MODULATED LUMINESCENCE TOMOGRAPHY
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ABSTRACT. We propose and analyze a mathematical model of Modulated Luminescent Tomogra-
phy. We show that when single X-rays or focused X-rays are used as an excitation, the problem is
similar to the inversion of weighted X-ray transforms. In particular, we give an explicit inversion
in the case of Dual Cone X-ray excitation.

1. INTRODUCTION: A BRIEF DESCRIPTION OF THE METHOD AND THE MODEL

1.1. A brief description of the modalities. The purpose of this work is to build and analyze
the mathematical model of several medical multiwave imaging techniques that we call Modulated
Luminescent Tomography. Certain phosphorescent contrast agents (for example, nanophosphors)
are delivered to the cells and then illuminated with X-rays. The illuminated particles emit photons
which scatter through the tissue and are detected outside the body, see, e.g., [7]. The goal is to
recover the concentration of the contrast agents. When a contrast agent is used for molecular
imaging, involved nanoparticles are functionalized to target specific cellular features. As a result,
the concentration of the contrast agent will be directly correlated to the distribution of the tar-
geted biomarkers, enabling quantitative analysis to guide molecular/individualized medicine. The
resolution of this modality is expected to come from the X-ray excitation. In this respect, those
modalities behave differently than Photoacoustic and Thermoacoustic Tomography, where the ex-
citation is highly diffusive but the emitted ultrasound signal allows for high resolution, see, e.g.,
[5, 17]; and [6, 15] and the references there for the analysis of the mathematical model.

Two such techniques, X-ray luminescence computed tomography (XLCT) [11] and X-ray micro-
modulated luminescence tomography (XMLT) [2, 1], described below, have been proposed recently.
They combine X-ray focusing, nanophosphor excitation, optical sensing, and image reconstruction
in a synergistic fashion, and promise significant imaging performance gains in both microscopic
and preclinical studies. The XMLT approach is an exogenous reporter-based imaging system in
which spatial resolution is determined by the excitation of the luminescence from nanophosphors
with a micro-focused X-ray beam such as a zone-plane or a micro-focus X-ray source coupled with
a polycapillary lens. High in vivo spatial resolution can be achieved due to the short wavelength
and small spot size of the X-rays. When X-rays are focused in this way, double cones of X-rays are
formed with their shared vertex point inside a sample or a subject. Those modalities are proposed as
alternatives to fluorescence molecular tomography (FMT) and bioluminescence tomography (BLT)
[9, 16] in order to improve resolution and stability.

In X-ray luminescence CT (XLCT), a pin-hole collimator is used to restrict x-rays into a pencil
beam for excitation of nanophosphors, based on the particle nature of x-rays. Due to the mechanical
limitations of a pin-hole collimator as well as the scattering and diffraction effects of X-rays, this
imaging method can hardly achieve sub-micron-scale spatial resolution. On the other hand, X-
ray micro-modulated luminescence tomography (XMLT), X-rays are focused onto a micron-scale
focal spot using a polycapillary lens or a zone plate, based on the wave nature of X-rays. Hence,
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the focusing X-rays excite nanophosphors and improve spatial resolution dramatically. Combining
optical sensitivity and X-ray resolution, XMLT potentially allows a significant gain in the imaging
performance in terms of spatial resolution, contrast concentration, and penetration depth, relative
to what is currently available other optical imaging methods, see also Figure 2 in [§].

Our main results state that we can use boundary averaged measurements only and the problem is
reduced to an inversion of a weighted linear transform determined by the excitation. For example,
if the excitation consist of single X-rays, in Section 5, we get a weighted X-ray transform with a
weight depending on the diffusion and the absorption coefficients D and u, of the medium with
respect to the emitted photons, see (1.2) below. In the case of double cone excitation (XMLT') with
a constant aperture, or in XLCT, we have an explicit and stable inversion under an explicit if and
only if condition, see (4.3), Theorem 4.1 and Section 4. We show that the local problem in a region
of interest behaves similarly to the corresponding X-ray problems, and we have explicit microlocal
inversions of the visible singularities.

1.2. The model. Let  C R"™ be a smooth domain. We illuminate the medium in different
ways. Each illumination excites the particles at a rate I,(z), which can be a distribution, where
a belongs to some index set A, discrete or not. In the X-ray case, I,(x) is just a superposition
of delta functions along straight lines; which also allows for attenuated X-rays by introducing an
appropriate weight. The structure of I, is not important at the moment; see section 4 and section 5
for the cases XLCT and XMLT. The modulated source then is

(1'1) Sa(x) = Ia($)f($),
where f is the concentration of the active particles, which we want to reconstruct. We assume that
the light from the source propagates according to the diffusion model [18]

(1.2) (=V - DV + g) uq = sa(z) in Q.

