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Introduction

One of the fundamental ideas of classical analysis is a thorough study of
functions near a point, i.e., locally. Microlocal analysis, loosely speaking, is
analysis near points and directions, i.e., in the “phase space”.

Wave front sets

The phase space in Rn is the cotangent bundle T ∗Rn that can be identified
with Rn × Rn. Given a distribution f ∈ D′(Rn), a fundamental object to
study is the wave front set WF(f ) ⊂ T ∗Rn \ 0 that we define below.

Definition

The basic idea goes back to the properties of the Fourier transform. If f is
an integrable compactly supported function, one can tell whether f is
smooth by looking at the behavior of f̂ (ξ) (that is smooth, even analytic)
when |ξ| → ∞. It is known that f is smooth if and only if for any N,
|f̂ (ξ)| ≤ CN |ξ|−N for some CN . If we localize this requirement to a conic
neighborhood V of some ξ0 6= 0 (V is conic if ξ ∈ V ⇒ tξ ∈ V ,∀t > 0),
then we can think of this as a smoothness in the cone V . To localize in
the base x variable however, we first have to cut smoothly near a fixed x0.



We say that (x0, ξ0) ∈ Rn × (Rn \ 0) is not in the wave front set WF(f ) of
f ∈ D′(Rn) if there exists φ ∈ C∞

0 (Rn) with φ(x0) 6= 0 so that for any N,
there exists CN so that

|φ̂f (ξ)| ≤ CN |ξ|−N

for ξ in some conic neighborhood of ξ0.

This definition is independent of the choice of φ. If f ∈ D′(Ω) with some
open Ω ⊂ Rn, to define WF(f ) ⊂ Ω× (Rn \ 0), we need to choose
φ ∈ C∞

0 (Ω). Clearly, the wave front set is a closed conic subset of
Rn × (Rn \ 0). Next, multiplication by a smooth function cannot enlarge
the wave front set. The transformation law under coordinate changes is
that of covectors making it natural to think of WF(f ) as a subset of
T ∗Rn \ 0, or T ∗Ω \ 0, respectively.

The wave front set WF(f ) generalizes the notion singsupp(f ) — the
complement of the largest open set where f is smooth. The points (x , ξ)
in WF(f ) are referred to as singularities of f . Its projection onto the base
is singsupp(f ), i.e.,

singsupp(f ) = {x ; ∃ξ, (x , ξ) ∈ WF(f )}.



Examples

(a) WF(δ) = {(0, ξ); ξ 6= 0}. In other words, the Dirac delta function is
singular at x = 0, and all directions.

(b) Let x = (x ′, x ′′), where x ′ = (x1, . . . , xk), x ′′ = (xk+1, . . . , xn) with
some k. Then WF(δ(x ′)) = {(0, x ′′, ξ′, 0), ξ′ 6= 0}, where δ(x ′) is the
Dirac delta function on the plane x ′ = 0, defined by
〈δ(x ′), φ〉 =

∫
φ(0, x ′′) dx ′′. In other words, WF(δ(x ′)) consists of all

(co)vectors with a base point on that plane, perpendicular to it.

(c) Let f be a piecewise smooth function that has a non-zero jump across
some smooth surface S . Then WF(f ) consists of all (co)vectors at points
of S , normal to it. This follows from (a) and a change of variables that
flattens S locally.

(d) Let f = pv 1
x − πiδ(x) in R. Then WF(f ) = {(0, ξ); ξ > 0}.

In (d) the wave front set that is not symmetric under the change ξ 7→ −ξ.
In fact, wave front sets do not have a special structure except for the
requirement to be closed conic sets.

Two distributions cannot be multiplied in general. However, under some
assumption on their wave front sets, they can.



Pseudodifferential Operators

Definition

We first define the symbol class Sm(Ω), m ∈ R, as the set of all smooth
functions p(x , ξ), (x , ξ) ∈ Ω× Rn, called symbols, satisfying the following
symbol estimates: for any compact K ⊂ Ω, and any multi-indices α, β,
there is a constant CK ,α,β > 0 so that

|∂α
ξ ∂β

x p(x , ξ)| ≤ CK ,α,β(1 + |ξ|)m−|α|, ∀(x , ξ) ∈ K × Rn. (1)

More generally, one can define the class Sm
ρ,δ(Ω) with 0 ≤ ρ, δ ≤ 1 by

replacing m − |α| there by m − ρ|α|+ δ|β|. Then Sm(Ω) = Sm
1,0(Ω).

