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Abstract

We study the boundary rigidity problem for compact Riemannian manifolds with bour{déry):
is the Riemannian metrig uniquely determined, up to an action of diffeomorphism fixing the boundary,
by the distance functiop, (x, y) known for all boundary points and y? We prove in this paper local
and global uniqueness and stability for the boundary rigidity problem for generic simple metrics. More
specifically, we show that there exists a genericGetf simple Riemannian metrics such that for any
go € G, any two Riemannian metrics in some neighborhoogg@having the same distance function,
must be isometric. Similarly, there is a generic set of pairs of simple metrics with the same property. We
also prove Holder type stability estimates for this problem for metrics which are close to a given one in

g.

1 Introduction

Let (M, g) be a Riemannian manifold with boundary. Denotedyythe distance function in the metric

We consider the inverse problem of whethgi(x, y), known for allx, y on 0M, determines the metric
uniquely. This problem arose in geophysics in an attempt to determine the inner structure of the Earth by
measuring the travel times of seismic waves. It goes back to Herglotz [H] and Wiechert and Zoeppritz [WZ].
Although the emphasis has been in the case that the medium is isotropic, the anisotropic case has been of
interest in geophysics since it has been found that the inner core of the Earth exhibits anisotropic behavior
[Cr]. In differential geometry this inverse problem has been studied because of rigidity questions and is
known as the boundary rigidity problem. It is clear that one cannot determine the metric uniquely. Any
isometry which is the identity at the boundary will give rise to the same measurements. Furthermore, the
boundary distance function only takes into account the shortest paths and it is easy to find counterexamples
to unique determination, so one needs to pose some restrictions on the metric. Michel [Mi], conjectured that
a simplemetric g is uniquely determined, up to an action of a diffeomorphism fixing the boundary, by the
boundary distance function, (x, y) known for allx andy ondM . We recall

Definition 1 We say that the Riemannian metgds simplein M, if dM is strictly convex w.r.tg, and for
anyx € M, the exponential mapxp, : exp,! (M) — M is a diffeomorphism.

*Partly supported by NSF Grant DMS-0400869
TPartIy supported by NSF and a John Simon Guggenheim fellowship



Note that a simple metrig in M can be extended to a simple metric in soMeg with M cc M;. If we

fix x = xo € M above, we also obtain that each simple manifold is diffeomorphic to a (strictly convex)
domains2 C R" with the Euclidean coordinatesin a neighborhood of2 and a metrig (x) there. For this
reason, it is enough to prove our results for domam R”.

Unique recovery of (up to an action of a diffeomorphism) is known for simple metrics conformal to
each other [C1], [B], [Mul], [Mu2], [MuR], [BG], for flat metrics [Gr], for simple locally symmetric spaces
of negative curvature [BCG]. In two dimensions it was known for simple metrics with negative curvature
[C2] and [O], and recently it was shown in [PU] for simple metrics with no restrictions on the curvature. In
[SU2], the authors proved this for metrics in a small neighborhood of the Euclidean one. This result was
used in [LSU] to prove a semiglobal solvability result.

Itis known [Sh1], that a linearization of the boundary rigidity problem near a simple metsigiven by
the following integral geometry problem: show that if for a symmetric tensor of order 2, which in coordinates
is given by ' = ( fi;), the geodesic X-ray transform

/() = / Fi O O (0 dr

vanishes for all geodesigsin M, then /' = dv for some vector field with v|y;, = 0, wheredv denotes
the symmetric differential

1
[dv]ij = 5 (V,’Uj + Vjvi) , 1.1

andV; v denote the covariant derivatives of the vector fieldVe will refer to this property as-injectivity
of I,. More precisely, we have.

Definition 2 We say that/, is s-injectivein M, if I/ = 0 and f € L2(M) imply f = dv with some
vector fieldv € Hj(M).

On the other hand, it is easy to see tiat/v = 0 for any suchv. This is the linear version of the
fact that thep, does not change ofdM)? := IM x dM under an action of a diffeomorphism as above.
The inversion ofl, is a problem of independent interest in integral geometry, and our first two theorems
are related to it. S-injectivity of, was proved in [PS] for metrics with negative curvature, in [Sh1] for
metrics with small curvature and in [ShU] for Riemannian surfaces with no focal points. A conditional and
non-sharp stability estimate for metrics with small curvature is also established in [Sh1]. This estimate was
used in [CDS] to get local uniqueness results for the boundary rigidity problem under the same condition.
In [SU3], we proved stability estimates for s-injective metrics (see (1.2) and section 2 below) and sharp
estimates about the recovery of a 1-forfn= f;dx’/ and a functionf from the associated, /. The
stability estimates proven in [SU3], were used to prove local uniqueness for the boundary rigidity problem
near any simple metrig with s-injective/g.

Before stating our results we give a definition, see also [Tre].

Definition 3 We say thatf" is analytic in K C R” (not necessarily open), and denofee A(K), if there
exists an open séf O K, such thatf extends analytically ir/.

Let £2 be a bounded domain R”, n > 2 with smooth boundary. We show in section 4.

Theorem 1 Letg be a simple metric i, real analytic ins2. Thenl, is s-injective.



The proof of Theorem 1 is based on the following. For analytic simple metrics, the normal operator
Ng = I;‘Ig, wherelé’f denotes the operator adjoint @ with respect to an appropriate measure (see
section 2), is an analytic pseudodifferential operator with a non-trivial null space. In section 3 we construct
an analytic parametrix that allows us to reconstruct the solenoidal part of a tensor field from its geodesic
X-ray transform, up to a term that is analytic ng2r If 7, /' = 0, we show that for some vanishing oros2,

/ := f — dv must be flat aB$2 and analytic in2, hence/ = 0. This is similar to the known argument

that an analytic ellipticZDO resolves the analytic singularities, hence cannot have compactly supported
functions in its kernel. In our case we have a non-trivial kernel, and complications due to the presence of a
boundary, in particular lost of one derivative.

As shown in [SUZ], the s-injectivity of ;, for analytic simpleg implies a stability estimate fof,. In
next theorem we show something more, namely that we have a stability estimaténf@ neighborhood
of each analytic metric, which leads to stability estimates for generic metrics. The proof is based again on
the parametrix construction that reduces the problem to a certain Fredholm type of equation with kernel
continuously depending o, but nowg has finite smoothness.

Let M1 D M be a compact manifold which is a neighborhoodiéfandg extends as a simple metric

there. We always assume that our tensors are extended as zero additsideich may create jumps at/ .
In (5.1), (5.2), see also [SU3], we define the spidées, ) that in particular satisfiesHM ) c H2(M,) C
H!(M;). On the other handf € H'(M) implies N, f € H*(M) despite the possible jump of at 9/ .
It is known that every symmetric tensgr € L2 can be uniquely decomposed ints@enoidalpart 1, and
apotentialpartdv as above, i.e.f = f* + dv, see section 2.

Theorem 2 There existg, such that for eactk > k,, the setGk (M) of simpleCK(M ) metrics inM for
which I, is s-injective is open and dense in t68&(M ) topology. Moreover, for any € G,

|5l 2any < ClINg fllgecan,ys Y € HU (M), (1.2)
with a constantC > 0 that can be chosen locally uniform @ in the C* (M) topology.

Of courseG* includes all real analytic simple metrics i, according to Theorem 1.

The analysis of, can also be carried out for symmetric tensors of any order, see e.g. [Sh1]. Since we
are motivated by the boundary rigidity problem, and to simplify the exposition, we study only tensors of
order2.

Theorem 2 and especially estimate (1.2) allow us to prove in section 5 the following local generic
uniqueness result for the non-linear boundary rigidity problem.

Theorem 3 Letk, andG¥ (M) be as in Theorem 2. There exi&ts> ko, such that for anyz, € G*, there
is e > 0, such that for any two metricg;, g> With [[gm — gollck(ar) = &, m = 1,2, we have the following:

Pgi = Pg, ON(IM)?* impliesgs = Vg (1.3)
with someCk+1 (M)-diffeomorphismy : M — M fixing the boundary.

We can also formulate the following generic global uniqueness result for simple metrics.

Theorem 4 There exists an open dense $éiof pairs of simple metrics i€ (M) x Ck (M), with k as in
Theorem 3, such that any pair in that set has the property (1.3). Moreover, for any sim@eCk (M), the
set of simple metrics with the same boundary distance functig am (3M)? is a complement of a dense
open set in th&€* (M) topology.



Finally, we prove a conditional stability estimate of Holder type. A similar estimate near the Euclidean
metric was proven in [W] based on the approach in [SU2].

Theorem 5 Let ko and GK (A1) be as in Theorem 2. Then for apy < 1, there exitsk > k, such that
for any g, € G*, there aresy > 0 and C > 0 with the property that that for any two metriag, g, with
lgm — gollccm) = €0, @nd|lgmllckary = A, m = 1,2, with somed > 0, we have the following stability
estimate

g2 — ¥«&1llczary = C(A)llpg, — szlllé(aanM)

with some diffeomorphismy : M — M fixing the boundary.

One can formulate a global generic stability result in the spirit of Theorem 4, with a constant uniform in
any compact subset of.

A brief outline of the paper is as follows. In section 3 we construct the analytic parametrix for the normal
operatorN,. In section 4 we prove Theorem 1. In section 5 we use the results of the previous section to
prove Theorem 2, i.e., generic s-injectivity 6f. Theorem 3 about generic uniqueness for the non-linear
problem is proved in section 5. The stability estimate of Theorem 5 is proved in section 7. Even though
Theorem 5 implies Theorem 3, we still include a proof of the latter in section 6 for convenience of the reader,
since it is much shorter.

