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We study the Complex Absorbing Potential (CAP) Method in computing quantum
resonances of width —Imz(h) < c¢(h) = O(h"), N > 1. We show that up to an
h™™./c(h) + O(h™) error, M > 1, resonances are perturbed eigenvalues of the
CAP Hamiltonian P(h) —iW, and vice versa, where W is the CAP with non-negative
real part supported outside the trapping region. In some cases, the error terms are
exponentially small.
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1. Introduction

The purpose of this paper is to try to justify mathematically the Complex Absorbing
Potential (CAP) method in computing quantum resonances. Let P(h) = — h?A+V
be the semiclassical Schrodinger operator with compactly supported potential
V(x) (in fact, we work with more general “black-box” Hamiltonians). Quantum
resonances in a neighborhood Q of some E > 0 are defined as the poles of the
meromorphic extention of the resolvent (P(h) —z)~! from {Imz > 0}NQ to Q.
They can also be defined as the eigenvalues of the complex-scaled version P,(k)
of P(h) (see Section 7). We refer to Zworski (1999) for a general introduction
into resonance theory. In chemistry, resonances appear as metastable states. In this
paper, we are interested in approximating resonances with —Imz = O(h"), N > 1.
Such resonances may exist only if P(h) is trapping for the energy levels considered.
A typical example is a potential well, another example are Hamiltonians with an
elliptic periodic ray.

Since the interaction occurs only near supp V, for numerical computations, the
dynamics for large |x| should not matter. On the other hand, working in unbounded
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domain is inconvenient. One way to “model infinity” is to use the complex scaled
P,, and impose Dirichlet conditions on a large sphere, placed behind the region
where complex scaling occurs. The latter has been used in numerical computation
of resonances, see Lin and Zworski (2002). Another way is the CAP method: to add
to P(h) a potential —iW(x) with W > 0, that is supported outside supp V. The CAP
method has the advantage of perturbing P(h) by a zero order term. The underlying
idea is that —iW absorbs the signals without reflecting them (up to an O(h™) error).
Then one can impose Dirichlet or other boundary conditions on a large sphere
encompassing d(supp W), and this should not create new reflections up to O(h>)
terms. The numerical results are very good and we refer to Siedeman and Miller
(1992), Santra et al. (1999), Riss and Meyer (1996), Neumaier and Mandelshtam
(2001), Vibok and Halédsz (2001), and the references in those works, for more details
about the use of the CAP method for various quantum computations. In the context
of approximating resonances, the CAP method has been used in Jolicard and Austin
(1986), Riss and Meyer (1993), Poirier and Carrington (2003), Mandelshtam and
Neumaier (2002).

In this paper, we show that in a neighborhood of the real axis of polynomial
width c(h) = O(h"), the eigenvalues of Q(h):= P(h) —iW are perturbed
resonances, and the resonances are perturbed eigenvalues of Q(h). The error, up to
a fixed polynomial factor, is max{,/ c(h), e*"_m”}, see Theorem 2. The exponent
can be replaced by e~/" if we are interested only in the distance between the
spectrum of Q(h) and the resonances of P(4) but not on the actual number of
resonances/eigenvalues close to each other, see Theorem 1. It would be interesting
to know whether a suitable choice of W would improve those estimates. We also
allow suppV and supp W to intersect as long as P(h) is nontrapping on supp W.
This introduces an O(h™) error, however.

The difficulties in proving such estimates are connected not only to the fact that
we need to compare solutions of equations with P(h) replaced by Q(%), but also to
the fact that perturbation spectral theory for non-self-adjoint operators is a delicate
matter due to the possibility of existence of pseudospectrum, see e.g., Dencker
and Sjostrand (2004). Close to the real axis however, neither the scaled P,(4), nor
Q(h) can have such pseudospectrum, and the proof of the theorems below is made
possible by the progress in understanding the relation between real quasimodes and
resonances based on application of the so-called semiclassical maximum principle,
(see Lemma 1 and the references related to it). Many of the technical arguments in
this paper rely on some ideas in Stefanov (2003).

2. Main Results

We define first an auxiliary operator P,(4) that represents P(h) for large |x|. Fix
0 < Ry < Ry. Let Py(h) = 3 <> a,(x)(hD)* be a formally self-adjoint operator that
is a compactly supported perturbation of —h%A in R”, i.e.,

Py(h) = —h*A  for |x| > R). (1)

Assume that Py(h) is classically elliptic (i.e., >, a,(x)¢* # 0 for £ #0) with
smooth coefficients. Here and below, we denote various positive constants by C. Fix
0 < ay < by < oo. In what follows, we are always going to work with energy levels
E included in [a,, b,]. Assume also that P,(%) is nontrapping for such energy levels.
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The latter means the following: let py(x, &) = 3-|,<, a,(x)&* be the semiclassical
symbol of P,(h). Then we require that for any (x, &) € T*R" with a, < py(x, &) < b,,
we have that |®'(x, )| — oo, as t — oo, where @' is the Hamiltonian flow associated
with py.

Let P,(h) be an operator satisfying the black box assumptions in a Hilbert space
# described in Section 3. The black box is included in the ball B(0, R,). We require
that

P(h) = Py(h)  for |x| > R,. 2)

We consider two CAP operators: one, that we denote by Q. (%), acts in the
unbounded space, and the other one, denoted by Q(h), acts in a domain obtained
from the original one by restricting to the ball B(0, R), R > 0, and imposing
Dirichlet boundary conditions (Neumann b.c. would work equally well).