Often, we omit Ω and simply write Sm. There are other classes in the
literature, for example Ω = Rn, and (1) is required to hold for all x ∈ Rn.

The estimates (1) do not provide any control of p when x approaches
boundary points of Ω, or ∞.

Given p ∈ Sm(Ω), we define the pseudodifferential operator (ΨDO) with
symbol p, denoted by p(x ,D), by

p(x ,D)f = (2π)−n

∫
e ix ·ξp(x , ξ)f̂ (ξ) dξ, f ∈ C∞

0 (Ω). (2)



The definition is inspired by the following. If P =
∑

|α|≤m aα(x)Dα is a
differential operator, where D = −i∂, then using the Fourier inversion
formula we can write P as in (2) with a symbol p =

∑
|α|≤m aα(x)ξα that

is a polynomial in ξ with x-dependent coefficients. The symbol class Sm

allows for more general functions. The class of the pseudo-differential
operators with symbols in Sm is denoted usually by Ψm. The operator P is
called a ΨDO if it belongs to Ψm for some m. By definition,
S−∞ = ∩mSm, and Ψ−∞ = ∩mΨm.

An important subclass is the set of the classical symbols that have an
asymptotic expansion of the form

p(x , ξ) ∼
∞∑
j=0

pm−j(x , ξ), (3)

where m ∈ R, and pm−j are smooth and positively homogeneous in ξ of
order m − j for |ξ| > 1, i.e., pm−j(x , λξ) = λm−jpm−j(x , ξ) for |ξ| > 1,
λ > 1; and the sign ∼ means that

p(x , ξ)−
N∑

j=0

pm−j(x , ξ) ∈ Sm−N−1, ∀N ≥ 0. (4)



Any ΨDO p(x ,D) is continuous from C∞
0 (Ω) to C∞(Ω), and can be

extended by duality as a continuous map from E ′(Ω) to D′(Ω).

Principal symbol

The principal symbol of a ΨDO given by (2) is the equivalence class
Sm(Ω)/Sm−1(Ω), and any its representative is called a principal symbol as
well. In case of classical ΨDOs, the convention is to choose the principal
symbol to be the first term pm, that in particular is positively
homogeneous in ξ.

Smoothing Operators

Those are operators than map continuously E ′(Ω) into C∞(Ω). They
coincide with operators with smooth Schwartz kernels in Ω× Ω. They can
always be written as ΨDOs with symbols in S−∞, and vice versa — all
operators in Ψ−∞ are smoothing. Smoothing operators are viewed in this
calculus as negligible and ΨDOs are typically defined modulo smoothing
operators, i.e., A = B if and only if A− B is smoothing. Smoothing
operators are not “small”.



The pseudolocal property

For any ΨDO P and any f ∈ E ′(Ω),

singsupp(Pf ) ⊂ singsupp f . (5)

In other words, a ΨDO cannot increase the singular support. This property
is preserved if we replace singsupp by WF, see (11).

Symbols defined by an asymptotic expansion

In many applications, a symbol is defined by consecutively constructing
symbols pj ∈ Smj , j = 0, 1, . . . , where mj ↘ −∞, and setting

p(x , ξ) ∼
∑

j

pj(x , ξ). (6)

The series may not converge but we can make it convergent by using our
freedom to modify each pj for ξ in expanding compact sets without
changing the large ξ behavior of each term. This extends Borel’s idea of
constructing a smooth function with prescribed derivatives at a fixed
point. The asymptotic (6) then is understood in a sense similar to (4).
This shows that there exists a symbol p ∈ Sm0 satisfying (6). That symbol
is not unique but the difference of two such symbols is always in S−∞.



Amplitudes

A seemingly larger class of ΨDOs is defined by

Af = (2π)−n

∫
e i(x−y)·ξa(x , y , ξ)f (y) dy dξ, f ∈ C∞

0 (Ω), (7)

where the amplitude a satisfies

|∂α
ξ ∂β

x ∂γ
y a(x , y , ξ)| ≤ CK ,α,β,γ(1 + |ξ|)m−|α|, ∀(x , y , ξ) ∈ K × Rn (8)

for any compact K ⊂ Ω×Ω, and any α, β, γ. In fact, any such ΨDO A is
a ΨDO with a symbol p(x , ξ) (independent of y) with the formal
asymptotic expansion

p(x , ξ) ∼
∑
α≥0

Dα
ξ ∂α

y a(x , x , ξ).

