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ABSTRACT. We study the weighted integral transform on a compact manifold with boundary over a smooth
family of curves � . We prove generic injectivity and a stability estimate under the condition that the conormal
bundle of � covers T �M .

1. INTRODUCTION

Let M be a compact manifold with boundary. Let � be an open family of smooth (oriented) curves on M ,
with a fixed parametrization on each one of them, with endpoints on @M , such that for each .x; �/ 2 TM n0,
there is at most one curve x;� 2 � through x in the direction of � , and the dependence on .x; �/ is smooth,
see next section. Define the weighted ray transform

(1) I�;wf . / D

Z
w . .t/; P .t// f . .t// dt;  2 �;

where w.x; �/ 6D 0 is a smooth non-vanishing complex valued function on TM n 0. We study the prob-
lem of the injectivity of I�;w on functions on M . We impose no-conjugacy conditions on � that would
guarantee that I�;w recovers singularities. Under that condition, we prove that I�;w is injective for generic
� , w, including analytic ones, and that there is a stability estimate. This is a generalization of the X-ray
transform arising in Computed Tomography which consists in integrating functions over lines provided with
the standard Lebesgue measure.

In [Mu1], Mukhometov showed that in a compact domain ˝ in R2, I�;1 (with w D 1) is injective for
any set � , provided that the curves  have unit speed, and ˝ is simple w.r.t. those curves. The latter means
that for any two points x, y in N̋ , there is unique curve in  connecting them that depends smoothly on
its endpoints. He later showed that this remains true if w is close enough to a constant in an explicit way.
Stability estimates were also given. In dimension n � 3 there is no such known result for an arbitrary simple
family of curves. On the other hand, if � is the family of the geodesics of a given (simple) Riemannian or
Finsler metric, and w is close enough to a constant, injectivity and stability of I�;w was established in
[Mu2, Mu3, AR, BG, R].

The transform I�;w is not always injective, even for simple � . An example by Boman [B] provides a
smooth positive weight function w so that I�;w fails to be injective in a ball in R2, where � consists of all
straight lines.

In the present work, we have incomplete data, i.e., we do not assume that we have a curve in � through
any point in M in the direction of any vector (unless n D 2). On the other hand, we want fN �;  2 � g to
cover T �M , the latter considered as a conic set. We do not assume convexity of the boundary w.r.t. � . If
� is a subset of geodesics of a certain metric, then some geodesics (not in � ) are allowed to have conjugate
points, or to be trapped, but we exclude them from � . On the other hand, the result is generic uniqueness
and stability, and Boman’s result shows that this is the optimal one in this setting.
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Our approach differs from the works cited above and uses microlocal and analytic microlocal methods.
Such methods are not new in integral geometry, see, e.g., [Gu, GuS1, GuS2, GrU, B, BQ, Q], but we use
some recent ideas that led to new results in tensor tomography and boundary rigidity of compact Riemannian
manifolds with boundary, see [SU3, SU4, SU5].

2. STATEMENT OF THE MAIN RESULTS

Fix a compact manifold with boundary M1 such that M int
1

� M , where M int
1

stands for the interior of
M1. We equip M1 with a real analytic atlas, where @M is smooth but not necessarily analytic. We will
think of the curves  as extended outside M to M int

1
so that their endpoints are in M int

1
, and  \ M remains

unchanged. Different extensions will not change I�;wf as long as  \ M is the same. By x;� , we will
frequently denote the curve in � , if exists, so that x 2 x;� , and Px;� D �� at the point x with some � > 0.
We will freely shift the parameter on x;� but not rescale it, so we may assume that x D x;�.0/, then
Px;�.0/ D ��.

We want x;� , for .x; �/ 2 TM , to depend smoothly on .x; �/, therefore in any coordinate chart,  D

x;� solves

(2) R D G.; P /;

where G.x; �/ D Rx;�.0/ is smooth. The generator G.x; �/ is only defined for j�j D j Px;�.0/j (in any
fixed coordinates) but we can extend it for all �. In case of a Riemannian metric, for example, Gi.x; �/ D

�� i
kl
.x/�k�l , for j�jg D 1, and extended for all �. The generator G determines a vector field G on TM

that in local coordinates is given by

(3) G D �i @

@xi
C Gi.x; �/

@

@�i
;

see also (29), (30). The curves  2 � are the projections of integral curves of G to the base, with appropriate
initial conditions that reflect the choice of the parametrization.

We assume that � is open with a natural smooth structure as follows. Fix any f .t/I l� � t � lCg 2 � ,
˙l˙ > 0,  .l˙/ 2 M int

1
n M , where we shifted the parameter t arbitrarily, and set x0 WD  .0/. Let H be a

hypersurface in M int
1

n M intersecting  transversally at x0, and let �0 D P .0/. We assume that there exists
a neighborhood U of .x0; �0/ and a smooth positive function �.x; �/, .x; �/ 2 U \ H , with �.x0; �0/ D 1,
so that the integral curves of G with initial conditions . .0/; P .0// D .x; �.x; �/�/, .x; �/ 2 U \ H ,
and interval of definition l� � t � lC belong to � (and in particular, the endpoints are in M int

1
n M ).

This makes � a smooth manifold; if H is given locally by xn D 0, then � is locally parametrized by
.x0; �/ 2 Rn�1 � Sn�1. We say that � is C k , respectively analytic, if G is C k , respectively analytic, on
TM1, and for any such choice of C k , respectively analytic H , the functions � are C k , respectively analytic,
too.

It is not hard to see that by duality, one can define I�;wf for any distribution f 2 D0.M int
1
/ supported in

M .
Given x 2 M , we define the exponential map expx.t; �/, t 2 R, � 2 TM n 0, as expx.t; �/ D x;�.t/.

Note that expx.t; �/ is a positively homogeneous function of order 0 in the � variable, and in local coor-
dinates, we can think that � 2 Sn�1. Then x D  .0/ and y D  .t0/ will be called conjugate along  ,
if Dt;� expx.t; �/ has rank less than n at .t0; �0/, where �0 D P .0/. It is easy to see that this definition is
independent of a change of the parametrization along the curves in � (that we keep fixed). We would like
to note here that (in a fixed coordinate system) the map v D t� 7! expx.t; �/, where j�j D 1, t 2 R, may
not be C 1. In case of magnetic systems, for example, it is only C 1 while expx.t; �/ is a smooth function of
all variables, see [DPSU]. This requires some modifications in the analysis of the normal operator (6), see
section 4.1.
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It is clear that one cannot hope to recover any f from I�;wf , if there is a point in M so that no  2 �

goes through it. We impose a microlocal condition that requires something more than that, we want any
.x; �/ 2 T �M n 0 to be “seen” by some simple  2 � .

Definition 1. We say that � satisfying the assumptions above is a regular family of curves, if for any
.x; �/ 2 T �M , there exists  2 � through x normal to � without conjugate points.

We call any  as above a simple curve.

If � is not regular, one can give the following example of a non-injective I�;w. Let M be a subdomain
with boundary of the sphere Sn�1 with its natural metric. Assume that M int contains a pair of antipodal
points a and b. Then any function that is supported in two symmetric to each other small enough neighbor-
hoods A 3 a, B 3 b, and odd with respect to the antipodal map, integrates to 0 over any geodesic in M . Not
only I�;wf with w D 1 does not determine f , it does not determine the singularities, either. For example,
if f D ıa � ıb , where ıa;b are delta distributions centered at a and b, respectively; then I�;1f D 0.

On the other hand, one can see that I�;wf , known for a regular family of curves, resolves the singularities
of f . Using analytic microlocal arguments, we also show that one can recover the analytic singularities, as
well, if � is analytic. This allows us to prove the following.

Theorem 1. Let � be an analytic regular family of curves in M1 and let w be analytic and non-vanishing
in M . Then I�;wf D 0 for f 2 D0.M int

1
/ supported in M implies f D 0. In particular, I�;w is injective

on L1.M /.

To formulate a stability result, we will fix a parametrization of � . Let H be a finite collection of hyper-
surfaces fHmg in M int

1
that are allowed to intersect each other. Then H may not be a hypersurface but is still

a manifold if we think of each Hm as belonging to a different copy of M . LetH be an open conic subset of
f.z; �/ 2 TM1I z 2 H; � 62 TzH g, and let ˙l˙.z; �/ � 0 be two continuous functions. Let � .H/ be the
subset of curves of � originating from H, i.e.,

(4) � .H/ D
˚
z;� .t/I l�.z; �/ � t � lC.z; �/; .z; �/ 2 H

	
:

We also assume that each  2 � .H/ is a simple curve.
We will fix a parametrization of a subset of � that is still regular.
Given H as above, we consider an open set H0 b H, and let � .H0/ b � .H/ be the associated set

of curves defined as in (4), with the same l˙. The restriction  2 � .H0/ � � .H/ can be modeled by
introducing a weight function ˛ inH, such that ˛ D 1 onH0, and ˛ D 0 otherwise. It is more convenient to
allow ˛ to be smooth but still supported in H.

We consider I�;w;˛ D ˛I�;w, or more precisely,

(5) I�;w;˛f D ˛.z; �/

Z lC.z;�/

l�.z;�//

w
�
z;� ; Pz;�

�
f .z;� / dt; .z; �/ 2 H:

Next, we set

(6) N�;w;˛ D I�
�;w;˛I�;w;˛ D I�

�;wj˛j
2I�;w:

Here the adjoint is taken w.r.t. a fixed positive smooth measure d˙ on H; more precisely, we assume that
in any local coordinate chart, d˙ WD �.z; �/ dSz d� on H, where dSz is the surface measure on H in the
so fixed coordinate system, d� is the surface measure on Sn�1, and C 1 3 � > 0. Notice that d˙ is not
invariant under a different choice of H and a coordinate system on it. On the other hand, injectivity of
N�;w;˛ is equivalent to injectivity of I�;w;˛, and the latter is equivalent to injectivity of I�;w restricted to
supp˛, see [SU3], and this property is independent of the choice of H and the coordinates on it as long as
they parametrize the same set of curves.
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Theorem 2.
(a) Let H0 b H be as above with � .H0/ � � .H/ regular, and .G; �; �; w/ fixed. Fix ˛ 2 C 1 with

H0 � supp˛ � H. If I�;w;˛ is injective, where � D � .H/, then we have

(7) kf kL2.M /=C � kN�;w;˛f kH 1.M1/
� C kf kL2.M /:

(b) Let H0 b H, ˛ D ˛0 be as above related to some fixed .G0; �0; �0; w0/. Assume that I�0;w0;˛0 is
injective, where �0 D �0.H/. Then estimate (7) remains true for .G; �; �; w; ˛/ belonging to a small C 2

neighborhood of .G0; �0; �0; w0; ˛
0/, with a uniform constant C > 0.

Remark. In fact, we need only C 1 regularity for w, ˛.

We notice that C 2 above refers to different spaces. More precisely, �, ˛0 are considered in C 2.H/, while
G, w are considered in C 2.TM /. To define correctly C 2.TM /, we fix any finite atlas on M , see also the
remark in section 4.

Example (simple systems). Let M � Rn be diffeomorphic to a ball, and let G.x; �/ be a smooth
generator on TM n 0 Š M � Rn n 0. Fix a coordinate system on M . We can assume that G is defined on
SM Š M � Sn�1 and extend as a homogeneous of order 0 to all � 6D 0. Set

@�SM D fz 2 @M I � � � < 0g

where �.z/ is the exterior unit normal to @M . Then we define � as the set of all curves  D z;� that solve

(8) R D G.; P /;  .0/ D z; P .0/ D �.z; �/�; .z; �/ 2 @�SM;

where � > 0 is a given smooth function on M � Sn�1 with �.z; �/ D j Pz;� .0/j. Let z;� be the maximal
curves with those initial conditions. Assume that for any x 2 M , the map expx W exp�1

x .M / ! M is a
diffeomorphism depending smoothly on x. Note that this implies that all those curves are of finite length;
for any x, y in M , there is unique  2 � that passes through them, smoothly depending on x, y, and
the curves in � have no conjugate points. As above,  ’s are allowed to be directed curves; if x 2 M int,
� 2 Sn�1 then the curves x;� and x;�� are not necessarily the same. We also assume that M1 c M

(meaning that M int
1

� NM D M ) is another domain diffeomorphic to a ball so that .G; �/ extends smoothly
there and satisfies the same assumptions.

For a simple system as above, define

(9) IG;�;wf .z; �/ D

Z
w

�
z;� .t/; Pz;� .t/

�
f .z;� .t// dt; .z; �/ 2 @�SM1:

One could also study subsets of curves as above. Let � be any positive C 1 function on @�SM1, and set
d˙ D �.z; �/j�.z/ � � j dSz d� . Then

IG;�;w W L2.M / ! L2.@�SM1; d˙/

is a bounded map, and NG;�;w D I�
G;�;w

IG;�;w is a well defined operator on L2.M / that can be extended
as an operator from L2.M / to H 1.M1/. Note that the factor j�.z/ � � j in d˙ can be omitted since @M1 is
convex and M stays at a positive distance from @M1. If M1 D M , and if @M is strictly convex w.r.t. � ,
then that factor is needed to preserve the mapping properties of NG;�;w; see [SU3] for the Riemannian case.

3. INJECTIVITY OF I�;w FOR ANALYTIC SYSTEMS

In this section we prove Theorem 1. We denote by WFA.f / the analytic wave front set of f , see [Tre, Sj].



THE X-RAY TRANSFORM FOR A GENERIC FAMILY OF CURVES 5

Proposition 1. Let 0 2 � be a simple curve. Let I�;wf . / D 0 for some f 2 D0.M1/ with suppf � M

and all  2 neigh.0/. Let � and w be analytic near 0. Then

(10) N �0 \ WFA.f / D ;:

Proof. We will choose first a coordinate system .x0;xn/ near 0 so that the latter is given by x0 D 0, xn D t ,
t 2 Œl�; lC� with some ˙l˙ � 0, and moreover, replacing x0 D 0 by x0 D z, where z is a constant vector
with jzj � 1, one still gets a curve in � (parametrized by t again, i.e., a unit speed line segment in the so
fixed coordinate system).

Fix a point p0 2 0, and shift the parametrization of Œl�; lC� 3 t 7! 0.t/ so that p0 D 0.0/. Assume
that p0 62 M and that the part of 0 corresponding to l� � t � 0 is outside M , too. Set x D expp0

.t; �/,
where j� j D 1, t � 0, where the norm is in any fixed coordinate system near p0. Then .t; �/ are local
coordinates near any point on 0 \M because the 0 is simple. Since 0 may self-intersect, they may not be
global ones. On the other hand, there can be finitely many intersections only, and one can assume that each
time 0 intersect itself, it happens on a different copy of M � R. More precisely, .t; �/ 7! .t; expp0

.t; �// �

M � R is a codimension one submanifold of M for � close to �0 D P0.0/ and t 2 .0; lC/ by the simplicity
assumption, and we think of any function f W M ! C as defined on that manifold. Therefore, without loss
of generality, we may assume that 0 does not self-intersect.

Write x0 D � 0, xn D t . Then x are the coordinates we were looking for in

U D
˚
xI jx0

j < "; l� < t < lC
	

� M1

with 0 < " � 1. They are analytic, since � is analytic.
Fix x0 2 0, and �0 2 T �M1 conormal to 0. We need to prove that

(11) .x0; �
0/ 62 WFA.f /:

By shifting the xn coordinate, we can always assume that x0 D 0. Note that �0 WD P0.0/ D en. Here and
below, ej stand for the vectors @=@xj , and ej stand for the covectors dxj .

Assume first that f is continuous in M and vanishes outside M .
The arguments that follow are close to those in [SU5]. Set first Z D fxn D 0I jx0j < 7"=8g, and denote

the x0 variable on Z by z0. We will work with the curves t 7! .z0;0/;.� 0;1/.t/ defined on l� � t � lC, the
same interval on which 0 is defined. Each such curve is in � for j� 0j � 1 because the latter is open. They
all have endpoints in M int

1
n M , and in fact, we modified a bit the endpoints of the interval of definition to

make them constant (l˙). We can do this, when " � 1, and this does not affect integrals of f over them.
Let �N .z

0/, N D 1; 2; : : : , be a sequence of smooth cut-off functions equal to 1 for jz0j � 3"=4,
supported in Z, and satisfying the estimates

(12)
ˇ̌
@˛�N

ˇ̌
� .CN /j˛j; j˛j � N;

see [Tre, Lemma 1.1]. Set � D .� 0; 1/, j� 0j � 1, and multiply

I�;wf
�
.z0;0/;�

�
D 0

by �N .z
0/ei�z0��0

, where � > 0, � 0 is in a complex neighborhood of .�0/0, and integrate w.r.t. z0 to get

(13)
“

ei�z0��0

�N .z
0/w

�
.z0;0/;� .t/; P.z0;0/;� .t/

�
f

�
.z0;0/;� .t/

�
.t/ dt dz0

D 0:

For j� 0j � 1, .z0; t/ 2 Z � .l�; lC/ are local coordinates near 0 given by x D .z0;0/;� .t/. Indeed, if
� 0 D 0, we have x D .z0; t/. Therefore, for � 0 fixed and small enough, .t; z0/ are analytic local coordinates,
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depending analytically on � 0. In particular, x D .z0 C t� 0; t/C O.j� 0j/. Performing a change of variables
in (13), we get

(14)
Z

ei�z0.x;� 0/��0

aN .x; �
0/f .x/ dx D 0

for j� 0j � 1, 8�, 8� 0, where, for j� 0j � 1, the function .x; � 0/ 7! aN is analytic, independent of N , and
non-zero for x in a neighborhood of 0, satisfies (12) everywhere, vanishes for x 62 U ; and aN .0; �

0/ D

w.0; �/.
Without loss of generality we can assume that

�0
D en�1:

Here and below, ej stand for the vectors @=@xj , and ej stand for the covectors dxj .
We choose the following vector �.�/ analytically depending on � near � D �0:

(15) �.�/ D

�
�1; : : : ; �n�2;�

�2
1

C � � � C �2
n�2

C �n

�n�1

; 1

�
:

If n D 2, this reduces to �.�/ D .��2=�1; 1/. Clearly,

(16) �.�/ � � D 0; �n.�/ D 1; �.�0/ D en:

Differentiate (15) to get

(17)
@�

@��
.�0/ D e� ; � D 1; : : : ; n � 2;

@�

@�n�1

.�0/ D 0;
@�

@�n
.�0/ D �en�1:

In particular, the differential of the map Sn�1 3 � 7! � 0.�/ is invertible at � D �0 D en�1.
Replace � D .� 0; 1/ in (14) by �.�/ (the requirement j� 0j � 1 is fulfilled for � close enough to �0), to

get

(18)
Z

ei�'.x;�/
QaN .x; �/f .x/ dx D 0;

where ' is analytic in U , and QaN has the properties of aN above for � close enough to �0. In particular,

QaN .0; �/ D w.0; �.�//:

The phase function is given by

(19) '.x; �/ D z0.x; � 0.�// � � 0:

To verify that ' is a non-degenerate phase in neigh.0; �0/, i.e., that det'x�.0; �
0/ 6D 0, note first that z0 D x0

when xn D 0, therefore, .@z0=@x0/.0; �.�// D Id. On the other hand, linearizing near xn D 0, we easily get
.@z0=@xn/.0; �.�// D �� 0.�/. Therefore,

(20) 'x.0; �/ D .� 0;�� 0.�/ � � 0/ D �

by (16). So we get 'x�.0; �/ D Id, which proves the non-degeneracy claim above. In particular, x 7!

'�.x; �/ is a local diffeomorphism in neigh.0/ for � 2 neigh.�0/, and therefore injective. We need however
a semiglobal version of this along 0 as in the lemma below.

Lemma 1. There exists ı > 0 such that

'�.x; �/ 6D '�.y; �/ for x 6D y;

for x 2 U , jyj < ı, j� � �0j < ı, � complex.
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Proof. We will prove the lemma first for y D 0, � D �0, x0 D 0. Since '�.0; �/ D 0, we need to prove that
the only solution to '�..0;xn/; �0/ D 0 in the interval l� � xn � lC is xn D 0.

We start with the observation that '.0;.� 0.�/;1/.t/; �/ D 0. Differentiate the latter w.r.t. � at � D �0,
t D xn, to get

@'

@�i
..0;xn/; �0/ D �

@

@�i

ˇ̌̌̌
�D�0

'
�
0;.� 0.�/;1/.x

n/; �0
�

D �
@'

@xj
..0;xn/; �0/J j

� .0;x
n/
@��

@�i
.�0/;

where J�.t/ D @0;� .t/=@�� at � D en, � D 1; : : : ; n � 1, are “Jacobi” vector fields. Since '.x; �0/ D

x0 � .�0/0 D xn�1, we get by (17), (recall that �0 D en�1),

(21)
@'

@�j
..0;xn/; �0/ D

8̂<̂
:

�J n�1
j .xn/; j D 1; : : : ; n � 2;

0; j D n � 1;

J n�1
n�1

.xn/; j D n;

where J n�1
� is the .n � 1/-th component of J� . Now, assuming that the l.h.s. of (21) vanishes for some fixed

xn D t0, we get that J n�1
� .t0/ D 0, � D 1; : : : ; n � 1. On the other hand, ˙ WD span.J1.t0/; : : : ;Jn�1.t0//

is a hyperplane transversal to en by the simplicity assumption. Therefore, for the unit normal � to˙ , we have
�n 6D 0. Hence, � and en�1 are linearly independent, and the intersection of ˙ and e?

n�1
is of codimension

2, and J1.t0/; : : : ;Jn�1.t0/ all belong there. Therefore, J�.t0/, � D 1; : : : ; n � 1, form a linearly dependent
system of vectors. The latter contradicts the simplicity assumption.

The same proof applies if x0 6D 0 by shifting the x0 coordinates.
Let now y, � and x be as in the Lemma. The lemma is clearly true for x in the ball B.0; "1/ D fjxj <

"1g, where "1 � 1, because '.0; �0/ is non-degenerate. On the other hand, '�.x; �/ 6D '�.y; �/ for
x 2 NU n B.0; "1/, y D 0, � D �0. Hence, we still have '�.x; �/ 6D '�.y; �/ for a small perturbation of y

and �. �

We will apply the complex stationary phase method [Sj], see also [KSU, Section 6]. For x, y as in
Lemma 1, and j� � �0j � ı= QC , QC � 1, ı � 1, multiply (18) by

Q�.� � �/ei�.i.���/2=2�'.y;�//;

where Q� is the characteristic function the complex ball B.0; ı/, and integrate w.r.t. � to get

(22)
“

ei�˚.y;x;�;�/bN .x; �; �/f .x/ dx d� D 0;

where bN is another amplitude, analytic, independent of N , and elliptic near 0 � f�0g, satisfying (12), and

˚ D �'.y; �/C '.x; �/C
i
2
.� � �/2:

We study the critical points of � 7! ˚ . If y D x, there is a unique (real) critical point �c D �, and it satisfies
=˚�� > 0 at � D �c. For y 6D x, there is no real critical point by Lemma 1. On the other hand, again by
Lemma 1, there is no (complex) critical point if jx � yj > ı=C1 with some C1 > 0, and there is a unique
complex critical point �c if jx � yj < ı=C2, with some C2 > C1, still non-degenerate if ı � 1. For any
C0 > 0, if we integrate in (22) for jx � yj > ı=C0, and use the fact that j˚� j has a positive lower bound (for
� real), we get

(23)
ˇ̌̌̌ “

jx�yj>ı=C0

ei�˚.y;x;�;�/bN .x; �; �/f .x/ dx d�
ˇ̌̌̌

� C3.C3N=�/N C CNe��=C :
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Estimate (23) is obtained by integrating N times by parts, using the identity

Lei�˚
D ei�˚ ; L WD

x̊
� � @�

i�j˚� j
2

as well as using the estimate (12), and the fact that on the boundary of integration in � , the ei�˚ is expo-
nentially small. Choose C0 � C2. Note that =˚ > 0 for � 2 @.supp Q�.� � �//, and � as above, as long as
QC � 1, and by choosing C0 � 1, we can make sure that �c is as close to �, as we want.