We would like to thank C. Croke for very useful comments on a previous version of the paper.

2 Preliminaries

We start with some basic facts about symmetric 2-tensors on Riemannian manifolds. For more details, we
refer to [Sh1].

As we mentioned in the introduction it is enough to prove the results for the case that the manifold is the
closure of a bounded domain with smooth boundary which we will denot@ by

Let g € C?(£2) be a Riemannian metric if2. We work with symmetric 2-tensorg = {f;;} and
with 1-tenors (differential formsy;. We use freely the Einstein summation convention and the convention
for raising and lowering indices. We think ¢f; and f/ = f;;¢* g% as different representations of the
same tensor. Ifx, £) is a covector, then its components are denoted-byandé;, while £/ is defined as
g/ = &g . Next, we denotét|? = &£,

The geodesics of can be also viewed as theprojections of the bicharacteristics of the Hamiltonian
Hg(x,§) = 3¢"(x)&&;. The energy leveH, = 1/2 corresponds to parameterization with arc-length
parameter. For any geodegicwe havef;;(y(¢))y' )y’ (t) = fY (x)&&;, where(x, &) = (x(2),£(2)) is
the bicharacteristic withx-projection equal tg-.

Set

= {(x,w) eT*2: x €002, || = 1, oV < 0},

wherev(x) is the outer unit normal td52. Introduce the measure
du(x,w) = |w-v(x)|dSx dS, onrl_,

where &, and dS,, are the surface measures @2 and{w € T;$2; || = 1} in the metric, respectively.
If 352 is given locally byx” = 0, then &5, = (detg)!/?dx'...dx""!, and &5, = (detg)™!/2dS,,,



where &, is the Euclidean measure &""~!. Let (x(s;z, w), £(7; z, w)) be the bicharacteristic issued
from (z, w) € I'_ extended for > 0 until the first component reach@$ again. Then we set

If(z,w):/f"f(x(z;z,w))g,-(z;z,w)g,-(z;z,w)dz, (z,w) e I'_.

We will drop the subscript in Iz unless we have more than one metric and the subscript is needed. By
identifying T£2 with T*£2, as explained above, we can thinkBf as a subset of {2, and then

If(x.0) = / i o) g7 g0yt (x.6) € T,

wherey, ¢ is the geodesic issued fromin the directiond. Since|6| = 1, ¢ is the arc-length parameter.
Clearly,I : C*®(2) — L2(I'_, du). We define the  space of symmetric tensops = {f;;} with inner
product

(f.h) = /9 fi7h" (detg)'/? dx.

Similarly, we define the £ space of 1-tensors (vector fields, that we identify with 1-forms) and teplace
of functions in£2. Also, we will work in Sobolev H spaces of 2-tensors, 1-forms and functions. In order to
keep the notation simple, we will use the same notatiérfdr H) for all those spaces and it will be clear
from the context which one we mean.
The map! : L2(£2) — L2(I'"_, du) is bounded [SU3], and therefore thermaloperatorN := I*1 is

a well defined bounded operator iR (£2). In [SU3], we found that

2 / S dp dp Bp B 02(0°/2)
Jdetg J p(x, y)r—1ayt dyJ 9xk 9x! dxdy

We always assume thgtis extended as a simple metric in a small neighborhoog ofAlso, we always
extend functions or tensors definedfh, or similar domains, a8 outside the domain. TheWN f is well
defined near? as well and is independent of small perturbatiési®; of 952, as long as2; D> 2.

Given a symmetric 2-tensof = f;;, we define the 1-tens@yf calleddivergenceof f by

(N ki (x) = dy, xe®. (2.1)

8/1 = g’* Vi fi.

whereV;, are the covariant derivatives of the tengtr Given a 1-tensor (vector field), we denote byiv
the 2-tensor called symmetric differential af

1

[dv]ij = 5 (V,’Uj + Vjvi).

Operators/ and—§ are formally adjoint to each other in?(£2). It is easy to see that for each smoath
with v = 0 on d£2, we havel (dv) = 0. This follows from the identity

d y P
T (Y)Y (1) = [dv(y O] y* ()77 (0). (2.2)
It is known that forg smooth enough (see Lemma 1 below), each symmetric tefisot.2(£2) admits
unique orthogonal decompositiof = f* + dv into asolenoidaltensorS /' := f* and apotentialtensor

P f := dv, such that both terms are irt(£2), /* is solenoidal, i.e.§/* = 0in £2, andv € H},(Q) (i.e.,
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v = 0 onds2). In order to construct this decomposition, introduce the operator= 64 acting on vector
fields. This operator is elliptic if2, and the Dirichlet problem satisfies the Lopatinskii condition. Denote
by A}, the Dirichlet realization oA® in §2. Then

v= (A8 S5 = f—d (M) 8 (2.3)
Notice that even wherf is smooth and/’ = 0 ond£2, then /' does not need to vanish @§2. To stress on
the dependence on the domain, when needed, we will use the nolz@tiandfé as well.

OperatorsS and P are orthogonal projectors, see also Lemma 1 below. The problem about the s-
injectivity of I then can be posed as follows:fif’ = 0, show thatf* = 0, in other words, show that is
injective on the subspac®l_? of solenoidal tensors. Note thAtS = SN, PN = NP = 0.

In [SU3], we analyzedV. We showed that for simple metrics, it i O of order—1, as a consequence
of (2.1). The operatoN is not elliptic, it actually vanishes gRL2(£2), and its principal symbat, (N)ijki
vanishes on the Fourier transforms of locally potential (symmetric) tensors. On the complement of this linear
space howevee, (N) is elliptic. This allows us to construct a parametrix, and we will use this construction
in next two sections. To obtairf* modulo smoothing operators, however, requires additional efforts, see
Proposition 4, because we work in a domain with boundary Afhds defined by solving a BVP as well,
see (2.3). Nevertheless, those arguments allowed us to prove the following a priori stability estimate for the
linear problem [SU3] for simple smooth metrigs

| /32202y = CUINS e,y + Cell (@), Y/ €H'(R), Vi>o. (2.4)

The norm|| - |52 is introduced in (5.2) an®; D $2 is a small neighborhood aB, whereg is still simple.
If I is s-injective, then we showed that one can chagse- 0. Notice that there is a loss of one derivative
in (2.4).

In our exposition, we will often use boundary normal (semi-geodesic) coorditetes’) near a bound-
ary point. They are defined such thdt = 0 definesd$2, x" > 0in £2, andx” = p(x, d§2). The metricg
in those coordinates satisfieg, = 6;x, andF,,in = I} = 0, Vi. We also use the convention that all Greek
indices take values frorhton — 1.

At the end of this section we prove a lemma that justifies the decomposition of a symmettenksor
into a solenoidal and a potential part.

—1

Lemma 1 For eachg € C!(£2), the maps
(A HTN Q) > HA@), P.S:LA(R) — LA(R)
are bounded and depend continuouslygn

Proof: We considel(Ai))_1 first (see also [N, Lemma 4.2], where’ is replaced by - y(x)V andy is
assumed to be uniformly Lipschitz).

We start with the fact that for a fixed smoath, (AZ,O D)_1 is bounded in the spaces above [Ta, p. 307].
Let go andg be two smooth metrics. Then

(M p) " = (g )7 = A5 )7 (Adyp— A3 p) (A, 0) 25)

To estimate the difference in the r.h.s. above with the regularity assumptignbiwose: andv in H(l)(.Q).
Then

((A%.0 = A%y p)u vl = |{deott. dgyv) — (dgu. dgv)
Cllg = gollct (lgllcr + llgollct) el llvfl-

IA
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Let|lg — gollct <& Thenfore < 1, g = gollct (lgllct + llgollct) = C(go)e. As a consequence,

|(Ag.p)” et = < [(Ag.0)" IHH_1—>H1(1 + C(g(’)g”(AZ',D)_I”H—1—>Hl)'
This implies that for « 1, the |.h.s. above is uniformly bounded by a constant depending pie.,
v 0) - SGA=CCe)™ Cri= Ay p) 7 -1 €= C(go)-
Going back to (2.5), we conclude
A8 )™ =A% D e = Cllg — golle (2.6)

with C a uniform constant in any small enougR-Geighborhood of a fixego. This inequality allows us
to define(AZ,,D)_1 t HTH(2) — Hy(2) for any metricg € Ccl(2) by approximating with smootlg.
Moreover, we get that the resolvent above is continuoyséamd (2.6) still holds. As a consequen&eand
P are also continuous ig € C! as operators in £(£2). This completes the proof of the lemma. d

e

Remark also that the lemma above admits the following easy generalization: for0, 1, ..., the
resolvent in the lemma also continuously map's Hinto H**! N H, similarly, 7 andS are bounded in

HS, if g € C¥, k > 1 (depending on). Moreover those operators depend continuouslyg on

3 The analytic parametrix

In what follows, “analytic” always means real analytic.

Assume thafg is a simple analytic metric if2. Our goal is to reconstrucf;21 from Nf up to an
analytic-regularizing operator, whefe, is a slightly larger domain. This is the key step towards proving
Theorem 1 in next section.

We are going to use the analytieDO calculus, see [Tre]. AnalytiZ DO have been used in integral
geometry before, see e.g., [BQ] for uniqueness results for the Euclidean Radon transform with analytic
weights.