Here, pq(z) > 0 is the absorption, D(x) > 0 is the diffusion coefficient, and u, is the photon
density. The coefficients p, and D are given. In the diffusion approximation regime, D(z) =
[3(pa + 1))t > 0, where u, = (1 — g)us is the reduced scattering coefficient, y is the scattering
coefficient and g is the scattering anisotropy.

The boundary conditions are of semi-transparent type due to the different index of refraction of
the tissue and the air around it. They are of Robin type and have the form

(1.3) Ug + 2AD81,ua‘aQ =0,

where A > 0 is a given coefficient, well approximated by A = (1 + R)/(1 — R) with R closely
approximated by R = —1.4399m~2 4 0.7099m ! + 0.6681 + 0.063m [13], where m is the refractive
index of the tissue. Let G be the solution operator (the Green’s function) of (1.2), (1.3), i.e.,
Uo = Gsq = Gl f.

What we measure is the outgoing photon density

1 1
(14) Qaf = _Dauua‘ag == ﬂua‘aﬂ - ﬁ(GIaf)‘BQ
The data therefore is
{Qaf}ae./b

and we want to reconstruct f. For each illumination choice, «, the data @), is a function of n — 1
variables. When « runs over a continuous space with dimension m, we get m + n — 1 variables.
This could make the problem formally overdetermined. On the other hand, because of the diffusion
nature of the data for a fixed «, we cannot have much resolution hidden in that Q.. The only
way to get resolution (i.e., stability) is to have a well chosen set of illuminations I,, o € A which
have enough singularities. We show below that we do not actually need to know or measure @,
pointwise; some average over 0f) is enough for a stable recovery. This removes n — 1 variables from
the data.
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2. THE FIRST PHASE: RECOVERY OF AN AVERAGED INTENSITY.

2.1. The general case. The operator L := —V - DV + pu, is symmetric and positive on smooth
functions satisfying the the Robin boundary condition (1.3) because

/Q<Lu>ﬁdw= /Q (IVul® + paluf?) da — /a (Bu)udo

1
_ 2 2 _ 12
—/Q(|Vu| + pig|ul )d:c+/m 2AD|U| do,

where do is the surface measure. By Green’s formula, for such u and v,

/ (vLu — ulLv) doe = —/ (v0yu — udyv) Ddo
Q oN

(2.1)

(2.2)
= —/ ((v+2A4Dd,v)d,u — (u + 2AD8,u)d,v) D do = 0.
00

Therefore, L with the Robin boundary conditions if symmetric and positive by (2.1). It is well
known that L extends to a self-adjoint operator on L?(£2) with a compact resolvent, see, e.g., [12,
Theorem X.23]. In particular, 0 is in the resolvent set by (2.1). This shows that the Green’s
function G is well-defined, and self-adjoint on L?(€2). Moreover, the boundary-value problem (2.4)
below is well posed.

If Lv, =0, and u, solves (1.2), (1.3), we get (we drop the index « in this formula)

/ vsdr = —/ (vOyu — udyv) Ddo = —/ (v+2ADJ,v) DO,udo

= / (v+24ADJ,v) Qf do.
o0

This suggests the following. Choose h,, regular enough, and let v, =: Vh,, solve
(=V - DV + 1) v =0 in £,

(2.4)
Vo + 2AD8VUQ‘8Q = hq,.

Then, by (2.3),

(2.5) /Q Valofdz = /d haQaf do

In other words, choose h, somehow; then we can recover fQ(Vha)Ia fdx from the data. This
requires us to solve (2.4) first but this can be done numerically in a very efficient way. If D and p,
are constants, and € is a circle or a rectangle, it can be done explicitly, as we show below. This gives
us a way to compute an averaged value of I, f, with a weight v, depending on the choice of h,. If
e = 0, one can take h,, = 1 and then v, = 1. We would want to have positive solutions v > 0, and
we do not want v < 1 because we will divide by it eventually, see Theorem 4.1. Positivity can be
guaranteed by the maximum principle if h > 0, see Lemma 2.1 below. The lower bound of u could
be very small if the attenuation u, is large, and that would create stability problems; but this is
natural to expect. Fortunately, this is not the case for imaging of small animals, for example; a
realistic value for u, and for the size of 2 is presented in Section 6.

