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ABSTRACT. We study the problem of recovery both the attenuation a and the source f in the attenuated X-ray
transform in the plane. We study the linearization as well. It turns out that there is a natural Hamiltonian
flow that determines which singularities we can recover. If the perturbation δa is supported in a compact set
that is non-trapping for that flow, then the problem is well posed. Otherwise, it may not be, and least in the
case of radial a, f , it is not. We present uniqueness and non-uniqueness results for both the linearized and the
non-linear problem; as well as a Hölder stability estimate.

1. INTRODUCTION

We study the attenuated X-ray transform

(1.1) Xaf(x, θ) =

∫
e−Ba(x+tθ,θ)f(x+ tθ) dt, x ∈ R2, θ ∈ S1,

in the plane with a source f and an attenuation a that we want to recover. We denote by

(1.2) Ba(x, θ) =

∫ ∞
0

a(x+ tθ) dt

the “beam transform” of a, usually denoted by Da. We will assume that both a and f are compactly
supported. In applications, a constant attenuation a is also considered but when observations are made on
the boundary of a compact domain, one can replace that constant by a constant multiple of the characteristic
function of that domain.

The problem that we study is: can we recover both a and f from knowledge of Xaf? Sometimes this is
called the Identification Problem (for SPECT).

This problem arises in Single Photon Emission Computerized Tomography (SPECT). Radioactive mark-
ers are injected into a patient’s body and the emitted X-rays, attenuated by the body, are detected outside of
it. The problem is to recover the source with a unknown attenuated coefficient.

When a is known, it is known that f can be reconstructed uniquely, even by means of explicit formulas.
In this connection, the first analytic reconstruction method was developed in [1] and the first Radon type
explicit inversion formula was given in [23]. For more information and related results, see [6, 23, 24]. For
this reason, some of the numerical attempts to do a reconstruction are focused on recovery, or getting a good
approximation of a first, instead of treating (a, f) as a pair. Sometimes this is called attenuation correction,
see e.g., [37, 26]. In clinical applications, additional X-rays are taken to reconstruct a first. Eliminating or
reducing those additional X-rays remains an important problem.

There has not been much progress in the mathematical understanding of the identification problem so far.
A related but not identical problem for finding both a constant attenuation and the source in the exponential
X-ray transform has been solved in [27], see also [15]. The main result in [27] is, roughly speaking, that
specific pairs of constant a and radial f cannot be distinguished but all other pairs can. The identification
problem with f a finite sum of delta sources has been studied in [20, 21], see also [3], but the results there
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do not and cannot imply uniqueness. Natterer also viewed the problem as a range characterization problem:
if the ranges of Xa1 and Xa2 happen to be the same, for example, then there cannot be uniqueness. Range
conditions, see e.g., [24], have been viewed as a possible tool for solving the problem, both numerically,
see e.g., [5] and analytically, as in the recent work [2]. Numerical reconstructions have been tried, too, with
variable success, in [8, 19, 37, 26, 4, 5, 12, 38], for example. Some of them use clinical data. A. L. Bukhgeim
[7] recently outlined a recovery algorithm if a is a priori known to be a constant multiple of the characteristic
function of a star-shaped domain.

Our approach is based on the following. The attenuated X-ray transform, and its linearization, carry
information about f and a along each line twice because we integrate both in θ and −θ directions. From
a microlocal point of view, those two lines determine the wave front sets at covectors normal to them. So
we have two equations for two unknowns. We study first a linear problem that appears as a linearization
of Xaf near some fixed (a0, f0). Also, the non-linear map Xa2f2 −Xa1f1 is of that form, see (5.3). This
problem can be formulated as the inversion of Ig := Iw1g1 + Iw2g2, g = (g1, g2), where Iw is the weighted
X-ray transform with a weight w(x, θ), see (2.4). The weights w1,2 are of specific type in the case of the
Identification Problem but we study general weights first. The operator I is a Fourier Integral Operator but
we do not study it directly. Instead, to analyze the equation Ig = h, we apply an explicit operator Q to
convert the equations

(Iw1g1 + Iw2g2) (z,±θ) = h(z,±θ)
to equivalent pseudo-differential ones of the type

(1.3)
(
w1(x,±D⊥/|D|) + l.o.t.

)
g1 +

(
w2(x,±D⊥/|D|) + l.o.t.

)
g2 = Qh,

see Proposition 6.1. Here, “l.o.t.” stands for “lower order terms”, andwj(x,±D⊥/|D|) are pseudo-differential
operators (ΨDOs) with symbols wj(x,±ξ⊥/|ξ|). We view this as a 2 × 2 system of ΨDO equations. The
determinant of the principal symbol is given by p0(x, ξ) = W (x, ξ⊥/|ξ|), where

W (x, θ) = w1(x, θ)w2(x,−θ)− w1(x,−θ)w2(x, θ).

Since W is an odd function of ξ, p0 is not elliptic over any x, and has a non-trivial characteristic variety
regardless of whatw1,2 are, in the cotangent bundle of any domain. Then p0 is a Hamiltonian of fundamental
importance for this system. The singularities of g that may not be recoverable lie on zero bicharacteristics of
that Hamiltonian; moreover each zero bicharacteristic either consists of singularities only, or there is none
on it. This brings us to the following condition, well known in the theory of ΨDOs of real principal type: if
g has a support in a compact set K that is non-trapping for the Hamiltonian flow, then the singularities of g
can be recovered, with a loss of one derivative. Otherwise they may not be but the non-trapping condition
is known not to be “if and only if”. In sections 4 and 5, based on the microlocal understanding on the
problem explained above, we prove actual injectivity and stability of I for f supported in non-trapping
K for generic (w1, w2), including ones satisfying some analyticity assumptions; or for small K. We then
apply this analysis to the non-linear Identification Problem in section 5.3 to get local uniqueness and Hölder
stability in a neighborhood of generic (a, f), including those with analytic Ba, u, see the next section,
under the a priori assumption that the perturbation of a is supported in a non-trapping set. There is no need
to assume the same thing for the perturbation of f because the partial derivative of Xaf w.r.t. f is just Xa,
that is elliptic. Another explicit condition for local solvability of the Indentification Problem is (4.25), see
Corollary 5.2.

The microlocal consequences of (1.3) are analyzed in more detail in Section 6. In particular, we describe
the “null eigenspace” at the characteristic points. In non-degenerate cases, (1.3) is of rank one on the
characteristic variety p0 = 0. As a consequence of this, a certain linear combination of δa, δf is more stably
reconstructed than either term, see Proposition 6.1.



THE IDENTIFICATION PROBLEM 3

We also study the case of radial a and f in Section 7. A thorough study of the radial case is behind the
scope of this work however. The reason we include it is to present an example where the Hamiltonian flow
can be explicitly computed, is trapping in any disk containing the origin, and the non-uniqueness set (for
radial perturbations) is infinite dimensional. The projections of the zero bicharacteristics happen to be the
circles |x| = R, R ≥ 0. Then K ⊂ R2 is non-trapping if and only if it does not contain an entire circles
centered at 0, including the origin. In case K is trapping, and contains a ball |x| < R, then the uniqueness
fails and there is an infinite dimensional family of pairs (a, f) with the same data. They consist of radial a
and f . This fact agrees with the microlocal analysis that we present because the latter implies we may not
be able to recover radial singularities. In this case actually, the non-trapping condition is also necessary for
the problem to be well posed.

In [25], Qian, Luo and the author present reconstruction methods and numerical examples confirming the
theory developed in this paper.

2. PRELIMINARIES

The attenuated X-ray transform results from the following transport equation model. Let f(x) be a
compactly supported source of particles (or a signal propagating along lines with unit speed) propagating
in a medium with attenuation coefficient a(x). Then at the point x ∈ Rn and direction θ ∈ Sn−1 (the
dimension n can be arbitrary), the total number of u(x, θ) of particles originating from the source solves the
transport equation

(2.1) (θ · ∂x + a)u = f, u|θ·x�0 = 0.