Next, we will follow the parametrix construction in [SU3] in the new situation, wheris analytic.
SinceN is not elliptic, we modify it to get an elliptic operator of ordei first (see also [SU3, sec. 6])

W = N + NoPg,. (3.1)

where Ny is an analytic DO with symbol[&[~" for [¢| > 1. Recall thatPe, = d(AY,, ,)7'6. Here
2 C £, C £2,,and$2; is a small strictly convex neighborhood &f with analytic boundary.{Zz is related
to £2, in the same way, and we extegdanalytically near?,. Insides2,, and therefore, of2,, the operator
W is an ellipticDO [SU3].

Similarly to [SU3], we have.

Lemma 2 There exist$ > 0 such thatinU = {(x, y) € £, x §2,; |x — y| < §} we have

P2x.y) = Gy =) =),

902 (x, ;
LD 6@ 0 -,
3% p%(x, y) 3)
Towtay G on)



(1)

whereGl.j , Gl.(jz) Gl.(jt”) are analytic inU, positively defined, and we have

G (x.x) = G (x.2) = G (x.3) = g1y ().

Proof of Lemma 21 et the covecto€ be defined a§ = £(x, y) = exp;! y. Then&(x, x) = 0, therefore

1
b= Ay (o) =) with () = [, Er o+ 1 — ) d (3.2)

The latter is a well defined analytic function far— y small enough since then the line segmpnty]
along which we integrate does not leaf?g. Forx andy far apart, it may leave2, which is geodesically
convex but not necessarily convex w.r.t. the Euclidean metric. Itis easily seed;if{at x) = g;;(x), and
gV (x)&& = p?(x, y), so (3.2) implies the lemma. O

Proposition 1 N and W are analytic/DOs in £2,.

Proof: We analyzeN first. Recall (2.1). Let be open such that x V' C U, suppf C V. Then for
xeV,

NS (x) = / Moo ox — ) £ () dy,

M being the inverse Fourier transform f w.r.t. £, where

—n—+1

Mty §) = 2 [ (60z2) 7 33)
~ - 3)
<[G9:[62], (6], [692), T .
4

~(2) _~@ - - _ (e 1/2
andGl.j (x,y) = Gj; (y, x). Itis convenient to make the change= (G'"(x,y)) z above to get

M(x,y. &) = M(x, y,(GD(x, y))~"/2¢), where

Mijkl(X,y,E) 2/e—i$~zlzl—n—3 [(;(2)(( (1))_1/22]1'[(:(2)(( (1))—1/22]j (34)
~ ~ detG®
2 1)\—1/2 2 1)y—1/2 1)\—n/2
% [EOG0)722], [GD (G V) 22] det D)=z,

As a Fourier transform of a (positively) homogeneous idistribution, 47 is homogeneous ig of order
—1. Itis analytic function of all variables faf # 0. To prove this, write

M(x, p, &) = /e—ifﬂzr"“m(x,y, 0)dz, 6 =z/||

and pass to polar coordinates= rf. Sincem is an even function of), we get (see also [H, Theo-
rem 7.1.24))

M(x.p.6) =n / m(x. 7, 6)5(6 - ) do,

and our claim follows since: is analytic function of all its variables in the integral above.
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Let x € C3°. We prove first thag (§) M;x;(x, y, ) is an amplitude of an analytic-regularizing operator
for (x, y) € U. Indeed,

GM)x. 3. D) f = Qm)" / / ACIE () M (x. y.£) 4 () dy d

N (2”)_"/ / / ST () M (x. . 0) ¥ (y)r" 2 dy dr .
Ssn—1.J0o

and the analyticity follows from this representation.

Next, (1 — x(§))M;jx1(x, y,&) is an analytic amplitude [Tre, Definition V.2.1-2] fox, y) € U. The
estimates needed to justify this statement follow from the homogeneity @nd the Cauchy integral for-
mula.

The arguments above prove that for any € §2,, there exists a neighborhodd,, of x,, such thati/
is an analytic amplitude fofx, y) € Vy, x Vx,, thereforeN is an analytic?DO in V. To prove thatV
is an analyticZDO in the wholes2,, we follow the proof of [Tre, Theorem V.3.4]. The statement follows
from the fact that the kernel @¥ is analytic away from the diagonal, which, combined with what we proved
above implies easily thaV is analytic pseudo-local in the whol@,. More precisely, one can define the
analytic formal symbol

exp{dg Dyt M (x, ¥, &) |y=x

and this symbol defines an equivalence class of anaB©s in a neighborhood af2,. One can build a
true pseudo-analytic symbalx, £) in £2, based on the formal series above as in [Tre]. For any sufficiently
small open seV, one has thatN — a(x, D))u is analytic in§2, for u € £'(V'), and one can easily extend
this to any distribution supported i2,. This completes the proof fay¥ .

Consider nex(A?ZZ,D)_l. The operatoA? is an analytic elliptic’DO, therefore, it has a parametrix

P, thatis analytia?DO in £2,, such thatA* P is analytic-regularizing in2, (we need to work in a bit larger
domain in order to covef2,). Letu = (Af(zz,p)_lf- If suppf C £2,, thenu — Pf solves equation of the
kind (3.5) below with analytic coefficients, therefore, by the interior analytic regularity,P f is analytic
in £2,. This shows tha(A?ZZ,D)_1 equalsP up to an analytic-regularizing operator in any compact subset,
therefore,(A?ZZ,D)_1 is analytic’DO in £25.
The remaining operators in (3.1) are clearly analytibOs. This completes the proof of Proposition 1.
O

Next step is to reconstruc)f';21 from Nf up to an analytic function. We need first a lemma about
analyticity up to the boundary of solutions 6f v = u:

Lemma 3 Letxy € 952, and assume that the metrig and the vector fields, vy are analytic in a (two-
sided) neighborhood aof,, and thatds2 is analytic nearx,. Let the vector field solve

Av=u ing, Ulag = Vp. (3.5)
Thenv extends as analytic function in some (two-sided) neighborhoog of

Proof: The lemma follows directly from [MN]. One can first extemg nearx, as analytic function, and
subtract fromv certain function analytic neat, that reduces the problem to one with = 0. Next, we
observe that the principal symbol efA¢ is a positive matrix fo€ # 0, hence the system above is strongly
elliptic in the terminology of [MN], and the result follows (see also [Tre]). d



Proposition 2 There exists a bounded operatdt : H!(£2;) — L2(£,), such that for any symmetric
2-tensor /€ L%(£2) we have
fél = PNf + K,

with K f analytic in 2;. Moreover,P is an analytic DO in a neighborhood of2; of order 1.

Proof: We follow the proof of Theorem 2 in [SU3], whegeis smooth only. First, we construct a parametrix
L of W in £2,, see [Tre, Theorem V.3.3]. There exidis: D'(£2,) — £'(£2,) such thatL is an analytic
wDO of orderl in a neighborhood of2;, and such that W = Id + K; near2;, whereK f € A(£2,) for
any f € L%(£2,), see [Tre, Remark V.3.3] about composition of analy#idOs. Then the equality above
impliesLW = Id + K;. Apply S, to the left and right to get

S, LWSq, = Sq, + K,

with K, having the property thak, f € A(£2;) for any ' € L2(£2;). To prove the latter, we use the
analytic pseudolocal property of analytidDOs.
We haveW S, = N. Therefore, setting® = Sg, L, we get

PN = SQZ + K, in£2,. (3.6)

Note that we have showed th&b maps 12(£2) into A(£2;), but not into.A(£25).
Next, comparef, and f for /€ L*(£2). We havefy = f —dvg,, wherevg, = (A, 1)7'4/f,

i=1,2. Thusfg21 = f;zz + dw in £21, where the vector fieldh = vp, —vg, € H'(£2;) solves

Aw =0 in £21, w|391:v92. (37)

Since suppf is disjoint fromds$2;, we getvg, € A(3£2). By Lemma 3w € A(£2;), thus f dw|g, is
a linear operator mapping?(£2) into A(£2;). Then the relation

13, = 15, +dw = PNf — Ky f +dw

completes the proof of the proposition. O

4 S-injectivity for analytic metrics; proof of Theorem 1

In this section, we prove Theorem 1. We start with a recovery at the boundary result. Next lemma generalizes
Lemma 2.3 in [Sh2] by proving that actually= 0 with all derivatives ab£2. On the other hand, in [Sh2],

£2 does not need to be convex. Also, the lemma below can be considered as a linear version of Theorem 2.1
in [LSU]: if two metrics have the same boundary distance function, then in boundary normal coordinates,
they have the same derivatives of all order8 @t

Lemma 4 Let g be a smooth, simple metric if? and let /' be a smooth symmetric 2-tensor. Assume that
If = 0. Then there exists a smooth vector fieldanishing onds$2 such that forf = f — dv we have
3 f|ae = 0 for any multindexs.
Moreover, ifg and f are analytic in a (two-sided) neighborhood &2, andd$2 is also analytic, then
can be chosen so that = 0 neard 2.
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Proof: We fix xo € 052 and below we work in some neighborhoodxqf. Assume thak = (x’, x") are
boundary normal coordinates neay, therefore there we havg, = d;,, Vi. We will find a vector filedv
vanishing o2 such that forf := f —dv we havef;, = 0fori = 1,2,...,n. The latter is equivalent to

Vuvi + Vivy = 2fin, V|lxn=0 =0, i=1,...,n. (4.1

Recall thatV;v; = 9;v; — I'}5v, and that in those coordinatelf, = I, = 0. We solve (4.1) foi = n
first by integration, thetV,v, = 0,v, = fun; this gives us,. Next, we solve the remaining linear system

of n — 1 equations foé = 1,...,n — 1 thatis of the formV,v; = 2 f;, — V;u,, or, equivalently,
OV —20%vq = 2 fin — iU, Vilxn=0 =0, i=1,....n—1. (4.2)
(recallthate = 1,...,n —1). Clearly, ifg and /" are analytic neads2, then so isv.

We havel f = 0 for (x, &) such thatx € 952 is close toxy, |§] = 1, and its normal component is
small enough. This guarantees that the geodgsicissued from(x, £) hits the boundary again at a point
close toxg, wherev = 0. We can adapt the proof of Theorem 2.1 in [LSU] to our situation. For the sake of
completeness, we will repeat those arguments. It is enough to prove that

3 fuplx=xo =0, ¥j=0,1,...., Va,f=1,....n—1. (4.3)

Indeed, if (4.3) holds, then in the same way we prove (4.3)xfer 02 close toxg, So we can differentiate
(4.3) w.r.t.x’ to we get that all derivatives of on 452 vanish.

Notice that (4.3) is obvious fof = 0. Assume that there i > 1 such tha(4.3) is not true. The Taylor
expansion ofj then implies thall§, of unit length tangent t@ds2 such thatjaﬂ (x)£* €8 is either (strictly)
positive or negative fox” > 0 andx’ both sufficiently small and close to&,. Notice that in the summation
above, we haver < n andB < n becausef;, = f,; = 0. Therefore,If is either (strictly) positive or
negative for all(x, £) € I'_ close enough tdx,, &) and this is a contradiction.

To make that construction global neaf?, it is enough to note that equation (4.1) is invariant under
coordinate changes, so the local construction in fact yields a global oné 2eaee also [Sh2, Lemma 2.2].
Finally, we cutv neards2 to complete the proof.

If g is analytic up tods2, then as pointed out above,is analytic nea$2, up tods2. Therefore, the
same is true forf, thus / = 0 neards2. O

Next, we introduce global semi-geodesic coordinate® ialready used in [SU2], [SU3].

Lemma5 Letg € CK(2), k > 2, be a simple metric in2. Then there exists &' diffeomorphism
¥ 2 — ¥ (£2), such that in the coordinates = v (x), the metricg has the property

gin:(sin, I = 1,...,”1. (44)
Moreover, ifg € A(2), theny € A(2).

Proof: The proof is essentially given in [SU3] and is based on defining the so-called normal coordinates
near a fixed point. Lef2; DD 2 be as above and fix, € 3£2;. Then exg, : 2, — exp,) (2) is a
diffeomorphism by our simplicity hypothesis. Choose a Cartesian coordinate systetine tangent space,

so thatt” = 0 is tangent to the boundary of ez(p(.(zl) até = 0. Introduce polar coordinatds= r6 in

exp;(} (£21), whereg;;(x9)0'60/ = 1, r > 0. By the strong convexity assumptiof’’ has a positive lower
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bound in a neighborhood of the closure of ggple), the same is true for. Then we sety’ = 6'/6,,
Yn =T.

The spheres = const. are orthogonal to the geodedics= const. by the Gauss lemma. Moreover,
is the arc-length along those geodesics. Passing to4b@ordinates, we get that the lings = const. are
geodesics orthogonal to the plangs= const., withy" arc-length parameter. This proves (4.4).

Clearly, if g € A(£2), then the coordinate change above is analytic as well. d

Lemma 5 allows us to assume, without loss of generality, ghedtisfies (4.4).

Proof of Theorem 1:We work in the semi-geodesic coordinates above. AssumegthatA(£2), and let
f € L2(£2) be such thaf f = 0. Then, by Proposition Zfél € A(£2y). Clearly,lfg21 = 0 as well.

Letv, be thev in Lemma 4, so thaf = f;zl — dv; vanishes neai$2. Similarly to (4.1) (but now the
coordinates are different), we solve

Vv + Viu, = 2];;’,,, v|(3gl)_ =0, (4.5)

whered$2y is the set of all boundary points for which (x,e,) € I't. As before, we first determine
v, by integratingd,v, = fu, and taking into account the zero boundary condition. Thgn= 0 in a
neighborhood/ of (d£2;)_. Next, we solve the remaining linear system (4.2) along the lines parallel to
e, with boundary conditions as in (4.5). We getthati = 1,...,n — 1 vanish inU as well. Forf# =
ffsh — dv; — dv we then have tha)."ﬂ =0inU, and satisfieg‘;.i =0,i=1,...,n. Moreoverpy; +v =20
on (3£2;)—. On the other hand, there is uniquiee C(£2;) with the property that for/ ¥ := 1S - dv¥ we
have /# =0, v* = 0 on (952;)_, and thisv* solves (4.5) with/* replaced by/$, sov? = v; 4 v. Since
all coefficients in the latter system are analytic, and six?s, we get thav® is analytic inf2 \ 3(32,), i.e.,
everywhere inf2; with a possible exclusion of the points @12, wheree,, is tangent ta§2,. The same
conclusion therefore holds fof*. On the other handf* = 0 in U, andU includes a neighborhood of
9(3£21). By analytic continuations* = 0 in £2;.

Thus /§ = dvf in 2, andv® = 0 on (352;)_. Since we know that/$ = 0, by integrating
1S = dv* along geodesics connectir{@s2;)_ and (3£21), and using (2.2), we get that = 0 in
(0521)4 as well, and by continuityy# = 0 on the wholed$2;. This yieldsf;21 = 0. Since supp’ C £2,

this easily implies (see next Proposition) that supp £2, as well.
This concludes the proof of Theorem 1. O

The following elementary statements was used above and it is worth stating separately.

Proposition 3 Let f = dv, v|3 = 0, andv € C!(£2). Thenv(y) = 0 for any y such thatf(y) = 0 and
y can be connected to a point @12 by a path that does not intersestipp /.

Proof: Let y be as above. Then there exists a polygos y; Uy, U.. .Uy, each segmeifd, 1] > 7 — y;,
j = 1,...,m of which is a geodesic, such thatconnects some € 952 andy. Integrate (2.2) along;,
using the conditiorv|y; = 0, to getv;n’ = 0 aty,(1), wheren = y;(1) is the velocity vector at the
endpointy; (1) of y; (different fromz). By perturbing the initial point = y,(0) of y, a little, and using the
simplicity assumption, we get tha(y; (1)) = 0. Similarly, we get thab = 0 neary;(1). Now, we repeat
the same argument fok, etc., until we get(y) = 0. O
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5 Generic s-injectivity of I; proof of Theorem 2

In this section, we prove that the g% is open in the &(£2) topology for somek >> 1.
First we recall and modify a little some results in [SU3]. We introduce the n|prrmq2(_ql) of Nf in
21 O £2 inthe following way. Choosg € C3° equal to 1 neads2 and supported in a small neighborhood

of 052 and lety = Zle x; be a partition ofy such that for eacly, on suppy; we have coordinates
(xj’., xj’.’), with xj’.’ a normal coordinate as above. Set

J n—1
10 = / D1 (Z 190 /12 + 13 0 S 1 + |f|2) dx, (5.1)
j=1 i=1

n
INFl gagayy = D105 NS It + INS i g,y (5.2)
i=1
In other words, in addition to derivatives up to order| N/ |[g2(s,) includes also second derivatives near
d$2 but they are realized as first derivatives\oN f tangent t 2.

The reason to use tHé?(£2;) norm, instead of the strongerri2;) one, is that this allows us to work
with € H!(£2), not only with f ¢ H(l,(.Q), since for suchyf’, extended as 0 outside, we still have that
Nf € H2(£,), see [SU3.

The following proposition is a modification of the results in section 6 in [SU3].

Proposition 4 Let g € C¥(£2) be simple. Then forany = 1,2, ..., there existsk > 0 and a bounded
linear operator B
Q : H*(£2) — SL*(Q), (5.3)

such that
ONf = f&+ Kf, VfeH\(Q), (5.4)

whereK : H'(2) — SH!*(£2) extends taK : L*(2) — SH(£2). If 1 = oo, thenk = co. Moreover,Q
can be constructed so th& depends continuously anin a small neighborhood of a fixeg,, € C*(£2).

Proof: Here we will work withyDOs with symbols and amplitudes of finite smoothnkssith respect to

x, y, and§, see e.g., [SUZ2], that satisfy a finite number of the seminorm estimaté$ @ of order0 with

such a symbol is bounded irflfor k£ = 2n + 1, composition of twa?DOs is a&’DO with similar symbol

for k > 1, construction of a parametrix to an elliptieDO up to a smoothing operator of finite order also

requires finitely many steps and derivatives. Similarly, for any, awDO of orderm is bounded locally as

an operator mappingH into H*, provided that its symbol satisfies a finite number of seminorm estimates.
We start with a parametrix of the elliptic operatidf, see (3.1). In contrast to section 3, it is enough to

have the smoothing pak to be of finite order only. Moreover, we have to make the construction uniform for

g in asmall neighborhood of a giveyy. To this end, we will choose all cut-off functions involved in such a

construction independent gf Observe that it is enough to work with classigdDOs only that have (finite)

asymptotic expansions in homogeneous symbaojs fForm > 0, we constructB = b(x, D) to be such that

boao(A®) =1d modS™ nears2,, andb is constructed with finitely many iterations, as mentioned above.

The symbok stands for composition of symbols by means of finite sums, with enough terms to justify the

estimate on the remainder. For amy> 0 one hasc > 0, such that the above construction is possible for

g € Ck. We construcip, such that

poo (0(N)+ €] oo(d)oboa(8)) =1d modS—™.
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The symbol ofSp, mod S, can be written agl = Id — o (d) o b 0 6(5). Then
pr:=AopooA

satisfiesp; o 0(N) = A mod S~ near2;. Moreover, the finitely many seminorms needed for the
H'*! — H’ boundedness oP; := p;(x, D) in any compact inf2, for any fixeds, can be estimated by
finitely many seminorms of the symbols involved above, which in turn depends on finitely many derivatives
of g.
So we get
PINf = f—dBSf + K1 f  in§2,, V[ elL?(Q), (5.5)

and K : L2(£2,) — H(£2,), for any fixedt, if g is smooth enough; moreoves; depends continuously
ong. As a consequence,
P]Nf:fél-i-dw-i-K]f inSZl, (56)

wherew = vg, — BSf = (A.SQI,D)_I(Sf_ Béf, andw|yo, = —Béf|sge,. For anyr > 0, the map
H(£2) > f + wlye, € H (3£2) is continuous ifg is smooth enough because the kerneBdias any fixed
number of continuous derivatives away form the diagonal,iff smooth enough. Moreover, itis continuous
ing € Ck, k > 1. SinceB is a parametrix ofA*, for any fixeds, the map () > f — ASw € H!(£2)

is bounded, ift > 1. Consideringw as a solution of a Dirichlet problem if2;, we get that/w in (5.6)
belongs to K1 (£2,), thus we can write (5.6) as

PINf =[5 +K»f ing, (5.7)

whereK, has the properties ok .
Next, comparef, andfg?l. We havefy, = fél + du in 2, whereu = vp, — vg. The vector field:
solves the BVP
Au=0 ing, ulag = Ugllag. (58)

We need to expressg, |y in terms of Nf. This can be done as follows. By (5.7), and the fact that
J = 0outsides2, one has-dvgp, = PiINf — K, fin £, \ £2. For(x,£) in a one-sided neighborhood of
(x0,v(x0)) € I't INT(£21\ £2), wherev(xo) is the outer unit normal tds2, integrate the above along
until this geodesic hit82,, wherevgp, = 0; denote the corresponding time byx, §). We therefore get

. T(x,8) . .
[ua, (0], 6 = [ IPINS = Ko fly O )07 0 .
: ,

Clearly, for any fixedx, a set ofn linearly independent’s in any neighborhood of(x() is enough to
determinevg, (x). We choose this set independentxoin a neighborhood of eaclk, € 92, then by
compactness argument we choose a finite covering and finite number of such sets. This allows us to construct
an operatorP,, such that

v, lae = P2(PIN — K3) f. (5.9)
We proved in [SU3] that

||P2P1h||Hl/2(3Q) =< C||h||ﬁ2(gl), Vh e H2(-91),

and our arguments above also show tRak , depends continuously ane CK, k > 1.
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Let R : H’_%(aﬂ) — H’(£2), be the solution operatar = R/ of the boundary value problem
Au=0 ing, u|3g = h. (5.10)

Lemma 1 and the remark after it imply th& depends continuously o1 in the sense of the proposition.
Then (5.8) and (5.9) show that, = RP,(P1 N — K5) f. This and (5.7) yield

fo = Jo, +du= (PN —Ky)f +dRP,(PiN — K») f
= (Id+dRPy)PNf + K,

where K has the properties required. To complete the proof, apglyto the identity above and s&@ =
So(ld+ dRP;)Py. O

Proof of Theorem 2By Proposition 4,
ON =S + K.

SinceNS = N, andSQ = 0, we get thatk = SKS. Apply S + K* to both sides above to get

whereQ = S(Id + K*)0, andK = K* + K + K*K is self-adjoint and compact in3(£2), and maps
L2(£2) into SL2(£2). This implies

ON +P=1d+ K onlL2(R).

Even though a prioriwe haw@ N : H!(£2) — L2(£2), the proposition shows th&? N extends to a bounded
operator on B(£2). In what follows, we will indicate the dependence gy placing the subscrigt on N,
etc. Note that the norm independs org, too, through the volume form. Assume thigt, is s-injective
(in £2) for some simplez, € C*(£2) and below, assume thatbelongs to a small €neighborhood of,.
ThenN,, : L2(£2) — L2(£2,) is also s-injective. Indeed, assume thfat SL2(£2), andNg, f = 0in £2;.
Then(,, fNg, fdx = [ |1, f|?>du = 0, thereforef = 0.

On LZ(.Q), Id + IZgO has a finitely dimensional kerné of solenoidal tensors, and 1&f, ..., fi} be
a basis in it. We can choose it such thatg, /1, ..., Ng, /¢ } is an orthonormal basis iV, F C L2(£2;)
becauseVy, : Sg,L2(£2) — L2(£2;) is injective. We define the finite rank operat@p : L2(£2;) — L2(£2)
by settingQoh = Y, (h, Ng, f;) /j, where the inner product is in%(£2;) . Set

er: Qg‘i‘Qo,

Then
(O%Ng +Py) f = (d+ Kb f. V[ el*(), (5.11)

with K% = K.+ 00N, compact. We claim that k¢ K% is injective forg = go. Assume thatid+ K., ) f +
QoNg, / = 0. The first term above is orthogonal #, the second one belongsfa Therefore, they both
vanish, which impliesf' € 7 and Qo Ng, f/ = 0. The explicit form ofQ, yields (Ng, f, Ng, fj) = 0, ¥ J,
and sincef is a linear combination of th¢;’s, we getf = 0.

Therefore,Kﬁ,O is a compact operator or?(£2) with Id + Kﬁ,o injective. This implies that ld- Kﬁ,o is
actually invertible. Then (5.11) yields the estimate in Theorem 2fer g,:

1/% 122y < CliNgo I,y ¥/ € H'(82).
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To show thatC can be chosen independentlygphearg = gy, itis enough to observe thaﬁﬂ, considered

as an operator in4(£2), depends continuously gnfor k large enough. Indeed this is true fErg by Propo-
sition 4, and it is also true folN, in the same space, see for example the representation (3.4). Therefore,

for ¢ close enough t@, in some & topology, 1d+ Kﬁ, remains invertible with a uniform bound on the
inverse, i.e.|| f] < C|(d + K§)f|| with someC > 0 independent og. Let /' € H!(£2), and substitute
=15 ¢ in (5.11) to get

15 ez = CIOENg fll2(e
< C(18eNe SNz + 120N fll2(a )
< C'(IINgfllﬁz(gl)-FIINgfIILZ(:zl))SC"IINgfllﬁz(gl), Vi eH(R),

with C” > 0 also independent of in a neighborhood of,. This completes the proof thg¥ is open for
somek.

To complete the proof of Theorem 2, it is enough to observe that analytic functions are defg&2in C
and if g is close enough to a fixed simple metgg in C2(£2), theng is also a metric and also simple. O

6 Generic boundary rigidity; proof of Theorem 3

Since Theorem 3 follows from Theorem 5, we will only indicate here the slight changes in the proof of
Theorem 5 in [SU3] that imply Theorem 3. The advantage we have here, compared to [SU3], is that we
know that the constart in (1.2) is locally uniform ing.

We start with a proposition that allows us to think of classes of isometric metric€ jrirGtead of a
single metric.

Lemma6 Letg, g € CK(22), k = 1,andy : 2 — 2 be aC/(2) diffeomorphism fixing)$2 with
2<1<k+1. Assumethag = y*g. Theny € Ck¥T1(2), and ||y ck+1 < C(A4), whereA is an upper
bound of||g ||k + (g ]lcx-

Proof: We start with the known formula that relates the Christoffel symbolg ahdg:

DX DY Y
U= Gy aat o pa 0V

dx™ 321/,s
VS axioxs

Solve this ford?y*/dxdx/ to get

2.,m m p q _

axioxs  axs Y 9xi gxJ P4

o Y. (6.1)

Formula (6.1) was pointed out to the authors by J. Lee. Now, we h‘;é;(’/elj’j" e ClI-1, vy e CI71,
thereforey e C'*!. Iterating this argument, we get that € CK*!. The estimate in the lemma follows
immediately for all derivatives of orders betwe2rmandk + 1 with C(A4) that may depend on a bound of

Vv as well. On the other hand, one can easily [§ét/||co < C(A) by using the formula fory*g. The
C°-norm of y is bounded by assumption, and this completes the proof of the lemma. d
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Let gy € G¥ with k large enough. Leg; andg, be two metrics such that,, = pg, ON0S2 x 952, and

g1, g€ B=geC (@) lg—gollorc = (6.2)

We will show that ford < ¢ <« 1, g, is isometric tog;.

First, by [LSU], there exists a diffeomorphisgnfixing the boundary, such that«g, andg; coincide
at 0£2 together with their derivatives up to any fixed orderkif> 1. The diffeomorphismy can be chosen
as identifying boundary normal coordinates relateg tdo those related tg, neards2, and extending this
in the whole domain. Thelr = Id 4+ O(e) in Ck—2, therefore, the modified metri¢. g, also belongs to
B with k replaced byk — 3, and for some; > 0, such that; — 0, ase — 0. Therefore, we may assume
thaty,. g, is still in B.

Then we pass to semigeodesic coordinates as in Lemma 5, related to each metric, i.e., wegfeplace
Y«g» by their push forwardg . g1, (¢2 o ¥)«g> under new diffeomorphisms fixing the boundary. It is
important to note that the new metrics still agree) &t at any fixed order, ikt > 1 becausey; = ¢, in
£\ £2, see also [SU3]. As above, we can still assume that the new metrics AreTlinis gives us that for

S = ¢1+81 — (¢2 0 ¥)xg2 We have
feck@), suppf C 2, fin=0, i=1,....n 6.3)

We now use the fact that the linearization gf, (x, y) for (x,y) € (32)? is %Iglf(x,g) [Sh1] with

£ =exp,' y/lexp; yl, toget .
[Ng, [ Loy = CILS NG (6.4)

with C uniform, if k > 2. Lete > 0 be such thas c G*, and the constant in (1.2) is uniform in3. Then
using (1.2), (6.4), and interpolation estimates, we get that foaayu < 1,

1+
1/ e = CIAIG"

with C > 0 uniform in B, if £k = k(u) > 1. The final step is to estimatg by f*. There is no such
estimate for generalg’s, but we have the advantage here tifasatisfies (6.3). Nowy,; = 0 allows us to
prove that|| /||, < C| f*|42, see (7.45) and (7.46) in next section. Using interpolation estimates again,
we get

1f Iz < ClA*

with a newu > 0. This impliesf = 0, if || /|2 < 1, and the latter condition is fulfilled, i# < 1.
This shows tha, = ¢.g; with a diffeomorphismyp that a priori may have lower regularity that®!.
Lemma 6 shows that in faa, € CK+1,

This concludes the sketch of the proof of Theorem 3. d

Proof of Theorem 4Fix k as in Theorem 3. The identiy, = ¥ *g¢, with ¢ as in (1.3), is an equivalence
relation, fork fixed, see Lemma 6. Let us denote that relationghy~ g,. We definel/ as follows: it
consists of all pair§g;, g,) of simple ¢ metrics such thag; + g, andg;, g, have distinct distance
functions on the boundary plus alf;, g,) € GK(2) x GK(2) with g; ~ g,. We will show first that
U is open in & x Ck. Fix (g1, g2) € U. Assume first, thag;  g,. Since the pair is i/, we have
that pg, # pg, 0N (382)2. Since & (2) > g > p2 € C((32)%) is a continuous map, it follows that a
small perturbation ofgy, g,) will keep the distance functions distinct. Now, assume that~ g», i.e.,
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Vv*g, = g1, and letg,, g, be e-perturbations ofz;, g, in Ck. Thenvy*g, is an O(e) perturbation of
V*g, = g1 in C¥, see Lemma 6. We can apply Theorem Z0:= g;, andg;, ¥+&» (playing the roles
of g; andg,) to conclude that fob < ¢ < 1, g, ¥*g, are either isometric metrics, both §f (£2); or
they have distinct boundary distance functions, i, ¥*&,) € U. This implies the same faog, 2,).
Thereforel( is open.

To prove that/ is dense, observe that any péir, g>) of real analytic simple metrics belongs th
This is true forg; £ g, by the fact that an analytic simple metric is uniquely determined by its boundary
distance function, see [LSU]. Itis also true when~ g, by Theorem 1.

To prove the last statement of Theorem 4, fix a simpfen@tricg. Let g, be also a simple €metric
with distinct boundary distance function (then £ g,). A small perturbation ofg, will preserve this
property, as shown above. To prove the density statement, fix a siffptaefric g5, ande > 0. If g5
has distinct boundary distance function than thag pfve are done. If it is the same, choaggge Gk ata
distance fromg; not exceeding/2. Again, if g4 has distinct boundary distance function than thag pfve
are done. Otherwise, <« 1, somege/2 perturbationgs of g4 (actually, any that is not equivalent ()
would necessarily change the boundary distance function of the latter by Theorem 3. Therefore, there is a
metric at distance at mostfrom g, with different boundary distance function than thateof d

7 Stability for the non-linear problem

In this section, we give a proof of the stability estimate in Theorem 5. Since the proof is rather technical, we
will sketch the main point below.

In section 7.1, we first prove stability of recovery of all derivativeg ¢in boundary normal coordinates)
that is also of independent interest, see Theorem 6 below. As one may expect, the information about the
derivatives ofg at 052 is hidden in the derivatives b, (x, y) atx = y € 952 but that relationship is
hard to follow and an attempt to expre¥$g |, in terms of the derivatives i, (x, y) through a recursive
procedure leads to significant technical difficulties. Instead, we “linearize” the problem by reducing it
essentially to a one for the linearized problem for a family of metrics, see (7.1).

In section 7.2, we complete the proof by showing stability in the interior, using essentially the stability
at the boundary established in section 7.1. We basically follow the uniqueness proof given in section 6
by showing that each step is actually stable. We start with two megriesd g with §-close distance
functions, see (7.15), and in a series of steps we transform them by actions of diffeomorphisms, and by
O(6*) perturbations into pairég;, g;), j = 1,2,3,4. The goal is to get4, g4 that coincide in arO(6#)
neighborhood 082, and satisfyg;, = d;x, gin = din + O(8*), Vi, making the stability estimate for the
linearized problem (1.2) possible to apply. We start with boundary normal coordinates and pass to global
semigeodesic coordinates.

7.1 Stability at the boundary

As explained above, we start with a theorem about stability at the boundary for the non-linear problem. It
was first shown by R. Michel [Mi] that the boundary distance function determines all derivatigestdf2
in 2 dimensions. Im > 3 dimensions this was done in [LSU], while the second author and Wang [UW]
gave a constructive procedure.

Given two metricg, andg, in a fixed coordinate system, there is a diffeomorphismeard 2 fixing
d£2, and mapping the geodesics fg§ normal tods2 into geodesics fog; normal tods2, by preserving
the arc-length. Such a diffeomorphism is defined by means of boundary normal coordinates for each metric
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and can be extended to a global one. Tlggrandy.g; have common normal geodesicsd®, close to
482, and moreover, ifx’, x™) are boundary normal coordinates near a fixed boundary point for one of those
metrics, they are also boundary normal coordinates for the other one.

Theorem 6 Letg, andg; be two simple metrics if?, andI” CC I'" C 952 be two sufficiently small open
subsets of the boundary. Lgtbe as above. Then

” aﬁ{c” (w*gl - gO) Hcm(f') = Ck,m ”103271 - Iogzr() ch1+2k+2(W) ’
whereCy, ,, depends only o2 and on a upper bound afy, g in C"+2¢+3(Q2).

Proof: In this proof, we will denotey;«g; by g1, thus the normal coordinatdés’, x”) related tog, are
also normal coordinates far;. It is enough to prove the theorem fér a small neighborhood of a fixed
Xo € 052, and we are going to use boundary normal coordinates there. For anyx’, 0) close to(x;, 0),

sety = (x' 4+ ¢p’, 0), Where% <|p’| £2,ande > 0is a small parameter. Set
ﬁgs(g;xl’p/):pgs(xay)v SZO,l,

With some abuse of notation, we will drop the tilde below. Denote

a{e|e=o z/(péz’l - '052’0)

1 e = 1 lomery - 103, = PEollm = sup

le|+I<m,x’el”, %SIPISZ

If [0, 1] 2t — y5(¢) is the geodesic in the metrig connectingy andy, with ¢ a natural parameter, then

1
pa (&X', p') = /0 8s,ij (vs) Vs v{ dr,

and moreovery; minimizes the r.h.s. above.
The following step is crucial in this proof. We replaces {0, 1} by a continuous parameteiby setting
gs=(1—15)go+5g1,0 <s < 1. We show below thads2 is strictly convex w.r.t. each,. Then

14 r! o 1 pl

p,eix' ) =y ein'op) = [ [l wss = [ [ pponieifas. @)
where f = g — go, and the Greek symbols vary frotrto n — 1. The terms coming from differentiating
above vanish because of the minimizing propertypfor each fixeds. Notice that(x’, x”) are boundary
normal coordinates related i for eachs < [0, 1], too, as a consequence of the fact that);; = §;;.

Indeed, one can easily verify that fey < 1, the curvel0,e9] 2 ¢ — (0,...,0,1) is a geodesic w.r.igs
with ¢ the arc-length; and it is perpendicular to the bounddty= 0. Introduce

1
I f(e:x', pf) = /0 Jup )P TE db. (7.2)

This is the geodesic X-ray transform that we studied before, related, tand written in different coordi-
nates. Then (7.1) can be written as

1
pg (e:x', p') — p3, (e:x", p') :/o I f(e:x', p') ds. (7.3)
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Our goal next is to see that the Taylor expansiod of ate = 0 determines all derivatives of, and to use
(7.3) to derive the same conclusion about the non-linear problem.
In what follows, we work withg = g, and we will drop the subscript By the geodesic equation,

P+ T ()yyP =o. (7.4)

In our coordinatesl“;ﬂ = —%8g(xﬂ/8x”, and the second fundamental form @f2 is given byF:ﬂp“pﬂ.
By the strong convexity assumption, the latter is a positive quadratic form. In particular, we get that the
same is true for eache [0, 1], with a uniform constant. Set= 0 in (7.4) to get

P"(0) = —Tjp(x', 0)6%6%,

wheref = p(0). Therefore (see also [Sh1]),

2
yh(t) = 10" — —F e (X', 0)6°6F + 0(?),

for 6 with a fixed length. In our case we have= y(0) = exp(_x,,o)(x’ +¢ep’,0) = ep’ + 0(¢?), soin
particular,|0| = O(e). Replaced by 6/|6|, andt by ¢|6| above. Then,
2
Y1) = 160" — —F g (x', 0676 + O(e?), (7.5)
Sincey”(1) = 0, we geth” = %F{;’ﬂe"‘@ﬂ + O(£?). Plug this into (7.5) to get
2
&
Y0 = ST 0ppP = %) + 0. (7.6)
Letnow /' = f@(x’) 4+ x" fM(x’) + ... be the Taylor expansion of nearx” = 0. Plug this into
(7.2) to get
1f =& £ (N ppP + 0. (7.7)
This recoversfofg) (x")p®pB. Itis easy to see that any symmetric tensaran be recovered by, i pip’

known for some finite numbeip; } of p’s, and moreover, this can be done in a stable way, i.e., we also have
|h| < C sup |hij pipi|/|pi|* with C depending on the set. Thus we get