Let W € L™ be a complex-valued potential such that

Re W(x) > 0, suppW C R"\B(0, R,), R, <R,. 3)
We also assume also that for some 6, > 0, R, > R,
ReW > ¢, for |x| > R,. 4)
And finally, we require that
[Im W| < C(Re W)'/2. ®)

This condition is quite reasonable: it means that Im W, which contributes a real term
to —iW and can reflect signals, has to be dominated by the absorbing part Re W in
the sense given above. This condition is certainly satisfied if W is real. Set

0.(h) = P(h) —iW  in %. (6)

Given R > R,, let # be as in Section 3 (roughly speaking, it is the restriction of #
on the ball B(0, R)), and let P,(h) be the Dirichlet realization of P(h) there. Set

Or(h) = Pg(h) —iW in #p. ™)

Clearly, Q.. (h) and Q(h) are closed unbounded operators with (Q,, (k) = D(P(h)),
D(Qr(h)) = D(Pr(h)) and Imz > 0 belongs to its resolvent sets. We prove in
Proposition 1 that for any 4 > 0, the spectrum of Q. (4) in Imz > —J, consists only
of eigenvalues of finite multiplicities. The same is true for Q, (%) without the restric-
tion Imz > —J,. Note that in most interesting situations, P(%) has no positive real
eigenvalues, then Propositions 1 and 4 imply that the same holds for Q_ (&), Qr(h).

Note that we did not assume that R; < R,. We allow W to start rising in the
region where P(h) is still not equal to —h*A and may not have analytic coefficients
(so complex scaling is impossible there) but is nontrapping. Such an example is
shown in Figure 1 below. On the other hand, if Rj < R,, or more generally, if P(h)
has analytic coefficients in a neighborhood of supp W, then we can improve the
estimates on the “resolution” of the CAP method from O(4*) to exponentially small
(see the theorems below).
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Ro R R; R,

Figure 1. Sketch of a typical V and W in the case P(h) = —h?A + V(x), R, < R).

Our first result estimates the distance between Res P(h) and Spec Q(h), where
Q(h) is either Q(h), or Qg(h), if we stay close to the real axis, but does not give
information about the number of resonances/eigenvalues close to each other or
about their multiplicities. The latter is addressed in Theorem 2. Theorem 1 can be
considered as a partial case of Theorem 2 below, with improved error, however. The
reason we formulate it separately, besides the improved error estimate, is that its
proof is much more transparent (see Section 6).

Note that in most interesting situations, including that of the Schrodinger
operator, the number »* introduced in Section 3 is simply equal to the dimension n.

Theorem 1. Assume that h € H, where H C (0, 1], and zero is an accumulation point
of H. Let Q(h) denote either Q. (h), or Qr(h).

(a) Assume that Ry < R,. Let z,(h) be a resonance in

1 2
[ao,bo]—i-i[—(h"j“ /Clog Z) ,o], C>1, (8)

where 0 < a, < by < oo. Then for H 3 h < 1, there exists an eigenvalue of Q(h) in
1 1 .
Rezy(h) — e(h) log W Rezy(h) + e(h) log 7 +i[—e(h), 0], )

where g(h) = C;h™" "2 /=Im zy(h) 4+ ¢ "®)/" The constant y(R,) > 0 satisfies
P(R)) = (R, — R;))/Cy and C; >0 can be chosen uniform if R, belongs to a
bounded interval.
(b) Assume that R, < R},. Then (a) holds with e(h) = C;h="~12,/~Im z,(h) + O(h>).
(¢) Let wy(h) be an eigenvalue of Q(h) in (8). Fix B > 0. Then for H> h < 1, P(h)
has a resonance in

[Re wy(h) — o(h) log % Re wy(h) + 6(h) log %} +i[—d(h), 0], (10)

where d(h) = C,Bh™""~'\/—Imw,(h) + e 5/
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Remark. For a large class of operators P(h), including the Schrédinger operator
P(h) = —h?A + V(x), V € C¢° (and many more), Burq (1998, 2002) proved that for
any 0 < a; < by < o0, 3C > 0, such that for 1 < 1,

([, b)] + i[—e/", 0]) N Res P(h) = @. (11)

Then one can choose R, > 1 so that the exponential term in e(h) is absorbed by
the first one. In other words, we have to push the absorbing region far enough
to eliminate the exponential error term. Similarly, the e=2/" in 5(h) in (c) will be
accumulated by the first one.

In particular, Theorem 1 implies, that if Q(h) has an eigenvalue w(h) with
~Imwy(h) = e *"/" 1/C < a(h) < C, then there is a resonance z(h) with —Imz =
e P/ where a(h)/2 — O(hlog(1/h)) < B(h). If w(h) above is the eigenvalue closest
to the real axis within the range of real parts [Re wy(h) — e~V/", Re wy(h) + e~ /"],
C > 1, then we also have f(h) < 2a(h)+ O(hlog(1/h)) for all such resonances
within a similar range of real parts, provided that R, > 1.

Given Q C C, let Np(Q) and N,(Q) denote the number of resonances of P(h),
and respectively the eigenvalues of Q(h), in Q, counted with their multiplicities.
Next theorem allows us to estimate the number of resonances in a box close to the
real axis, by the number of eigenvalue of Q(h).

Theorem 2. Let H be as in Theorem 1. Let Q(h) denote either Q. (h), or Qg(h). Fix
0 <ay < by < oo, and let

Q(h) = [a(h), b(h)] + i[—=c(h), 0], (12)

where ay < a(h) < b(h) < by, 0 < e "™ < ¢(h) < h™, b(h) — a(h) > 2¢(h), and
0<egy<?2/3.

(a) Assume that Ry < R|. Then there exist N> 0, M > 0, such that
No(Q_(h)) = Np(2(h)) < No(Q, (h)), (13)
where

Q_ = [a(h) + c(h), b(h) — c(h)] + i[—thz(h) 0],
= [a(h) — h™"\/c(h), b(h) + h™"\/c(h)] +i[—h""\/c(h), 0].
Moreover, the first inequality in (13) holds under the assumption of the weaker lower

bound for c(h): e /" < c(h).
(b) Assume that R, < Ry. Then (a) holds with Q) replaced by

Q. =[a(h) — h™e(h) — O(h™), b(h) + ™/ c(h) + O(h™)]
+i[ = ¥V e(h) — O(h™), 0].

Remark. We will note without a proof that the O(h*) terms in Theorem 1(b) and
Theorem 2(b) can be replaced by e~'/¢" if the coefficients of P(h) are analytic for
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|x|] > R, — &, 0 < ¢ < 1. On the other hand, in this case, one can perform complex
scaling for |x| > R,.