To estimate (22) for jx � yj < ı=C0, set

 .x;y; �/ WD ˚
ˇ̌
�D�c

:

Note that �c D �i.y � x/C �C O.ı/, and  .x;y; �/ D � � .x � y/C
i
2
jx � yj2 C O.ı/. The stationary

complex phase method [Sj], see Theorem 2.8 there and the remark after it, together with (23), gives

(24)
Z

jx�yj�ı=C0

ei� .x;˛/f .x/B.x; ˛I�/ dx D O
�
Ne��=C

C �n=2.C3N=�/N
�
; 8N;

where ˛ D .y; �/, and B is a classical elliptic analytic symbol [Sj], independent of N . Moreover, the
principal symbol �p.B/.0; 0; �/ equals w.0; �.�// times an elliptic factor, and is therefore elliptic itself.
Recall that w.0; �.�0// D w.0; en/ 6D 0. Take N so that N � �=.C3e/ � N C 1 to conclude that the r.h.s.
of (24) is O.e��=C /.

At y D x we have

(25)  y.x;x; �/ D �'x.x; �/;  x.x;x; �/ D 'x.x; �/;  .x;x; �/ D 0:

We also get that

(26) = .y;x; �/ � jx � yj
2=C;

that can be obtained by writing y D x C h, and expanding  in terms of powers of h up to O.h3/.
Define the transform

˛ 7�! ˇ D .˛x;r˛x
'.˛// ;

where, following [Sj], ˛ D .˛x; ˛�/. This is equivalent to setting ˛ D .y; �/, ˇ D .y; �/, where � D

'y.y; �/. Note that � D � C O.ı/, and at y D 0, we have � D �, by (20). It is a diffeomorphism from
a neighborhood of .0; �0/ to its image, leaving .0; �0/ fixed. Denote the inverse map by ˛.ˇ/. Note that
this map and its inverse preserve the first (n-dimensional) component and change only the second one. Plug
˛ D ˛.ˇ/ in (24) to get

(27)
Z

jx�˛x j�ı=C0

ei� .x;ˇ/B.x; ˇI�/f .x/ dx D O
�
e��=C

�
;

for ˇ 2 neigh.0; �0/, where  , B are (different) functions having the same properties as above, except that
now  satisfies

(28)  y.x;x; �/ D ��;  x.x;x; �/ D �;  .x;x; �/ D 0:

By [Sj, Definition 6.1], (26), (27), (28), together with the ellipticity of B imply that

.0; �0/ 62 WFA.f /:

Note that in [Sj], it is required that f must be replaced by Nf in (27). If f is complex-valued, we could use
the fact that I.<f /. / D 0, and I.=f /. / D 0 for  near 0 and then work with real-valued f ’s only.

If f is a distribution, then one can see that (14) still remains true with the integral in the x variable
understood in distribution sense. The rest of the proof remains the same, except that the cutoffs w.r.t. x in
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(24), (27) have to be replaced by smooth ones. The characterization of WFA.f / in [Sj, Definition 6.1] is
formulated for distributions, too.

This concludes the proof of Proposition 1. �

Proof of Theorem 1. The proof of Theorem 1 now follows immediately. By Proposition 1, f is analytic in
M1 and has compact support there. Therefore, f D 0. �

4. THE SMOOTH PARAMETRIX

Under coordinate changes x 7! x0, G preserves its form, i.e.,

(29) G D � 0i @

@x0i
C G0i.x0; � 0/

@

@� 0i
;

and the transformation law is

(30) G0i.x0; � 0/ D Gk
�
x0;

@x

@x0j
� 0j

�@x0i

@xk
C

@2x0j

@xi@xk

@xi

@xs

@xk

@xt
� 0s� 0t :

This shows that the assumption G 2 C k is independent of the choice of the coordinate chart, and choosing
a different finite atlas will preserve inequalities of the kind kG � QGkC 2.TM / � C " by changing C only.

We construct below a parametrix for N�;w;˛ assuming that G; �; w; ˛ are smooth.

Proposition 2. N�;w;˛ is an elliptic classical 	DO of order �1 in M int. As a consequence, there exists a
classical pseudodifferential operator Q in M int

1
of order 1 so that

QN�;w;˛f D f C Kf

for any f 2 D0.M int
1
/ with suppf � M , and an operator K with a C 1

0
.M int

1
� M int

1
/ Schwartz kernel.

As a first step towards the proof of Proposition 2, we derive a formula for I�
�;w;˛

. Notice that the map
H � .l�; lC/ 3 .z; �; t/ 7! .x; v/ 2 Rn � Sn�1 given by x D expz.t; �/, v D @t expz.t; �/=j@t expz.t; �/j

is a local diffeomorphism. Indeed, fix .z0; �0; t0/, and let .x0; v0/ be the corresponding .x; v/. To find the
inverse of that map, we need to solve

expx.�t; v/ D z; �@t expx.�t; v/ D �; z 2 H;

for .z; �; t/ near .z0; �0; t0/, so that .z; �; t/ D .z0; �0; t0/ for .x; v/ D .x0; v0/. This can be done, since
H is not tangent to any � such that .z; �/ 2 H. Let J [.x; v/ D d.z; �; t/=d.x; v/ be the corresponding
Jacobian (depending on the choice of the local chart near x).

Let � 2 C 1
0
.H/, f 2 C 1.M /, and let w1 2 C 1

0
.TM int

1
/ have small enough support that can fit in a

coordinate chart that we fix. ThenZ
.I�;w1;˛f /

N� d˙ D

•
˛.z; �/w1.z;� .t/; Pz;� .t//f .z;� .t// N�.z; �/ dt dSz d�

D

“
˛].x; v/w1.x; v/f .x/ N�].x; v/J [.x; v/ dx dv;

where ˛].x; v/ D ˛.z.x; v/; �.x; v//, i.e., ˛] equals ˛, extended as constant along the curves z;� .t/; and
the meaning of �] is the same. Therefore,

I�
�;w1;˛

�.x/ D

Z
jvjD1

˛].x; v/ Nw1.x; v/�
].x; v/J [.x; v/ dv:
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Let w0 2 C 1
0
.TM int

1
/ be another function with small enough support. Then

I�
�;w1;˛

I�;w0;˛f .x/ D

Z
Sn�1

Z
.˛] Nw1/.x; v/.˛

]w0/
�

expx.t; v/; @t expx.t; v/
�

� f
�

expx.t; v/
�
J [.x; v/ dt dv:

(31)

The simplicity assumption implies that for any t0 6D 0, and .x0; v0/ belonging to the support of the
integrand above, the map .t; v/ 7! y D expx.t; v/ is a diffeomorphism from a neighborhood of .t0; v0/

to its image, and this is true for x in some neighborhood of x0. On the other hand, near t0 D 0, the map
.t; v/ 7! y D expx.t; v/ has Jacobian vanishing at t D 0, and the “true exponential map” � D tv 7! y D

expx.t; v/ is only a C 1 diffeomorphism, in general. By a compactness argument, given " > 0, one can cover
M with finitely many charts, so that when x belongs to either one of them, one can split the integration in
(31) into finitely many open sets that cover R n .�"; "/ � Sn�1. In each of those integrals, perform the
change of variables .t; v/ 7! y D expx.t; v/. Then we get that the l.h.s. of (31) is an operator with a smooth
kernel. The only contribution to the singularities of the kernel may therefore come from t 2 .�"; "/.

To analyze the contribution to (31) from t 2 .�"; "/, we proceed as follows, see also [DPSU]. The
function m.t; vI x/ D .expx.t; v/ � x/=t is smooth, therefore

(32) expx.t; v/ � x D tm.t; vI x/; m.0; vI x/ D �.x; v/v:

We introduce the new variables .r; !/ 2 R � Sn�1 by

(33) r D t jm.t; vI x/j; ! D m.t; vI x/=jm.t; vI x/j:

Then .r; !/ are polar coordinates for y � x D r! in which we allow r to be negative. Clearly, .r; !/ are
smooth at least for " small enough. Consider the Jacobian of this change of variables

(34) J.x; t; v/ WD det
@.r; !/

@.t; v/
;

computed with the same choice of local coordinates on Sn�1 for v and ! (and independent of that choice).
It is not hard to see that J jtD0 D � 6D 0, therefore the map R � Sn�1 3 .t; v/ 7! .r; !/ 2 R � Sn�1 is a
local diffeomorphism from neigh.0/ � Sn�1 to its image. We can decrease " if needed to ensure that it is a
(global) diffeomorphism on its domain because then it is clearly injective. We denote the inverse functions
by t D t.x; r; !/, v D v.x; r; !/. Note that in the .r; !/ variables

(35) t D r=�C O.jr j/; v D ! C O.jr j/; Px;v.t/ D �! C O.jr j/:

Another representation of the new coordinates can be given by

r D sign.t/ jexpx.t; v/ � xj ; ! D sign.t/
expx.t; v/ � x

jexpx.t; v/ � xj
;

and
.t; v/ D exp�1

x .x C r!/

with the additional condition that r and t have the same sign (or are both zero).
We return to (31). The paragraph after it shows that one can multiply the integrand by a smooth function

�.t/ so that � D 1 near t D 0 and supp� is small enough; and the error is a smoothing operator. Then one
can write, modulo a smoothing operator applied to f :

I�
�;w1;˛

I�;w0;˛f .x/ �

Z
Sn�1

Z
�.t/B.x; t; v/f

�
expx.t; v/

�
dt dv

D

Z
Sn�1

Z
�.t/J �1.x; t; v/B.x; t; v/f .x C r!/

ˇ̌
tDt.x;r;!/; vDv.x;r;!/

dr d!;
(36)
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where, see (31),

(37) B.x; t; v/ D .˛] Nw1/.x; v/.˛
]w0/

�
expx.t; v/; @t expx.t; v/

�
J [.x; v/:

4.1. Certain class of integral operators with singular kernels. Let U � Rn be open and bounded. The
integral representation (36) shows that we need to study integral operators with singular Schwartz kernels
(with integrable singularity at x D y) of the class below, see also [DPSU, Appendix D].

Lemma 2. Let A W C0.U / ! C.U / be the operator

(38) Af .x/ D

Z
Sn�1

Z
R

A.x; r; !/f .x C r!/ dr d!;

with A 2 C 1.U � R � Sn�1/. Then A is a classical 	DO of order �1 with full symbol

a.x; �/ �

1X
kD0

ak.x; �/;

where

ak.x; �/ D 2�
ik

k!

Z
Sn�1

@k
r A.x; 0; !/ı.k/.! � �/ d!:

Proof. Notice first that if A is an odd function of .r; !/, then Af D 0. Therefore, we can replace A above
by Aeven.r; !/ D .A.r; !/C A.�r;�!//=2. Next, it is easy to check that we can integrate over r � 0 only
and double the result. Therefore,

(39) Af .x/ D 2

Z
Sn�1

Z 1

0

Aeven.x; r; !/f .x C r!/ dr d!:

Consider now r , ! as polar coordinates for z D r!, and make also the change of variables y D x C z to get

(40) Af .x/ D 2

Z
Aeven

�
x; jy � xj;

y � x

jy � xj

�
f .y/

jy � xjn�1
dy:

Let

(41) Aeven.x; r; !/ D

N �1X
kD0

Aeven;k.x; !/r
k

C rN RN .x; r; !/

be a finite Taylor expansion of Aeven in r near r D 0 with N > 0. It follows easily that 2Aeven;k.x; !/ D

Ak.x; !/ C .�1/kAk.x;�!/, where k!Ak D @k
r jrD0A, and in particular, Aeven;k.x; !/r

k is even w.r.t.
.r; !/. The remainder term contributes to (40) an operator that maps L2

comp.U / into H N �N0.U / with some
fixed N0. To study the contribution of the other terms, write

(42) Aeven;kf .x/ D 2

Z
Aeven;k

�
x;

y � x

jy � xj

�
jy � xj

k�nC1f .y/ dy:

The kernel ofAeven;k is therefore a function of x and z D y �x, with a polynomial singularity at y �x D 0,
and it is therefore a formal 	DO with symbol that can be obtained by taking Fourier transform in the z

variable. Motivated by this, apply the Plancherel theorem to the integral above to get

Aeven;kf .x/ D .2�/�n

Z
eix��ak.x; �/ Of .�/ d�;
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where

ak.x; �/ D 2

Z
e�iy��Aeven;k

�
x;

y � x

jy � xj

�
jy � xj

k�nC1 dy

D 2

Z
Sn�1

Z 1

0

e�ir!��Aeven;k.x; !/r
k dr d!

D

Z
Sn�1

Z 1

�1

e�ir!��Ak.x; !/r
k dr d!

D 2� ik
Z

Sn�1

Ak.x; !/ı
.k/.! � �/ d!:(43)

In the third line, we used the fact that Aeven;k.x; !/r
k is even. Note that ak.x; �/ is homogeneous in � of

order �k � 1 and smooth away from � D 0 but a distribution (in S 0) near zero. To deal with this, choose
� 2 C 1

0
supported in j�j � 1 and equal to 1 near � D 0. Write a.x; �/ D �.�/a.x; �/C .1 � �.�//a.x; �/.

The second term is a classical amplitude, while the first one contributes the term

(44) Aeven;k. L� � f /

to (42) that is smooth, as can be easily seen by making the change of variables z D y � x in (42). �

Proof of Proposition 2. For x in a small enough neighborhood of a fixed x0, using a partition of unity f�j g,
we can express N�;w;˛ as a finite sum of operators of the kind (31), namely N�;w;˛ D

P
I�
�;wj ;˛

I
�;wi ;˛

with wi D �iw. By the analysis following (31), their Schwartz kernels are smooth if we integrate outside
any interval containing t D 0, and the only non-smooth contribution may come from terms of the kind (36),
where w0 and w1 are replaced by some wi and wj . By Lemma 2, (31) is a classical 	DO of order �1. Its
principal symbol is given by

a0.x; �/ D 2�

Z
Sn�1

A.x; 0; !/ı.! � �/ d!:

In case of (36), A.x; 0; !/ is given by Aij D J �1.x; 0; !/
�ˇ̌
˛]w

ˇ̌2
�i�j

�
.x; !/. Then

P
ij Aij is elliptic

because w 6D 0, and because given .x; �/, there is ! ? � so that ˛].x; !/ 6D 0, and there exists i so that
�i.x; !/ > 0; and all other terms are non-negative. Therefore, N�;w;˛ is an elliptic 	DO of order �1 in
M int

1
, and the proposition follows. �

The next proposition is a standard consequence of the ellipticity of N�;w;˛. See [SU3, Theorem 2] for a
similar statement in tensor tomography. In contrast to [SU3] however, we do not lose a derivative.

Proposition 3. Under the conditions of Theorem 2, without assuming that I�;w;˛ is injective,
(a) one has the a priori estimate

kf kL2.M / � C kN�;w;˛f kH 1.M1/
C Cskf kH �s.M1/; 8sI

(b) Ker I�;w;˛ is finite dimensional and included in C 1.M /.

Proof. Part (a) follows directly from Proposition 2. Next, if f 2 Ker I�;w;˛, then .Id C K/f D 0, and K

is a compact operator on L2.M /, with smooth kernel. This proves (b). �

5. REDUCING THE SMOOTHNESS REQUIREMENTS

In this section, we will reduce the smoothness requirements on � and the weight w, and will prove
Theorem 2.
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We start with the observation that assuming that I�;w;˛ is injective on L2.M /, then N�;w;˛ W L2.M / !

H 1.M1/ is injective, also, see [SU3]. Then we get by Proposition 3(b) and [Ta1, Proposition V.3.1] that

(45) kf kL2.M / � C kN�;w;˛f kH 1.M1/
:

The second inequality in (7) is obvious. This proves part (a) of Theorem 2.
In the rest of this section, we will perturb �;w; ˛ and show that this will result in a small constant times

kf kL2.M / that can be absorbed by the l.h.s. above. We think of � as determined by .G; �; �/. Since
N�;w;˛ is a 	DO that depends on �;w; ˛ in a continuous way, if the latter belongs to C k , k � 2, the
statement of Theorem 2(b) follows immediately from what we already proved if C 2 there is replaced by
C k , k � 2, see also [SU3, SU4, SU5]. Our goal here is to reduce that smoothness requirement.

Proposition 4. Assume that G; �; �; w; ˛ are fixed and belong to C 2. Let . QG; Q�; Q�; Qw; Q̨ / be O.ı/ close to
.G; �; �; w; ˛/ in C 2. Then there exists a constant C > 0 that depends on an a priori bound on the C 2

norm of .G; �; �; w; ˛/, so that

(46)
�

N Q� ; Qw; Q̨
� N�;w;˛

�
f


H 1.M1/

� Cıkf kL2.M /

Proof. Assume now that we have two systems . QG; Q�; Q�; Qw; Q̨ / and .G; �; �; w; ˛/, as in the proposition. Let
C0 be a bound on the C 2 norm of the first system. All constants below will depend on C0. Let ı be as in
the proposition. To estimate the difference of those quantities related to the two systems, we will need the
following comparison inequality for ODEs of Gronwall type.

Lemma 3. Let x, Qx solve the ODE systems

x0
D F.t;x/; Qx0

D QF .t; Qx/;

where F , QF are continuous functions from Œ0;T �� U to a Banach space B, where U � B is open. Let F be
Lipschitz w.r.t. x with a Lipschitz constant k > 0. Assume that

kF.t;x/ � QF .t;x/k � ı; 8t 2 Œ0;T �; 8x 2 U:

Assume that x.t/, Qx.t/ stay in U for 0 � t � T . Then for 0 � t � T ,

(47) kx.t/ � Qx.t/k � ekt
kx.0/ � Qx.0/k C

ı

k

�
ekt

� 1
�
:

For a proof see [CL]. Note that the lemma can be used to compare the derivatives of x and Qx w.r.t. the
initial conditions by differentiating w.r.t. the initial conditions first, and then applying the lemma. Since
the curves  solve the equation (2) considered in the phase space, see (3), we get under the assumptions of
Proposition 4,

(48) kx;v � Qx;vkC 2 C k Px;v � PQx;vkC 2 � Cı;

where the C 2 norm is w.r.t. .x; v; t/. The inclusion of t can be easily deduced from equation (2).
Assume that G; �; �; w; ˛ are fixed and belong to C 2. We will determine first the smoothness of the

functions r.x; t; v/ and !.x; t; v/ defined in (33). Since

(49) m.t; vI x/ D

Z 1

0

Px;v.st/ ds;

we get that m and Pm are C 2 functions of their arguments. By (33), we get that @j
t r and @j

t !, j D 0; 1,
are C 2, also. In particular, the inverse functions t.x; r; !/, v.x; r; !/ are C 2, too. On the other hand, J

and J [ in (36), (37) are C 1. Moreover, the difference of those functions for the two systems is O.ı/ in the
corresponding norms.
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Let us analyze first (31) in the case when the kernel there is multiplied by 1��.t/, compare with (36). As
explained in the paragraph following (31), we perform the change of variables .t; v/ 7! y D expx.t; v/ that
is C 2 in our case, and its Jacobian is C 1. Moreover, the Jacobians for the two systems differ by O.ı/ in the
C 1 norm. Then we get an integral operator with a C 1 kernel, vanishing near the diagonal x D y. Clearly,
such an operator maps L2.M / into C 1.M1/. Moreover, the difference of two such operators, related to
. QG; Q�; Q�; Qw; Q̨ / and .G; �; �; w; ˛/, respectively, has a norm O.ı/.

The more interesting case is what happens near the diagonal. To analyze this, we expand B in (37) and
J , see (34) as

(50) B.x; t; v/ D B0.x; v/C tB1.x; t; v/; J �1.x; t; v/ D J0.x; v/C tJ1.x; t; v/:

The explicit expressions for B0;B1;J0;J1 are listed below:

B0.x; v/ D
�
.˛]/2 Nw1w0

�
.x; v/J [.x; v/;

B1.x; t; v/ D

Z 1

0

b1.x; st; v/ds; where

b1.x; t; v/ D
@

@t
.˛] Nw1/.x; v/.˛

]w0/
�

expx.t; v/; .@t expx/.t; v/
�
J [.x; v/;

J0.x; v/ D J �1.x; 0; v/ D ��1.x; v/;

J1.x; t; v/ D

Z 1

0

@J �1

@t
.x; st; v/ ds:

Notice that B0;B1;J0;J1 2 C 1. Moreover, QB0; QB1; QJ0; QJ1 differ by them by O.ı/ in the C 1 norm.
Then for A in (38), we get

A.x; r; !/ D �.t.x; r; !/J �1.x; t.x; r; !/; v.x; r; !//B.x; t.x; r; !/; v.x; r; !//

DW A0.x; !/C rA1.x; r; !/:
(51)

Here A0.x; !/ and A1.x; r; !/ are C 1 functions of all variables, and we have used the fact that t.x; r; !/=r

is C 1, too. As above, we get

(52) kA0.x; !/ � QA0.x; !/kC 1 C kA1.x; r; !/ � QA1.x; r; !/kC 1 � Cı:

Let A0, A1 be as in Lemma 2 related to A1 and rA1, respectively. Then the Schwartz kernel of A0, see
(40), is 2A0;even.x; !/r

�nC1, where we use the notation

r D jx � yj; ! D .y � x/=r:

Therefore 2A0;even.x; !/r
�nC1 has singularity of the type r�nC1, while the kernel of A1 has singularity of

the type r�nC2. To estimate the H 1 norm of A, we need to analyze the operator with kernel @xA. We get
that formally, @xA0 is an operator with a non-integrable singularity of the type r�n, while @xA1;even is an
operator with kernel that still has an integrable singularity. Let now QA0;1 be related to . QG; Q�; Q�; Qw; Q̨ /. The
contribution of QA1 �A1 to (46) is easy to estimate using (52). The remaining question is whether

(53)
�

QA0 �A0

�
f


H 1.U /

� Cıkf kL2.U /; f 2 L2.U /;

where U is as in Lemma 2, and in our case, is a small enough open set in a fixed coordinate chart of M1.
We showed above that A0 an operator with a weakly singular kernel, and @xA0 is formally an operator
with singular kernel. The continuity properties of the latter class are well studied, see e.g., [St, MP], and
the integration is understood in principle value sense. By the Calderón-Zygmund Theorem, see, e.g., [MP,
Theorem X1.3.1], [St], a singular operator with kernel K.x;y/ D ˝.x; !/r�n is bounded on L2.U /, if ˝
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has a mean value 0 in the ! variable, and belongs to L1.UxI L2.Sn�1//. Then the norm of that operator
is bounded by C k˝k, where the latter norm is in L1.UxI L2.Sn�1//.

In our case, we start with an operator with weakly singular kernel 2A0;even.x; !/r
�nC1 that is even w.r.t.

!, since A0;even it is independent of r . Therefore the x-derivative, if we differentiate the occurrence of x in
r and ! only, is an odd function of !. This makes the kernel @x.2A0;even.x; !/r

�nC1/ a singular odd one,
up to a weakly singular kernel. Now [MP, Theorem XI.11.1] says that this is actually the kernel of @xA0,
and by the Calderón-Zygmund Theorem, its L2 ! L2 norm is bounded by C kA0kC 1 . We apply now those
arguments to QA0 �A0 with the aid of (52). This yields (53) and completes the proof of the proposition. �

Proof of Theorem 2. We already proved part (a) in (45). Combine estimate (45) and Proposition 4 to get

kf kL2.M / � C kN�;w;˛f kH 1.M1/

� C
N Q� ; Qw; Q̨

f


H 1.M1/
C C

�
N Q� ; Qw; Q̨

� N�;w;˛
�
f


H 1.M1/

� C
N Q� ; Qw; Q̨

f


H 1.M1/
C Cıkf kL2.M /:

This immediately implies Theorem 2(b). �
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