This is a linear ODE along the lines t 7→ (x+ tθ, θ) and its solution is given by

(2.2) u(x, θ) =

∫ 0

−∞
e−

∫ 0
t a(x+sθ) dsf(x+ tθ) dt.

This formula can be interpreted as the superposition of all attenuated signals at (x, θ) coming from the
source. Then at points x so that θ · x� 0, one has u = Xaf . We regard u as an attenuated beam transform
of f (in the direction −θ instead of θ).

It is useful to extend the definition of B, see (1.2), to functions a depending on both x and θ:

(2.3) Ba(x, θ) =

∫ ∞
0

a(x+ tθ, θ) dt.

For such a, the solution to (2.1) is given by (2.2) again, with a(x+ tθ) replaced by a(x+ tθ, θ).
We introduce also the notation

(2.4) Iwf(x, θ) =

∫
w(x+ tθ, θ)f(x+ tθ) dt,

for the weighted X-ray transform with weight w(x, θ). Then Iw = Xa for w = e−Ba but we will allow
more general weights in Iw. Also, I1 = X0.

We will also denote
v⊥ := (−v2, v1), v = (v1, v2) ∈ R2.

2.1. A Radon transform type of parameterization of Xa and Iw. Since for a fixed direction θ, x and
x + sθ parametrize the same (directed) line, we will think of Xaf and Iwf as parameterized by (z, θ),
z ∈ θ⊥ := {z; z · θ = 0}. We denote by Z the variety

Z = {(z, θ); θ ∈ S1, z ∈ θ⊥},
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which is essentially the tangent bundle of S1. Then we can set z = pθ⊥, and write Xaf as

(2.5) Xaf(pθ⊥, θ) =

∫
e−Ba(pθ⊥+tθ,θ)f(pθ⊥ + tθ) dt, (p, θ) ∈ R× S1,

and similarly for Iwf . We think of (p, θ) ∈ R × S1 as a parameterization of Z. We also define a measure
on Z by dz := dp dθ, where dθ is the natural measure on S1 given by dϑ, with ϑ being the polar angle of θ.

2.2. Functional spaces. We will assume throughout the paper that supp f is contained in a fixed compact
set; and we can always assume that this compact set is included in (−π, π)2. We can therefore assume that
f is defined on the torus T2. For any compact set K ⊂ T2, we define Hs(K) to be the closed subspace
of Hs(T2) of functions supported in K. In other words, the Sobolev norm in K is defined through Fourier
series. We define the Sobolev spaces Hs(Z) in a similar way. Since |p| < π in (2.5), we can assume that
p belongs to the unit circle represented by [−π, π] with both ends identified. Then (p, θ) ∈ S1

p × S1
θ . The

space Hs(Z) is then defined by the norm

(2.6) ‖g‖Hs(Z) =
∥∥(1− ∂2

p)s/2g
∥∥
L2(Z)

,

where ∂2
p is the second derivative w.r.t. p on the compact manifold S1. Notice that there are no θ derivatives

in this definition, see also [22, Theorem II.5.2] for involving the θ derivatives when a = 0. In other words,
Hs(Z) is defined through Fourier Series in the p variable.

3. LINEARIZATION

We are going to compute the linearization of the identification problem starting from formula (1.1). An-
other way to do this, based on the transport equation, is presented in section 5.

Assume that a and f are smooth enough so that the calculations below make sense. Denote by G = θ ·∂x
be the generator of the geodesic flow on TR2 w.r.t. the Euclidean metric. Since a has compact support, then
GBa = −a, and Ba = 0 for x · θ � 0; and Ba = I1a for x · θ � 0. Here, I1 = Ia for a = 1.

Since the problem is linear w.r.t. f , we linearize near some a first, with f fixed. Let as = a+ sδa. Then
d

ds

∣∣∣
s=0

Xasf = −
∫
e−Ba(x+tθ,θ)f(x+ tθ)Bδa(x+ tθ, θ) dt.

Write
e−Baf = −GBe−Baf

and plug this into the formula above. Integrate by parts to get
d

ds

∣∣∣
s=0

Xasf =

∫ [(
Be−Baf

)
δa
]

(x+ tθ, θ) dt−Xaf.X0δa.

The linearization of Xaf w.r.t. a is therefore a weighted X-ray transform of the perturbation δa of the form∫
w(x+ tθ, θ)δa(x+ tθ) dt

with a weight function

(3.1) w = Be−Baf −Xaf.

The second term on the right is constant along each line. The weight can also be expressed as

(3.2) w(x, θ) = −
∫ 0

−∞
e−Ba(x+tθ,θ)f(x+ tθ) dt.

A direct calculation yields

(3.3) w = −e−Bau,
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where u is the solution (2.2) of (2.1).
Let δXa,f (δa, δf) denote the linearization of Xaf near fixed a, f . We just proved the following, see also

(5.3).

Proposition 3.1.
δXa,f (δa, δf) = Iwδa+Xaδf,

where w is as in (3.2) or (3.3).

4. A MORE GENERAL LINEAR PROBLEM: INVERTIBILITY OF A SUM OF TWO WEIGHTED X-RAY
TRANSFORMS

4.1. Formulation and preliminaries. Consider a more general problem. Let I(g1, g2) = Iw1g1 + Iw2g2,
where w1,2 are two weight functions, i.e.,

(4.1) I(g1, g2)(x, θ) =

∫
w1(x+ tθ, θ)g1(x+ tθ) dt+

∫
w2(x+ tθ, θ)g2(x+ tθ) dt.

We will compute I∗I, where the star denotes adjoint w.r.t. the inner product in L2(Z). Clearly,

(4.2) I∗I =

(
I∗w1

Iw1 I∗w1
Iw2

I∗w2
Iw1 I∗w2

Iw2

)
By Proposition A.2, I∗I is a ΨDO of order −1 with principal symbol

(4.3) δap(I∗I) =
π

|ξ|

(
|w1,+|2 + |w1,−|2 w̄1,+w2,+ + w̄1,−w2,−

w1,+w̄2,+ + w1,−w̄2,− |w2,+|2 + |w2,−|2
)

where
wj,± = wj(x,±ξ⊥/|ξ|), j = 1, 2.

A direct calculation yields

(4.4) det δap(I∗I) = |w1,+w2,− − w2,+w1,−|2 =

∣∣∣∣det

(
w1,+ w2,+

w1,− w2,−

) ∣∣∣∣2.
That determinant not being zero is a microlocal ellipticity condition. As we see below, it vanishes over any
point x; therefore, I∗I cannot be elliptic over (i.e., in the cotangent bundle of) any domain.

Set

(4.5) W (x, θ) = w1(x, θ)w2(x,−θ)− w1(x,−θ)w2(x, θ).

Then det δap(I∗I) = |W (x, ξ⊥)|2. The function W is odd in θ, and therefore, for any x it has zeros for
some vectors θ. The inconvenience of working with (4.4) however is that it has double characteristics.

Instead of studying the invertibility of I∗I, we will approach the problem in a more direct way, slightly
different (but equivalent) than what we do in Section 6, see also (1.3). Set

(4.6) Jh(x, ξ) = h(x,−ξ).

Let α(x, θ) be any smooth function, odd on S1 w.r.t. θ. Let I ′w be the transpose of Iw, see the Appendix.
Apply I ′αJw2

to the equation

(4.7) Iw1g1 + Iw2g2 = h

to get

(4.8) I ′αJw2
Iw1g1 + I ′αJw2

Iw2g2 = I ′αJw2
h.
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By Proposition A.2, both operators on the left are ΨDOs of order −1. The principal symbol of I ′αJw2
Iw1 is

given by 2π/|ξ| times the even part of (αw1Jw2)(x, ξ⊥/|ξ|), i.e., by 2πα(x, ξ⊥/|ξ|)/|ξ| times the odd part
of (w1Jw2)(x, ξ⊥/|ξ|). Thus

(4.9) σp(I
′
αJw2

Iw1) =
π

|ξ|
αW

∣∣
θ=ξ⊥/|ξ|.

Notice that W is the determinant in the r.h.s. of (4.4) but not squared. It has the same zeros as (4.4) but they
are simple. In the same way, we get that the principal symbol of I ′αJw2

Iw2 is as above but with w1 replaced
by w2, i.e., it is zero; and therefore, I ′αJw2

Iw2 is of order −2.
Choose α = θ1 first. Then |ξ|α(ξ⊥/|ξ|) = −ξ2, which is the symbol of −D2 = i∂2, and we get

(4.10) σp(I
′
θ1Jw2

Iw1) =
π

|ξ|2
(−ξ2)W (x, θ)

∣∣
θ=ξ⊥/|ξ|.

Modulo lower order terms, (4.8) becomes
π

|D|2
(−D2)W

(
x,D⊥/|D|

)
g1
∼= I ′θ1Jw2

h,

where the meaning of 1/|D| is given by the ΨDO calculus. Similarly, taking α = θ2, we get
π

|D|2
D1W

(
x,D⊥/|D|

)
g1
∼= I ′θ2Jw2

h.

Apply −D2 to the first identity, D1 to the second, and add them together to get

πW
(
x,D⊥/|D|

)
g1
∼=
(
−D2I

′
θ1Jw2

+D1I
′
θ2Jw2

)
h.

Notice that the lower order terms on the left involve g2 as well. In a similar way we get

πW
(
x,D⊥/|D|

)
g2
∼=
(
D2I

′
θ1Jw1

−D1I
′
θ2Jw1

)
h.

We therefore proved the following.

Proposition 4.1. For all compactly supported g1, g2 we have

(4.11) Pg = (πi)−1(∂1I
′
θ2Jw2

− ∂2I
′
θ1Jw2

,−∂1I
′
θ2Jw1

+ ∂2I
′
θ1Jw1

)Ig,
where g = (g1, g2), and P is a matrix valued classical ΨDO of order 0 with a scalar principal symbol given
by

(4.12) p0(x, ξ) := W
(
x, ξ⊥/|ξ|

)
.

In particular, this means that P is a matrix operator of real principal type, see [9].
We notice that (4.11) can also be written in the form
πiPg

=

(
−
∫
S1

(θ⊥ · ∂x)w2(x,−θ)Ig(x− (θ · x)θ, θ) dθ,

∫
S1

(θ⊥ · ∂x)w1(x,−θ)Ig(x− (θ · x)θ, θ) dθ

)
.

Let

(4.13) Σ = {(x, ξ) ∈ T ∗Rn \ 0; p0(x, ξ) = 0} = {W = 0}⊥

be the characteristic variety of p0, where the sign ⊥ applies to the second variable θ only.
There are several definitions of real principal type ΨDOs in the literature, including or not the differential

condition below, or the non-trapping one, in a fixed domain. We will use the following one. We say that the
ΨDO P ∈ Ψm is of real principal type, if its principal symbol pm is real, scalar, homogeneous in ξ, and
dpm is not collinear to ξdx on {pm = 0} for ξ 6= 0. The latter condition says that if we identify covectors
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of different length by their direction, then the Hamiltonian vector field never vanishes, and in particular,
the flow does not have stationary points. Such operators are microlocally equivalent to ∂x1 modulo lower
order terms. We also note that this condition makes {W = 0} a codimension one (dimension 2) smooth
submanifold. The same applies to Σ, considered as part of the unit cotangent bundle.

Below, ∂θ⊥ is the angular derivative in the θ variable, i.e., the derivative ∂/∂ϑ w.r.t. to the polar angle ϑ.

Proposition 4.2. The ΨDO P is of real principal type in some domain Ω ⊂ R2, if and only if

(4.14) W , θ · ∂xW , ∂θ⊥W cannot be all zero at the same time, for any point in Ω× S1.

Proof. Extend W to θ 6= 0 as a homogeneous function of order 0. We have

dp0 = ∂xW (x, ξ⊥) dx+ (∂/∂ξ)W (x, ξ⊥) dξ

= Wx(x, ξ⊥) dx+ (Wθ2 ,−Wθ1)(x, ξ⊥) dξ.

Then P is of real principal type if an only if W (x, ξ⊥) = 0 and (∂/∂ξ)W (x, ξ⊥) = 0 imply that
∂xW (x, ξ⊥) is not collinear with ξ. The latter is equivalent to the requirement that ∂xW (x, ξ⊥) is not nor-
mal to ξ⊥, i.e., ξ⊥ · ∂xW (x, ξ⊥) 6= 0. Set θ = ξ⊥. Then the requirement is the following: if W (x, θ) = 0
and (∂θ⊥W )(x, θ) = 0, then θ ·∂xW (x, θ) 6= 0. Notice next that the radial derivative ∂/∂|θ| of W vanishes
on W = 0, therefore the requirement on ∂θ⊥W is actually a requirement on the angular derivative only. �

The following condition plays a critical role in the theory of local solvability of ΨDOs of real principal
type. Let K be a compact subset of R2.

Definition 4.1. We say thatK is non-trapping (for p0) if there is no maximally extended zero bicharacteristic
that lies entirely over K. We call the projections of the zero bicharacteristics of p0 to the x space rays.

Notice that the rays are continuous but not necessarily smooth curves. They may even degenerate to a
point, see Example 4.1.

Hörmander’s propagation of singularities theorem (see, e.g., [34, VI.2.1] or [18, Theorem 26.1.4]) implies
that if g is supported in a non-trapping K, and Pg ∈ Hs, then g ∈ Hs−1. In other words, we have non-local
“hypoellipticity”, with a loss of one derivative. As a consequence, by the open mapping theorem, for any s
and `, there is C > 0 so that

(4.15) ‖g‖Hs−1 ≤ C‖Pg‖Hs + C‖g‖H` , ∀g ∈ C∞0 (K),

see eqn. (VI.3.3) in [34].

Example 4.1. Let w1 = 1
2θ · x and w2 = 1. Notice that w1 is not non-vanishing. In this case, W = θ · x.

Then |ξ|p0 = x · ξ⊥ = x2ξ1 − x1ξ2 and Σ consists of (x, ξ), ξ 6= 0 that are collinear. In other words, all
singularities that may not be recoverable are the radial ones. The Hamiltonian equations are given by

ẋ1 = x2, ẋ2 = −x1, ξ̇1 = ξ2, ξ̇2 = −ξ1.

The zero bicharacteristics then are given by

(4.16) x = R(sin t, cos t), ξ = λ(sin t, cos t), R ≥ 0, λ 6= 0.

Their projections on the base (the rays) are given by the circles x = R(sin t, cos t), R ≥ 0. If R = 0,
then that projection is a point. The whole bicharacteristic is not stationary however and is given by x = 0,
ξ = λ(sin t, cos t), λ 6= 0. We then see that a compact set K is non-trapping if and only if K contains no
entire circle |x| = R, R ≥ 0 (including the origin), see Figure 2. Then Ig recovers the singularities of
g = (g1, g2). If K is trapping, the singularities that may not be possible to be recovered are the radial ones.

