Distribution of resonances for the Neumann problem in
linear elasticity outside a strictly convex body

P. STEFANOV AND G. VODEV*

1 Introduction

Let O be a strictly convex compact in R?® with C*°-smooth boundary I" and denote by
Q = R3\ O the exterior domain. Denote by A, the elasticity operator which is a 3 x 3
matrix-valued differential operator defined by

Acv = pgAv + (Ao + o) V(V - 0),
v = "(v1, v9,v3). Here A, o are the Lamé constants and we assume that
Mo > 0, 3)\0 + Q,U(] > 0. (11)

The Neumann boundary conditions for A, are of the form
3
> oyWyle =0,  i=1,23, (1.2)
j=1

where 0;;(v) = AoV v+ 1o (% + %) is the stress tensor, v is the outer normal to I' = 9f).
J 7

It is known that —A. acting on functions v € C5, (€; C?) satisfying (1.2) can be extended
to a self-adjoint operator on L?(§2; C?) which will be denoted by L. The operator L is non-
negative and has no point spectrum. Then the cut-off resolvent R, (\) = x (L — )\2)_1 X,
X € C§° being a cut-off function equal to 1 near I', can be extended as a meromorphic
function from Im A < 0 to the whole complex plane C with possible poles in Im A > 0 (see
e.g. [Val, [Vo]). The poles of R, (\) are called resonances (known also as scattering poles).
There is a lot of works dealing with resonances for the Dirichlet or Neumann Laplacian
in an exterior domain. It follows from [MS1] and [MS2] that if there are no trapped rays
the singularities of the solution of the wave equation escape to infinity. Thus the method
in [LP2] (see also [Va]) gives that for nontrapping obstacles (and in particular for strictly
convex ones) for any C; > 0 there exists Cy > 0 (depending on C) so that all the resonances
are above the curve Im A = C In |A\| — C5. In the case of analytic boundary this was improved
in [BLR] to a cubic curve Im A = C1|\|'/? — Cy with some constants C;, Cy > 0 which can be
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calculated explicitly. Recently, it has been shown in [SZ] and [HL] that this is the case for
any strictly convex obstacle with C'*°- smooth boundary as well but with different constants
Cy and C3. On the other hand, Lax and Phillips [LP1] conjectured that if the obstacle is
trapping, then there should exist an infinite sequence of poles converging to the real axis.
As the case of two strictly convex obstacles (see [I1], [I2], [G]) shows however, in general this
fails but still there exists a strip 0 < Im A < C' containing infinitely many poles. Thus, one
could modify the Lax and Phillips conjecture asserting that for any trapping obstacle there
are infinitely many poles in some strip 0 < Im A < C, and this, to authors’ best knowledge,
has not been neither proved nor disproved so far. Note that in the case of two strictly convex
obstacles the poles below some logarithmic curve are localized very precisely and they all
are close to some explicitly calculated points (pseudopoles) forming a lattice. Ikawa [I1], [12]
found the first series of these pseudopoles and latter Gérard [G] obtained all of them. In [I3]
Ikawa gives an example of a trapping obstacle consisting of two (non-strictly) convex bodies
for which the poles converge to the real axis.

In the case we study in the present work O is strictly convex, so there are no classical
trapped rays reflected at the boundary according to the usual laws of geometric optics. How-
ever, it has been shown in [T1], [Y] that there are three types of rays that carry singularities
for L. The first two types consist of classical rays that reflect at the boundary and the
singularities propagate along them with the two sound speeds ¢; = /o, c2 = v/ Ao + 2o of
L. There is a third type of trajectories on the boundary along which singularities propagate
with a third, slower speed cg (the Rayleigh speed). So O is trapping for L because of the
existence of singularities propagating along the boundary. Moreover, it is proved in [IN] in
the spherical case and in [K] in the general one that the local energy of the corresponding
elastic wave equation does not decay uniformly as ¢ — oo. These phenomena well corre-
spond to the existence of Rayleigh surface waves (see e.g. [R], [A], [CP], [Gr], [Gu]). So, it
is natural to expect that the Rayleigh waves generate poles converging to the real axis, i.e.
the Lax and Phillips conjecture holds for that problem. In the present work we show that
this is precisely what happens when the obstacle is strictly convex. Our main result is the
following theorem.

Theorem 1.1
(a) For any Cy > 0 there exists Cy > 0, such that for any N > 0 there are no resonances

i the domain
CN|)\|_N <Im\ < Cyln|Al, IRe A| > C%

with some Cyn > 0. B
(b) There exist two infinite sequences {\;}, {—A\;} of distinct resonances of L, such that

0 <Im); <Oy for any N > 0.

In the case where O is a ball, the authors [SV] proved that in fact the sequence \; tends
to the real axis exponentially fast and the pole-free domain is of the kind Ce™ " < Im )\ <
C1IAY3, [Re A| > Cy. So, it is natural to expect that such a result still holds for any strictly
convex obstacle with analytic boundary.

Theorem 1.1 implies immediately existence of “eigenfunctions” corresponding to the res-
onances A;. We refer to Definition 2.1 for a definition of a A-outgoing function.
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Corollary 1.1 Let {\;} be the sequence of resonances of Theorem 1.1. Then for any j there
exists a nontrivial v; € C*(QY), such that vj solves the problem

(Ac+X)v; = 0 in Q,
St oa(vjye = 0 on T, (1.3)
v; — Aj-outgoing.

Moreover, if dist(x,T") is sufficiently small, then for any multiindexr o and any integer N we
have

050;()] < Cnva (14 dist (2, D)) ™ [loslpllary- (1.4)

Corollary 1.1 gives another interpretation of the Rayleigh waves. Namely, we find that
for some A; with Im A\; = O(|\;|~>°) there exist nontrivial exact solutions v, concentrated on
the boundary in the sense that they decay rapidly near I'. These solutions can be regarded
as the Rayleigh waves themselves and then Corollary 1.1 proves the existence of the Rayleigh
waves for any strictly convex obstacle O. It should be noted however that for large |z|, v;
increase exponentially.

Our approach is based on the following ideas. Below any logarithmic curve resonances
are the poles of N7(\), where N'()) is the Neumann operator on I' related to L mapping
the Dirichlet data to the Neumann data of the corresponding outgoing solution. We use the
calculus of UDO-s and FIO-s with large parameter (see [G], [D]). The large parameter in
our calculus is the complex spectral parameter A (assumed to lie in a logarithmic domain),
or \; = ReX. We represent the operator N'(\) as a DO with large parameter A in the
hyperbolic and the mixed region in 7%I" and as a YDO with large parameter \; in the ellip-
tic one. In the two glancing regions we get N'(\) = J(A1Q + A2)J ! (compare with [T2]),
where A;Q) + As is a hypoelliptic YDO with large parameter A, while J is an elliptic FIO
with large parameter A. It turns out that the characteristic variety of the parametrix for
N(N) is & = {¢ € T*T; cgl||¢|| = 1}, where cg is the Rayleigh speed (see e.g. [K], [CP]),
while outside ¥, the parametrix for A/(\) is elliptic in the hyperbolic, mixed and the elliptic
region and respectively hypoelliptic in the glancing regions in the sense described above.
Thus AM(A) can be microlocally inverted outside ¥. Now, if {)\;} are the poles below a
logarithmic curve, then there exists f(z,\), A = \;, 7 = 1,2..., such that N(\)f(z,\) =0
and VAVF‘( f) C 3. Then the solutions v; appearing in Corollary 1.1 have Dirichlet data
vjlr = f(z, Aj). Therefore, up to an error O(|A\|~>°), v; are given by the elliptic parametrix
and the properties of this parametrix to decrease rapidly near I" enable us to prove Theo-
rem 1.1(a). In order to prove Theorem 1.1(b) we apply the Phragmén-Lindeldf principle in
the domain A, = {A € C; |Im A| < aln(Re ), Re A > b} as follows. Using the parametrix,
we show that [N 71N || ez ry) < ¢/ In|Re A on dAqp for a > 0 sufficiently small and b > 0
sufficiently large. On the other hand, we show that we have the following a priori estimate
INT ) 2 ey < Ce® in A, assuming that A~1()) is analytic in a slightly larger
domain. This a priori estimate is closely related to the problem of finding sharp polynomial
bounds on the number of scattering poles in the disk {A € C; |A| < r} (see e.g. [Vo]). It
follows from a similar estimate (see Prop. 5.2) of the cut-off resolvent that was suggested to
the authors by M. Zworski. Having this a priori estimate we apply the Phragmén-Lindelof



principle in order to get the bound [N (N[l zgszry < C/InA for A € Ry sufficiently
large and then we show that this contradicts the fact that N (\) is not elliptic in the elliptic
region. Hence N 7!(\) cannot be analytic in A,p.

The paper is organized as follows. In Section 2 we show how one can construct a
parametrix for the Dirichlet problem for (A, + A*)v = 0 by using the parametrix for the
Dirichlet problem for (A + A?)u = 0 built in the Appendix. A parametrix for the Neumann
operator N'(\) is built in Section 3. In Section 4 we prove the existence of the pole-free
domain. The existence of a sequence of resonances tending to the real axis is proved in
Section 5. In the Appendix we construct a parametrix for the Dirichlet problem for the

equation (A + A?)u = 0 and for the corresponding Neumann operator following Gérard [G]
and Taylor [T2].
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Paris-Sud. The authors thank these institutions for the hospitality and BSF for support.
The authors would also like to thank V. Petkov, G. Popov, J. Sjostrand and M. Zworski
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2 Parametrix of the Dirichlet problem

We begin with a brief discussion of the notion outgoing. Let us first denote the self-adjoint
realization of A, in L2(R3) again by A. and set Ro(\) = (—A. — X2) ™' € £(L?) for Im A < 0.
Here and below we denote by L*(R3), C>=(T"), etc. the spaces L?(R?; C?), C>(T; C?) etc.
Then Ry()\) admits an analytic extension Ro(A) : L2, — Li. in C (the free outgo-
ing resolvent). Similarly, denote by Lp the Dirichlet realization of A, in L*(2) and by
Rp(X) : L2,,,,(Q) — L .(Q) the outgoing resolvent of Lp. Here outgoing means the mero-
morphic extension from the lower half-plane (where the resolvent is holomorphic with values
in £(L*(Q)) to the whole complex plane. We will call the poles of Rp()) Dirichlet reso-
nances. Similarly one can treat the resolvent of L (the Neumann realization of A, in Q).

Next we will give a definition of a A-outgoing function.

Definition 2.1 Given A\ € C we say that the function u is A-outgoing, if there exists a > 0
and f € Lgomp(Rs) such that u||m|>a = RO()\).f||m|>a
Proposition 2.1

a) For any f € L2, .(Q) and any X not a Dirichlet resonance, the function u = Rp(\)f
18 A-outgoing.

b) If (Ac +M)u = finQ, u e HE,
resonance and u is A\-outgoing, then u = Rp(\)f.

(), fe L2, (), ur=0,\isnot a Dirichlet

comp

Proof. To prove (a), let x € C* be such that x = 0 near I', y = 1 for large |z|. Then
(Ae + N)xu = [A., x]u + xf is compactly supported. Since u € L? for Im A < 0, we see
that in the lower half-plane we have yu = Ro(\) [(Ae + A?)xu]. Both sides of this equality
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are meromorphic in A, therefore it holds in the whole complex plane thus proving that u is
A-outgoing for any A not a Dirichlet resonance.

To prove (b), let x1 + x2 = 1, where x1 € C§°, x1 = 1 for |z| < a. Here a is such
that w|j;>a = Ro(A)fljzj>e With some f € L2 (R?), A € C and we can assume that
O C{z; |z| < a}. Set

v(p) = xau + x2Ro(p) f-

Clearly, v(A\) = u. Note that (A, + p?)v(p) = g(p) in Q, where g(u) = (Ac + p?)x1u +
(A, x2|Ro(pt) f + x2f is compactly supported. Thus we get that v(u) solves the problem
(Ac+ p?)v(p) = g(p) in Q, v(p)r = 0 and v(p) € L? in the lower half-plane, g(u) € L2,
for all . Therefore, in the lower half-plane we have v(u) = Rp(u)g(p) and since both sides
of this equality are meromorphic, it holds for any x not a Dirichlet resonance. In particular,
for 1 = X we get u= Rp(\)f. O

Next we show how one can construct a parametrix of the Dirichlet problem

(Ac+ X)) = 0 in Q,
v =g on I (2.1)
v — A-outgoing

by using the parametrix built in the Appendix for the Dirichlet problem for the Laplacian.
We will prove that any A-outgoing solution v of the equation (A, + A?)v = 0 in € is of the
form —V x V x u(z,c;'\) + VV - u(x,c;'\), where u(x,)\) is a (vector-valued) solution
to (A + A?)u = 0. Let us recall that ¢; = VHo, ¢a = /Ao +2p0. Thus one can use the
parametrix for the Laplacian built in the Appendix and substitute it in the above formula.
We prefer this approach instead of constructing a parametrix for the elasticity operator
directly in order to avoid solving transport systems (instead of transport equations) that
could cause difficulties in the glancing regions for example. We assume that A € A (see

(A.2)).
Lemma 2.1 Given f € C®(I") denote by u(x, \) the solution to (A.1). Then

AN f—= =V XV xu(z, ;' N)|r + VV - u(z, ;' N)|r =1 AN f (2.2)
extends to a bounded invertible operator on H*(I'), s > 0 for A € A with |\| sufficiently large.

Proof. We will analyze A in a manner similar to that used for the Neumann operator in the
Appendix. Since here we have two sound speeds ¢; and co, we have to consider the following
five regions in T"T.

hyperbolic region {¢ € T*T; ||¢|| < 3},

glancing region I {¢ € T*T; ||I¢|| = &3 '},

mixed region {¢ € T*T; ¢;* < ||¢|| < 1},

glancing region II {¢ € T*T; ||¢|| = ¢;'},

elliptic region {¢ € T*T; ||| > ¢ '}
Here || - || is the norm in 77T, while with |n|, in the sequel we will denote the norm of a
covector (x,n) written in local coordinates. Choose a point ¢° in the hyperbolic region and
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choose local coordinates (see the end of Section A.1), such that ¢° is given by 2’ = 0, z1 = 0,
n = n". Denote by x any cut-off function with sufficiently small support in the hyperbolic
region such that Y = 1 near ¢° and denote by Op,(x) the corresponding ¥DO written in
these local coordinates. By using the parametrix for u constructed in the Appendix, (A.30),
(A.31), we get that

AN)Op,(x)f = AO0py(x)f + R, (2.3)

where Ay, is a local DO with large parameter A and R has kernel in C(I' x I'). Let us
compute the principal symbol of A,. We have

AN f = =72 Nu(z, ' N)|r + VV - (u(z, e ' N) — u(z, ;' N)|r (2.4)

It is easy to see that

cy’ (P2 —p1)m (P2 — p1)m2

op(An)lar=o = =N | (p2 —p1)m a’ 0 ; (2.5)
(pz - P1)772 0 01_2

where p1 = —\/c? — 0|2, p2 = —\/c32 — |n|2. Thus, computing the determinant of this

matrix and writing it in an invariant form, we get

2
den(oy () = Ni? |e2e5? = (er? = o = e? ~ ) Iz

Since in the hyperbolic region we have |n|, < c¢; ', we get
(70 det(0,(An)) = (e — (e = [nl2)Inl2) > (6% — e’;*) = 0,

hence |A\|7¢ det(o,(Ar)) > 0. Therefore, A()) is elliptic here.

Let €Y belong to the mized region and y be a cut-off function as above. Then we consider
the hyperbolic parametrix of u(x, c;*\) and the elliptic one for u(z, c;'\). The latter can be
constructed as a WDO with large parameter \ because supp y is compact. Arguing as above
we see that for the principal symbol of the corresponding parametrix A,, we have

2
dertoy(40) = Nei? [e2e5? = (a7 = ol - iyl = i?) ).

and

m det(0,(An)) = 222y /e — By Inl2 — 5% # 0.
So A,, is elliptic as well.

Let ¢° belong to the elliptic region and x € C°°(T*T') be a cut-off function (with non-
compact support) related to ¢° as in the beginning of Section A.4. Then, A(A)Op,f =
A.Op,f + Rf, where (see Sections A.4, A.5) A, is a VDO with large parameter )\, while R
has kernel in C°°(I" x T'). In this case we have

2
dettoy(4) = Nr? |ei?es7+ (VI = i7 = o — 7)) 2| #0
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Therefore, A, is elliptic at any finite point in 7*T in the elliptic region. The ellipticity in the
elliptic region (see [G, p. 102]) however requires also certain estimate as || — oo, namely

o (A) " (@, m, A)| < CXTF(L A+ )™, (2.6)
provided that A € Lg%k. The construction of the elliptic parametrix implies that
O'(Ae) ~ )\%Bg + )\131 + Z )\;jB_j, (27)
5=0

where B;(2/,n) € 7, j =2,1,0,..., 57 being the classical set of symbols [T2]. Note that B,
here depend also on A via a. So, a priori A, € Lﬁ;ﬁ and 0,(A.) = A\?Bs. Similarly to (2.5),

c’ @5 =N (5 — ™)
Bo(0,m) = — | (5 — pi)m o’ 0 ;
(P8 — Pt 0 o

where pga) = i\/|n|2 — ¢ %a?, pgl) = iy/|n|2 — c;%a?. Letting |n| — oo, we get By(0,n) =
Béo) + Bél), where

_ Py 2 _ _ Py 2 _ _
022 %(012—022)% %(012—022)%
2
BY = —| (" — ) o 0 (2.8)
(e’ - o) 0 i’

and B € §72. Moreover, det(BY") = ¢, (cf%f +at(e;? — 02_2)2/4) # 0, provided that
a is close to 1. Therefore, By(0,7) is elliptic in S° (but not in S2).

It is not hard to see that for By, which is a priori in S, we have B1(0,7) € S°. Indeed,
by (2.4) one can see that the terms in the expansion of B (0,7) homogeneous of order 1 in
n coming from VV - (u(z,c3*\) — u(z, c; 2\)) cancel because they do not depend on ¢;, cp.

Thus regarding A, as an operator in Lﬁ;ﬁ, we see by (2.8) that 0,(A.) (defined modulo
Séjé) belongs in fact to 55;02 . Therefore, A, € L(l]jg. Further, regarding A. as an operator in
Lys, we conclude from (2.8) and the fact By(0,7) € S that 0,(A.) = A\?By (mod Lg) and
in fact o,(A.) € 58;02. Therefore, A, € ngg and then 0,(A.) = A?By + A\ By (mod 50_75’1).
Because of the ellipticity of By(0,7), 0,(A) is elliptic at 2’ = 0 and therefore it is elliptic in
the elliptic region in the sense of (2.6) with £ = 2, m = 0. So, A, is an elliptic ¥DO in Lg:g.

It remains to consider the two glancing regions. Consider first glancing region I. Let ¢°
belong to glancing region I, i.e. in the local coordinates related to ¢° we have ¢° = (0,7") with
In°] = c3*. Choose a cut-off function y supported near (° as above. Then the corresponding
glancing parametrix A,0p, f for A(A)Op, f can be divided into two parts — a hyperbolic one
for (A —VV-)u(z,c;'A\)|r and a glancing one for VV -u(z, c;'A)|r. The glancing parametrix
for VV - u(z,c; ' A)|r can be written microlocally in the form

J(AQ + Ay)J (2.9)
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(see the Appendix). Here A; € L8;3, i=12Q¢€ Lg}%,o and By, By are matrix valued oper-
ators, while @ is the same as in the Appendix. Let us represent the (hyperbolic) parametrix
for f — (A = VV-)u(z,c;'N)|r in the form JAzJ~!, where Ay € Lyj. Therefore, the

parametrix for A()) in glancing region I has the form
J(AQ+AYJTY, Ay Ay e Lo, (2.10)

The properties of ¢ imply that A™20(A4,Q) is small near a = 0. Here a = || — c;*. On the
other hand A is elliptic near o = 0. The easiest way to see that without calculating o(A%)
is the following. Let us note that A is elliptic in the hyperbolic region and this ellipticity is
uniform as ||, — c;'. Suppose that 4;Q + A} acts on f(x, \) with WF(f) C {c;* — 2¢ <
In| < c;" — e} with ¢ sufficiently small and assume that A} is not elliptic at a = 0. Then
we have (4;Q + AY)f = J 1A, Jf mod O(|A|=>) and since WF(Jf) is also contained in a
set of the kind {c;' — 62 < |n|. < c3' — 01}, 0 < 81 < J3, one can see that in this case A,
can be replaced with A;,. Thus one can conjugate Aj; with J and claim that A;Q + A} is
a YDO with a symbol that can be obtained from the symbol of Aj;. Since Aj, is uniformly
elliptic as |n|, — c3 ', letting € — 0 we see that A™20(A1Q + A}) could not be small for small
a # 0 and for large A. Since on the other hand, A20(A;Q) is small near o = 0, we get that
A20(A)) is elliptic at o = 0. Therefore, A;Q + A}, € Lg’/zw is elliptic and its inverse modulo
neglectible operators is J(A;Q + AS)~tJ~!. We note that the situation here is simpler than
that for the Neumann operator for the Laplacian considered in the Appendix, because here
A, is elliptic.

By a similar way one treats glancing region II. Then one has a sum of two terms — a
glancing parametrix coming from (A — VV-)u(x,c;*A\)|r and an elliptic parametrix (with
large parameter \) coming from VV - u(x,c3 ' A)|r. Note that A is again uniformly elliptic
in the elliptic (mixed) region as |n| — ¢;*, which enables us to proceed as above.

Now, let ¢° belong to the hyperbolic (mixed) region and assume that y, ¥/, x” are three
cut-off functions with sufficiently small supports near ¢V, such that y = ' = x” = 1 near
¢% x’ =1 in a neighborhood of supp x, x” = 1 in a neighborhood of supp x’. By (2.3),

ANOpy(X") f = AOpA(X")f + Rf. (2.11)
Since Ay, is elliptic on supp x”, we deduce by Proposition A.1 that

0P, (X)Opx (X") fI| < CIA 710D (X)) AOPA(X") fI| + C | AN £1]-

Here and below ||| could be any H*(I")-norm, s > 0 and Op, () is the YDO with full symbol
x in the special coordinates related to (¥ (see Section A.1). Since Op,(x)Op,(x”) = Op,(x)
modulo neglectible operators, we get

10PA()fIl < CIA2|OpA(X)AOPA(X") fII + C A~V (I £
< O (0P ()AFI + [10pA(X)A( = Opy (X)) f1)
+ Cn ATV (2.12)

Note that supp x’ Nsupp (1 — x”) = (). This yields
0P, (X)A(I = Opx (X)) f1l = O ™) I f1I- (2.13)
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Indeed, up to a neglectible operator (see (A.31), A is a finite sum of microlocal parametrices,
which are WDO-s or operators of the form (2.10). Thus, although A is not a ¥YDO on the
boundary because of the complications in the glancing zones, any microlocal parametrix
used in the construction of A satisfies (2.13) including the operators of the form (2.10). This
yields (2.13). From (2.12) and (2.13) we obtain

1OP, () f1l < CIAZIAMN f1L + Cx AV LA (2.14)

for any N > 0 and for any f. The constants C', Cy depend on ¢°. The same estimate holds
if x is supported in the elliptic region as in the Appendix because A, is an elliptic YDO
(with large parameter A1) in L8;3. Next, since in the two glancing regions A is elliptic as well
in the sense described above, one has an estimate similar to (2.14) here as well with |A|72
replaced by |A|72e€I™ Al Picking up a partition of unity and summing up the corresponding
estimates we get

IFIl < CEM N2 LAN fIL+ O NI A e
If Cy (see (A.2)) is sufficiently large, one gets
IFl < CeMAN AN fl, - A e A

In order to conclude that A is invertible for large A, it is enough to show that a similar
estimate holds for A* as well. This follows immediately from the analysis of A, because A*
is an operator with similar properies and can be inverted microlocally in all regions. Thus
we obtain that A()\) is bounded and invertible operator in H*(I'), s > 0 and for A € A

I < CeM MR, [ATY] < CePtm AN 72,
where || - || is the norm in £(H?*(I")). This completes the proof of the lemma. O

Proposition 2.2 Let g € H*(I'), s > 3/2. Then for A\ € A and || sufficiently large the
solution v to (2.1) is of the form

v(z,\) = =V x V xu(z,c;'\) + VV - u(x, c; ' \), (2.15)

where u(x, \) is the solution to the Dirichlet problem (A.1) for the Laplace operator with
f=A"(Ng.

2 () to (Ac+ A)v = 0 in Q.
Next, Lemma 2.1 implies that v|r = ¢. It remains to show that v is A-outgoing. To this end,
notice that u(z,c;*A), u(z, c; ' \) belong to H? for Im A < 0, hence v(-, \) € L?. Therefore,
in the lower half-plane v is the unique L2-solution to (2.1), i.e. v = Fg— Rp(\)(A.+ A\?)Eg,
Eg € H**'/2(Q) being an extension of g € H*(T") supported in a fixed compact set. Since v
is analytic in A € A for large ||, we get that the last equality holds in that part of A that lies
in the upper half-plane as well and by Proposition 2.1(a) we conclude that v is Ad-outgoing.
O

Proof. It is easy to see that (2.15) gives a solution v € H?



An immediate consequence of Proposition 2.2 is that the Dirichlet problem (2.1) for the
elasticity system has no resonances in A provided that Cy (see (A.2)) is properly chosen.
This is expected because we know that for the Dirichlet problem singularities propagate by
a standard way [Y], [T2]. Another consequence of Proposition 2.2 is that one can construct a
parametrix for (2.1) by using the parametrix built in the Appendix for the Laplace operator.
Indeed, formulas (A.30), (A.31) show that if we substitute in (2.15) the parametrix for
u(z, ;'\, u(z, c; ') (see (A.29)), then we get a parametrix for (2.1). Therefore, if Ha, (\)
is the parametrix appearing in (A.29) and if we denote by v = Ha_ ,(A)g the solution to
(2.1), then

Ha, ,(\) = [~V x V x Ha,(c;'A) + VV - Ha, (e ' N)] A7 (N) (2.16)

differs from Ha, ,(A) by an operator with kernel in C>(U x T').

3 The Neumann operator for the elasticity system

In this section we study the Neumann operator A/(A) for (2.1) in a manner similar to that in
the Appendix. We will show that N has properties similar to those of the Neumann operator
for the Laplacian with the only difference that A is not elliptic in the elliptic region (see
also [K], [CP]).

The Neumann operator AV()) is defined by the formula

N : H¥(T) BgHZaj(v)l/j|p€HS_1(F), s>

j=1

) (3.1)

N W

where o; = (015,095, 03;), 045 is the stress tensor (see (1.2)) and v solves (2.1). Obviously,
N()) is a meromorphic family of operators with poles at the Dirichlet resonances of the
elasticity system, i.e. the poles of (2.1). In particular, for any C; > 0 and for C; sufficiently
large (see (A.2)), N'(A) is analytic in A. Let us fix further s = 3/2, i.e. N/()\) : H3/? — H'Y/2,
The next assertion is in fact well-known and we give its proof just for the sake of completeness.

Proposition 3.1 Assume that X\ is not a Dirichlet resonance for the elasticity system.
Then X\o is a Neumann resonance if and only if Ao is a pole of N71(X). Moreover, if Xy is a
Neumann resonance, then there exists a non-trivial g € H3/?(T') such that N'(\g)g = 0.

Proof. First note that if A is not a Neumann resonance, then N ~1()\) is well defined and
maps the Neumann data to its Dirichlet data. It remains to prove that if A\ is a Neumann
resonance, then N "'()\) has a pole at A = Ag. Let Ha, () be the operator solving (2.1)
and denote by Ha, ,(A) the operator solving the corresponding Neumann problem. Then

Ha, o WNTHA) =Ha, (V).

Since the Neumann resonances are exactly the poles of Ha, (A) : HY*(I') — L (€2), we

loc
see that any Neumann resonance is a pole of N'71()).
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In order to prove the last assertion of the proposition, consider the operator

P .= NTEA) (N = o) HdX # 0,

[A=Ao|=e

where d is the order of the pole )y, € is chosen so that there are no other poles in the disk
A — Xo| < e. Therefore, for some f € H¥? Pf #0. It is easy to check that N (\g)Pf = 0,
i.e. the proposition is satisfied with ¢ = Pf. Let us note that if )\ is a resonance, we get that
there exists a non-trivial A-outgoing solution v to (A, + A?)v = 0 satisfying the Neumann
boundary conditions. O

Using the parametrix, one can analyze N (\) in the same way as it was done for A(\).
Namely, NV is a DO with large parameter in the hyperbolic, mixed and elliptic region and
has the form (2.9) in the glancing regions.

In the hyperbolic region the parametrix of Ha, , g according to (2.16) is of the form

2

A\ o
Z (%) //60\(%(%77) yﬁ)aj(a?,y,n, )\)f(y, )\) dydn’ (32)

j=1

where f = A7 (N)g, (V1)? = %, (V)® = &7, il = tofr = 2 -7 (see (2.16)). The
principal symbols a} of a; are

a = =NV x Viix,  ay = =NV Vip, -

By applying > o;v; (see (3.1)) to (3.2) and by setting x; = 0, we get that the hyperbolic
parametrix Nj,(\) of N()) is a ¥DO with large parameter \ in ngé and its principal symbol
can be computed explicitly. A direct calculation shows (see also [CP], [K], [T1]) that

-1

detlop(N) = i (Ver? = nl2y/ez® = nl2 + 1)
2
X = Julz | (22 = i) + ARy — Eye® — ] £ 0. (33)

therefore N'()\) is elliptic here.
In the mized region for the parametrix N,,(\) we have

. 343 (. 2 2 AN
detlop(No)) = i (iy/er? = nl2y/Inlz = * + Inf?)
2 . p— —_—
e = nl2 | (2l = %)+ ailn2 /e — Wk inlz - %] £ 0. (3.4

so in this case N is elliptic as well.

In the elliptic region the corresponding parametrix N.()\) is a WDO with large parameter
A1. Since the Neumann boundary condition is given via a first order differential operator and
in the elliptic region the corresponding amplitudes aq, as (see (3.2)) are in 53;02 and on the

other hand AJ! € L8;52, we get that a priori N, € ngé. We will show that in fact N, € L(l):(l].

11



Indeed, applying 3" 0;;(v)vj to v = =V x V X u(x, ;' \) + VV - u(z, c; '), where u solves
(A.1), we get on I’

3
Z oij(v)v; = —AzLV ~u(z, 02_1)\)14- - Azal,ui(:v, cl_l)\) — N O, u(, cl_l)\)
j=1 )\0 + 2,“0

+ 2400, 0,V - (u(:v, eyt A) — u(z, cl_l)\)) : (3.5)

The first three terms lead to an operator in Lé:g. The fourth one gives an operator that is a
priori in Lg’g However, it is not hard to check that the terms homogeneous of order (3, 3),
(2, 3) (2 2) in (9, A1) cancel so in fact the fourth term in (3. 5) also gives a boundary \IIDO
in L00 Therefore, Nog = N.f, where N, € Loo and f = A7*(\)g. Since A_! € Loo , we
get N, € L070 as can be expected.

Let us recall that in the elliptic region when constructing H.(\) (related to the elasticity
Dirichlet problem) as a FIO with large parameter )\;, the eikonal equations read (Vi);)? =
a’ci?, (Vi)? = a®cy?, where o = 1 +itanarg A. In this case we have

det(apuv ) =

-1
i (=Vinkz — a2 iz = 026+ nf2) - Inltyinz — 0?6 Rlae ! nl;). - (36)

where 2
Rs)= (2 —2)" —4(1- )" (1 - ﬁ) |

It is well known that there is only one simple root s = sg of R(s) =01in 0 < s < 1, therefore
the equation R(acyt|n|;t) = 0, where ¢;*|n|;! < 1 has no roots if « is non-real and « is
sufficiently close to 1 while for v = 1 the characteristic variety determined by det(c,(N.)) =0
is given by

={CeT T <) =ci'}

where cp = ,u(l]/zso is the Rayleigh speed (see [T1], [K]). Therefore, N.(A) is elliptic outside
> and loses its ellipticity at 3.
Finally, since N, € L(l]j(l] and by (3.6)

det(o, (Vo)) = C(a)X} (In2 + O(n2)) . Cl(a) #0,

we see that N, is elliptic at any infinite point of 7*I" (i.e. (2.6) holds with k =m = 1).

In glancing region I we have N'(A) = M(X)A(A), where M : f — 37 o;(v)yj|r.
Here v is given by (2.15) with u, f solving (A.1). The parametrix M, of M in glancing
region I has the form

M, = J(AQ + Ag)J 1, (3.7)

where Ay, Ay € ngg. Recall that M, is produced by a sum of a hyperbolic parametrix
with respect to the first wave speed ¢;' and a glancing one with respect to c;*. We can
analyze the ellipticity (hypoellipticity) of A;Q) + Az by using arguments similar to those in

12



the analysis of the Neumann operator in the Appendix and of Ay in Section 2. Assume
first that \g # 0. Let us investigate the principal symbol of M in the hyperbolic region
as ||, — c3. From (3.3) we see that \g # 0 implies that 2c;% — ¢;? # 0, therefore
det(o,(My)) = det(o,(Ny)) det(o,(Apy)) is uniformly elliptic as |n|, — c;*. This implies that
(see Section 2) A;Q + A, in (3.7) is elliptic, thus one can invert M and therefore N here as
done for A. The inverse has microlocally the form N, ' = JBJ™!, where B € Lg’/g}o. Next
assume that \g = 0. Then det(o,(My)) has simple zero as ||, — c3 ' because (3.3) has simple
zero at |n|, = c;'. Therefore, A;Q + A, is no longer elliptic, but we can proceed as in the
analysis of the Neumann operator for the Laplacian (see the Appendix). Given a matrix B,
denote by “B the co-matrix of B, i.e. “°B1; = Byy B33 — B3B3 ete. and ““BB = BB = det B.
Then

“o(A1Q + As) € Sy (3.8)

Since det (o (My)) has simple zero at ||, = c; ', one can apply arguments similar to those in
the Appendix to get that

det(o(A1Q + Az)) = a1Q + ao, with a; € ng;’o, as € 58;8, (3.9)

and a9 is not elliptic at a = 0, while a4 is elliptic. Therefore,

_1 _
det(0(A1Q + A2) 7 = Q7 (a1 +aQ7Y) T € 554

and
((A1Q + 42)) ™" = 0 (41Q + A3)/ det(o(41Q + Az)) € Sy 57
Let us recall that the parametrix A, of A in glancing region I has similar representation

A, = J(A1Q + AL)J~t with AjQ + A} elliptic operator in 53;270. Therefore, N7 = AM™!
is microlocally of the form

Ny'=JBJ™'  with B € Ly,3°, (3.10)

i.e. IV, is hypoelliptic, result similar to that for the Neumann operator for the Laplacian.
By similar arguments one treats N in glancing region II. Note that in this case we have
a boundary operator coming from a glancing parametrix related to the wave speed c;! and
an elliptic one (as a WDO with large parameter \) coming from the wave speed c;'. Then,
if |n| — c1' in the mixed region for example (i.e. with |n|, < c¢;'), we have a simple zero in

(3.4) due to the factor \/c;? — |n|2 there, so one can apply similar arguments in order to get
a microlocal representation of A in this region similar to (3.10) with B in the same class.

4 The pole-free domain

We are ready to prove Theorem 1.1(a), i.e. to show that for Cy large enough the domain
{A € A; Im ) > On|Re M|~} is free of poles provided that Cly is suitably chosen. Without
loss of generality we can deal only with A with Re A > 0.

13



Let {A;}52, be a sequence of resonances in A with Re A; > 0. As shown in Proposition 3.1,
there exists a sequence g; in H*2(T), such that N'()\;)g; = 0. It is convenient to regard g;
as a family g(z,A), A € © := {)\;}3%2,, i.e. A takes values in a discrete set. In this section
we will deal with WDO-s with large parameter A € ©. Clearly the calculus we use in the
Appendix is valid when A belongs to a discrete set in A as well. Then, from Section 3 it
follows that -

WEF(g) C X. (4.1)

Since WF(g) does not contain infinite points from 7*T, it follows from [G, Pr. A.1.12] and
the remark after it that g; € C>(I'), 7 =1,2,....

Let v(z,A), A € O be the family of the solutions to the Dirichlet problem (2.1) corre-
sponding to Dirichlet data v = g on I'. Since N'();)g; = 0, we have that v; :=v(-, \;) solve

the problem (1.3). Let ¢ € C§°(2) be a cut-off function, such that ¢(x) = 1 for x belonging
to some neighborhood of I". Then

Ae(QS'U) = ¢A6'U + [Aea ¢]U

Here the commutator [A., ¢] is a first order differential operator with coefficients in C§°((2)
(vanishing near I" and for large |z|). By (1.3),

(A, + 2 (0) = [Ae,dlv A€ O. (4.2)

Let us multiply (4.2) by ¢v and integrate over 2. Since A, with Neumann boundary condi-
tions is symmetric, we get

Im A?|[¢v||72 = Im ([A., ¢]v, ¢v),

hence,

[[Ae, ¢v]l 1
[pv][ L2

Now we will make use of (4.1) combined with the exponential decay in A near I' of the
parametrix of v in the elliptic region in order to show that the right hand side of (4.3) decays
rapidly. First note that (4.3) remains true up to an error O(|A|~>°) if we replace v in the
numerator by the parametrix of v. Recall that a parametrix of v is given (see (A.29), (A.30),
(A.31) and Section 2) by a finite sum of microlocal parametrices v(™ using a partition of
unity. According to (4.1) all terms solving

Im \* < A€ O. (4.3)

(4.4)

(A, + 2™ = O(|A\~)g near I,
v = Opy(xa)g +O(A™¥)g onT

with supp x, N 2 = 0 contribute to v a term of the kind O(JA\|7>°). Therefore, we can
replace v in the numerator in (4.3) by some @ which is a finite sum of v(™ solving (4.4) with
Xn € C3°(T*T), supp xn, N X # O of the kind

vl = 22: . 2/ / MBI A, (2, y,m, Mg, A) dy d (4.5)
27_(_ ) ) ) ) )

m=1
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where 1),,, solve the eikonal equations (Vi,,)? = o?c;%, m = 1,2 and A;, Ay are matrix-

valued amplitudes in Séjé . According to the construction of the elliptic parametrix (see the
Appendix and [G]), we have coz1 < Im ), with some ¢y > 0, thus

Re (iM(Vm(z,m) —y-n)) = =MIm, < —colizy.

Set Q, = {x € Q; dist(z,I') < p}. Then we have

5]l @00, < Ce gl 2@y, 5 >0, (4.6)
with some C' = C(s) > 0, v > 0 provided that p > 0 is sufficiently small. On the other hand,
for any p > 0 we have

C(p)

p
[vllz2,) > WHQHLZ(P)- (4.7)

Estimate (4.7) follows easily by observing that by the trace theorem (assume p fixed)

l9ll2ry < Cllvlla2,),

while the right hand side above can be estimated by C’(|]A]* 4 1)||v| 12(q,) because the Neu-
mann boundary condition is coercive for A.. Combining (4.3) (fulfilled for ¥ up to an error
O(AT™)), (4.6) and (4.7), we get

mA? < Ce™ + O(A\[®), A€o.

Therefore,
Im\; < On|N| ™Y, i=1,2,..., YN>0,

which completes the proof of Theorem 1.1(a). O

Proof of Corollary 1.1. Let )\; be a sequence of resonances as in Theorem 1.1. Then,
according to Proposition 3.1, related to any A; there exists g; € H?3/%(T"), such that N(N)g; =
0. As mentioned above, from (4.1) it follows that g; € C*°. Then for the solutions v; of (1.3)

with Dirichlet data v; = g; on I we have v; € C*°(2). The estimate (4.6) for the parametrix
of v proves (1.4). O

5 Existence of resonances converging to the real axis

In this section we prove that there exists a sequence \; of resonances such that Im \; <
CN|R€ )\j |_N.

Proposition 5.1 There exist constants ag > 0, by > 0, such that N'()\) is invertible in
H32(T') on the curves Iy = {\ € C; Im A = £aln(Re ), Re X > b}, provided that 0 < a <
ap, b Z b(], and

C(a)

IV Oy < pegye A€l
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Proof. Here we will use the structure of N'(\) established in Section 3. Note that all the
arguments above remain true if we work with YDO-s and FIO-s with large parameter \ € [..
Since in the hyperbolic and in the mixed regions the corresponding parametrices are elliptic
UDO-s, we get (compare with (2.14)) that

1OP, () fIl < CINITHIN N F I+ Cn NI (5.1)

provided that x is supported in a small neighborhood of a point in the hyperbolic (mixed)
region. Here and in what follows until the end of the section, || - || := || - [[gs/2q). The
same estimate holds in the elliptic region provided that y is supported outside some fixed
neighborhood of ¥. In the glancing regions J~*N,J is hypoelliptic (see (3.10)). Therefore,

10PACO SN < CINTZEH=IN )£+ On AN (5.2)

where € > 0 is sufficiently small if a is small and Y is suitably supported near a point in one
of the glancing regions. Next, consider the parametrix N, in a small neighborhood U in the
elliptic region of some (° € . Since we are going to apply it on functions f with a compact
wave front set, we can construct N.(\) as a YDO with large parameter \;. According to
(3.6), det(o,(N.)) coincides with R(ac;|n|;1) up to an elliptic factor. For A € I+ we have
a = 1xialn /A and « is close to 1 when A; > 1. Since the function R(s) has simple zero
at s = sg, we get

det(o, (Vo) = X (chlnl2 = o®) Ri(w,m, ), (5.3)

where Ry # 0 for (x,n) € U provided that U is sufficiently close to ¥.. Moreover, it can
be seen that if (x,7) is close to X, 0,(N.) has three distinct eigenvalues of the kind \ja; =
Ad) (%02 — a?), Aag, M\as, where af, as, az do not vanish. Here a}, as, az depend also
on A via . Thus, one can find a unitary matrix 7'(z,n, \) € 587’8, (x,n) € U, such that

T*0,(N.)T = \diag(ch|n|> — o?,1,1)S (5.4)

in U, where S = diag(a}, as, a3) is elliptic. Let us observe that A\? (¢%|n|2 — a?) is the principal
symbol of —c¢%Ar — A%, where Ar is the Laplacian on I'. Therefore, with x a cut-off function
supported in a small neighborhood of ¢° we get

Ne(N)Opy, (X)f = Opy, (T)diag (AT (—chAr — A2), A1, A1) Op,,, (ST*)Opy, (X)f + M,
(5.5)
where M, Op, (T), Op,, (ST) € L8;8 are WDO-s with large parameter A\;. According to our
construction, T, ST* are ellipticin U. Let x, x’, X" be three cut-off functions with sufficiently
small supports in U, such that x = ¥’ = x” = 1 near (°, ¥’ = 1 in a neighborhood of supp Y,
x” =1 in a neighborhood of supp x’. Taking into account that

INT! (—chAr — X?) gl > 2aln A|g] (5.6)
and replacing Op, (x)f by Op,,(X")f, we get by (5.5) and Proposition A.1

10Dy, (X) (N (MO, (X)f = MF) || = Cln X [Opy, () £l = Cu AN £]1

16



Since || M|| < const., as in the proof of (2.14) using the fact that (2.13) holds for N as well,
we get for any f and || sufficiently large

10pACOfIF < C" (I xg) ™ (IN (A FIF+ C7ILAID (5.7)

for any cut-off function y such that y = 1 near ¢* € ¥ and supp Y is sufficiently small.
Now, picking up a partition of unity and summing up (5.1), (5.2) and (5.7) we get the
desired estimate. Proposition 5.1 is proved. O

Proposition 5.2 If R, (\) is analytic in the domain Ac, c, given by (A.2), then for any
C1 < Cy, C) > Cy, we have

IR (Ml czzmzy < Ce“M N e Agpey (5.8)
Proof. Here we will use some arguments from [Vo]. The resolvent R, (\) satisfies the relation

RN = K(A) = Ki(A), AeC,

where
KA =[x, Ad (Ro(\)n — Ro(Mo)n) Ko 4 (A = Ag)x2Ry (M),
Ki(A) = (1—x1) (xRo(A)n — xRo(Xo)n) Kz + Ry (Ao)
Ky = (1—x2)x+ [x2, AcR(Ao)x.
Here )\ is an arbitrary point with Im Ay < 0, say A\g = —¢ and x1, X2, n are cut-off functions

in C§°(R?), such that x; = 1 in a neighborhood of the obstacle O, xo = 1 on supp xi,
X =1 on supp x2, 7 = 1 on supp (1 — x2)x and n = 0 on supp x1. Note that Ky € L£(L?) is
independent of A\. As in [Vo] we see that K?()\) is a trace class operator and

Ry(\) (1= K2(\)) = Ki(V), (5.9)
where K1(\) = Ki(A\)(I + K()\)). It is easy to see that
K1 ()| zemzy < Ce“P X e C. (5.10)
Let us introduce the function
h(\) = det (I — K*())) .

Then h(A) is an entire function, h(A\g) = 1 and one can prove as in [Vo] that

o

H (1+p(K2(\)) < Ce”P°, aec, (5.11)

where ;(K?) are the characteristic values of K?. Let \; be the zeros of h()\) in C and
denote by V' the domain

V=C\U{AeC =Nl <N

j=1
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Then by [Ti, Ch. VIII] we conclude from (5.11) that
b\t < O eV (5.12)

On the other hand, we have (see e.g. [GK, Thm. 5.1})

det (7= K2(N)||[(1 = K*(V) Hmz E[l(l + i (K2(N))) < Ce“P, (5.13)
By (5.12) and (5.13) we deduce
(7= 12 0) Ty s € eV .14
Relations (5.9), (5.10) and (5.14) imply
| Bz < C"eCM A eV, (5.15)

Now, let us observe that C\ V = 32, Uj, where U; are disjoint connected sets and each
Uj is a union of a finite number of disks, because the series 3352, [A;|™* is convergent. Let
us denote M = 3" |\;|7*. Then diam U; < 2M for each j. Let C] < C;. Denote J = {j €
N; Acre, NU; # 0}. Then only a finite number of U;-s could be not entirely included in
Acy oy, 1e. Uj C Agy c, for j > jo, j € J. Since (5.15) holds on 0U; and for j > jo, j € J, the
cut-off resolvent R, () is analytic in Uj;, by the maximum principle we get that (5.15) holds
in U; for j > jo, j € J with some other constant C”. Clearly, by choosing C" sufficiently
large, we can arrange (5.15) in the compact ]\ci,cg NUj<j, U; as well. Therefore, (5.15) holds
in the whole Acy oy . O

Now, let us assume that there is only a finite number of resonances A; in A, i.e. if Cy
is sufficiently large, then AN/"'()\) is analytic in A. Consider A,, = {\ € C; |[Im)| <
aln(Re ), ReX > b}. Choose a < Cy, b > Cy so that A, C A. Then 0A,, consists of the
curves Iy = {\ € C; Im A = +aln(Re\),Re A > b} and the interval Re A = b, [Im A| < alnb.
Let a, b be such that Proposition 5.1 holds. Then

_ C
INTH ) gy < m(Re )’ A€ ONap. (5.16)

On the other hand, Proposition 5.2 implies that we have the following a priori estimate
||N_1()‘)||£(H3/2(1")) < C€C|/\|4> A € Aap, (5.17)

under the assumption that A/7'()) is analytic in A. Indeed, (5.17) follows immediately from
Proposition 5.2 and the relation (see [SV])

NN =9E —yR, (V) (A + N E

where v f := f|r, E: HY/*(I') — H?(Q) is a fixed extension map from I" to some small neigh-
borhood of I' in €, such that E f satisfies the Neumann boundary conditions > o ;(Ef)v; = f
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on I We are in position now to apply the Phragmén-Lindel6f principle (see [Ti]) in A to
the function (log \)AV~*()\). Here log A takes its principal branch In A for A € Ry. We thus
get by (5.16), (5.17)

C
In(Re )’

INTH ) gz ryy < A€ Nap. (5.18)

The final step in our proof is to show that (5.18) leads to a contradiction for real A.
Assume in what follows that A € A, N R, i.e. A > C5. Denote the eigenvalues of —C%AF
by X, j = 1,2,... and the corresponding eigenfunctions by ¢; with [l¢;]] = 1. Recall
that || - || stands for the norm in H*?("). Fix ¢° € ¥ and let x be supported in a small
neighborhood U of ¢° in the elliptic region. Let us recall that the eigenvalues of a,(N,) in U
are Aa; = A(ck|n|2 — 1)a}, Aag, Aag, where a}, as, az are smooth and do not vanish provided
that U is sufficiently small. Let II(z,n), (z,n7) € U be the projection onto the eigenspace
corresponding to Aa;. Set

fr(+,A5) = Opy, (XD eryp;, (5.19)

{er}i—; being the standard base in R?. Denote © = {)\;}52, and fi(z,\) = fi(z,);),
o(x,\) = p,(x) for A € ©. Consider all YDO-s bellow as WDO-s with large parameter
A € O. Then

N()\)fk = Aﬁ’kQO, (520)

where A € Lyo(T"), 0,(A) = A(c%|n|2 — 1)a;xIL. Since the principal symbol of —c3Ar — A2
is A2(c%|n|2 — 1), we have

NN fr = A7 Op(xayll) (_C%AF - >\2) erp + Berp = Begp, (5.21)
where B € L8:8(F). Thus
INVfll <C fork=1,2,3; A€ O, (5.22)

According to (5.18), (5.19)

|Op(xID)erp|| < % for k=1,2,3; A\ € ©. (5.23)

Since the projection II(¢) is well defined and does not vanish near X, we have that 3 |TI;;]?
is elliptic in U provided that U is sufficiently close to 3. Thus from (5.23) we deduce that

1N C
10PNl < - (524

Ny

where ¥’ = x/(z), X" = x"(n) and x'(x) = 1, x"(n) = 1 for (x,n) close to ¢°, supp x'x” C
{x = 1}. On the other hand, (—c3Ar —A\?)p = 0 and —c4Ar — A% is a ¥DO on I' in L5 (I)
with principal symbol A\?(c%k|n|? — 1) elliptic outside 3. Therefore, WF(¢) C 3. Hence,

IOP(X'(1 = x"))gll < CxA™Y, VN > 0. (5.25)
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Combining (5.24) and (5.25) we get

) C
IxX'¢| < Y A€ O,

for any cut-off function x’, such that x’ = 1 near 2° = 7,(¢°%) and supp X’ is sufficiently
small. Since ¢ € ¥ was arbitrary, we get ||| < C/In X\ which contradicts the fact that
|¢l| = 1. The proof of Theorem 1.1 is complete. O

A Appendix

A.1 UDO-s and FIO-s with large parameter

We are going to construct a parametrix of the solution of the following problem

(A+X)u = 0 in Q,
u = f on I, (A.1)
u — A-outgoing

as well as for the corresponding Neumann operator. Here A is a large complex parameter
and we will assume that

ANEAN = {)\EC; |)\2| <C’11n>\1, A1 >02}, (A2)

where \y = Re A, Ay = Im A, C; > 0 is an arbitrary chosen constant, while C is a large
constant that will be specified latter. The definition of A-outgoing function is the same
as Definition 2.1 with the only difference that Ry(A) there has to be replaced by the free
outgoing resolvent Sy(A) of the Laplacian in R™.

We will follow essentially Gérard |G| and Taylor [T2] with some modifications. We will
deal with Pseudodifferential Operators (VDO-s) with large parameter \. We refer to [G]
(see also [D]) for more details about these operators and here we will give only some basic
definitions and properties. Given an open set X in R"™ denote by ém(X ) the space of all
functions w(z,A), A € A such that u(-,\) € C>®(X) and p(u(-,A)) = O(|]A|7>°) for all
seminorms p in C*°(X). By a similar way we define C*°(K), K being a compact, C5°(X)
and D'(X).

Given two open sets X, Y in R", we set (see [G, Def. A.1.2]) for m,k € R, p,0 € [0,1)
the class S;'?gk(X x Y') to be the set of all a(z,y,n, A) € C°(X xY x R"), such that for any
compact K CC X xY,all a,3,v€ Z", A € A we have

1050507 < Ca i | AFPIHACHBL g b, (A.3)
If X =Y, we set S;'?(gk(X) = ;’:}k(X x X). Given a € S;':}k(X x YY), denote by Op(a) the
operator

Op(a)0) (2. = (2] [ X ate g Mty Ny ()
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If @ has bounded support with respect to 1, then Op(a) is well defined operator mapping
C(Y) into C*(X). On the other hand, when 7 could take arbitrary large values we will
consider operators similar to those defined above with \; = Re A in the exponential. Denote
L;’?(’;k = Op (S;%k). We say that Op(a) is properly supported if the distribution kernel of

Op(a) is properly supported uniformly in A\. Then any ¥DO in L;’?(’;k can be represented as a
properly supported WYDO plus a neglectible operator (from L;go’_oo). It is convenient to set

au(n, \) = /e_i’\mu(z, A)dz. (A.5)

Operators from L;’?(’;k have properties similar to those of the ordinary WDO-s (see for example

[T2]). Given a(z,y,n,\) € S;'?(gk with p+ 0 < 1, one can find a symbol o(A), where A =
Op(a), depending only on x, n, A such that A and Op(c(A)) differ by a neglectible operator
(see [G, Pr. A.L4]). By [G, Pr. AL5], if A, € L;’?g’kj(X), Jj = 1,2 with p+9 < 1, then
A1As € L;?%—I—mz,/ﬁ-l-kz (X) and
1
o(A14z) ~ a(A) oa(Ag) = D A Gpa (A1) Dgo(As).

a0 &

We note that the class of operators L;’?(’;k is the same considered by Gérard [G]|. The
only difference is that we allow A € A if the support of the amplitude with respect to 7 is
bounded, where A is the logarithmic domain defined in (A.2). Here and below we assume
that X is always bounded, because we will work locally in small neighborhoods of boundary
points. Note that the exponential in the definition of Op(a) is polynomially bounded in A, if
A € A. Tt is useful to note that operators of the form Op,(a) can be represented as WDO-s
with large parameter A\; provided that |n| is bounded on supp a. Occasionally we will use the
notations Op,(a) and Op,, (a) in order to distinguish between WDO-s with large parameter
A and Ay, respectively. To this end we write

— i ! iA(z—y)n
Opy(a)u = (%) [ e mata, y,n, Auly, N) dyd

_ (MY [ g
- (27‘(‘) //6 a(37>?/>77> )‘)u(ya )‘) dyd?%

where a(z,y,n,\) = (14 itanarg \)"e *2(==¥"q(x 1y, 1, \). Assuming that A\ € A we have

le=*2@=v) 1| < | AN with some fixed N. Moreover, it is not hard to check that if a € ng,

then a is also an amplitude and a € ng: ﬁe for any € > 0. The latter follows from the

fact that |Ao| < C.|A|° for A € A. We can consider here Ao/ In A\; € [—C4, Cy] (see (A.2)) as
an additional parameter and then a is continuous in this parameter in the Fréchet topology
defined by the seminorms appearing in (A.3) (see also [T2]). Let us calculate the symbol
ap (depending only on z, n, \) of a. By [G, Pr. A.I4, Pr. A.L5], we get that in fact
ap € SS:Z; and the principal symbol of Op,(a) considered as a WDO with large parameter \
is (1 +itanarg \)" (a(x,z,n, A) + O(In|A|/|A])). Therefore, if A € ng’g with p+4d < 1, 0(A)
has bounded support in all variables, we have

||A||£(L2(X)) < C|)\|k, A E A, (A6)
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where C' depends on A.

If 1 is unbounded on supp a, then Op(a) is well defined only for real A, because for
complex A the integrand in (A.4) could be exponentially increasing. In this case, if A € Lﬁ;’g,
p+0 <1, X is bounded and |o(A)(x,n, \)| < M, we have

Al 2cz2cx)) < MIA® + Cn|A7Y, AER (A.7)

for any N >0 (see [G, Pr. A.1.6]).

We refer to [G, Def. A.I.10] for a definition of elliptic WDO-s elliptic symbols on T*X =
T*US*X as well as for a definition of the wave front set WF(f) of a distribution f € D'(X)
suggested by J. Sjostrand. The following proposition about the invertibility of microlocally
elliptic operators is used frequently in the paper.

Proposition A.1 Let A € Lg:'g(X) with p+0 < 1, X bounded, be elliptic in U, where

U C T*X is an open set. We assume that either X € A and U is bounded or A\ € R. Let
x(z,m,A) € 587’8 be any amplitude with supp x C U and let X' € C*°(T*X) be any function
such that x' =1 on supp x. Then for any N >0 and s > 0 we have

10P(X) fll s < CINTFIIOP(XY) Af |15 + Cn| A7V f]

Proof. Since o(A) is elliptic in U, there exists a symbol b(z,n,\) € 527’5_'“, such that
boo(A) ~1in U. The proof of this assertion is the same as in the classical case (see e.g.
[S]). Therefore, Op(x)Op(b)Af = Op(x)f + Rf, where R has kernel in C*°(X x X). In

order to complete the proof it is sufficient to observe that modulo neglectible operators

Op(x)Op(b)A = Op(x)Op(b)Op(x)A.

Hs-

O

Let us note that if U coincides with 7*X, then the ellipticity of P implies that there
exists P, such that PP = I+ R, where R € L;?’_‘X’, thus for large A there exists the inverse
operator P! = (I + R)™'P. For A € L7¥(X) with p < 1/2 one can define invariantly the
principal symbol 0,,(A) € STuF(T*X) /S tA=(1=20)(T+ X)),

We introduce also the Fourier Integral Operators (FIO-s) with large parameter, given by

I e
e = (55) [ oy Nu(y. V) dy .

mapping C5°(X) into C*(X). Here a € S;'?(gk(X), ¢ is a non-degenerate smooth phase
function. We will deal with FIO-s for which 7 is bounded on suppa and A € A or 7 is
unbounded but A € R. In both cases I,  is well-defined. According to [G, Pr. A.L9], if
ANeR, m=k=p=6=0 Im¢ =0, then ||1,4]z2(x) is uniformly bounded in .
When 7 is bounded on suppa, then it is easy to get estimates of ||1,¢| zz2(x)) even for
complex-valued ¢.

We begin with construction of a parametrix to the solution of (A.1) following [G] and
[T2]. Assume that Q C R™™! is the exterior of a strictly convex body O. The points in T*T
can be divided naturally into the following three regions
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hyperbolic region {¢ € T*T'; ||C|| < 1},
glancing region {¢ € T*T; ||C]| = 1},
elliptic region {¢ € T*T; ||C|| > 1}
Here || - || is the norm in 7*I". Let U be a sufficiently small neighborhood of I" and set

U =UNQ. We will construct an operator H(\) : C(I') — C>~(U), such that

(A+N)Hf = Kf in U,
Hf = f+Rf onT,

where K, R have kernels in C*°(U x T') and C*(T' x I), respectively. Moreover, H f will have
some outgoing properties that will guarantee that H f is a parametrix for the (A-outgoing)
solution to (A.1).

We will use the following notations. Given z° € I', we choose (z1,...,2,4+1) to be
Euclidean coordinates such that © = z° corresponds to z = 0 and I' is given locally by
21 = F(za,...,2p41) with F(0) = 0, VF(0) = 0. Then we set 1 = 21 — F(22,. .., Zn+1),
2’ = (22,...,2n41). So, in these coordinates z° = (0,0), z; > 0 in Q and the normal deriva-
tive 9/0v at 2° = (0, 0) is given by 9/0x;. Moreover, x’ = (29, ..., 2,41) are local coordinates
on I'. In the sequel Op(x) will always denote the WDO with full symbol y in the coordinates
x'. Respectively, ||, is the norm of the covector (x,n) written in the coordinates associated
with .

0

A.2 The hyperbolic region

Fix ¢° € T*T with ||€°|| < 1. In the local coordinates defined above (° is given by (0,7n°)
with [n°] < 1. Let x € C$(T*T) be a cut-off function supported in the hyperbolic region
such that x = 1 near (0,7°). We will show that if supp x is sufficiently small, then there
exists a FIO Hj, : C°°(I") — C°°(U) with large parameter ), such that

(A+N)Hyf = Kuf in U,
H,f = Op(x)f onlT,

A € A, where Kj, has kernel in C*°(U x I') and Hj, has the form

(A.8)

(Hif)(w, X) = (%) [ [ ey, 0, ), N) dydn.

The construction here goes along the same lines as that in [G] and the fact that A € A does
not lead to any complications. The phase function 1 solves the eikonal equations

{(vw = 1,
w|1" = -,

and g—ﬁ’(O,nO) < 0, where v is the inner normal to I' = 0€2. The amplitude a(z,y,n, A)
belongs to 587’8 and has the asymptotic expansion

an~ Z aj($> Y, 77))\_j7

J=0
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where a; solve the transport equations
{ 2iVi - Va; +il-a; = —Aaj,
ajlr = d0x(y,m)-
According to [G, Corollary A.Il.4] we have

WF'(Hy) C {(z,&y,n) € T*(U\T) x T°T; [¢], = 1, (,€) belongs
to the outgoing ray issued from (y,n) € supp x}, (A.9)

which will help us in Section A.5 to deduce that Hj, is a parametrix of the A-outgoing solution
to (2.1).

A.3 The glancing region

Here we will make some modifications in the scheme proposed by Gérard [G]. Let ¢° € T*T,
1¢°|| = 1, i.e. in local coordinates ¢° = (0,7°) with [p°] = 1. Let x € C§°(T*T') be a cut-off
function equal to 1 near (0,7") and having its support in a small neighborhood of that point.
We will construct an operator H, : C®(T') — C'°°(U) such that

{(A+)\2)Hgf = K,f in U, (A10)

Hyf = Op(x)f+ Ryf onT,

where K, has kernel in C=(U x I), R, has kernel in C*°(I' x I'). The operator H, has the
form H, = H,J 'Op(x), where J is an elliptic local FIO on I' with large parameter A € A
with amplitude of class 587’8 and

. A" 1 e Ai_(A\23p(x,n
i = (2] oot

Ai_(\2/3q)

AL (APp(z,))]
AL (02a) w(n, A) dn.

+ N 3g (2, m, )

Here o = |n| — 1, A € A and Ai_(s) = Ai(e™2"/3s), where Ai is the Airy function. Recall
that (see (A.5))

W, A) = [y, X) dy.

We suppose that VAVF(w) is contained in a small neighborhood of & = 0. One can see that the
construction in [G] goes without complications in the more general case A € A. In particular,
A € A implies that arg A = O(In A1 /A1) can be assumed arbitrary small if Cy > 1 (see (A.2)),
so A23p and A\?/3q are away from the zeros of Ai_ that lie on the line arg s = —m/3 and all
the estimates of Ai_(A*3p), Ai_(\?/3a), AP’ (A\?/3p) used in [G] remain true. We will modify
the parametrix a little bit in order to keep it closer in spirit to [T2] (see also [M]).

The phase functions p, 6 solve the eikonal equations

{ (V0?2 —p(Vp)? = 1,
VO-Vp = 0

24



exactly in @ < 0 and of order O(a®) in a > 0. Further, p, # have the properties

’det %’ # 0 on r1 =0,
p = a+0(|la]*) onz =0, (A1)
p = « for x1y =0, a > 0,
(;9—51 < 0 on 1 = 0.

The amplitudes gy, g1 solve the corresponding transport equations and

90(077707 )\) 7é 07 91(07770, )\) = 0.

Moreover, g; = O(|a|*) together with its derivatives. Existence of such p, 0, g1, go follows
directly from [T2].

It is shown in [G, pp. 114-124] that flg solves the Helmholtz equation up to an error
O(JA|=°) for A € A. Let us see what kind of boundary conditions H, satisfies. Here we will
follow [T2]. For x; = 0 we have

- A" o Ai_()\2/3p0) N_1/3 Ai’_()\2/3p0) )
-0 = |5~ ' SN EAVIE, oo . 12

Here 0y = 0|2,—0, po = plzy=0- Recall (A.11) that py = a for a > 0. Set @y = 0y + 7, where

2 32, 2 3/2
Y= 3( £0) +3( )=,

Note that v = 0 for & > 0. Then (compare with [T2, p. 237])

Ai_ (X po)

2= P B2 0 N et @)

We have B =1, v = 0 for a > 0. Similarly to [T2, Lemma X.4.1] one can prove the following.
Lemma A.1 B(a/,n,)\) € Sgi(T') near a = 0.

Proof. One can argue as in the proof of Lemma X.4.1 in [T2], but we will prove Lemma A.1
as a direct consequence of Taylor’s lemma. If we compare our quantities p, n etc. with those
in [T2] that we will denote by p, &, etc., we see that for real A\ we have

po_ v
a- """ @ i

So the symbol B in [T2] is related to our symbol B by

=0+1, =\

B(z',n,\) = B(«/, A%, Alnl = 1).
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From Taylor’s lemma it follows that B € S°, S being the standard class of symbols (see
e.g. [T2]). Therefore,

020, B 1. M| = 020 B/ A Al = D) < Cos
This proves the lemma for A € R,. Assume that A € A, i.e. X\ = |\|e?®8* arg A not
necessarily zero. Then the desired estimate (even in a larger domain of the kind | arg A| < ¢)
follows from the fact that if we replace Ai_(s) with Ai_(e?378*s), then all the arguments
remain valid and the corresponding estimates are uniform in arg \. O

Following [T2] set also
Ai” (X*3po)
Al (A\2/3a)
Similarly, C' € 587’8 for xry = 0 and C' =1 for a > 0. Therefore, one can write down flgw in
the form

= Cle™.

. A" . N
Hywle,—0 = (g) /[goB +ig1gC] e . (A.13)
Here q(n, \) = )\‘1/3%()\2/300. From the estimate
—k
05ql < Ci (1N + )

and the fact that Ai’ /Ai_ € 5‘117/02 for |arg s| < /3 — e, € > 0, it follows that

=

07a(n, V)] < C, (N7 + o) (A.14)
Therefore,
q € S50 (A.15)
Let us denote by Jw the right hand side of (A.12), i.e.
A\ .
Jw = <%> / [90B + ig1qC] %00 dn. (A.16)

Here go, g1, B, C belong to 587’8, while for ¢ we have (A.15). Since g1 = O(]a|*), from
(A.14) we get
g1(',m, Na(n, X) € Spp.- (A17)

Therefore, J is a FIO with large parameter A\ and amplitude of class 587’8 . The boundary
condition Hyw|,,—o = Op(x)f is equivalent to

Jw = O0p(x)f. (A.18)

It is easy to see that J is elliptic near o = 0. Indeed, g;¢q is small near & = 0. On the other
hand, for &« = 0 we have B = 1 and |gg| > ¢ > 0 near o = 0, so J is elliptic. Moreover, J
takes distributions with WF(f) in a small neighborhood of (0,7°) to distributions .Jf with
VAVF‘(Jf) supported near o = 0. Thus there exists a FIO with large parameter A (let us
denote it by J71), such that J~'J — I has kernel in C if applied to f with WE(f) in a

small neighborhood of (0,7°) and JJ~! — I has similar property acting on f with WF(f) in
a small neighborhood of o = 0.
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Remark. In contrast to [D], the large parameter A here is a complex nimber. However,
it can be seen that FIO-s with large parameter A € A have properties similar to those with
large real parameter considered in [D]. In particular, any elliptic FIO J with amplitude of
class 587’8 has asymptotic inverse .J~! in the same class. This can be seen directly by following
the classical theory. For example, set

Ku= (%) // 6i/\(y'n—eoo(ym))u(y’ \) dy dn
s

(here the integration is taken in a neighborhood of supp x) and check that P = JK is an
elliptic DO with large parameter . Now, set J~! = KP~!. The assertions about the
wave front sets can be verified by integration by parts. Here it is important to note that the
exponential in the integral above is bounded by C|A\|™ with some fixed m.

Thus we proved that the solution to (A.10) is given by H, = H,J 'Op(x). This
completes the construction in the glancing region. It remains to show that (A.9) holds in
the glancing region as well, i.e.

WF'(H,) C {(z,&,y,m) € T*(U\T) x T°T; [¢]. = 1, (,€) belongs
to the outgoing ray issued from (y,n) € supp x}, (A.19)

The proof of (A.19) is similar to that of Corollary A.IL.8 in [G] and in particular (A.19)
justifies the outgoing properties of the glancing parametrix (see section A.5). One considers
three subregions v < —C|A\| 7%, |o| < C|A\|7° and o > C|A|7%. In the first two subregions the
analysis is the same. In {a > C|A|=°}, H,J ' reduces to an elliptic FIO with phase # and
amplitude d(z,n, \). We have e’ = ei*1%e=220 and |e=*2%] < A for A € A For e1? we have
Re (iM0) = —\Imé < —c)&_e/zzcl (see [G, p. 127]), therefore ™19 decays exponentially for
z1 > 0, s0 in {a > C|A|™¢} there is no contribution to WF'(H,). The rest of the proof of
(A.19) is the same as in [G].

A.4 The elliptic region

Let ¢° € T*T with [|¢°|| > 1. In the local coordinates considered above (° is given by (0,7")
with [n°] = 1+ &g, g0 > 0. Set W = {n; In| > 1+ &9/2}, let V be a small neighborhood
of 2 = 0 on I and let U be small neighborhood of x; = 0, 2’ = 0 in Q. Let y € C°(T*T)
be given locally by x = xi1(2')x2(n), where supp x1 C V, x2(n) = 1 for |n| > 1 + 3e0/4,
x2(n) = 0 for |n|, < 0/2. We will construct a FIO H, : C®(V) — C>®(U) with large
parameter \; such that

{(A‘I’)\z)Hef = Kef> (AQO)

He.f|F = Op)\l(X).f>
where K, has kernel in C*°(U x V), H, has kernel in C>°(U \ T x V') and

Opy, () f = (;_;) //6M1(m_y)'"x(:w7)f(y, A1) dy dn,
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i.e. it is a YDO with large parameter Ay = Re A. The operator H, is of the form

= <§_> [ a3 £y M) dy o (A21)
™

Here in fact ¢ and a depend also on arg A and ¢ is complex valued.

Remark. Note that H, here is a FIO with large parameter \; = Re A\, while in the hy-
perbolic region we took A to be the large parameter. This choice of A\; in the exponential
in H, differs from [G]. The reason for this is that we found it difficult to interpret integrals
like (A.21) with complex A in the exponential. The problem is that e*#@mM =¥ could grow
exponentially in 7 because supp a is no longer bounded in 7. By the arguments in [G] (where
A belongs to some strip [ImA| < §), we have (see also (A.24) below) Imp > ¢z (1 + |n]),
|IRe | < ea(1 + |n|), therefore Re (iX(p(z,n) —y-n)) < (chAa — crhx1)(1 + |n]) thus it is
negative for any x; > 0 and for \; sufficiently large. This guarantees that the corresponding
integral is well defined. However, if ImA = ¢ > 0, one gets Re (iA(¢(x,n) —y-n)) < 0 only
for Ay > c¢d/x1, so as x; — 0 we would have \; — oo. It turns out that inf{\;; A € A} (and
hence A) should depend on z;. Therefore, it cannot be seen form these arguments how one
can construct a parametrix in a small neighborhood of the boundary with A belonging to
some fixed set A that contains not only real numbers. All these problems do not exist when
A is real. That is why we consider A\; = Re A as the large parameter in the elliptic region.

Applying A + N2 to H, f, we get

(A+N)H.f = (%) //&MW“*WWAW—%MV¢NM
—iMalp + (X = X (Ve)?)d f(y) dy dn.

Thus ¢ must satisfy the eikonal equation

{(Vgﬁ i jam (4.22)

where @« = A/A; = 1 +itanargA. If A € A and C5 in (A.2) is sufficiently large, then «
is a complex parameter close to &« = 1. Moreover, for Cy large enough (and therefore o
sufficiently close to 1), there exists a complex valued function ¢ = ¢, satisfying (A.22) up
to an error O(x$°) with Im¢ > 0. In local coordinates (A.22) has the form

O _ ez
{ Ox1 p?(l’, am’)’ (A23)
S0|$1:0 = -7,

where

palasm) = (1 1VFE) " {n- VF +i[(1+ [VFP)(nf* = o?) = (- TF)] 7}
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Recall that F' is that function for which I' is given locally by z; = F(2a,...,2p41). Then
one can solve (A.23) of infinite order at z; = 0 as in [G] for all n € W provided that
a is sufficiently close to @ = 1. Once we have ¢ = ¢, solving (A.22), we can solve the
corresponding transport equations of infinite order at 1 = 0 and the solution is a(x,n, \) =
2720 a;(x,m)A;’ with a; formal series in z; with coefficients in S=7(V x W). In fact, a
depends also on a and this dependence is continuous in the Fréchet topology given by the
seminorms appearing in (A.3). Since ¢ has the same property, the operator H, can be
considered as a FIO with large parameter \; continuously depending on the parameter «.
The same will be true for the corresponding Neumann operator.

Now it is not hard to check that H,f is well defined and solves (A.20). According to the
construction of ¢ (see [G]), one has Im ¢ > cx1(1 + |n|) with ¢ > 0 independent of «, thus

Re (iAi(p(z,n) —y-n)) = —MIme < —chai (1 + |n)|). (A.24)

Therefore,

6i>\1(50($777)—y'?7)’ < 6—0>\19E1(1+|77|)’ (A.25)

so the integrand in (A.21) is convergent for x; > 0. Using the inequality (see e.g. [T2,
§VIL.5))
sup @~ MF I < (14 ) 7, (A.26)
x1>0
one can easily show that the kernel of K, is in C>°(U x V), i.e. K, = O(|]\|=>°) uniformly in
21 € [0,]. Moreover, (A.25), (A.26) show that the kernel of H, is in C=(U \ T x V).
Finally, we note that if x in (A.20) is compactly supported, i.e. if we work with 7 in a
bounded set, then one can consider a parametrix H, with A\ € A in the exponential. Then
the phase function will satisfy the usual eikonal equation (V)? = 1.

A.5 Relationship between the parametrix and the exact solution

Having constructed the parametrix in the three regions, we will represent the exact solution
in terms of the parametrix. First we note that the boundary operator Op,, (x) in the
elliptic region (see (A.20)) is a YDO with large parameter A\; = Re A, while the other two
boundary operators (see (A.8), (A.10)) have A as large parameter. We will modify the elliptic
parametrix so that the boundary operator takes the form Op, (x').

Let H, be the elliptic parametrix with x = x1(x)x2(n) as before. Choose x' = x| (x)x5(n),
such that x; = 1 on supp X;- Let us define

OpA(X') = X1 (2) — OpA (X4 (1 — X3)). (A.27)
Then H! := H.Op,(x’) solves

{(A+A2)Héf = K!f,
Hflr = Op\(X')f + R.f,

where K! = K.Op,(x’) and R, has kernel in C*°(V x V). Indeed, one can easily check that

Op,\1 (X)OPA(X/) = OP,\(X/) (A.28)
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modulo operators with kernels in C°(V x V). To verify (A.28), one uses the definition
(A.27) for Op,(x’) given above and the fact that x = 1 on supp x’.

Thus by using a pseudodifferential partition of unity, one can construct an operator H(\),
such that

{ (A+X)H\Nf = K\f in U (A.29)

HMNfle = f+ RN/,

where the kernel of K()) is in C*°(U x I), the kernel of R()) is in C°°(I' x T'). Following
[G], set 3
H(A) = xH(A) = So(M (XK A) + [A, x]H (X)), (A.30)

where x is a smooth cut-off function in Q with support in U, equal to 1 near I", Sy()) is the

free outgoing resolvent. Clearly, H())f is A-outgoing for any f and any A € A, according to
Definition 2.1. For H(A)f|r we have

HN) flr = f+ RO — So\) (XK (N + [AXJH M)l -

By (A.9), (A.19) one deduces (see [G, p. 136]) that the last term above defines a neglectible
operator, i.e. an operator with kernel in C~'°°(F x I'). Let us emphasize that this property is
due to the right choice of the signs when solving the corresponding eikonal equations which
determines the outgoing properties of WEF'(H) (see (A.9), (A.19)) and the fact that Sy()) is
the outgoing resolvent, hence WEF’(Sp(\)) has also outgoing properties (see [G, (A.I1.24)]).
Therefore, the singularities of [A, x]H(\)f cannot go back to I' under the action of Sy(A).
We refer to [G] for more details.
If we denote by u = H(\) f the exact solution of (A.1), then we get

HO) = HO) (I+RN) (A.31)

where R(\) has kernel in C°(T' x ') and therefore I+ R()\) is invertible for large |\|.
So (A.30) shows that the exact solution H(A)f with WF(f) belonging to the hyperbolic
and the glancing region, respectively, coincides with the corresponding parametrix up to
an error O(|A|7%°) for A € A. Without loss of generality we can assume that the elliptic
parametrix also has the form H, (not H.Op,(x)), where H, is the VDO with large parameter
A1 constructed in the elliptic region. Indeed, given a cut-off function x supported in the
elliptic region as above, we know that H(A)Op,(x) = H.(A)Op,(x) modulo neglectible
operators. However, since Op,(x)Op,,(x1) = Opy, (x1) for any cut-off function xi, such
that x = 1 on supp x1, we get that H(\)Op,, (x1) = H.(\)Op,, (x1) modulo neglectible
operators, i.e. we have the parametrix constructed above with another cut-off function with
slightly shrunken support.

A.6 The Neumann operator

We proceed with a construction of a parametrix for the (outgoing) Neumann operator related
to (A.1). Although we deal with somewhat different operators in the proof of the main
result, we believe that the analysis of the Neumann operator for (A.1) is useful for better
understanding the structure of the Neumann operator for the elasticity problem.
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Given f € H*(I"), s > 3/2 denote by

NS = 24 e B
ov |
the normal derivative on I' of the solution u to (A.1).

(i) Hyperbolic region. Let WF(f) be supported in the hyperbolic region as above. Then
using the hyperbolic parametrix Hj, and (A.30), (A.31), one gets that up to a neglectible
term N(A)f = N, f, where Nj is a local DO with large parameter \ of class ngé. The
principal symbol of that operator at ' = 0 is 1tAJY/0x1|.,—0 and writing this in invariant
form, we get that the principal symbol reads

—iA/1 = |nl2.

(ii) Elliptic region. The analysis here is similar. Let VAVF‘(f) be supported in the elliptic
region. If WF(f) is compact in 7, then one can construct H.(\) as a FIO with large parameter
A (not A1) and the principal symbol of the parametrix for the Neumann operator is

—Aynlz = 1.

If VAVF‘( f) is not compact in 7, then the elliptic parametrix is a FIO with large parameter
A1. Therefore, the Neumann operator in this case is a VDO with large parameter A\; and

principal symbol
—Ary/[nlz — o?.

(iii) Glancing region. Here we follow [T2, §X.5]. Let VAVF‘(f) be supported in a small
neighborhood of a point ¢Y in the glancing region. As shown above, the glancing parametrix
has the form H,w, where w = J~'f. We have

9
ov

A" . N
Huw = <§> / (Aovgo — Augr + i0,01] Ce™qiv(n, A) dn

T

A\ '
+ (g) /[i)\eygo + iAppu gt + Bugo] BePti(n, \) dn, (A.32)

where 6, = 00/0v|r etc. Let us first note that the terms containing g, are O(]a|*). The
construction of p guarantees that p, # 0 for || < 1, while §, = 0 for a > 0. Therefore,
the first term in (A.32) defines an elliptic operator near a = 0, while the second one has
principal part that vanishes at & = 0 as |A\| — oo. Let us rewrite (A.32) as

0

a flgw = (KlQ + Kg)'w,

T

where @ = Op(q), q € Sg}%,m K;, K5 are FIO-s with large parameter \ with associated
canonical transformation J (that of J). Let us set

A= J K, Ay = J K.
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Then A, €~L8:(1], A; is elliptic near o = 0; Ag € ng(l), op(A2) =0at a=0; Q € L(2]7/03,0‘ For
Ny = LZ|rHyJ ™! we get

N, = J(A1Q + Ag)J ! (A.33)

(compare with [T2]).

It should be noted that unfortunately () belongs to a class with p = 2/3 (this corresponds
to p = 1/3 in the classical pseudodifferential calculus). Therefore, this does not enable us to
conjugate directly A;QQ+ A with the FIO J and to claim that the result is again a ¥YDO. This
would be possible if p < 1/2. In fact, by using some special variants of Egorov’s theorem [T2]
and their generalizations to the calculus of YDO-s and FIO-s with large complex parameter,
we could prove as in [T2] that locally N, is a DO and N, € Lg’/lw/g. Even this result
would not allow us to interpret N, as a WDO with large parameter on I' globally (this
requires p = § < 1/2). For our purposes however (A.33) is enough in order to construct an
asymptotic inverse Ng_1 of N, as done in [T2]. Note that A;Q + Ay € Lg’/lao. It is useful to
rewrite [V, as

N, = J(A1 + A,Q " HQJ .

A priori Q7! € Lg%g, but from the fact that o,(As) =0 for a = 0 it is clear that A,Q~! €
Lg’/lao and A 1o (A2Q7!) is small near @ = 0. Therefore, A; + A,Q~! € Lg’/lao is elliptic near

a = 0. By the standard procedure we can construct asymptotic inverse (A; + AgQ_l)_1 €
Lg’/é,lo (this requires p + 6 < 1, not p < 1/2). Therefore, N, is hypoelliptic and modulo
O(JA|=>°) has inverse N " given by

Ny = JQ 7 (A AQ7)

with Q1 (A; + A,Q7 1) ' € Lg,/g?o/s.
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