Lemma 2.1. Let 0 < h € C?(09Q) and let v be the solution of (2.4) with the subscript o there
dropped. Then B
0<w(z) < max h, Yz €.

Proof. Assume that the first inequality is false. Then there exists a point zg € Q where v attains a
minimal value vg = v(xo) < 0. If zg is interior for 2, then v = const. by the maximum principle, see
[3, p. 333], therefore, v(x) = vy9 < 0. By the boundary condition, h = vy as well which contradicts
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the assumption h > 0. Therefore, oy € 0€2. By the boundary condition again, d,v(xg) > 0. This
means that there is an interior point where v takes a strictly smaller value which is a contradiction.

On the other hand, at a point yy € 9€), where v achieves its maximum, that maximum has to be
less or equal than h,(yo) because otherwise, 0,v4(yo) would be negative; and that would violate the
classical maximum principle, see [3, p. 239]. Therefore maxg v = maxpo v < h(yp) < maxh. O

Note that we do not need to solve the boundary value problem (2.4) to find v. We could just
take any solution v of (=V - DV + pug)v = 0 and compute h = (v + 2AD8V1))‘8Q next. If D and po
are constants, we can generate many explicit solutions, regardless of the shape of the domain.

Finally, we want to emphasize that we cannot recover s, = I, f from (2.5) known for all h,; for
example, for any ¢ € C3°(Q2), adding L¢ to I, f would not change the left-hand side of (2.5).

We consider the constant coefficient cases below and continue with the general case in the next
section.

2.2. Partial cases: D and pu, constants. Assume now that D > 0 and u, > 0 are constants.
2.3. n =3, Qaball. Let n = 3. The (exponentially decreasing) Green’s function of L = —DA+p,

is then given by

e_klm_m

2. -

with k = \/pa/D, i.e., (—DA; + 114)G(z,y) = 6(x —y) Then G_j is a Green’s function as well,
and the difference is in the kernel of L. Therefore,

(DA, + Ma)smh (klx —y|) _0.
|z =yl
Therefore, we can chose
sinh (k|x — y|)
2.7 ()= —r—"7—""
(27) (@) ="

with y arbitrary but fixed. Then compute h from (2.4).
If Q is the ball Q = {z]| || < a}, then we can choose y = 0 to get

_ sinh (k[z])
2]

(2.8) v(x) . h=a"'sinh(ka) + 24D (ka_l cosh(ka) — a2 sinh(ka)) .

Note that h is just a constant on the boundary |z| = a. Then by (2.5), we can recover

/| ) L (2) () 20 E2D)

]

When ka > 1, the function v is very small near 0 compared to its boundary values, which means
poor recovery of s, there (we do not actually recover s, here, just a weighed integral of it). That
can be expected though — signals coming from the center would be attenuated the most.

2.4. n = 3, Q arbitrary. One can still use v as in (2.8) (or, as in(2.7), see the remark above);
then h needs to be calculated by the second equation in (2.4).
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2.5. n =2,  a disk. In this case, the fundamental solution involves the Bessel function Ky and
is Ko(k|z — y|). Here, Ko = CHW (iz) with some constant C' and H[()l) is the Hankel function of
fist kind. Note that there is a weak (logarithmic) singularity at « = y. This is equivalent to (2.6)
in the 3D case. One can then take
v(x) = lo(klxl),
where I is the corresponding modified Bessel function of third kind, and there is no singularity.
This is equivalent to taking sinh(k|z|)/|z| in 3D. For h on the sphere |z| = a the boundary of the
ball), we get
h = Iy(ak) +2ADI;(ak),

which is a constant again.

3. REDUCING THE PROBLEM TO THE INVERTIBILITY OF A WEIGHTED VERSION OF THE
ILLUMINATION TRANSFORM

As we showed above, we cannot recover the source s, = I, f from (2.5). We are not trying to
reconstruct s, however. We view (2.5) as a linear integral transform

(3.1) R: f+— Rf(a) ::/valafdx, a e A
Q
We can write equation (2.5) then as
(3.2) Rf(a) = haQo f do.
o0

The right-hand side is determined by the data. The goal then is to invert R. Recall that we have
some freedom to choose v, = Vh,, and in particular, we can choose them independently of a.
Then v just multiples f, and we need to invert the transform with kernel I,(x); and then divide
by v.

We consider two main examples below: when R is a dual cone transform modeling the XMLT;
and when R is a weighted X-ray transform, which models the XLCT.