Inverting Ig = Iw1g1 + I1g2 is easy. The first term is odd w.r.t. θ, and the second one is even. The
equation Ig = h then decouples into two equations Iw1g1 = hodd, I1g2 = heven. The kernel of I (on
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E ′(R2)) then consists of pairs (g1, 0), where g1 ∈ Ker Iw1 . Using arguments similar to the Fourier Slice
theorem, see Section 6, we can see easily that Iw1g1 = 0 if and only if (x2∂1 − x1∂2)g1 = 0 (the operator
in the parentheses is p0(x,D), up to an elliptic factor) and the solutions of the latter in E ′(R2) are given by
all compactly supported radial distributions. In particular, on L2

comp(B(0, 1)), the kernel of Iw1 consists of
all radial functions in that space. We therefore get

(4.17) Ker I = {(g1, 0); g1 is radial} .

Since radial functions can have (radial) singularities at all points, we get that no radial singularity of g1, i.e.,
a singularity of the type (x = µξ, ξ), µ ∈ R, ξ 6= 0, can be recovered in general. On the other hand, if K
is non-trapping for p0, and supp g ⊂ K, then they can. In that case, Iw1 is microlocally equivalent to the
derivative w.r.t. to the polar angle in R2; and since on each circle there is an open arc where g = 0, that
circle cannot support a singularity of g, by the propagation of the singularities theorem. In fact, by (4.17), if
K is non-trapping, we have more: g1 = g2 = 0.

This example also reveals that Ig ∈ C∞ is not microlocally equivalent to (4.11), see Section 6 for more
details. Indeed, only the radial singularities of g1 are not recoverable, while those of g2 are recoverable.
Moreover, assume that Ig ∈ Hs(Z). Then g2 ∈ Hs−1/2 by the usual inversion results. We can think
of Iw1g1 as the Doppler X-ray transform of the vector field g1(x)x. It is well know that we can only
reconstruct the curl of g1(x)x that is (x1∂2 − x2∂1)g1, and the latter is in Hs−3/2. Let supp g1 ∈ K, with
K non-trapping, for example, assume that the ray {x1 ≥ 0, x2 = 0} does not intersect K. Then, in polar
coordinates (r, φ),

g1(r, φ) =

∫ φ

0
[(x1∂2 − x2∂1)g1] (r, ψ) dψ.

This integration is not smoothing (not in all directions), and we still have g1 ∈ Hs−3/2, with an improved
regularity in angular directions. This is consistent with (4.20) below but as we see, the one derivative loss
is only in g1, and that estimate does not reveal the extra regularity in characteristic directions. The latter is
however reflected by the fact that WF(g1) can have radial directions only.

It is interesting to know when the rays are smooth curves. The projection of a bicharacteristic to the x
variables, with its parameterization determined by the Hamiltonian equation, at some x, has a tangent vector
∂ξp0 evaluated at some (x, ξ) ∈ Σ (i.e., p0(x, ξ) = 0). This projection is non-degenerate, and therefore,
that ray is a smooth curve, if ∂ξp0 6= 0. There might be more than one ξ with that property but there is at
least one ξ (and the whole line spanned by it) because p0 is odd in ξ. On the other hand, ξ · ∂ξp0 = 0 on Σ,
therefore a tangent vector is actually ξ⊥ and the whole line that it spans.

Translating this in terms of W , see (4.12), we get the following. If for some (x0, θ0), we have

(4.18) W (x0, θ0) = 0 and ∂θ⊥W (x0, θ0) 6= 0,

then there is a smooth ray through it. Moreover, starting from (x0, θ0) with that property, by the implicit
function theorem, we can solve W (x, θ) = 0 locally for θ. This gives us a smooth unit vector field, with
integral curves that are rays. Then W = 0 ⇒ ∂θ⊥W 6= 0 on K × S1 is a sufficient condition for all rays
through K to be smooth.

4.2. Basic Properties of I. Below, E ′(K) stands for the space of distributions supported in K, and we
similarly define Hs

0(K). Also, since g is vector valued, L2(K), HS(K) below are spaces of vector valued
functions.

Theorem 4.1. Let I be as in (4.1) with w1 and w2 smooth. Let K ⊂ R2 be a non-trapping compact set.
Then for any s ≥ 0 we have the following.
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(a) For any `, there exist a constant C > 0 so that

(4.19) ‖g‖Hs(K) ≤ C‖Ig‖Hs+3/2(Z) + C‖g‖H`(R2), ∀g ∈ C∞0 (K).

(b) The kernel of I on E ′(K) is finite dimensional, and consist of C∞0 (K) functions g.
(c) On the orthogonal complement of Ker I in Hs

0(K), we have

(4.20) ‖g‖Hs(K) ≤ C‖Ig‖Hs+3/2(Z)

with another constant C > 0. In particular, if I is injective on C∞0 (K), then (4.20) holds.

Proof. To prove (a), we will apply (4.15). To this end, replace P by χPχ, where χ ∈ C∞0 equals 1 near
K (this makes P properly supported, in particular). Let Ω be a bounded domain containing suppχ. Use
estimate (4.15) combined with (4.11) to get for any fixed `,

‖g‖Hs
0(K) ≤ C

2∑
i,j=1

‖I ′θiJwjIg‖Hs+2(Ω) + C‖g‖H`

≤ C‖Ig‖Hs+3/2(Z) + C‖g‖H` , ∀g ∈ C∞0 (K),

(4.21)

see also Proposition A.3. Notice the one derivative loss in this estimate since I is of order −1/2, see the
Appendix. If we replace I by a single weighted X-ray transform Iw with a non-vanishing weight w, then
one has the same estimate but with H1/2(Z). We also note that Ig has compact support.

Consider (b). Every g ∈ E ′(K) in the kernel of I must be smooth by propagation of singularities and by
the assumption that K is non-trapping (it also follows from (4.21)). Apply then (4.19) to get

‖g‖H1(K) ≤ C‖g‖L2(K), ∀g ∈ Ker I ∩ E ′(K) = Ker I ∩ C∞0 (K).

Since the inclusion H1
0 (K) ↪→ L2(K) is compact, we get the finite dimensionality of Ker I on K.

Consider (c). Let D be the closure of C∞0 (K) under the graph norm ‖g‖Hs
0(K) + ‖Ig‖Hs+3/2(Z). We

consider now I as an operator from D to Hs+3/2(Z). Then I is a well defined bounded operator. Indeed,
D is a subspace of the space of the compactly distributions, together with the topology. Then I can be
considered as an operator originally defined as I : E ′(R2)→ E ′(Z), and then restricted to D. We then get

‖g‖D ≤ C‖Ig‖Hs+3/2(Z) + C‖g‖H` , ∀g ∈ D.

By (a), I is injective on D ∩ (Ker I)⊥. Then by [34, Proposition V.3.1], for ` < s, we have the same
inequality as above on D ∩ (Ker I)⊥ but without the last term. We refer also to [30, Lemma 3] as well for
similar arguments, or to inequality (26.1.6) in [18]. �

In the applications to the linearized Identification Problem, one of the weights is non-vanishing. This
allows us to weaken the non-trapping requirements.

Corollary 4.1. Let

(4.22) supp g1 ⊂ K1, supp g2 ⊂ K2

where K1,2 are compact sets. Assume that w2 6= 0 on K2. Then the conclusions of Theorem 4.1 hold if only
K1 is non-trapping.

Proof. LetK1 be non-trapping. Choose an open set U ⊃ K1 so that Ū is non-trapping as well. Let χ ∈ C∞
be such that χ = 1 in a neighborhood of K2 \ U , and χ = 0 near K1. Apply I ′w2

to Ig first to get

(4.23) I ′w2
Ig = I ′w2

Iw1g1 + I ′w2
Iw2g2.

Let Q be a properly supported parametrix of the elliptic ΨDO I ′w2
Iw2 . We get

(4.24) χQI ′w2
Ig = χg2 +R1g1 +R2g2,
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whereR1 andR2 are smoothing operators; the first one by the pseudo-local property; and the second one, by
the parametrix construction. Then we get the estimate (4.21) for χg2; and actually, we can replace s+ 3/2
by s+ 1/2 there.

We now write
I (g1, (1− χ)g2)) = Ig − Iw2χg2.

Use (4.21) to estimate (g1, (1− χ)g2) through Ig and χg2, which we estimated already. This proves (4.21)
for g. The rest of the proof is the same. �

Remark 4.1. If, in addition, w1 6= 0 on K1, then it is enough K1 ∩K2 to be non-trapping.

4.3. Conditions for injectivity of I.

Corollary 4.2. Let w1 and w2 be smooth. Let x0 ∈ R2 be such that

(4.25) W (x0, θ) = 0 =⇒ ∂θ⊥W (x0, θ) 6= 0, ∀θ ∈ S1.

Then if 0 < ε � 1, I is injective on distributions supported in the ball B(x0, ε), and in particular, (4.20)
holds for K = B(x0, ε).

Proof. Condition (4.25) guarantees that any ray through x0 is smooth at x0, and there are finite number of
such rays. There is ε0 > 0 so that B(x0, ε0) is non-trapping.

Assume the opposite. Then for any ε = 1/j, j ≥ 1, there is a non-trivial C∞0 function supported in
B(x0, 1/j) in the kernel of I. Then we get an infinite number of non-trivial functions φj in the finitely
dimensional space V = Ker I ∩ C∞0 (B(x0, ε0)), see Theorem 4.1(b), with supports shrinking to the point
x0. This is a contradiction. Indeed, −∆ : V → −∆V must be a bounded operator. On the other hand,
−∆ is bounded below on H1

0 (B(x0, 1/j)) ∩H2 by its first eigenvalue µj , that tends to infinity as j → ∞.
Therefore, (−∆φj , φj)/‖φj‖2 →∞, which is a contradiction. �

Clearly, under the assumptions of Corollary 4.1, (4.25) is not needed if x0 ∈ K2 \K1.

Theorem 4.2. Let w1, w2 be analytic in Ω×S1, where Ω is an open set containing a non-trapping compact
set K ⊂ R2. Then the operator I, restricted to E ′(K), is injective.

Proof. We use a result about propagation of analytic singularities, see [13], for analytic ΨDOs with real
principal symbols. The result in [13] covers in fact a more general class of operators with complex-valued
principal symbols that have real bicharacteristics and carries over to operators with matrix lower order terms.

The operator P is an analytic ΨDO in Ω of order 0. Indeed, to prove that, it is enough to prove that
operators of the kind I ′bIa, see the Appendix, are analytic ΨDOs ([36]) of order −1 when a, b are analytic
in Ω × S1. The amplitude of such an operator is given by (A.2), and it is clearly an analytic one, see also
the proof of [31, Proposition 1].

The propagation of singularities result in [13] then implies that each zero bicharacteristic of P inK either
consists of (analytic) singular points only, or does not intersect the analytic wave front set of g. Since K is
non-trapping, we have the latter alternative. Therefore, the analytic wave front set of g is empty. Then g is
analytic. Since g is of compact support, we get g = 0. �

Corollary 4.3. Under the assumptions of Corollary 4.1, Theorem 4.2 holds if only K1 is non-trapping.

Proof. The operators I ′w2
Iw1,2 are then an analytic ΨDOs in Ω, and the first one is elliptic in a neighborhood

of K2, see also (4.23). Using the property of analytic elliptic ΨDOs to resolve analytic singularities, we
conclude that for g ∈ Ker I, g2 is analytic in the interior ofK2\K1. By analytic propagation of singularities,
g must be analytic near K1 because the latter is non-trapping. As above, we conclude g = 0. �
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4.4. Generic injectivity of I. Let K be a non-trapping compact set. Then any small enough compact
neighborhood K ′ of K is still non-trapping, see the proof of [18, Theorem 26.1.7]. Therefore, there exists
an open Ω ⊃ K so that every compact subset of Ω is non-trapping. Then P is of real principal type in Ω, by
the definition in [18].

Definition 4.2. The set Ω is said to be pseudo-convex w.r.t. P , if any compact subset is non-trapping, and
for any compact set K ⊂ Ω, there exists a compact set K ′ ⊂ Ω so that every bicharacteristic interval in Ω
having endpoints over K, lies entirely over K ′.

In particular, if K is convex w.r.t. the bicharacteritics (i.e., one can choose K ′ = K), then K is pseudo-
convex.

Pseudo-convexity is a condition that guarantees existence of a global parametrix of P , see [10] and [18,
Theorem 26.1.14]. Under that condition, we show below that injectivity of I is preserved under small
perturbations of the weights.

Theorem 4.3. Let K be non-trapping for P and assume that there exists a pseudo-convex neighborhood
Ω ⊃ K of K. Assume that I is injective on E ′(K). Then there exist k > 0 and ε > 0 so that for any w̃1,
w̃2, ε-close to w1 and w2 in Ck(Ω̄), the corresponding operator Ĩ is still injective, and the estimate (4.20)
holds with a constant C independent of the particular choice of w̃1, w̃2.

Proof. By [10], see also [18, Theorem 26.1.14], under the assumptions of the theorem one can construct a
parametrix E so that

EP = Id +R,

where R has a smooth kernel. The parametrix E is not unique, even modulo smoothing operators. Loosely
speaking, it is unique modulo smoothing operators if we fix an orientation on each connected set of bichar-
acteristics through K. The operator E has the mapping property E : Hs

0 → Hs−1. If we make P of order
1, then P would be microlocally equivalent to ∂/∂x1; and then roughly speaking, E is integration w.r.t. x1

in that representation in the direction of the chosen orientation.
By (4.11), we have

(4.26) EQI = Id +R,

where Q is of order 1/2. Notice that E is of order 1, and I is of order −1/2. While the composition EQI
a priori is of order 1 just based on the individual terms, it is actually of order 0 as (4.26) shows.

The construction of the Fourier Integral Operator (FIO) E is described in [18]. In order to get R above
to be just of order −1, all microlocal constructions need to be done up to finite order only in order to
satisfy finitely many symbol estimates, see, e.g., [17, Theorem 18.1.11’] and [28]. In each step, finitely
many derivatives of the symbols are needed; therefore, finitely many derivatives of w1 and w2 are needed.
Therefore, for some k, Ck 3 (w1, w2)→ R is continuous, where R : Hs → Hs+1 for a fixed s.

The arguments below follow the proof of [31, Proposition 5.1]. The idea is to correct the parametrix EQ
by a finite rank operator so that the new Id + R would be injective. We should be able to do this because I
is injective.

Restrict equation (4.26) toK. In this stage of the proof, we will indicate the dependence onw := (w1, w2)
by a subscript w. We can always assume that Rw is self-adjoint because we can apply Id +R∗w to both sides
of (4.26). The operator Id+Rw has at most a finite-dimensional kernel V on L2(K). Since Iw is injective on
L2(K), Iw : V → IwV is an isomorphism; let Bw be its inverse. Let also Πw be the orthogonal projection
to IwV . For w̃ close to w as in the theorem, set B]

w̃ := Ew̃Qw̃ +BwΠw. Then

(4.27) B]
w̃Iw̃g = (Id +R]w̃)g,
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where R]w̃ := Rw̃ + BwΠwIw̃ is compact. We claim that Id + R]w̃ is injective for w̃ = w. Indeed, assume
(Id + R]w)g = 0. Then (Id + Rw)g + BwΠwIwg = 0. The first term is in V ⊥; the second one is in V ,
therefore they are both zero. Thus g ∈ V , andBwΠwIwg = 0. By the definition ofBw and Πw, this implies
g = 0. Therefore, Id + R]w is injective, and actually invertible in L2(K). This property is preserved under
small Ck perturbations of w, k � 1, as discussed above, with a uniformly bounded norm. The statement of
the theorem now follows directly from (4.27). �

Theorem 4.3 and Theorem 4.2 imply the following generic uniqueness result.

Corollary 4.4. Let K and Ω be as in Theorem 4.3. For some k � 1, there is an open dense set of pairs
(w1, w2) in Ck(Ω) so that the corresponding operator I is injective on E ′(Ω), and satisfies the stability
estimate (4.20) with a locally uniform constant.

Remark 4.2. If w2 6= 0 we have corollaries similar to Corollary 4.1 and Corollary 4.3 that we will not
formulate.

5. THE NON-LINEAR IDENTIFICATION PROBLEM

Let (a, f) and (ã, f̃) be two attenuation-source pairs. We will denote functions and operators related to
(ã, f̃) by placing a tilde over them. The difference v := ũ− u of the solutions of (2.1) solves

(5.1) (θ · ∂x + ã)v = δf − uδa, v|θ·x�0 = 0,

where

(5.2) δa := ã− a, δf := f̃ − f.
Therefore,

(5.3) Xãf̃ −Xaf = Iwδa+Xãδf,

where Iw is the weighted X-ray transform with weight

(5.4) w = −e−Bãu.
We used here the obvious generalization of (2.2) for sources f dependent on θ as well, see the remark
following (2.3). If we replace ã on the right with a, then we get the linearization formula of Proposition 3.1,
as we should.

5.1. A summary of the properties of the linearization δXa,f . We are in the situation of the previous
section with

(5.5) g1 = δa, g2 = δf, w1 = −e−Bãu, w2 = e−Bã.

If δa, δf are given by (5.2), then (4.7) is a non-linear equation, of course. If we treat them as independent
(of a, ã, f , f̃ ) functions then we have the linear problem that we analyzed above. Then

(5.6) W = e−Bãe−JBãW0, W0 := (u− Ju),

see (4.5). The characteristic variety Σ in this case is given by

(5.7) Σ =
{
u(x, ξ⊥/|ξ|) = u(x,−ξ⊥/|ξ|)

}
.

The Hamiltonian p0 is then given by (4.12). Since an elliptic factor does not change the zero bicharacteritics,
just their parameterization, the zero bicharacteristics are then given by the following Hamiltonian

(5.8) H(x, ξ) = (u(x, θ)− u(x,−θ))
∣∣
θ=ξ⊥/|ξ|.

Recall that u is the solution of (2.1).
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One important improvement in this case is due to the fact thatw2 > 0. Let supp δa ⊂ K1, supp δf ⊂ K2,
with K1,2 compact sets. We can therefore use Corollary 4.1 and Corollary 4.3 to weaken the non-trapping
condition to the requirement that only K1 is non-trapping. If, in addition, u 6= 0 on K1 \K2, see (2.1), then
it is enough to ask K1 ∩K2 to be non-trapping.

FIGURE 1. The zeros (x, θ) of W are characterized by the property that the attenuated
integrals of f from x in the directions θ and −θ are equal. The conormals ξ to such θ are
the characteristic ones. If ∂θ⊥W0(x, θ) 6= 0, then there is a smooth ray through x tangent
to θ.

We will summarize the properties of the rays, see Definition 4.1, in this case. Let I be the linear operator
defined in (4.1) with weights w1 and w2 as in (5.5) but g1 = δa and g2 = δf considered as independent
functions. Notice that the rays depend on a and f only. On the other hand, ã, f̃ affect the weights in I.

• For any x there is at least one ray through it which might be a point.
• The rays may not be smooth. Given (x, θ) ∈ Rn × S1, there is a smooth ray through x in the

direction of θ if and only if W0(x, θ) = 0 and ∂θ⊥W0(x, θ) 6= 0.
• When a = 0, we have θ · ∂xW0 = 2f , and then the condition f(x) 6= 0 is sufficient for P to be of

real principal type at (x, ξ), ∀ξ.
• A compact set K ⊂ R2 is called non-trapping, if all rays eventually leave K.
• Assume here and below that I is restricted to pairs such that supp δa ⊂ K1, supp δf ⊂ K2, with
K1,2 compact sets. If K1 is non-trapping, then I, has a finite dimensional kernel, smooth enough if
Bã and u are smooth enough near K. Also, (4.19) holds.
• If I is injective (on E ′(K1) × E ′(K2)), then it is stable, as well, with a loss of one derivative, i.e.,

(4.20) holds. If in addition K1 has a pseudo-convex neighborhood, then the injectivity is preserved
under a small enough perturbation with a uniform stability estimate (4.20).
• If W0(x0, θ) = 0 implies ∂θ⊥W0(x0, θ) 6= 0 for all θ, then I is injective (and stable) restricted to

functions supported in some neighborhood of x0.
• If K1 is non-trapping, and Bã and u are analytic in a neighborhood of K1 ∪K2, then I is injective

(and stable).

5.2. Uniqueness and stability results. Our first main result about the identification problem is the follow-
ing theorem. Recall that the requirement on Ω to be pseudo-convex implies that K is non-trapping. We
also recall that u is defined by (2.2) as an attenuated integral of f . Given (aj , fj), we denote by uj the
corresponding u, j = 0, 1, 2.

Theorem 5.1. Let K1,2 ⊂ R2 be compact sets and let Ω ⊃ K1 ∪ K2 be open. Let a0, f0 be of compact
support so that Ba0 and u0 are in Ck(Ω × S1). Assume that K1 ⊂ Ω1, and the latter is an open set
pseudoconvex w.r.t. the Hamiltonian H defined in (5.8), related to a0 and f0. Let a0, f0 be such that
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δXa0,f0 , see Proposition 3.1, is injective on K1 × K2. Then if k � 1, there exists ε > 0 so that for any
(a1, f1), (a2, f2) with aj − a0 ∈ Ck and fj − f0 ∈ Ck supported in K1 and K2, respectively, satisfying

(5.9) ‖B(aj − a0)‖Ck(Ω̄×S1) + ‖uj − u0‖Ck(Ω̄×S1) ≤ ε, j = 1, 2,

there exist constants C > 0, µ ∈ (0, 1) so that

(5.10) ‖a1 − a2‖L∞(K1) + ‖f1 − f2‖L∞(K2) ≤ C‖Xa1f1 −Xa2f2‖µL∞(Z).

Proof. By (5.3), we have

Xa2f2 −Xa1f1 = −Ie−Ba1u1δa+Xa1δf +R

= δXa1,f1(δa, δf) +R,
(5.11)

where

(5.12) R = I(e−Ba1−e−Ba2 )u1
δa+ (Xa2 −Xa1)δf,

and δa = a2 − a1, δf = f2 − f1. Next,

‖R‖L∞ ≤ C‖B(a2 − a1)‖L∞(Ω×S1)‖a2 − a1‖L∞(K1)

+ C‖B(a2 − a1)‖L∞(Ω×S1)‖f2 − f1‖L∞(K2)

≤ C ′
(
‖δa‖2L∞(K1) + ‖δf‖2L∞(K2)

)
,

(5.13)

where C ′ depends on an a priori bound of ‖f1‖L∞(Ω) which can always be found depending on a0, f0, ε; by
(5.9).

We will apply [32, Theorem 2]. Set A(a, f) = Xaf . Set also B1 = L∞(K1)× L∞(K2), B2 = L∞(Z).
Then A : B1 → B2 is continuous. By (5.11) and (5.13), A is differentiable at (a1, f1) with a quadratic
estimate of the remainder.

By assumption, Ba0|Ω̄×S1 and the solution u0 of (2.1) related to a0, f0 belong to Ck. Since aj − a0 ∈
Ck0 (K1) and fj − f0 ∈ Ck0 (K2), we also get the same for Baj and uj , j = 1, 2. Moreover, by (5.9), Baj
and uj , j = 1, 2 are O(ε) perturbations of Ba0 and u0 in Ck(Ω̄× S1). For k � 1, we apply Theorem 4.3,
see also Remark 4.2, to conclude that δXa1,f1 is still injective, satisfying a stability estimate (4.20) with a
constant C independent of a1, f1. Take s > 1 in (4.20), for example, s = 3/2, to get

‖δa‖L∞(K1) + ‖δf‖L∞(K2) ≤ C‖δXa1,f1(δa, δf)‖H3(Z).

Based on that, we set
B′1 = B1 = L∞(K1)× L∞(K2), B′2 = H3(Z).

Then we have the following interpolation estimate

‖h‖B′2 ≤ C‖h‖
µ2
L2‖h‖1−µ2Hs ≤ C ′‖h‖µ2B2‖h‖

1−µ2
B′′2

,

where B′′2 = Hs(Z) and s = 3/(1− µ2), µ2 ∈ (0, 1). If we take µ2 ∈ (1/2, 1), we have all the conditions
met to apply [29, Theorem 2]. We therefore get that if k � 6 (k needs to satisfy both k > 6 and the
requirements of Theorem 4.3), the stability estimate (5.10) holds with µ = 1/2. �

Remark 5.1. It is enough to assume that aj and fj , j = 0, 1, 2, satisfy the regularity assumptions, instead of
Baj , uj but that would be more restrictive.

Remark 5.2. The value for µ that we got is µ = 1/2 but that was based on specific, and a bit arbitrary choice
of the interpolation space H6. As shown in [29, Theorem 2], and as can be easily seen from the proof, we
can choose any µ < 1 in (5.10), as close to 1 as we wish, at the expense of increasing k.
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Remark 5.3. It may seem strange that we use L∞ norms in (5.10) instead of more natural ones as in (4.20).
In fact, since we used interpolation estimates in the proof, we have some freedom which norms to use in
(5.10).

5.3. Explicit sufficient condition for local solvability and stability of the Identification Problem. There
are two simple cases where Theorem 5.1 hold under easy to verify conditions.

The first one is when certain analyticity conditions are satisfied.

Corollary 5.1. Let K1,2 ⊂ Ω be as in Theorem 5.1. Let a0, f0 be of compact support so that Ba0 and u0

are analytic in Ω× S1. Then the conclusions of Theorem 5.1 hold.

This corollary implies in a trivial way also local uniqueness, in K, near a generic (dense and open in Ck,
k � 1) set of (a, f). The proof follows immediately from Theorem 4.2.

The second corollary below states local uniqueness and stability in a small enough non-trapping set.

Corollary 5.2. Let x0 ∈ R2 is such that Ba0, u0 are smooth near x0, and either x0 ∈ K2 \ K1, or W0

satisfies (4.25). Then there exists an open set U 3 x0, so that for anyK ⊂ U the conclusions of Theorem 5.1
hold.

Proof. By Corollary 4.2 and the remark after it, if U is small enough, δXa,f is injective on any compact set
K ⊂ U . Then we apply Theorem 5.1. �

5.4. Conditions for smoothness and analyticity of Ba and u. The results above require Ba and u to be
either smooth enough or analytic in some open set Ω. The smoothness, for example, certainly hold if a and
f are smooth enough in Ω but this is too restrictive. The following condition is sufficient.

Proposition 5.1. Let Ω ⊂ R2 be open. Let {cj}Nj=1 be a finite number of Ck (respectively analytic) non-
intersecting curves in R2 \ Ω so that a and f are Ck/analytic in R2 \ {cj}, up to the boundary on either
side of each curve. Assume that each line through Ω intersects every cj transversely. Then Ba, u are in
Ck(Ω× S1), respectively analytic in Ω× S1.

Proof. Near each (x0, θ0) ∈ Ω× S1, Ba, and similarly u, is given by

Ba(x, θ) =

N∑
j=1

∫ αj+1(x,θ)

αj(x,θ)
a(x+ tθ, θ) dt,

where α0 = 0, αN+1 = ∞, and the rest of the αj’s are determined by the intersection points of the ray
x+ tθ with the curves cj . The statement now follows directly from this representation. �

Remark 5.4. We presented the condition above in a form suitable for applications. For C∞, respectively,
analytic regularity of a, f in Ω × S1, it is necessary and sufficient to assume that a and f have the same
regularity in Ω; and a, f , have no C∞, respectively analytic singularities, conormal to some line through Ω.
The necessity follows from standard properties of the Radon transform to recover conormal smooth or ana-
lytic singularities. This condition is sufficient, because of the standard relation between the smooth/analytic
wave front set of Ba or u on one side; and the Schwartz kernel of B and a or f , on the other. We sill skip
the details.

6. FURTHER MICROLOCAL PROPERTIES OF I

Take the Fourier transform of Iw(pθ⊥, θ) w.r.t. p to get

(6.1)
∫
e−iλpIwf(pθ⊥,±θ) dp =

∫
e−iλθ⊥·yw(y,±θ)f(y) dy.
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Set ξ = λθ⊥, λ ≥ 0, to get

(6.2)
∫
R
e−ip|ξ|(Iwf)(pθ⊥,±ξ⊥/|ξ|) dp =

∫
e−iy·ξw(y,±ξ⊥/|ξ|)f(y) dy.

Take the inverse Fourier transform of both sides to get

(6.3) w̄∗(x,±D⊥/|D|)f = (2π)−2

∫
R×R2

ei(x·ξ−p|ξ|)(Iwf)(pξ/|ξ|,±ξ⊥/|ξ|) dp dξ,

where w̄∗(x,±D⊥/|D|) is the ΨDO with amplitude α(x, y, ξ) = w(y,±ξ⊥/|ξ|). The principal symbol is
w(x,±ξ⊥/|ξ|). If w = 1, one can see that we get C|D|I ′1I1f on the right, and f on the left, which is just
one of the inversion formulas for I1.

Apply the described operation to the equation

(6.4) Iw1g1 + Iw2g2 = 0,

compare with (4.7). We get

(6.5) w̄∗1(x,±D⊥/|D|)g1 + w̄∗2(x,±D⊥/|D|)g2 = 0.

This is actually a system, see also (1.3).

Proposition 6.1. Let w1,2 be two smooth weight functions, and let g = (g1, g2) ∈ E ′(Rn). Then

(6.6) Ig ∈ Hs(Z)

if and only if

(6.7)
(
w̄∗1(x,D⊥/|D|) w̄∗2(x,D⊥/|D|)
w̄∗1(x,−D⊥/|D|) w̄∗2(x,−D⊥/|D|)

)
g ∈ Hs−1/2(R2).

Proof. Assume that the l.h.s. of (6.7) is in Hs−1/2. Then the r.h.s. of (6.3) with Iwg replaced by Ig :=
Iw1g1 + Iw2g2 belongs to the same space. Take the Fourier transform of that to get, see also (6.1),

(6.8) 〈λ〉s−1/2

∫
R
e−iλpIg(pθ⊥,±θ) dp ∈ L2

(
R+ × S1, λ dλ dθ

)
.

Since the relation above holds with either choice of the ± sign, we can fix the positive one, and allow λ to
be negative, as well. Therefore, 〈λ〉s−1/2|λ|1/2Fp 7→λI(pθ⊥, θ) ∈ L2

(
R× S1, dλdθ

)
. This easily implies,

see e.g., the proof of [22, Theorem II.5.1], that 〈λ〉sFp 7→λI(pθ⊥, θ) ∈ L2(R× S1), which yields (6.6).
Now, assume (6.6). Reversing the arguments above, we get (6.8). Take inverse Fourier transform w.r.t.

ξ = λθ⊥ to get (6.7). �

Proposition 6.1 reduces the problem of the microlocal invertibility of the FIO I to that of the matrix
valued ΨDO in (6.7) with a principal symbol

(6.9)
(
w1(x, θ) w2(x, θ)
w1(x,−θ) w2(x,−θ)

) ∣∣∣∣
θ=ξ⊥/|ξ|

.

The determinant of the latter is W (x, ξ⊥/|ξ|), see (4.4) and (4.5). An immediate consequence of (6.7)
is the following. For some matrix valued classical ΨDO P̃ with a scalar principal symbol p0(x, ξ) =
W (x, ξ⊥/|ξ|), see (4.12), relation (6.6) implies

(6.10) P̃ g ∈ Hs−1/2(R2).

This also follows from Proposition 4.1.
Assume now that (4.18) is satisfied for some (x0, θ0). Then we can solve the equation W (x, θ) = 0 for

θ ∈ S1 locally to get a smooth function θ(x). Since W is an odd function of θ, the same thing applies
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near the point (x0,−θ0), as well, with a solution −θ(x). This implies that in a conic neighborhood of
(x0,±θ⊥0 ) ∈ Σ, the characteristic manifold Σ is given by ξ⊥/|ξ⊥| = ±θ(x). Set v±j (x) = wj(x,±θ(x)),
j = 1, 2. Then wj(x,±ξ⊥/|ξ|) − v±j (x) vanishes on Σ, and is therefore locally given by p0(x, ξ) times a
smooth function, homogeneous of order 0 in ξ, hence a symbol. This implies that (6.7) can be written as

(6.11)
(
v+

1 (x) v+
2 (x)

v−1 (x) v−2 (x)

)
g + (Q0P̃ +Q−1)g ∈ Hs−1/2(x0, ξ0),

where Q0 and Q−1 are classical ΨDOs of order 0 and −1, respectively. Using (6.10), we get

(6.12) v±1 g1 + v±2 g2 +Q±−1g ∈ H
s−1/2(x0, ξ0),

with Q±−1 of order−1, and the equations with the + and the− sign are actually linearly dependent up to the
lower order term (including the possibility that one of them has zero coefficients). Now, if the assumptions
of Theorem 4.1 are satisfied, (6.6) yields g ∈ Hs−3/2. Then Q±−1g ∈ Hs−1/2, and we get

(6.13) v±1 g1 + v±2 g2 ∈ Hs−1/2(x0, ξ0).

Since the matrix in (6.11) has rank 1, only one of the equations (6.13) is relevant (see also the notion of
polarization set in [9]). This is an improvement over the estimate (4.20), that asserts that (6.6) implies
g1,2 ∈ Hs−3/2, if supp g is supported in a non-trapping compact set. This improvement applies to the linear
combination (6.13) only.

6.1. Applications to the linearized Identification Problem. Let I = δXa,f be the linearization of Xaf ,
see Proposition 3.1. Then wj are given by (5.5). The determinant W can be replaced in the analysis by W0,
see (5.6). Notice that w2 > 0. The discussion above yields the following.

Proposition 6.2. Fix (x0, θ0) ∈ R2 × S1. Let W0(x0, θ0) = 0 and ∂θ⊥W0(x0, θ0) 6= 0. Let

(6.14) v(x) = u(x, θ(x)), for x near x0,

where θ(x) is the unique local solution of W0(x, θ) = 0 with θ(x0, θ0) = θ0, and u is defined by (2.2). Then
if δXa,f (δa, δf) ∈ Hs, we have

(6.15) vδa− δf ∈ Hs−1/2(x0,±θ⊥0 ).

Proof. In this particular case, w1 = −e−Bau, w2 = e−Ba. Under the non-degeneracy assumption on W0,
w2 > 0, and w1 = −uw2. Divide by the elliptic factor w2 in either of the two relations (6.13) to get
(6.15). �

Remark 6.1. Theorem 4.1 says that under the non-trapping condition we can recover WF (f1,2) with a loss
of one derivative, compared to the standard X-ray transform. On the other hand, Proposition 6.2 says that
under the additional mild condition on W , one can recover the wave front set of the linear combination
(6.15) without loss. This has the following implications for the recovery of a and f : we can expect vδa−δf
to be recoverable in a more stable way than either δa or δf .

Remark 6.2. We need to assume that the assumptions of Theorem 4.1 are satisfied just to conclude that
f ∈ Hs−3/2; and then to deduce that Q±−1f ∈ Hs−1/2, see (6.12) and (6.13). If we know a priori that f
has certain regularity, then we can use that fact instead. In applications, it would be natural to assume that
(δa, δf) ∈ L2. Let us assume that the measurements show that δXa,f (δa, δf) ∈ H3/2 (or better). Then we
conclude that vδa − δf ∈ H1, that in particular excludes jump types of singularities at smooth surfaces of
that particular linear combination. There is no need to assume the trapping condition for this argument.
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7. THE RADIAL CASE

As explained in the Introduction, the thorough study of the case of radial a and f is behind the scope of
this work. The purpose of this section is to present a case, where the rays can be easily computed, when
both the linearized map, and the non-linear one have huge kernels if the non-trapping assumption is not
satisfied. So at least in the cases described below, the non-trapping assumptions is not only sufficient but
also necessary for the problem to be “well-behaved”.

7.1. The linearized map for a simple radially symmetric example. We start with perhaps the simplest
example. Let 1B(0,1) be the characteristic function of the unit disk. We study the linearization δX w.r.t.
(a, f) near

(7.1) a = 0, f = 1B(0,1).

We will choose perturbations of those a and f supported in B(0, 1) only. The weight w, see (3.2) or (3.3),
restricted to the unit disk, is given by

(7.2) w(x, θ) = −
√

1− (θ⊥ · x)2 − θ · x.

Then, see (5.6),

(7.3) W0 = −2θ · x.

The Hamiltonian H , up to a constant factor, is as in Example 4.1. Indeed, by (5.8), H = −2x · ξ⊥/|ξ| =
2(x1ξ2 − x2ξ1)/|ξ|. Therefore, |ξ|H/2 is the symbol of

x1D2 − x2D1 = −i∂/∂φ,

where φ is the polar angle in the x space. The bicharacteristics are given by (4.16). In particular, the rays
are the concentric circles |x| = R, R ≥ 0, including the degenerate case x = 0. As before, K ⊂ B(0, 1) is
non-trapping, if and only if K does not contain an entire circle of that kind, see Figure 2.

FIGURE 2. The rays of Example 4.1 in the unit disk and an example of a non-trapping K,
left; and a trapping K, right.

The equation δX(δa, δf) = 0 can then be written as

−
∫
`z,θ

(√
1− (θ⊥ · x)2 + θ · x

)
δads+

∫
`z,θ

δf ds = 0,

where `z,θ is the line through z ∈ θ⊥ in the direction of θ, and ds is the natural measure on it. The integral
over the line `z,−θ would produce the same term with θ · x replaced by −θ · x. Therefore, both the even and
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the odd part w.r.t. θ above vanish:

(7.4) −
∫
`z,θ

√
1− (θ⊥ · x)2δads+

∫
`z,θ

δf ds = 0,

∫
`z,θ

θ · xδads = 0.

The third integral is the X-ray transform of the vector field (δa)x. It is well known that we can only
determine the curl of that, i.e.,

(x1∂2 − x2∂1)δa = 0.

In other words, δa needs to be radial. Then the first term in (7.4) is invariant under rotations of (x, θ), i.e.,
when we consider (x, θ) as points in the unit tangent bundle. Then so is the second term. Apply I ′1 to it, and
we get that |D|−1δf is radial, as well. Then so is δf .

Therefore, the kernel of δX(δa, δf) consists of radial δa and δf that are connected by the first identity in
(7.4). Since the weight there is constant along the lines, using Radon transform notation, Rh(p, ω), we get

(7.5)
√

1− p2Rδa−Rδf = 0.

It follows from the analysis below that there exists an infinite dimensional space of pairs (δa, δf) satisfying
(7.5). Indeed, for any radial δa ