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RECENT PROGRESS ON THE BOUNDARY RIGIDITY
PROBLEM

PLAMEN STEFANOV AND GUNTHER UHLMANN

Abstract. The boundary rigidity problem consists in determining a compact,
Riemannian manifold with boundary, up to isometry, by knowing the bound-

ary distance function between boundary points. In this paper we announce
the result of [25] that one can solve this problem for generic simple metrics.

Moreover we probe stability estimates for this problem.

1. Main Results

Let (M,∂M, g) be a compact Riemannian manifold with boundary. Denote by ρg

the distance function in the metric g. We consider the inverse problem of whether
ρg(x, y), known for all x, y on ∂M , determines the metric uniquely. It is clear
that any isometry which is the identity at the boundary will give rise to the same
distance functions on the boundary. Therefore, the natural question is whether
this is the only obstruction to uniqueness. This is known in differential geometry
as the boundary rigidity problem. The boundary distance function only takes into
account the shortest paths and it is easy to find counterexamples where ρg does not
carry any information about certain open subset of M , so one needs to pose some
restrictions on the metric. One such condition is simplicity of the metric.

Definition 1.1. We say that the Riemannian metric g is simple in M , if ∂M is
strictly convex w.r.t. g, and for any x ∈M , the exponential map expx : exp−1

x (M ) →
M is a diffeomorphism.

Michel [12] conjectured that a simple metric g is uniquely determined, up to an
action of a diffeomorphism fixing the boundary, by the boundary distance function
ρg(x, y) known for all x and y on ∂M .

This problem also arose in geophysics in an attempt to determine the inner
structure of the Earth by measuring the travel times of seismic waves. It goes back
to Herglotz [H] and Wiechert and Zoeppritz [29]. Although the emphasis has been
in the case that the medium is isotropic, the anisotropic case has been of interest
in geophysics since it has been found that the inner core of the Earth exhibits
anisotropic behavior [6].

Note that a simple metric g in M can be extended to a simple metric in some
M1 with M ⊂⊂ M1. If we fix x = x0 ∈ M above, we also obtain that each simple
manifold is diffeomorphic to a (strictly convex) domain Ω ⊂ Rn with the Euclidean
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coordinates x in a neighborhood of Ω and a metric g(x) there. For this reason, it
is enough to prove our results for domains Ω in Rn.

A closely related problem is to recover g from the scattering relation that maps
initial points x ∈ ∂M and directions ξ of maximal geodesics through M into out-
going points y ∈ ∂M and directions η. Weaker geometric assumptions are needed
to formulate this problem, and in case of simple metrics, it is equivalent to the
boundary rigidity problem. The scattering relation describes propagation of sin-
gularities of the corresponding wave equation through M , and is encoded in the
hyperbolic Dirichlet-to Neumann map, and in the scattering operator in case when
M is embedded in Rn.

Unique recovery of g (up to an action of a diffeomorphism) is known for simple
metrics conformal to each other [8], [4], [13], [14], [15], [2], for flat metrics [10], for
locally symmetric spaces of negative curvature [3]. In two dimensions it was known
for simple metrics with negative curvature [7] and [16], and recently it was shown
in [18] for simple metrics with no restrictions on the curvature. Burago and Ivanov
have shown recently that metrics close to the Euclidean metric are boundary rigid
[5]. In [22], the authors proved a local result for metrics in a small neighborhood
of the Euclidean one. This result was used in [11] to prove a semiglobal solvability
result.

It is known [19], that a linearization of the boundary rigidity problem near a
simple metric g is given by the following integral geometry problem: recover a
symmetric tensor of order 2, which in any coordinates is given by f = (fij), by the
geodesic X-ray transform

Igf(γ) =
∫
fij(γ(t))γ̇i(t)γ̇j (t) dt

known for all geodesics γ in M . It can be easily seen that Igdv = 0 for any vector
field v with v|∂M = 0, where dv denotes the symmetric differential

(1.1) [dv]ij =
1
2

(∇ivj + ∇jvi) ,

and ∇kv denote the covariant derivatives of the vector field v. This is the linear
version of the fact that ρg does not change on (∂M )2 := ∂M ×∂M under an action
of a diffeomorphism as above. The natural formulation of the linearized problem is
therefore that Igf = 0 implies f = dv with v vanishing on the boundary. We will
refer to this property as s-injectivity of Ig . More precisely, we have.

Definition 1.2. We say that Ig is s-injective in M , if Igf = 0 and f ∈ L2(M )
imply f = dv with some vector field v ∈ H1

0(M ).

Any symmetric tensor f ∈ L2(M ) admits an orthogonal decomposition f =
fs + dv into a solenoidal and potential parts with v ∈ H1

0(M ), and fs divergence
free, i.e., δfs = 0, where δ is the adjoint operator to −d given by [δf ]i = gjk∇kfij .
Therefore, Ig is s-injective, if it is injective on the space of solenoidal tensors.

The inversion of Ig is a problem of independent interest in integral geometry,
and our first two theorems are related to it. S-injectivity of Ig was proved in [17]
for metrics with negative curvature, in [19] for metrics with small curvature and
in [21] for Riemannian surfaces with no focal points. A conditional and non-sharp
stability estimate for metrics with small curvature is also established in [19]. This
estimate was used in [9] to get local uniqueness results for the boundary rigidity
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problem under the same condition. In [23], we proved stability estimates for s-
injective metrics (see (1.2) below) and sharp estimates about the recovery of a
1-form f = fjdx

j and a function f from the associated Igf . The stability estimates
proven in [23], were used to prove local uniqueness for the boundary rigidity problem
near any simple metric g with s-injective Ig .

Similarly to [27], we say that f is analytic in the set K (not necessarily open),
if it is real analytic in some neighborhood of K. Our first main result is about
s-injectivity at simple analytic metrics.

Theorem 1.3. Let g be a simple, real analytic metric in M . Then Ig is s-injective.

As shown in [23], the s-injectivity of Ig for analytic simple g implies a stability
estimate for Ig. In next theorem we show something more, namely that we have a
stability estimate for g in a neighborhood of each analytic metric, which leads to
stability estimates for generic metrics.

Let M1 ⊃ M be a compact manifold which is a neighborhood ofM and g extends
as a simple metric there. We always assume that our tensors are extended as zero
outside M , which may create jumps at ∂M . Define the normal operator Ng = I∗g Ig ,
where I∗g denotes the operator adjoint to Ig with respect to an appropriate measure.
We showed in [23] that Ng is a pseudo-differential operator in M1 of order −1.

As in [23], we define the space H̃2(M1) that in particular satisfies H1(M1) ⊂
H̃2(M1) ⊂ H2(M1), we refer to [23] for details. On the other hand, f ∈ H1(M )
implies Ngf ∈ H̃2(M1) despite the possible jump of f at ∂M .

Theorem 1.4. There exists k0 such that for each k ≥ k0, the set Gk(M ) of simple
Ck(M ) metrics in M for which Ig is s-injective is open and dense in the Ck(M )
topology. Moreover, for any g ∈ Gk,

(1.2) ‖fs‖L2(M) ≤ C‖Ngf‖H̃2(M1)
, ∀f ∈ H1(M ),

with a constant C > 0 that can be chosen locally uniform in Gk in the Ck(M )
topology.

Of course, Gk includes all real analytic simple metrics in M , according to Theo-
rem 1.3.

The analysis of Ig can also be carried out for symmetric tensors of any order, see
e.g., [19] and [20]. Since we are motivated by the boundary rigidity problem, and
to simplify the exposition, we study only tensors of order 2.

Theorem 1.4 and especially estimate (1.2) allow us to prove the following local
generic uniqueness result for the non-linear boundary rigidity problem.

Theorem 1.5. Let k0 and Gk(M ) be as in Theorem 1.4. There exists k ≥ k0, such
that for any g0 ∈ Gk, there is ε > 0, such that for any two metrics g1, g2 with
‖gm − g0‖Ck(M) ≤ ε, m = 1, 2, we have the following:

(1.3) ρg1 = ρg2 on (∂M )2 implies g2 = ψ∗g1

with some Ck+1(M )-diffeomorphism ψ : M →M fixing the boundary.

Finally, we prove a conditional stability estimate of Hölder type. A similar
estimate near the Euclidean metric was proven in [28] based on the approach in
[22].
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Theorem 1.6. Let k0 and Gk(M ) be as in Theorem 1.4. Then for any µ < 1,
there exits k ≥ k0 such that for any g0 ∈ Gk, there is an ε0 > 0 and C > 0
with the property that that for any two metrics g1, g2 with ‖gm − g0‖C(M) ≤ ε0,
and ‖gm‖Ck(M) ≤ A, m = 1, 2, with some A > 0, we have the following stability
estimate

‖g2 − ψ∗g1‖C2(M) ≤ C(A)‖ρg1 − ρg2‖
µ
C(∂M×∂M)

with some diffeomorphism ψ : M →M fixing the boundary.

Theorem 1.6 can be used to obtain stability near generic simple metrics for the
inverse problem of recovering g from the hyperbolic Dirichlet-to-Neumann map Λg.
It is known that g can be recovered uniquely from Λg, up to a diffeomorphism as
above, see e.g. [1]. This result however relies on a unique continuation theorem by
Tataru [26] and it is unlikely to provide Hölder type of stability estimate as above.
By using the fact that ρg is related to the leading singularities in the kernel of Λg,
we can prove a Hölder stability estimate under the assumptions above, relating g
and Λg. We refer to [24] for details.

2. Sketch of the main ideas

As mentioned above, we can assume that M is an open bounded domain Ω ⊂ Rn

with smooth boundary, and g is a simple Riemannian metric there.

2.1. S-injectivity for analytic metrics, Theorem 1.3. The proof of Theo-
rem 1.3 is based on the following. For analytic metrics, the normal operator
Ng = I∗g Ig is an analytic pseudodifferential operator with a non-trivial null space.
We construct an analytic parametrix that allows us to reconstruct the solenoidal
part of a tensor field from its geodesic X-ray transform, up to a term that is ana-
lytic near Ω. If Igf = 0, we show that for some v vanishing on ∂Ω, f̃ := f − dv

must be flat at ∂Ω and analytic in Ω̄, hence f̃ = 0. This is similar to the known
argument that an analytic elliptic pseudodifferential operator resolves the analytic
singularities, hence cannot have compactly supported functions in its kernel. In
our case we have a non-trivial kernel, and complications due to the presence of a
boundary, in particular lost of one derivative.

2.2. The a priori linear stability estimate, Theorem 1.4. The proof of the
basic estimate (1.2) is based on the following ideas. For g of finite smoothness, one
can still construct a parametrix Qg of Ng as above that allows us to reconstruct fs

from Ngf up to smoothing operator terms. This is done in a way similar to that
in [23] in two steps: first we invert microlocally Ng in a neighborhood Ω1 of Ω, and
that gives us fs

Ω1
, i.e., the solenoidal projection of f but related to Ω1. Next, we

compare fs
Ω1

and fs and show that one can get the latter from the former by an
operator that loses one derivative. This is the same construction as in 2.1 above
but the metric is only Ck, k � 1.

After applying the parametrix Qg, the equation for recovering fs from Ngf is
reduced to solving the Fredholm equation

(2.1) (Sg +Kg)f = QgNgf, f ∈ SgL
2(Ω)

where Sg is the projection to solenoidal tensors, similarly we denote by Pg the
projection onto potential tensors. Here, Kg is a compact operator on SgL

2(Ω). We
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can write this as an equation in the whole L2(Ω) by adding Pgf to both sides above
to get

(2.2) (I +Kg)f = (QgNg + Pg)f.

Then the solenoidal projection of the solution of (2.2) solves (2.1). A finite ranks
modification of Kg above can guarantee that I + Kg has a trivial kernel, and
therefore is invertible, if and only if Ng is s-injective. The problem then reduces
to that of invertibility of I + Kg . The operators above depend continuously on
g ∈ Ck, k � 1. Since for g analytic, I +Kg is invertible by Theorem 1.3, it would
still be invertible in a neighborhood of any analytic g, and estimate (1.2) is true
with a locally uniform constant. Analytic (simple) metrics are dense in the set of
all simple metrics, and this completes the sketch of the proof of Theorem 1.4.

2.3. Generic local and global boundary rigidity, Theorem 1.5. We prove
Theorem 1.5 by linearizing and using Theorem 1.4, and especially (1.2), see also
[23]. This requires first to pass to special semigeodesic coordinates related to each
metric in which gin = δin, ∀i. We denote the corresponding pull-backs by g1, g2
again. Then we show that if g1 and g2 have the same distance on the boundary,
then g1 = g2 on the boundary with all derivatives. As a result, for f := g1 − g2 we
get that f ∈ Cl

0(Ω̄) with l � 1, if k � 1; and fin = 0, ∀i. Then we linearize to get

‖Ng1f‖L∞(Ω1) ≤ C‖f‖2
C1 ,

where Ω1 ⊃ Ω̄ is as above. Combine this with (1.2) and interpolation estimates, to
get ∀µ < 1,

‖fs‖L2 ≤ C‖f‖1+µ
L2 .

One can show that tensors satisfying fin = 0 also satisfy ‖f‖L2 ≤ C‖fs‖H2 , and
using this, and interpolation again, we get

‖f‖L2 ≤ C‖f‖1+µ′

L2 , µ′ > 0.

This implies f = 0 for ‖f‖ � 1. Note that the condition f ∈ Cl
0(Ω̄) is used to make

sure that f , extended as zero in Ω1 \ Ω, is in H l
0(Ω), and then use this fact in the

interpolation estimates.

2.4. The stability estimate. To prove Theorem 1.6, we basically follow the
uniqueness proof sketched above by showing that each step is stable. The analysis is
more delicate near pairs of points too close to each other. An important ingredient
of the proof is stability at the boundary, that is also of independent interest:

Theorem 2.1. Let g0 and g1 be two simple metrics in Ω, and Γ ⊂⊂ Γ′ ⊂ ∂Ω be
two sufficiently small open subsets of the boundary. Then for some diffeomorphism
ψ fixing the boundary,

∥∥∂k
xn(ψ∗g1 − g0)

∥∥
Cm(Γ̄)

≤ Ck,m

∥∥ρ2
g1

− ρ2
g0

∥∥
Cm+2k+2

(
Γ′×Γ′

),

where Ck,m depends only on Ω and on a upper bound of g0, g1 in Cm+2k+5(Ω̄).
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