In particular, the principal symbol of that operator can be taken to be
a(x , x , ξ).



Transpose and adjoint operators to a ΨDO

The mapping properties of any ΨDO A indicate that it has a well defined
transpose A′, and a complex adjoint A∗ with the same mapping properties.
They satisfy

〈Au, v〉 = 〈u,A′v〉, 〈Au, v̄〉 = 〈u,A∗v〉, ∀u, v ∈ C∞
0

where 〈·, ·〉 is the pairing in distribution sense; and in this particular case
just an integral of uv . In particular, A∗u = A′ū, and if A maps L2 to L2 in
a bounded way, then A∗ is the adjoint of A in L2 sense.

The transpose and the adjoint are ΨDOs in the same class with
amplitudes a(y , x ,−ξ) and ā(y , x , ξ), respectively; and symbols∑

α≥0

(−1)|α|
1

α!
(∂α

ξ Dα
x p)(x ,−ξ),

∑
α≥0

1

α!
∂α

ξ Dα
x p̄(x , ξ),

if a(x , y , ξ) and p(x , ξ) are the amplitude and/or the symbol of that ΨDO.
In particular, the principal symbols are p0(x ,−ξ) and p̄0(x , ξ), respectively,
where p0 is (any representative of) the principal symbol.



Composition of ΨDOs and ΨDOs with properly supported kernels

Given two ΨDOs A and B, their composition may not be defined even if
they are smoothing ones because each one maps C∞

0 to C∞ but may not
preserve the compactness of the support. For example, if A(x , y), and
B(x , y) are their Schwartz kernels, the candidate for the kernel of AB
given by

∫
A(x , z)B(z , y) dz may be a divergent integral. On the the

hand, for any ΨDO A, one can find a smoothing correction R, so that
A + R has properly supported kernel, i.e., the kernel of A + R, has a
compact intersection with K ×Ω and Ω×K for any compact K ⊂ Ω. The
proof of this uses the fact that the Schwartz kernel of a ΨDO is smooth
away from the diagonal {x = y} and one can always cut there in a smooth
way to make the kernel properly supported at the price of a smoothing
error. ΨDOs with properly supported kernels preserve C∞

0 (Ω), and also
E ′(Ω), and therefore can be composed in either of those spaces. Moreover,
they map C∞(Ω) to itself, and can be extended from D′(Ω) to itself. The
property of the kernel to be properly supported is often assumed, and it is
justified by considering each ΨDO as an equivalence class.



If A ∈ Ψm(Ω) and B ∈ Ψk(Ω) are properly supported ΨDOs with symbols
a and b, respectively, then AB is again a ΨDO in Ψm+k(Ω) and its symbol
is given by ∑

α≥0

(−1)|α|
1

α!
∂α

ξ a(x , ξ)Dα
x b(x , ξ).

In particular, the principal symbol can be taken to be ab.

Change of variables and ΨDOs on manifolds

Let Ω′ be another domain, and let φ : Ω → Ω̃ be a diffeomorphism. For
any P ∈ Ψm(Ω), P̃f := (P(f ◦ φ)) ◦ φ−1 maps C∞

0 (Ω̃) into C∞(Ω̃). It is a
ΨDO in Ψm(Ω̃) with principal symbol

p(φ−1(y), (dφ)′η) (9)

where p is the symbol of P, dφ is the Jacobi matrix {∂φi/∂xj} evaluated
at x = φ−1(y), and (dφ)′ stands for the transpose of that matrix. We can
also write (dφ)′ = ((dφ−1)−1)′. An asymptotic expansion for the whole
symbol can be written down as well.



Relation (9) shows that the transformation law under coordinate changes
is that of a covector. Therefore, the principal symbol is a correctly defined
function on the cotangent bundle T ∗Ω. The full symbol is not invariantly
defined there in general.

Let M be a smooth manifold, and A : C∞
0 (M) → C∞(M) be a linear

operator. We say that A ∈ Ψm(M), if its kernel is smooth away from the
diagonal in M ×M, and if in any coordinate chart (A, χ), where
χ : U → Ω ⊂ Rn, we have (A(u ◦ χ)) ◦ χ−1 ∈ Ψm(Ω). As before, the
principal symbol of A, defined in any local chart, is an invariantly defined
function on T ∗M.



Mapping properties in Sobolev Spaces

In Rn, Sobolev spaces Hs(Rn), s ∈ R, are defined as the completion of
S ′(Rn) in the norm

‖f ‖2
Hs(Rn) =

∫
(1 + |ξ|2)s |f̂ (ξ)|2 dξ.

When s is a non-negative integer, an equivalent norm is the square root of∑
|α|≤s

∫
|∂αf (x)|2 dx . For such s, and a bounded domain Ω, one defines

Hs(Ω) as the completion of C∞(Ω̄) using the latter norm with the integral
taken in Ω. Sobolev spaces in Ω for other real values of s are defined by
different means, including duality or complex interpolation.

Sobolev spaces are also Hilbert spaces.

Any P ∈ Ψm(Ω) is a continuous map from Hs
comp(Ω) to Hs−m

loc (Ω). If the
symbols estimates (1) are satisfied in the whole Rn × Rn, then
P : Hs(Rn) → Hs−m(Rn).



Elliptic ΨDOs and their parametrices

The operator P ∈ Ψm(Ω) with symbol p is called elliptic of order m, if for
any compact K ⊂ Ω, there exists constants C > 0 and R > 0 so that

C |ξ|m ≤ |p(x , ξ)| for x ∈ K , and |ξ| > R. (10)

Then the symbol p is called also elliptic of order m. It is enough to require
the principal symbol only to be elliptic (of order m). For classical ΨDOs,
see (3), the requirement can be written as pm(x , ξ) 6= 0 for ξ 6= 0. A
fundamental property of elliptic operators is that they have parametrices.
In other words, given an elliptic ΨDO P of order m, there exists
Q ∈ Ψ−m(Ω), so that

QP − I ∈ Ψ−∞, PQ − I ∈ Ψ−∞.

The proof of this is to construct a left parametrix first by choosing a
symbol q0 = 1/p, cut off near the possible zeros of p, that form a compact
any time when x is restricted to a compact as well. The corresponding
ΨDO Q0 will then satisfy Q0P = I + R, R ∈ Ψ−1. Then we take a ΨDO
E with asymptotic expansion E ∼ I− R + R2 − R3 + . . . , that would be
the formal Neumann series expansion of (I + R)−1, if the latter existed.
Then EQ0 is a left parametrix that is also a right parametrix.



An important consequence is the following elliptic regularity statement. If
P is elliptic (and properly supported), then

singsupp(PF ) = singsupp(f ), ∀f ∈ D′(Ω).

In particular, Pf ∈ C∞ implies f ∈ C∞.

ΨDOs and wave front sets

The microlocal version of the pseudo-local property is given by the
following:

WF(Pf ) ⊂ WF(f ) (11)

for any (properly supported) ΨDO P and f ∈ D′(Ω). In other words, a
ΨDO cannot increase the wave front set. If P is elliptic for some m, it
follows from the existence of a parametrix that there is equality above, i.e.,
WF(Pf ) = WF(f ).



We say that the ΨDO P is of order −∞ in the open conic set
U ⊂ T ∗Ω \ 0, if for any closed conic set K ⊂ U with a compact projection
on the the base “x-space”, (1) is fulfilled for any m. The essential support
ES(P), sometimes also called the microsupport of P, is defined as the
smallest closed conic set on the complement of which the symbol p is of
order −∞. Then

WF(Pf ) ⊂ WF(f ) ∩ ES(P).

Let P have a homogeneous principal symbol pm. The characteristic set
Char P is defined by

Char P = {(x , ξ) ∈ T ∗Ω \ 0; pm(x , ξ) = 0}.

Char P can be defined also for general ΨDOs that may not have
homogeneous principal symbols. For any ΨDO P, we have

WF(f ) ⊂ WF(Pf ) ∪ Char P, ∀f ∈ E ′(Ω). (12)

P is called microlocally elliptic in the open conic set U, if (10) is satisfied
in all compact subsets, similarly to the definition of ES(P) above. If it has
a homogeneous principal symbol pm, ellipticity is equivalent to pm 6= 0 in
U. If P is elliptic in U, then Pf and f have the same wave front set
restricted to U, as follows from (12) and (11).



The Hamilton flow and propagation of singularities

Let P ∈ Ψm(M) be properly supported, where M is a smooth manifold,
and suppose that P has a real homogeneous principal symbol pm. The
Hamiltonian vector field of pm on T ∗M \ 0 is defined by

Hpm =
n∑

j=1

(
∂pm

∂xj

∂

∂ξj
− ∂pm

∂ξj

∂

∂xj

)
.

The integral curves of Hpm are called bicharacteristics of P. Clearly,
Hpmpm = 0, thus pm is constant along each bicharacteristics. The
bicharacteristics along which pm = 0 are called zero bicharacteristics.

The Hörmander’s theorem about propagation of singularities is one of the
fundamental results in the theory. It states that if P is an operator as
above, and Pu = f with u ∈ D′(M), then

WF(u) \WF(f ) ⊂ Char P,

and is invariant under the flow of Hpm .



An important special case is the wave operator P = ∂2
t −∆g , where ∆g is

the Laplace Beltrami operator associated with a Riemannian metric g . We
may add lower order terms without changing the bicharacteristics. Let
(τ, ξ) be the dual variables to (t, x). The principal symbol is
p2 = −τ2 + |ξ|2g , where |ξ|2g :=

∑
g ij(x)ξiξj , and (g ij) = (gij)

−1. The
bicharacteristics equations then are

τ̇ = 0, ṫ = −2τ, ẋ j = 2
∑

g ijξi , ξ̇j = −2∂x j

∑
g ij(x)ξiξj ,

and they are null ones if τ2 = |ξ|2g . Here, ẋ = dx/ds, etc. The latter two

equations are the Hamiltonian curves of H̃ :=
∑

g ij(x)ξiξj and they are
known to coincide with the geodesics (γ, γ̇) on TM when identifying
vectors and covectors by the metric. They lie on the energy surface
H̃ = const.

The first two equations imply that τ is a constant, positive or negative,
and up to rescaling, one can choose the parameter along the geodesics to
be t. That rescaling forces the speed along the geodesic to be 1. The null
condition τ2 = |ξ|2g defines two smooth surfaces away from (τ, ξ) = (0, 0):
τ = ±|ξ|g . This corresponds to geodesics starting from x in direction
either ξ or −ξ.



To summarize, for the homogeneous equation Pu = 0, we get that each
singularity (x , ξ) of the initial conditions at t = 0 starts to propagate from
x in direction either ξ or −ξ or both (depending on the initial conditions)
along the unit speed geodesic. In fact, we get this first for the singularities
in T ∗(Rt × Rn

x) first, but since they lie in Char P, one can see that they
project to T ∗Rn

x as singularities again.

Geometric Optics

Geometric optics describes asymptotically the solutions of hyperbolic
equations at large frequencies. It also provides a parametrix (a solution up
to smooth terms) of the initial value problem for hyperbolic equations.
The resulting operators are not ΨDOs anymore; they are actually examples
of Fourier Integrals Operators. Geometric Optics also studies the large
frequency behavior of solutions that reflect from a smooth surface
(obstacle scattering) including diffraction; reflect from an edge or a corner;
reflect and refract from a surface where the speed jumps (transmission
problems).



As an example, consider the acoustic equation

(∂2
t − c2(x)∆)u = 0, (t, x) ∈ Rn, (13)

with initial conditions u(0, x) = f1(x), ut(0, x) = f2. It is enough to
assume first that f1 and f2 are in C∞

0 , and extend the resulting solution
operator to larger spaces later.

We are looking for a solution of the form

u(t, x) =
1

(2π)n

∑
σ=±

∫
e iφσ(t,x ,ξ)

(
a1,σ(x , ξ, t)f̂1(ξ) +

1

|ξ|
a2,σ(x , ξ, t)f̂2(ξ)

)
dξ,

(14)
modulo terms involving smoothing operators of f1 and f2. The reason to
expect two terms is already clear by the propagation of singularities
theorem, and is also justified by the eikonal equation below. Here the
phase functions φ± are positively homogeneous of order 1 in ξ. Next, we
seek the amplitudes in the form

aj ,σ ∼
∞∑

k=0

a
(k)
j ,σ , σ = ±, j = 1, 2, (15)

where a
(k)
j ,σ is homogeneous in ξ of degree −k for large |ξ|.



To construct such a solution, we plug (14) into (13) and try to kill all
terms in the expansion in homogeneous (in ξ) terms.