Results analogous to those above can be also formulated for the scattering
poles of h-independent operators, i.e., the poles of the meromorphic continuation of
(P—72)7", as |A] = oo, —=Im A = O(]A|™").

3. Black Box Assumptions

We work in the general framework of black-box scattering proposed by Sjostrand
and Zworski (1991) (see also Sjostrand, 1997; Tang and Zworski, 1998). We consider
only compactly supported perturbations of the semiclassical Schrédinger operator
—h*A. Let # be a complex Hilbert space of the form

H =Wy, & L*(R"\B(0, R,)),

where R, > 0 is fixed and B(0, R,) is the ball centered at the origin with radius R,
We consider a family of self-adjoint unbounded operators P(4) in # with common
domain %, whose projection onto L*(R"\B(0, R,)) is H*(R"\B(0, R;)). In what
follows, we will denote by 15z, the orthogonal projector onto # . We will also
denote the same projector by 1, g, and will use the notation #; for the space
Hr, ® L*(B(R, 0)\B(R,, 0)), where R > R,. We assume that

Lgor,) (P(R) +1)" % —> %
is compact. Outside # , P(h) is assumed to coincide with Py(h), see (2), i.e.,

lR”\B(O,RO)P(h)M = Py(h) (“|Rn\3(o,R0))-

For |x| > R), we have P(h) = —h*>A. Finally, we assume that P(h) > —C,, C, > 0.
Under those assumptions, one can define (the semi-classical) resonances Res P(h)
of P(h) in a conic neighborhood of the real axis by the method of complex scaling
(see Sjostrand and Zworski, 1991; Sjostrand, 1997). Resonances are also poles of
the meromorphic continuation of the resolvent (P(h) —z)™' : # oy — %, from
Imz > 0 into a conic neighborhood of the real line. We will denote the so continued
resolvent by R(z, h).

As in Sjostrand and Zworski (1991) and Sjostrand (1997), we construct a
reference selfadjoint operator P*(h) from P(h) on #* = #y & L*(M\B(0, R})),
where M = (R/RZ)" for some R > Rj. Then for the number of eigenvalues of P*(h)
in a given interval [—4, 1], we assume

#{z € Spec P*(h); —i <z <2} <C/H) 2, i=1, (14)
with some n* > n. In most interesting cases, including that of P(h) = —h>A + V(x),
we have n = n*. Estimate (14) implies (see Sjostrand and Zworski, 1991; Sjostrand,

1997) that

#{z € ResP(h); 0 < ay < Rez < by; 0 < —Imz < ¢,} < C(ay, by, c))h™.  (15)
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Polynomial estimates of this type have been proven also in Melrose (1984), Zworski
(1989), Sjostrand and Zworski (1991), Vodev (1992), and Sjostrand (1997).

Finally, we recall an a priori estimate on the resolvent, see Tang and Zworski
(1998) and the references there. For any precompact region ) C C\{0}, 34 > 0,
such that

xRz, B)y| < A loe(1/eh)  for z € Q, dist(z, ResP(h)) > g(h), (16)

for any 0 < g(h) = o(h™").

In what follows, we denote by C various positive constants that may change
form line to line. With some abuse of notation, suppy C B(0, R) (the latter is the
ball centered at zero with radius R) actually means that y = 1z, + ', where
supp ' C B(0, R), etc. We also use the notation y, < y, to indicate that y, =1 in a
neighborhood of suppy,. We will often suppress the dependence on #, i.e., we will
denote P(h) by P, etc., to simplify the notation.

4. Properties of Q. (h) and Q(h)

4.1. Analysis of Q. (h)

Proposition 1. For any h > 0, the resolvent (Q.,(h) —z)~' extends meromorphically
from {Imz > 0} into {Imz > —3J,}. The poles of (Q.,(h) — z)~! are eigenvalues of Q,,
of finite multiplicity. Moreover, 0 # z € R is an eigenvalue of Q. (h) if and only if it is
an eigenvalue of P(h).

Proof. The proof basically follows from the fact that for Imz > —4,, O, —z is
a relatively compact perturbation of the invertible operator P —iW, — z, where
W, := 9, for |x| < R,, W, := W otherwise.

More precisely, define the following candidate for an approximate right inverse
of O, — z. Let x; + y» + 3 = 1 be a smooth partition of unity, such that y; = 1 near
B(0, Ry), suppy; C B(0, (Ry + R,)/2); supp 3 CR"\B(0, R,), and y; =1 for [x[ > 1.
Let ; > y:, i = 1,2, 3 and have the same support properties but the sum does not
equal 1. Let Imz, > 0 and set

E(z) = 11(P = 20)" 11 + 12 (Po —iW = 20) "' 1o + 13 (Py — iWy — 2) "' s,
where W, is as above, and in particular, W, = W for |x| > R,, and Re W, > §,,
see (4). The later inequality implies that (P, —iW, —z)~! is holomorphic for
Imz > —4,.

Apply Q.. — z to E(z) to get

(Qu — DE(2) = [Py, 11 1(P — Zo)_le + % [I +(zg —2)(P — Zo)_l]Xl
+ [Py, 1) (Py — iW — 20) ' 70 + 7(2[1 + (29 — 2)(Py —iW — Zo)il]Xz
+ [Py, 131(Py — 1W, _Z)_113+X3~ (17)

Therefore,

(O —2)E(2) =14 K(2), (18)



1850 Stefanov

where

K(z) = [Py, 71 )(P = 20) "oy + (20 = DT (P — 29) 'y
+ [Py, 121 (Py —iW = 20) 1o + (2 = 20) 72 (P — W — 20) "' 12
+[Po, 1Py —iWy = 2) '
= K| + K5(2) + K3 + Ky (z) + K5(2). (19)

Clearly, K(z) is a compact operator, depending analytically on z € {Imz >
—0dp}. We claim that for Imz, > 1, and z close to z,, ||K(z)|| < 1/2, therefore
I+ K(z) is invertible there. This follows form the following: by the spectral theorem,
(P —zo)7!|| <1/Imz, for Imz, > 0. This easily implies that |P(P —z,)7!|| < C
uniformly in z, and 4, if Imz, > 1, and Re z;, is bounded. By standard semi-classical
elliptic estimates, we get that for any y € C*(R"\B(0, R,)), ||W*Ay(P —z,)7'|| < C.
Using the Fourier transform, we obtain ||AVy(P — z,)~!|| < C/\/Imz, under the
same assumptions on z,. This shows that for Re z,, fixed and Im z, > 1, independent
of h € (0,1], ||K;|| < 1/10. The proof for K; and K is the same. This proves our
claim.

Fix z,, independent of & € (0, 1], as above. By the analytic Fredholm theorem,
(I+ K(z))! is meromorphic in {Imz > —J,}. Then E(z)(I+ K(z))~! is a right
inverse for Q. — z. A left inverse is constructed in the same way by switching %; and
%> 1=1,2,31in (17), and this gives us in fact 'E(z), where ‘E(z) is the transpose of
E, i.e., the operator with Schwartz kernel obtained by switching the variables x and
y. Then the left and right inverses have the same poles, they coincide outside the
poles, therefore, they are equal as meromorphic functions. Therefore,

(0. —2) ' =E@)(I+K(2))"". (20)

Thus, the left-hand side (L%.s.) above is meromorphic in Im z > —4,, with poles
among those of (I + K(z))~!. Moreover, the residue of the resolvent (Q, —z)~' at
such a pole is of finite order and rank, because the same is true for the residue
of (I+ K(z))~'. The second statement of the proposition follows from the general
theory of non-self-adjoint operators.

Now, let z be an eigenvalue of Q_, and let f be an eigenfunction corresponding
to it. Then 0 = Im ((Q,, — 2)f, f), which implies

~Imz|f[* = (Re W), f). 2D
If z € R, then (Re W)!/2f = 0. Then Wf = 0 as well, see (5), thus Pf = zf. On the
other hand, if z # 0 is a real eigenvalue of P, then all corresponding eigenfunctions

are supported in the “black box” (Sjostrand, unpublished), therefore z is an
eigenvalue for Q_, as well. a

Proposition 2. Leta < b, 0 < ¢ < 9y, and Q = [a, b] +i[—c, 0]. Then for the number
Ny _(Q) of eigenvalues of Q. in ) we have

Ny (Q) < Ch™™, (22)

where C depends on Q and Q,, only.
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Proof. We use the representation (18), (19), where z, with Imz, >> 0 is chosen as
above, and in addition we can assume that for some r > 0, the disk D(z,, r) contains
Q but its closure is included in Imz > —4,,.

Recall that ||K;| + ||K;5]| < 2/10 for all 0 < & < 1. Arguing as in the previous
section, we see that ||Ks(z)|| = O(h). Note that K; = O(h™), j=1,3,5, if W is
smooth. Therefore, one can write

1+ K@) = (1+ K@) (K, +K; + K5(2)),
~ -1
K(z) = (K,(2) + K4(2)) (K| + K5 + Ks5(2)) -
We will estimate the function

f(2) =det(I+K"(2)), zeQ. (23)

To this end, it suffices to estimate the characteristic values ;(K,(z)), u;(K,(z)) for
z€ Q.

We estimate u;(K,) first. It is known (Sjostrand, unpublished, Section 6) that
(14) implies the estimate

~ _ 2ty —1
1, (P —z0) ) < C(1+ R27) (24)

since the same holds for the characteristic values of (P* — z,)~!. This implies the
same kind of estimate for u;(K,)

wi(Ky) < C(14+ w77 (25)

To estimate u;(K,), denote by P the operator defined similarly to P? in
Section 3, but obtained from P, instead from P. Note that

(PG — 1) (P — D7a(=IA —iW — 2) 'y, = (Py — 1) 'L,

where ||L|| = O(1). Using the inequalities p;(AB) < [|Allw;(B), u;(AB) < ||Bl|lu;(A),
the problem is then reduced to estimates of the characteristic values of (P} —1i)~!,

and they satisfy (25) by the well-known Weyl type semiclassical asymptotics, see
Dimassi and Sjostrand (1999). Therefore,

w(Ky) < C(14 w77 (26)
Thus, using Fan’s inequality g, ; (A + B) < ;(A) + p;(B), we get that w;(K)
satisfies (26) as well.

To estimate ‘uj(IN(”u(z)), we use another well-known inequality g,,; (AB) <
1;(A)u;(B), iterated n* times, to get that

w(K™(2)) < C(1+ W)™ < o1+ ji) @7)

This yields - u; (IN("“ (z)) = O(h™""), and by well-known estimates, |f(z)| is bounded
by this sum, i.e.,

|f(z)| < Ch™. (28)
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On the other hand, we have f(z,) = 1. Thus by Jensen’s inequality in B(z,, r + €),
& < 1, the number of zeros of f(z) in D(z,, r), and therefore in Q, is O(h~""). Those
zeroes include the eigenvalues of Q. , together with multiplicities, see e.g., Sjostrand
(unpublished, Proposition 5.16). This proves the proposition. O

Next, we show that (16) holds for the resolvent of Q_ (%) as well.
Proposition 3. Ler Q be as in Proposition 2. Then there exists A = A(Q), such that
1(Qu(h) = 2)7 ') < ™ 1s) for € 0, dist(z. SpecQu () = g(h). (29)
for any 0 < g(h) = o(h™™).

Proof. The proposition follows from (28) and f(z,) = 1 as in Petkov and Zworski
(2001, Section 4). O

Finally, let us mention that the inequality —Im ((Q,, — 2)f, f) = (Re W) f, /) +
Imz| f||?> > Imz| f||?>, where f € %(Q,,), implies

. 1
1@ —2)7'll < o Imz>0. (30)

4.2.  Analysis of Qi (h)

We show next that all the properties of Q(h) are preserved if we replace it by Q(h),
where Qx(h) is defined in (7). For the resolvent we then have

(Qr(h) —2)7" = (Pe(h) — z) "I+ K(2)) ",
where
K(z) = (—iW — 24 29) (Pg(h) — z9) ™"

and Imz, > 0. For Imz, > 0 and z close to zy,, I+ K(z) is invertible, therefore
(I+K(z))"! is a meromorphic family. The eigenvalues of Qg(h) can then
be characterized as the poles of (I+ K(z))"!. For each eigenvalue z, and
eigenfunction f, (21) is still true, therefore if z is real, then Wf = 0, so f vanishes
near 0B(0, R), and is also an eigenfunction of P(k) as well. Similarly, if a nonzero
real z is an eigenvalue of P(k), then it is an eigenvalue of Qg(h) as well. Thus
Proposition 1 still holds for Qg (k).