4. DOUBLE CONE EXCITATION (XMLT)

4.1. Formulation. We work in R” but the interesting case is R?. The idea of the XMLT is to
focus X-rays, thus forming a double cone, at each point x in some region of interest ROI at NV
different directions 0;, j =1,...,N. Then

a=(z,7) e 2x{1,2,...,N}.

We model the cones with their aperture functions a ;(f), 8 € S"~!, in other words, I,(z) is a
superposition of X-rays with density a, j. Then the corresponding intensity I, (y) is given by

Loy (=)
2j(y) = W

For example, if we assume uniform angular density, then a; ; would be constant on the intersection
of the interior of the cone with the unit sphere, and zero otherwise. We assume that the cones are
double; then a, ; are even functions on the sphere. The simplest case is when a, ; is independent of
x, and ag, j, is obtained from a,, j, by a translation in the x variable and a rotation in the angular
one.

By (1.1), the transform R becomes

(4.1) Rf(x,j) = / veill) i,

o lv—y" ! b
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If a, ; are smooth functions, then R is a YDO of order —1 with principal symbol

ri(2,€) = / ar O)usala)3( - 0) a6,

see, e.g., [4]. Here, 0 is the Dirac delta “function”; therefore, the integral is taken over the sphere
of co-dimension two (the great circle if n = 3, two points if n = 2) of the unit sphere intersected
with the plane normal to £&. Note that the symbol above is homogeneous of order —1. This shows
that the “visible” set of singularities & C T2 \ 0 is where the system {r; }é\le is elliptic, i.e.,

(4.2) U={(x,&) eT*Q\0; 35,6 L {so that a, ;(0) # 0}.

4.2. Recovery of the singularities in a region of interest. If Qy C  is an open subset (a
region of interest), and if a, ; are smooth, we can recover the singularities of f there, if the condition
for U in (4.2) is satisfied for any = € Qo, i.e., if

(4.3) T*QO \ ocu.
This can be done constructively as follows.

e For any j and z € €, choose a smooth function 0 < h;, on 02 and compute v;, = Vh;,
by solving (2.4) with hq = hj ;. This determines the transform R.

e Compute the right-hand side of (3.2) for x € .

e In (3.2), apply a left parametrix for the matrix operator f — Rf(j,-) in Q.

One way to construct a parametrix of order 1 is to construct a WDO with the following principal

symbol
-1
wm (5)
k
and then } ., q;j(z, D)Rf(j,z) = f + K f, where K is of order —1. If az; > 0, one can use instead

-1
- ($n)
k
and then ¢(z, D) -, Rf(j,x) = f+ K f with K as above.

Note that we can simply choose h;, independent of j, x.

The aperture functions a;; only need to be smooth of finite order to recover the leading sin-
gularities, like jumps across surfaces. In practical implementations, this condition can be satisfied
approximately by introducing vignetting near the edges of the cones. Even without applying the
operator ), the ) RS (j, ) would recover all singularities in the correct places but with varying
amplitudes. Below, we consider a practical case where a, ; are enough to be L only.

When the stability condition (4.3) does not hold, we can still reconstruct the visible singularities
in U stably by a microlocal inversion, if a; ; are smooth but not the ones in the complement of U,
see, e.g., [14].

4.3. Explicit global inversion when the apertures are translation-independent. Assume
now that the aperture functions are non-negative and independent of x, i.e., they are given by
a;(#). This is the actual experimental case, actually. The stability condition (4.3) then takes the
following form, see (4.2) :

(4.4) Any plane through the origin intersects at least one of the cones {0; a;(6) > 0}.

Assume also that h; , are independent of j and z. The construction above then simplifies as follows.
We have

ri(e,€) =2 Eu(@), (E) = / a;(6)5(& - 0) b,
S’nfl

and 7;(£)v(y) is actually the full (not just the principal symbol) amplitude of f — Rf(j,-). Symbols
independent of x are Fourier multipliers, i.e., rj(D) = F~1r;F, where F is the Fourier transform.
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Then R; = r? (D)v with v regarded as a multiplication, where we changed the notation for R since

«a = j now. In integral form,

aj %
Rif(x) = / ) o )

ol —ylnt

Note that T?(D) makes sense even if a; is L> only.
Equation (3.2) takes the form

Rif(x)= /89 hQ; . do.
When the stability condition (4.4) holds, this equation can be solved explicitly as follows

(4.5) f= i(zrj(D)>_lz/m hQ, . do.

We summarize this in the following:

Theorem 4.1. Let the aperture functions 0 < a;j(0) € L™ be independent of the point x where we
focus. Choose 0 < h € C?(0Q) and let v = Vh be the solution of (2.4) corresponding to that h. If
the stability condition (4.4) holds, then f can be explicitly computed by (4.5).

Moreover,
e hH / H
<C
||f”L2(Q) = ming v 20 § Qj:]c (@, )

The subscript z in €2, indicates that the H' norm is taken w.r.t. to the variable z. We used
Lemma 2.1 to conclude that v has a positive minimum.

Remark 4.1. One way to satisfy the stability condition (4.4) is to make sure that union of the open
sets {a; > 0} where the apertures do not vanish covers the equator of the unit sphere (or any great
circle fixed in advance). This is the situation in the numerical example below. If the apertures
{aj > 0} are too small, then there will be a large variation between the minimum and the maximum
of the symbol ¢ below, which may lead to a mild instability; the most stable singularities would be
the vertical ones.

5. X-RAY EXCITATION (XLCT)

In the X-ray excitation case, we send individual X-rays through the medium. If the direction is
6 € S"~!, and we parameterize lines in this direction by initial points z on 8+ = {z; z -6 = 0}, we
have
a=(0,2), Hes" 1t zeot.
In other words, we identify the directed lines in R™ with such a’s. Then I, is just a delta unction
on the line parameterized by «. Therefore, R is just the weighted X-ray transform with weight
hg, .. Assume now that h is chosen independently of the line parameterized by (¢, z). Then

Rf = Rovf, Rog(0,z)= /g(z + ) dt.
Equation (3.2) takes the form
(Roof)(0.2) = [ 1o o,
o0

In other words, each measurement gives us an integral of vf over a single line. The function f can
then be found by inverting the X-ray transform Ry and then dividing by v. The problem with a
subset of lines and microlocal recovery in a ROI is the same as with the X-ray transform. Note
that in practice, diffraction and other engineering challenges limit the ability to concentrate the
radiation too closely along a single line thus limiting the resolution.
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6. NUMERICAL SIMULATIONS

A spherical phantom of radius 10 mm was employed for the numerical simulation. The phantom is
assigned with optical parameters: absorption coefficient y1, = 0.05 mm™!, scattering coefficient p, =
15.0 mm ™!, anisotropic coefficient g = 0.9, and relative refractive index of 1.37. The phantom was
discretized into 65, 775 tetrahedral elements and 12,044 nodes. A total of 2,108 virtual detectors
were distributed over the phantom surface to record the photon fluence rates. Then two light
sources of radius 1.0 mm were embedded into the phantom, and filled with nanophosphors of
concentrations of 5 pug/mL and 10 pg/mL, respectively. The centers of the two light sources were
at (2.5,2.5,0.0) and (3.5,0.0,0.0). Two spherical subregions have a separation of 0.69 mm to test the
spatial resolution. Using a polycapillary lens, X-ray beams are reshaped to double cone with a cone
angle of 19.2 degrees. The focal point of the X-ray is scanned at grid points in a region of interest
ROI={-2<x <5, —2<y<5, —2< 2z < 2} along a scanning direction. Then, the phantom
was rotated with 10 equal angles over a 360 degrees range to acquire sufficient information for an
improved stability of the reconstruction. The stability condition (4.4) then holds, see Remark 4.1.

At each scanning, the intensity of the photon luminescence on the surface of the phantom was ac-
quired. The intensity describes the optical emission of nanophosphors with double cone excitation.
The intensity of the near-infrared radiation on the surface of the phantom can be simulated accord-
ing to the diffusion approximation model. The intensity data are used as mean values of Poisson
distribution to generate the simulated measurement data with Poisson noise. After discretization,
the LSQR method [10] was used to solve the resulting system, in order to reconstruct the nanophos-
phor distribution from simulation data. The reconstructed results are in excellent agreement with
the true phantom, and the average relative error of the reconstructed nanophosphor concentration
was less than 5.37%, which was defined as

1 P — Pi
. T T )
#{il p; > €} e P

Error =

where p;; and pj are the true and reconstructed nanoparticles concentrations, respectively, and € is
a background noise level with a value of 0.1 pug/mL. Figures 1-2 present the comparison between
the true and reconstructed nanophosphor distribution, showing the quantification accuracy of the
image reconstructions.

F1GURE 1. Modulated luminescence tomography 3D simulation. Left: the true
nanophosphor distribution in the phantom. Right: the reconstructed nanophosphor
distribution. The different colors on left and right do not represent different values.
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FiGURE 2. Modulated luminescence tomography simulation. Left: The true
nanophosphor distribution on the 2D slice z = 0. Right: the reconstructed
nanophosphor distributionat on the 2D slice z = 0.
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