1 d? N
232 g:oISf f( )(X/)papﬂ

and in particular, the I.h.s. above is independent dfhis implies the estimate

1/ 0)lm = C|log, = Pgoll2sm- (7.8)

To study the higher order terms in (7.7), we will plug the Taylor serieg @fr.t. x" into (7.2), therefore
we need first to study integrals 6f”)* /() (x") overy. Observe first that one can expap(t) into a finite
Taylor series in powers of, similarly to the second order expansion fef in (7.6). Next, £ ©(y/(¢))
= /& (x’,0) + O(e), and the remainder can be expanded using higher order derivatiyé$ofSo we get

1 k 1
k o 1 k
/0 " g OO d = 5214 0()) (5F1ﬂ<x',0>p“pﬂ) Jug & 0" p” /0 (=) d
k
= G2 (Tl 0)ppP) P 0 ppP + %, (7.9)
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whereCy, > 0, ¥, = Yo + Y16 + ll/kzé‘z ...,and
”wa' ”m = C”f(k) ”m+j+1’ (7.10)

with C above uniform for any fixed collection of indices,gf andg; are bounded in ¢/ 2,
Consider the fourth order term in (7.7). By (7.9) and (7.2), it involy&® and /() only and we
therefore get

1 d¢

1
Zd_é‘4 ezolsf =G F:ﬂ(xl’ 0)papﬂfogﬂ)(xl’ 0)p(xpﬂ + %, Cp>0.

We integrate the above infrom 0 to 1, use the fact tha}fo1 F:ﬂp“pﬂds > co|p|? with somecy > 0
independent of by the strong convexity assumption, and use (7.10), (7.8) to estipatt get

”f(l)”m = C”'Oéz’l _'052’0”4+m’

andC is uniform if g andg; are bounded in &2,
For generak > 1, the formula above generalizes to

1 d2k+2 . ) . k
_ B k) (s @ ,
Ok 1 2)) getk¥2 g1/ = Ch (Fap 00 ) 1) 00" pP + 2 Wy (D)
2k'+j=2k—1
Cr > 0. Now, we can prove the following estimate by induction
k 2 2

and this estimate requires + 2k + 3 uniformly bounded derivatives gfy, andg; .

To complete the proof of the theorem, it is enough to notice that for a fiXedl/ds is a certain di-
rectional derivative w.r.ty, and we need a finite set ¢f’s. The coordinate change required to pass to
the original coordinates, increases the needed number of derivativebp®, which explains the factor
m + 2k + 5 in the theorem. O

7.2 Interior stability, proof of Theorem 5.

Fix go € GK, k > ko, and letg andg be two metrics ag; andg, in Theorem 5 with somet > 0 and
g0 K 1,i.e.,
||g||ck(§) + ”g”(;k(g_g) <A, lg- g0||(;(§) + 1&g - g0||(;(§) = €o- (7.13)

The first condition above is a typical compactness condition. Using the interpolation estimate [Tri]

1/ lco@ = CIANEE @)1 g, =16+ 6, (7.14)
where0 < 6 < 1,#; > 0,%, > 0, one gets thartg—g0||c,(§) < C(A)egk_’)/k foreachs > 0, if k£ > ¢; the
same is true fog. For our purposes, it is enough to apply (7.14) witly andz, integers only, then (7.14)

easily extends to compact manifolds with or without boundary. Set

§ = ”'02 - I C(0R2xd2)" (7.15)
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Here and below, a tilde above an object indicates that it is associate@ witising interpolation estimates
again, foranyu < 1, we get
|p* = 3 ”C"’(B.QXB.Q) = Cs* (7.16)

with C = C(4, u,m), as long as is large enough. Here, as in Theorem 6, we prefer to work with the
squares o, p because they are smooth functions with derivatives of any fixed order boundéddyy if
k> 1.

In what follows, we denote by < 1 constants arbitrarily close th that may change from step to step.
We also denote by’ various constants depending only 8h A4, u, and on the choice df in (7.13). Our
goal is to show that for any sugh, there existk > 1, andeg > 0, such that the estimate in Theorem 5
holds. We will often use the notatidh> k() > 1 to indicate that the corresponding statement holds for
k large enough, depending gn

By Theorem 6, one can choose a diffeomorphic copy ,adhat will be denoted by again, such that the
stability estimate in Theorem 6 holds, i.e.,

|04(8 = )| gnpay = C8*. ¥Lm. Vi <1 (7.17)

aslong a%k > k{(u,m 4+ 21) > 1, whered, is the normal derivative. Estimates (7.13) will be replaced by
similar ones as in Section 6. Without loss of generality we may assume that the original estimates (7.13) are
still satisfied.

Below, we will modify the starting metricg and g several times, and each subsequent pair will be
denoted byg;, g;, wherel = 1,2, 3, 4. The corresponding’s will be denoted byp;, g;.

Construction of g; and g;. First, we modifyg neard2 by replacing it there by in a smalls-dependent
neighborhood. Ley € C*(R), suchthaty(zr) = 1 for¢ < 1,andy(z) = 0fort > 2. Let M > 0 be alarge
parameter that will be specified later. Set

G1=8+x(67Mp(x,02) (g —2), g1 =g (7.18)

Using Taylor’s expansion of andg up to 0((x”)M), wherex” = p(x, d£2), and estimate (7.17), we see
that for anym > 0,
|81 = &l gneg, = C8* ™M, vu <1, (7.19)

provided thatt > k(M,m, ). We extendg; andg; in a small neighborhood?; of £2, such that the
extended metrics are still simple there, and equal. & 1, then (7.13) hold withd ande there multiplied
by a constant. The modified metrics then satisfy

g1 =48 for—1/C <x" <§'UM, (7.20)

wherex” is the normal coordinate in a collar neighborhood &f. In view of (7.19), it is enough to estimate
g1 —81-

We will use the following observation in what follows. #f, &, aree—close in & with somek, then
the corresponding Hamiltonian flové’ (x, £) and®’ (x, £) are O(¢) close on any compact set in thé G
topology w.r.t. the variables x, £. This follows from the fact the Hamiltonian vector fields aée) close
in Ck—1 and if they havee — 1 continuous derivatives w.r.t. a parameter, the same is true for the solution
(see e.g. [A]) with upper bounds depending on those of the derivatives of arilef the Hamiltonian field.
Now, one can defing; as above, and chooseo be that parameter, and to apply the mean value theorem
for0 <s <1.
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The argument above shows, in particular, that the distance funcfiprad p related tog; and g,
respectively satisfy

57 — p* <csemIM < 7.21

”pl Y ”C"’_Z(Z).QXZ).Q) — s m<l1, ( . )

for anym, if k > k(m, M, j1). To prove this, we writeo?(x, y) = |exp,! y|>. Therefore, by choosing
M > 1, we can arrange the estimate (7.16) #ér— 52 for each fixedn by writing p? — 52 = (p* — %) +
(7% — %) ie.,

[t = Pt cn@axan = €8 V<1, (7.22)

as long asM andk are large enough, depending mnand ..

Construction of g, and g,. Following the proof of Lemma 5, choosg € £2; \ £2, and lety : 2 —
W = ¥(£2) be the corresponding diffeomorphism related{o Set alsdW; = ¥ (£2;). Denote

g2 =Vsg1, S2=1Yxg1 InW. (7.23)

Then the straight lines’ = const. are geodesics fgp but not necessarily fog,. We also havég,);, =
Sins Vi.

The diffeomorphismp.

Let dW= C dW be the set of those points € dW with the property that the vectate, atx points
into W (see also (4.5)). Foranye W, let p(x) € dW_, ¢(x) € dW4 be the endpoints of the line segment
in W throughx parallel toe,,. We will define a new diffeomorphisig fixing dW in the following way. Set

P2(p(x), 4(x))

o) — g ¥ T POINER), E) = =Vpha(p(), 4(x), (7.24)

¢ (x) = BXPy(x)
where| - | is the Euclidean norm, anekp is related t@,. The mapg is chosen so that(W) = W and
¢ = 1d ondW. Next,¢ also extends into a neighborhoodidf. Note thatp maps the straight lines parallel
to e, into geodesics fog,.
The motivation for choosing in such a way comes from an observation made by Michel [Mi]. Since by
(7.20),g, = g, ondW, thenp, = p, on (dW)? would implyé(x) = e,. Thisis implied by the following:
by differentiatingp, (x, y) = p2(x, y) w.r.t. x € dW, foranyy € W, we get that the tangential gradients
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V'p, and V' p, coincide on(dW)2. This also allows us to conclude that the full gradients are the same
because their lengths are equal (to 1), more precisely, in boundary normal coordinates,

o2 _ \/1_ o P2 9p2 _ 3p2
oxn &2 ax® gxB  9xm’

(7.25)

In our case, this implie§ = e, (under the assumptions = &, on W, p» = p, on (dW)?). Then
¢ = ¢o, Wwhere }
b0 = EXD, () |x — p(X)len = Yoy (7.26)

Above, v is defined asy in Lemma 5 but related t§,. The second identity above shows thatis a
diffeomorphism betweeml’ and¢, (W) that can be extended nelf as well. Below we estimaitg — ¢,
in terms of§, if p, andp, are not equal on the boundary but satisfy (7.22), also trugfpp,.

We are going to use here (7.20) in a very essential waysFer 1, set

Ws = {x € W; pa(x,dW) > §V/M/C). (7.27)

We chooseC > 0 so thatg, = g, for x & Ws, see (7.20). Because of (7.20), the possible singularities in
(7.24) connected ta, where the ray — x + se,, is tangent tdW are non-existent becauge= Id near
such rays.

Observe first that here exists > 0 such that ifx — y| < §1/2M /C andx, y € W, thenp,(x, y) =
p2(x, y). We claim that this shows that for any,

P2(p().q(x)

wwam—%ﬂfcwv|w(mu»wun

D =cs vu<t, (7.28)
aslongasM > M (u,m) > 1 andk > ki(u, M,m) > 1. Form = 0, the second inequality follows
directly from the observation above and (7.22), (7.23) by wrifiag- o, = (53 — p3)/ (52 + p2). To prove
the first one forn = 0, we need to estimat®, (62 (p(x). ¢(x)) — p2(p(x), ¢(x))) for |p(x) — q(x)| =
§1/2M ;. We do this for the tangential gradient first using (7.22) again, choosfhg> 1. Then we
estimate the remaining normal component of the gradient using (7.25) (note"tieb normal coordinate
in (7.25) and is not the same a$ in the fixed coordinate system i that we are using). This is done
by using the estimate for the tangential gradientoef— p, and the fact thatd,/dx"| > §'/2M /C,
dp,/dx"| > §1/2M /C (which follows by differentiating (7.6)) fofp(x) — ¢(x)| < 1/C with C > 1,
and by the simplicity condition fofp(x) — g(x)| > 1/C. This proves (7.28) fom = 0. If |m| > 0, then
(7.28) follows from the arguments above and the fact that subsequent each derivagve ot ¢(x)| ™!,
or (B2(p(x). g(x))~!, contributes a factor of the kinéi"'/2™ | and a finite product of such factor can be
estimated™* for eachx > 0 small enough, if\ > 1, which can be absorbed by the teéth.

Those estimates hold nedr as well, thusl¢p — ¢o| < C§* in a neighborhood o#/, therefore, we
proved that

I|¢ - ¢0||Cn1(W/) = C(SM, V,LL <1 (729)

for anym, as long a% > k(m, ) is large enough. In particular, (7.29) shows thds a diffeomorphism
foré§ <« 1.
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Construction of g3 and g;. Set

g3 =g &3=0¢"2. (7.30)
Then, as mentioned above, the straight lines paralle),tare geodesics fog;, with s proportional to the
geodesic arc-length but the coefficient of proportionality depends the line. Next, by Lemma 5 and (7.29),

(€3)in = Sins  1(€3)in — Sinllemawy = C8*, Yu <1, Vi, (7.31)

for any fixedm > 0, u < 1,aslongas\f > 1,k > 1.
The new pair of metricg; andg; may not satisfy (7.20) anymore but we will show that they are close
in W\ Ws. More precisely, we claim that

sup |0%(¢(x) — x)| < C8*, forx € W\ Wy (7.32)
|| <m
foranyu < 1,m, aslong as\f > 1 andk > 1, depending o andm:.
To prove (7.32), observe that (7.24) can be written also as

p2(p(x), q(x))

|p(x) —gq(x)]

For§ « 1, Wy is also convex w.r.tg,. Therefore, for anyw € W, we have that the ray — x + sey,

intersectsdWs in m = 0,1 or 2 points. Ifm = 0, then along that rayg, = g, by (7.20), therefore,

¢(x) = x. If m = 1 orm = 2, then either the line segmepni(x), x] is entirely inW \ Wy, or this is true

for [x, ¢(x)]. In the first case we use (7.24), in the second one — (7.33). Assume that we have the first case.

Theng, = g, near the rayx, p(x)], thereforep = ¢o nearx, and (7.32) follows from (7.29). Assume next

that we have the second case above. Then we use (7.33), and estimates (?E.Zéb)lﬁﬂlted by;, and argue

as in the proof of (7.29). Note that our choicexofillows us to replacéxp by exp in (7.33) in this case.
Estimate (7.32), combined with (7.30), (7.27) implies

sup [0%(g3 — &3)| < C8*, forx e W\ W (7.34)

la|<m

$(x) = EXPy(x) lg(x) = x| (=0(x)). 71 = Vgpa(p(x),q(x)). (7.33)

for largek and M .

Construction of g4 and g4. We will repeat the argument (7.18). Set

ga =3+ x(C5TVMpy(x, 0W)) (g3 — &3). g4 = 5. (7.35)
whereC > 0is asin (7.27). Then by (7.34), foramy > 0, u < 1,
sup |0%(g4 — g3)| < C8*, VxeW, (7.36)
|| <m

aslongas\t > M(m, pu) > 1,k > ki(m, u, M) > 1. The advantage that we have with the new metrics
g4, 84, is that they coincide neaiV, i.e.,

g4 =G4 TOr0 < ps(x,dW) <8sV/M/C. (7.37)

Note thatp, = p; but p4 and p3 may not be equal, instead they satisfy an estimate similar to (7.21).
Therefore,
172 = llomay = C8*. (738)

foranym > 0andu < 1with M > 1,k > 1.
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Proof of the stability estimate. We are ready to linearize the problem now and finish the proof of the
stability estimate. Set

S=dgs (7.39
Then f = 0 neardW by (7.37) and we extend it as zero outsidéBf Arguing as in [SU3], write

pa—pa = Sl S+ RO D), (x0) € GW)2 (7.40)

wherey = exp, £/| exp, £| (the norm here is the same for both metrics because of (7.37)), and the expo-
nential map is in the metrig4. The remainder term satisfies [SU3]

IR = Clx =L 18 gy (7.41)

with C = C(A4), andk = 2 suffices for this estimate. By (7.37), (7.38) — ps = O(§*), Vu < 1, if
M > 1,k > 1 depending onu.
We want to apply/;, to both sides of (7.40). One can show that for any simple metrige have

I uliy () = / U 1y (= (3. @)). Py (1 (7. 0))) i0; IS (7.42)

lw|=1

where &, is as in Section 2, and_(y, w) < 0 is determined byyy ,(7—(y. ®)) € dW. Ildentity (7.42)
follows immediately from(1*u, h) = (u, Ih) and an application of the so-called Santalo formula [Sh1] or
arguing as in the proof of Proposition 1 in [SU3].

By (7.42), we have the estimalté;, u|| ;) < CllullL(r_). Therefore, (7.40), (7.41) yield

[ Ngo /ooy = €8 + CULL NG 7y (7.43)

foranyu < 1,aslong ak > k(u).
At this point, we apply the stability estimate for the linear problem. By our assumptiens, G¥ for
k > 1, and ifgg in (7.13) is small enough, thek is s-injective ins2 as well. Thenlg, is s-injective inW.
By Theorem 2, one has
£ I2wy = ClINg, fllc2omry)»

where we estimated thd?-norm by the G one. The constant above depends only of?, go, k, and
g9. Recall thatf is supported strictly in¥ . Using the interpolation estimate (7.14) again, and continuity
properties of the/DO Ng,, if k£ > 1, we get by (7.43),

Mn1

152y = € (8% + 1/ 12 7,) - (7.4)
foranyu; < 1,u < 1,k > 1, with k, C depending onu, (.
By (7.31), (7.36).fin = O(6"), Vi. This estimate and (7.37), (7.39) allow us to estimjjgfé||,,= from

below by|| /|| moduloO(#). One can expressrelated tof in terms of / and /* by solvingdv = f'— f*,
see (4.5). Writef = f* + dv. Then(dv)pn = 9xnvn = fun — f,,- Therefore,

0
Vp(X) Z/ ( )(fnn — [E)(X X"+ s)ds, (7.45)
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wherer_(x) < 0 is determined byx’, x" 4 7_(x)) € dW. Thisyields|val 25y < C (Il /¥l .2y + 6%).
We use an interpolation inequality similar to (7.14) but for Sobolev spaces, see [Tri], foggh ) <
C(I/ 5Nz +84)"2, Yua < 1,if k> 1. Next, Vyuv; + Vive = 2(fin — /35). We write this in the form
(4.2), estimate thed=—norm ofv;, and then as above, its'"Hnorm. This yields

lolligry < € (15 2wy + %)% V<1, pa < 1.
Therefore, forf = f* + dv we get
1z < € (1 Wy +84). Vi< 1. (7.46)
We combine this with (7.44). Therefore,
2
1 fll2gmy = € (1712 7, + %)
Vu < 1,if kK > 1. We can use interpolation again to replace tHen®rm above by a G¥) norm; and

next, the 2 norm by a C#) one. Now, if1/2 < u < 1, and| fllcopy < 1, we getthat| /) = C5*.
We have the following estimates

S = 8i—g4=g3—g3+ 0" by (7.33), (7.35)
= ¢%gr— g2+ O(H) by (7.30)
= @"Vg1 — V¥xg1 + O(H) by (7.23)
= P*Yug — Vsg + O(8H). by (7.18), (7.19)

By (7.29), (7.26)¢* ¥+ = ¢5¥+& + O(8") = V<& + O(5"). Hence,

[ =Usd — Vg + O(H). (7.47)

By (7.13),1/7 = Y + O(gp). This and (7.47) show first thﬁtf”c(ﬁ,) < 1,if g9 < 1, see (7.13), therefore,
by the arguments abovqi,fnc(ﬁ,) < Cé*. Then (7.47) again impliew?*g — ‘/’*gHC(W) < Cé*. The
estimate in the €norm is obtained by interpolation.

This completes the proof of Theorem 5.
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