Propositions 2 and 3 hold for Q4 (k) as well. Indeed, as above, we need to prove
(28), where f(z) is as in (23) but with K(z) replaced by K(z) above. This can be done
by estimating the characteristic values u;(K(z)). They satisfy (25), (26) because the
eigenvalues of (Pg(h) — z,)~! satisfy them as well, and the later follows from (14) as
in (24). Let us summarize this in the following.

Proposition 4. For any h > 0, the resolvent (Qp(h) — z)~" is a meromorphic function
of z € C, and its poles are eigenvalues of Qr(h) of finite multiplicities. The last statement
of Proposition 1, as well as Propositions 2 and 3, and estimate (30) hold with Q. (h)
replaced by Qg(h) as well.
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5. From Quasimodes to Resonances, Revisited

In this section, we will review the connection between quasimodes and resonances
developed in Stefanov and Vodev (1996), Tang and Zworski (1998), and Stefanov
(1999), by improving some details. The first improvement is to formulate the
theorem below for long range perturbations of the Laplacian, which does not
require new efforts, see Stefanov (1999) and Sjostrand (unpublished). The second
one is to formulate the result so that it would give resonances exponentially close
to the quasimodes (not only the imaginary, but the real part as well), if the error
is exponentially small. This is not new either, and follows from the recent versions
of the lemma below, see e.g., (Stefanov, 2001) but the corresponding implications to
the resonances and quasimodes connection have not been formulated clearly so far,
except for Remark 5 in Stefanov (1999) that can be improved as well. And finally,
asymptotic orthogonality of the quasimodes can be relaxed, it can be replaced by a
linear independence stable under perturbations (40), see also Stefanov (2003).

Next lemma is sometimes referred to as the “semiclassical maximum principle”
(Tang and Zworski, 1998), see also Stefanov and Vodev (1996). The version
presented here is close to that in Stefanov (2001).

Lemma 1. Let 0 < h <1 and a(h) < b(h). Suppose that F(z, h) is a holomorphic
function of z defined in a neighborhood of

Q(h) = [a(h) — w(h), b(h) + w(h)] +i[-a(h)S_(h), S, (h)],
where 0 < S, (h) < S_(h), 1 < a(h), and S_(h)a(h)loga(h) < w(h). If F(z, h) satisfies
|F(z, h)| < e on Q(h), (31)
|F(z, )| = M(h)  on [a(h) —w(h), b(h) + w(h)] +1S,(h) (32)
with M(h) > 1, then there exists hy = h(S_, S, &) > 0 such that
|F(z, h)| < &M(h), Yz e Q:=[a(h), b(h)] +i[=S_(h), S, (h)]
for h < hy.

Proof. We follow Sjostrand (unpublished). To simplify the notation, we will
suppress the dependence on 4. Set

Imz4+aS_ S, —Im
£(z) = log |F(z)| — log M— e i

x . (33)
xS +S, aS +5,

Then f(z) = Re log F(z) is a subharmonic function near (), and harmonic, if F(z)
has no zeros there. By (31), (32), f < 0 on the horizontal sides of Q. On the vertical
sides, as well as anywhere in (), f satisfies f(z) < o by (31). Then

@) = [ GOl dS,. (34)

where %(z,y) is the Poisson kernel in ). Since () is a rectangle, one can use
separation of variables to get an explicit expression of %(z, y), and the later decays
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exponentially in “long domains” away from the vertical sides (see also Sjostrand,
2001). Therefore,

f(z) < ae™ /5450 forz e Q, a<Rez<b,

if h < 1, and it can be seen that C can be any constant less than x, for example C =
2. Under our assumption for w, the inequality above implies that f < 1 for z € Q,
a < Rez < b. If, in addition, —Imz < §_, then the last term in (33) is bounded from
below by —2. Therefore,

log|F(z)| < 1+logM +2  in Q(h),
which completes the proof. a

The lemma still holds, if F(%) is an operator valued function. Indeed, then one
can apply the lemma to the function (F(z, k)¢, ) with ||¢| = ||| = 1 (then k, does
not depend on ¢, V).

Corollary 1. Let a(h) < b(h), and F(z, h) be a holomorphic function near

Q(h) = [a(h) — w(h), b(h) + w(h)] + i[ — Al log %}Z)S(h), S(h)], (35)

where ¢ %" < S(h) <1, B> 0, and 2An*h™" log 1 log 5 S(h) < w(h). If F(z, h)
satisfies

|F(z, )| < ™" 1020500 6 (1), (36)

\F(z, h)| < ﬁ on Q(h) N {Imz > 0}, (37)

then there exists hy = h(S_, S, «) > 0 such that for h < h,,

3

h)| < ﬁ vz € Q = [a(h), b(h)] +i[-S(h), S(h)]. (38)

|F(z,

Proof. We apply Lemma 1 with a(h) = A" log(1/S(h)), S_ =S, =S, M(h) =
1/5(h). O

A typical application of the lemma is when one can find a quasimode, i.e.,
a quasiresonance E(h) € R and a compactly supported u(h) with the property
|(P(h) — E(h))u(h)|| = R(h) = O(h™"), N> 1. Then we choose S_(h) =S (h) ~
R(h), F(h) = yR(z, h)y with a suitable cut-off y, and then M(h) =1/S, (h). The
lemma then implies an existence of a resonance at a distance O(R(h)h’”n’1 log(1/h))
from E(h). More details are given below. In some cases, one really needs S_ # S,
see Stefanov (2003).

