-Schwinger equation 

v(k, x, co e ik~ G k )= --f +( , I x - - y l )q (y )v (k , y ,o ) )dy ,  

where G+ (k, r)=(4rcr)-1 exp(ikr) is the outgoing Green function. Thus relation 
(7.8) shows that A(k, co', co) defined a priori by (7.7) is the classical scattering 
amplitude (see [2]). 

According to (7.7), the behaviour of ~r near the singularity s=0, co' =co 
affects the high-frequency (k ~ ~ )  asymptotic of A. To understand this relation, 
recall the Born approximation of the scattering amplitude [22] 

' . . . . .  

A(k, co,co)=-- e ~k(~, ~o) Xq(x)dx  +o(1), k-~  ~ .  (7.10) 
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Asymptotic (7.10) is used to reconstruct the Fourier transform of q. To do 
this, given ~ R 3 \ 0  choose co~S 2 so that 4" 09=0. Set 

co' (#) = co cos # + (4/1~ l) sin #, 

k(#) = I ~l/sin # 

(compare with (7.4)). From (7.10) we find (see also 1-22]) 

~(~) = - 4 ~  lim A(k(#), co'(/~), co). (7.11) 
/z~0 

Let us take the inverse Fourier transform of (7.11) with respect to I~1. Then 
the left hand side of (7.11) becomes the Radon transform of q, while the right 
hand side can be expressed in terms of M in view of (7.7) and the result is 
(7.5). Hence, in the stationary case our approach is closely related to the asymp- 
totic (7.10). 
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