Equating the terms of order 2 yields the eikonal equation

(∂tφ)2 − c2(x)|∇xφ|2 = 0. (16)

Write fj = (2π)−n
∫

e ix ·ξ f̂j(ξ) dξ, j = 1, 2, to get the following initial
conditions for φ±

φ±|t=0 = x · ξ. (17)

The eikonal equation can be solved by the method of characteristics. First,
we determine ∂tφ and ∇xφ for t = 0. We get ∂tφ|t=0 = ∓c(x)|ξ|,
∇xφ|t=0 = ξ. This implies existence of two solutions φ±. If c = 1, we
easily get φ± = ∓|ξ|t + x · ξ. Let for any (z , ξ), γz,ξ(s) be unit speed
geodesic through (z , ξ). Then φ+ is constant along the curve (t, γz,ξ(t))
that implies that φ+ = z(x , ξ) · ξ in any domain in which (t, z) can be
chosen to be coordinates. Similarly, φ− is constant along the curve
(t, γz,−ξ(t)). In general, we cannot solve the eikonal equation globally, for
all (t, x). Two geodesics γz,ξ and γw ,ξ may intersect, for example, giving a
non-unique value for φ±. We always have a solution however in a
neighborhood of t = 0.



Equate now the order 1 terms in the expansion of (∂2
t − c2∆)u to get that

the principal terms of the amplitudes must solve the transport equation(
(∂tφ±)∂t − c2∇xφ± · ∇x + C±

)
a
(0)
j ,± = 0, (18)

with
2C± = (∂2

t − c2∆)φ±.

This is an ODE along the vector field (∂tφ±,−c2∇xφ), and the integral
curves of it coincide with the curves (t, γz,±ξ). Given an initial condition
at t = 0, it has a unique solution along the integral curves as long as φ is
well defined.

Equating terms homogeneous in ξ of lower order we get transport

equations for a
(k)
j ,σ , j = 1, 2, . . . with the same left-hand side as in (18)

with a right-hand side determined by a
(k−1)
k,σ .

Taking into account the initial conditions, we get

a1,+ + a1,− = 1, a2,+ + a2,− = 0 for t = 0.

This is true in particular for the leading terms a
(0)
1,± and a

(0)
2,±.



Since ∂tφ± = ∓c(x)|ξ| for t = 0, and ut = f2 for t = 0, from the leading
order term in the expansion of ut we get

a
(0)
1,+ = a

(0)
1,−, ic(x)(a

(0)
2,− − a

(0)
2,+) = 1 for t = 0.

Therefore,

a
(0)
1,+ = a

(0)
1,− =

1

2
, a

(0)
2,+ = −a

(0)
2,− =

i
2c(x)

for t = 0. (19)

Note that if c = 1, then φ± = x · ξ ∓ t|ξ|, and a1,+ = a1,− = 1/2,
a2,+ = −a2,− = i/2. Using those initial conditions, we solve the transport

equations for a
(0)
1,± and a

(0)
2,±. Similarly, we derive initial conditions for the

lower order terms in (15) and solve the corresponding transport equations.
Then we define aj ,σ by (15) as a symbol.

The so constructed u in (14) is a solution only up to smoothing operators
applied to (f1, f2). Using standard hyperbolic estimates, we show that
adding such terms to u, we get an exact solution to (13). As mentions
above, this construction may fail for t too large, depending on the speed.
On the other hand, the solution operator (f1, f2) 7→ u makes sense as a
global Fourier Integral Operator for which this construction is just one if
its local representations.



One can apply the stationary phase to get the following fundamental fact:

Propagation of singularities for the wave equation

Each singularity (x , ξ) of (f1, f2) propagates along the unit speed geodesics
t 7→ (γ(x ,ξ)(t), γ̇(x ,ξ)(t)) and t 7→ (γ(x ,ξ)(−t), γ̇(x ,ξ)(−t)). It is possible
that one of them to contain no singularities, depending on f1, f2.

Going back to TAT, f2 = 0, so we get

u(t, x) =
1

(2π)n

∑
σ=±

∫
e iφσ(t,x ,ξ)a1,σ(x , ξ, t)f̂1(ξ)dξ,

and a1,+ = a1,− = 1
2 modulo lower order terms. Therefore, each singularity

splits in two “equal” parts, traveling in opposite directions.
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Going back to TAT, f2 = 0, so we get

u(t, x) =
1

(2π)n

∑
σ=±

∫
e iφσ(t,x ,ξ)a1,σ(x , ξ, t)f̂1(ξ)dξ,

and a1,+ = a1,− = 1
2 modulo lower order terms. Therefore, each singularity

splits in two “equal” parts, traveling in opposite directions.
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