We formulate next theorem for long-range perturbations of the Laplacian. We
refer to Sjostrand (1997), Tang and Zworski (1998), and Sjostrand (unpublished) for
more details. We skip the definition of that latter, since we will apply the theorem
below to short range perturbations only described in Section 3.
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Theorem 3. Let h € H C (0, hy], and let zero be an accumulation point of H. Let
P(h) satisfy the long-range black box hypotheses. Let 0 < ay < a(h) < b(h) < b, < .
Assume that for any h € H, there exist m(h) € {1,2,...}, E;(h) € [a(h), b(h)], and
u;(h)y € %, |lu;(h)|| =1, 1 < j < m(h), such that suppu;(h) C K, with K a compact
set in R" independent of h, and the following properties are satisfied:

[(P(h) — E;(h))u;(R)|| < R(h), (39)
Vi (h) e % with i, (h) — u ()| < WY /M, 1< j < m(h), {ii ()}
are linearly independent, (40)

where R(h) < k"tNt1/Clog(1/h), C>> 1, N >0, M > 0. Then there exists Cy=
Cy(agy, by, P) > 0, such that for any B >0, 3h, = h,;(A, B, M, N) < h, such that for
H > h < hy, P(h) has at least m(h) resonances in

[a(h) —¢(h) log % b(h) + c(h) log %] —i[0, c(h)], (41)
where
c(h) = max(C,BMR(h)h™"""N=1 ¢ B/h,

Remark. As shown in Stefanov (1999), if u;(h) are orthogonal, then (40) is fulfilled if
h¥ /M < 1/m(h). Actually, the theorem implies that m(h) = O(h™""), so one can take
N = n*, M >> 1 in case of orthogonal quasimodes. If |(u;(h), u;(h)) — 0,;| < o/m(h),
o < 1, then this is still true, i.e., the conditions

[(u;(h), u;(h)) — d;| < o/m(h), WM < o/m(h), 0<o<]l,
imply (40), and A" /M < o«/m(h) is always fulfilled for N = n¥*, M > 1.

Proof of Theorem 3. We will sketch the proof by pointing out the slight
modifications needed in the proof of Stefanov (1999, Theorem 1), see also Sjostrand
(unpublished, Theorem 11.2).

Let zy(h), ..., z,4,(h) be all distinct resonances in

Q,(h) = [a(h) — 2w(h), b(h) + 2w(h)] + i[ — 24K~ log ﬁsm), S(h)].

(compare with (35)), where 0 < S(h) <« 1 and w(h) will be specified below. Fix
L€ CS, x> IB(o,R;))- The multiplicity of each z;(h) is given by the rank of the
residue AV (h) of yR(z, h)y at z;(h), see e.g. Sjostrand and Zworski (1991), Stefanov
(1999), and Sjostrand (unpublished) for the long-range case. We need to prove
that m(h) := Y. RankAY (k) > m(h). Let II(h) be the orthogonal projection onto
UAY(h)#, and let IT'(h) = 1 — (k). Then Rank I1(h) < m(h), so it is enough to
show that Rank I1(k) > m(h).

Analyzing the terms in the Laurent expansion of yR(z, h)y at each resonance
z;(h), it is proven in Stefanov (1999), see also Sjostrand (unpublished), that
F(z, h) :==II'(h)xR(z, h)y is holomorphic in Q(h), and satisfies ||F(z, h)|| < 1/Imz
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for Imz > 0. It also satisfies (16), therefore (36) is fulfilled as long as
z € [ag/2,2by]) +1[—1/C, 1/C], C > 1, and dist(z, Res P(h)) > S(h).
Set

1 1
h) = 4n*Ah™" log — log ——S(h),
w(h) = 4n oghogs(h)()
and assume that S(h) is such that w(h) < ay/2. Since the diameter of the largest
connected union of disks centered at resonances with radius S(k), is O(h™" S(h)), as
in Stefanov (1999) we get that (36) is satisfied in Q (k) given by(35). We can apply
Corollary 1 to get (38). The existence of quasimodes however implies by (39),

e’R(h)

I (R)uy (M) < 1 F(z, WIIR(R) < Sy

Therefore, for u;(h) = I(h)u;(h), we have |[u;(h) —u;(h)| < e*R(h)/S(h). If the
latter does not exceed AY/M, then @;(h) are linearly independent by (40),
and the inequality RankII(4#) > m(h) follows. Therfore, we can choose S(h) =
max(e’Mh~NR(h), e 2%/") to get ||it;(h) — u;(h)| < kN /M.

Thus we have proven that there are at least m(h) resonances in Q(4). It can be
easily seen that the domain (41) includes Q(%) for & < 1, and that the assumptions
on R(h) imply the requirement on w(h) above. O

The error estimate in the theorem can be improved if we take into account the
contribution of one quasimode only (at the expense of losing information about
multiplicities and clusters of resonances): if E(4) is a real quasiresonance as in the
theorem, then there exists a resonance z(%), such that

1
[Rez(h) — E(h)| < CR(h)h™"" " log o 0=—Imz(h) < CR(h)h™"".

Theorem 4. The conclusions of Theorem 3 remain true with P(h) replaced by Q(h)
and “resonances” replaced by “eigenvalues”.

Proof. The proof is the same as above. Instead of (15), (16), and the estimate
lxR(z, h)y|| < 1/Imz, Imz > 0, we use Propositions 2 and 3, and (30). O

6. Proof of Theorem 1

Proof of (a). Let z,(h) be a resonance in (8), and let u(h) be a corresponding
resonant state. Then by Burq (1998), and Proposition 3 in Stefanov (2002),

—I h
/ (|I/l|2+ |hVXu|2)de < C( mZO( ) +e—}v(ﬂ)/h>/ |u|2dx, (42)
|x|=p h B(0,p)

for any p > R;. Moreover, y(p) — oo, as p — co. More precisely, the analysis in
Stefanov (2002) shows that y > (p — R;)/C,. The constant C above depends on p
but can be chosen locally uniform. Let y € Cf, 1p, Ry < X < 1gory)- Set

v(h) = qu(h).
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Then (P(h) — zo(h))v(h) = [Py(h), x]Ju(h). Note that by (42),

BV hVu()| + 1A = O(h2/=Tm2g(h) + 7O/ k) | a1,
“3)

Therefore,
I(P(R) = (o) = €(h2V=Tmzg(h) + 7Y [u gy (44)

where 7(p) has the properties above. Estimate (42) implies that [[u(h)|l 2 #,)) <
Cllv(h)||. We can replace z,(h) with Rezy(h) and estimate (44) still holds. We
regard now v(h) as a quasimode for Q(%), notice that P(h)v(h) = Q(h)v(h), and an
application of Theorem 4 and the remark preceding it yields that there exists an
eigenvalue w(hk) of Q(h) in (9) with different y(p) and C having the same properties
as above.

Proof of (b). Now, assume that R; < Ry, see Figure 1. Then (44) is still true with x
such that y € C{, Loo.ry) < % < g0k with R} > Rj, and R, in (44) is replaced by
R}. Fix such a y. We will use semiclassical propagation of singularities argument to
show that v(%) is “small” not only outside B(0, R;) as (42), (43) indicate but also
outside B(0, R,). This is possible to do because P(%) is nontrapping outside B(0, R)
for energy levels in [a,, by]. We will use the propagation of singularities argument in
the form presented in Stefanov (2003, Lemma 4.1), see also Ivrii (1998). A slight and
obvious modification of the proof there implies that if (P(h) — zo(h))v(h) = g(h),
where ||g|| is bounded by the right-hand side (r.A.s.) of (44), and v satisfies (42), then
for any u > 0,

1)t e,y < C 2 (V=Tm 2 () + 00 ) () | 0.1,

Now, we argue as in (a) to complete the proof of (b) by using the estimate above
instead of (43).

Proof of (c). Let wy(h) be an eigenvalue of Q(h) in (8) with eigenfunction f(h),
/()] = 1. By (21),

|(Re W) 2f(h)]| = V/~Tmw,(h). (45)

Let z € Cf° be such that 1, ,,) < 7 < 1, and consider yf(h). Then
(P(h) — wy(h)1f(h) = [Py(h), 21/ (h) + ixWf(h). (46)
The latter term is O(JTwo(h)) by (45) and (5). Using standard semi-classical
elliptic estimates, we get that |[—A*A, y]f(h)| < Ch|[1q g\ s0.ryS(R)]. where

R; > 0. Using (45) again, we get that the latter is bounded by C./—Im w,(h),
because Re W > §, for |x| > R, by (4). Thus,

[(P(R) — wo(M)xf(W)|| = Cv/ =Imw,(h). (47)
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By (45) and (4), |lxf(W)|| =1—/—Imwy(h)/6, > 1/2, for h small enough, so
21f(0)/lxf(h)| is a quasimode for P(h). Applying Theorem 3, we get that there exists
a resonance in (10). This completes the proof. O

7. Proof of Theorem 2

The main arguments in this section are adapted from Stefanov (2003, Sections
3.3-3.5). As in the preceding section, we prove that cut-off resonant states of P(h)
are quasimodes of Q(4); and cut-off eigenfunctions of Q(h) are quasimodes of P(#).
To preserve the multiplicities and account for clusters of resonances too close to
each other, we express (h) as a union UQ;(h) of non-intersecting subdomains
with small widths, and apply Theorem 3/Theorem 4 to each of them, showing that
m;(h) resonances (eigenvalues) of P(h) (Q(h)) in Q;(h) imply existegce of at least
m;(h) eigenvalues (resonaNnces) of Q(h) (P(h)) in a larger domain Q,(h) D Q;(h)
as in (41). The domains Q,(h) overlap, however, so we are in danger of counting
some resonances several times. The critical moment in this approach is to prove
that this does not happen, and in fact, there are at least m(h) = }_ m;(h) eigenvalues
(resonances) in U(N)j(h). This is achieved by showing that the set of all m(k) cut-off
resonant states (eigenfunctions) satisfy the property (40).

First, we recall the absorption estimate in Stefanov (2003, Proposition 3.1), see
also Burq (2002, Proposition 6.1). Let P,(k) be the complex scaled Hamiltonian
with the complex scaling is performed outside B(0, R;). More precisely, for some
B > Rj, we choose an increasing smooth function 0 < 0(r) < 0, = const. < 1, such
that supp 6 C [B, o], 0(r) = 0, for r> B+ 06/2, with some 6 > 0. Then P,(h) is
obtained from P(h) by performing formally the change x = ro > re?@w in polar
coordinates. We refer to Sjostrand and Zworski (1991) and Sjostrand (1997) for
more details. We showed in Stefanov (2003, Proposition 3.1) that for & <« h;, with
some h,,

/(0 4 10| ho,ul® + 0™V, ul? + u]?)dx
< —Im (" (Py(h) = 2)u, u) + (~Imz+ ) Jul, (48)
for any z with Rez>aqa; Imz <0, and C =min(a,, 1)/2. Observe that the
requirement B > 1 in Stefanov (2003) is not needed for compactly supported
perturbations of the Laplacian that we study. In a remark following this
proposition, it is claimed that one can replace e """ there by e, Ve > 0 with
h, = h,(¢e), if 0(r) is properly chosen.
To prove this, we will review the proof of (48), given in Stefanov (2003,
Proposition 3.1). It is shown there that
—Im (°(Py — u, u) = I, + I, + I,

where, for h <« 1,
3
I = 5 [ (O +200)[ho,uf + 01"V, ul)dx, (49)

3
L= Zaof 0luf> dx, (50)
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and
_ L T G
I = —Im h((Re g)ho,u, u) + ?(Img uu)=0L +1L7, (51)

with

d 1 e 10 —i(r0” + 0/)e‘m
s =g (1 n ir9/> 1+ir0 (1 +ir0)? (52)

Choose 0(r) = exp(—(r — B)™) for 0 < r < 1/C, C > 1, k > 0. The function g
admits the following estimates

[Reg| = C(0" +10")(0+0') < CO, (53)
lg'l = C(0"+ 10" +10"]). (54)

Now (53) implies that I§1) can be estimated by
11| < Ch/ 0(1hé,ul® + |u)dr de (55)

and for & < 1 this can be absorbed by the r.A.s. of (49) and (50). Next, to estimate
13(2), we show that VC > 0, Ve > 0, 3k > 0, such that

—2/3+e

0/ + |0//| + |0///| < h—20/c+e—11
if 0 < h « 1. The proof of the inequality above is done by considering two cases:
0<r—B<h¥C and r — B > h**+)_ Using this estimate, we see that 1352) can be

absorbed by the r.h.s. of (50) as well. This completes the proof of (48) and explains
the lower bound on ¢(4) in Theorem 2.

Proof of Np(Q(h)) < Ny(, (h)). Fix g, > 0 and let (k) be as in (12) with M > 1
that will be determined later. We can assume that there are no resonances on 0Q)(h).
Let

() = [a,(h). by(W] +i[—e(). 0}, j=1.....J(h) = O(h™™),

be non-intersecting domains such that all resonances in (#) lie in the interior of
some ();(h). One can arrange the properties, as a consequence of (14)

dist(Q;(h), Q,(h)) = dw(h), 0 < b;(h) —a;(h) < Ch~"w(h), (56)

where 0 < w(h) = O(hV), N > 1 is fixed in advance. It is convenient to assume that
(see Stefanov, 2003, Proposition 3.4)

w(h) = k=" D2 (p). (57)

Set

J

1 _
Hn-(h) = i in/(h)(z — Py(h)) 'dz, Hu(h) = Z H!l/(h)9 Ho = Hn,(h)%-
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By Stefanov (2003, Proposition 3.3), for all j,
I1(Py(h) = a;(W)u,(W)| < CH=*" " e(h)l|u; ()|, Vu,(h) € Tlg 7. (58)
Furthermore, by Stefanov (2003, Proposition 3.4), for all j,
||Hnj(h)||7(ﬂ < Ch~(mh2, (59)

This bound is the critical part of the proof that guarantees the property (40), as
shown below.

Let x5 be a smooth cut-off function such that 1 g 354y < x5 < 1 4s)- Then,
by Stefanov (2003, Theorem 3.1), for any collection of normalized u;(h) as above,

1(PCh) = a; () gt ()| + [l () = 75 ()|} < CH=C" YD Je(h). (60)

Assume that R < R, i.e., P(h) = —h?A near supp W. Then we choose B, ¢
above to satisfy Ry < B < R;, and 0 <20 < R, — R;. We now consider yzu;(h)
as quasimodes for Q(#). At this point, we are mimicking the proof of Stefanov
(2003, Theorem 3.2) in the more difficult situation when the reference operator
Q(h) is not self-adjoint. For each j=1,...,J(h), let uy(h), k=1,..., Np(Q;(h))
be an orthonormal system in I, 7. By the non-self-adjoint spectral theory, u; (/)
are linearly independent. It is the property (59) however, guaranteeing that this is
preserved under small perturbations, that is needed in this proof. By (60), yzu;
are quasimodes for Q(h) as well, because Py(h)yz = Q(h)yp. To verify (40), let i
be another set of functions such that ||, — yu;ll < Ch*. Suppose that {i;} are
linearly dependent. Then

Y cpity =0,

and we can assume that max |c;| = 1. Use (60) and the assumption on i, above
to get

chkujk = O(h—n=)(h1( + h_(3”j+1/2)hM/2).

Let j, be the index for which |c;, | =1 for some k,. Apply HQjo(h) above, use (59),
and the fact that the u;’s are orthonormal for a fixed j to get

1< ” chokujok” — O(h_(911ﬁ+1)/2)(h1{ + h—(3n:‘+1/2)hM/2)'

We get a contradiction, if K > (9n* +1)/2, M/2 > 6n* + 1. An application of
Theorem 4 completes the proof of the estimate Ny(2(h)) < Ny(,(h)) in case (a),
ie., when Rj < R,.

Assume now that R; < Rj,. Then, as in the proof of Theorem 1(b), we propagate
estimate (60) all the way to R"\B(0, R,) at the expense of adding an O(h*) term.
More precisely, for any y € C5° with 1, ) < x, we have the following

I(P(h) — a;(h))yae; ()| + luj(h) = ()| < Ch=C* 52 e(h) + O(h™).

We now complete the proof in case (b) as above.
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Proof of Ny(Q2_(h)) < Np(2(h)). Similarly to the proof above, we show as in the
preceeding section, that the cut-off eigenfunctions of Q(h) are quasimodes of P(h).

We will first estimate Ny(€2(h)) from above. Let ;(h) be as above, such that
all eigenvalues of Q(h) are included in the interior of some (%), and there are no
eigenvalues on 0Q (k). This decomposition can be done because of Propositions 2
and 4.

Since Q(h) is non-self-adjoint, the multiplicity of each eigenvalue is the
dimension of the span of the eigenvectors and the generalized eigenvectors (such
that (Q(h) — w(h))*v =0 for some k). It is also given by the rank of the (non-
orthogonal) spectral projection. Denote

1 _
Hﬂ_/-(h) = 2_7m ﬁﬂj(h) (Z - Q(h)) ldz, Hn(h) = ZHQ_/.(h), Ho = H(z,(h)%-

If Q(h) = Qx(h), then # above has to be replaced by #,. Proposition 3.3 in
Stefanov (2003) applies to Q(h) as well, thanks to Propositions 2 and 3, thus (58) is
true for Q(h). Similarly, (59) holds as well.

Let [lu;(W)|| =1, u;(h) € Il () 7. Then

[(Re W)'u,||> = ~Im((Q — a,)u;, u;) < Ch= @ V(). (61)
Let y be as in Section 6, and consider yu;. Similarly to (46),
(P — ay)qu; = [Py(h), z]u; + ixWu; + O(h= " De(h)).
Following the arguments after (46), we get similarly to (60),
1P — @)yl + llu; = gu;| < CR=C" U2 e (h).

Then as above, we get N, (Q(h)) < Np(Q, (h)). To finish the proof, we set Q, (h) =
Q(h) = [a, b] +1i[—¢, 0], and solve this for a, b, ¢. Note that in those arguments we
only need to assume that c¢(h) > e=¢/" since we are not using (48). O
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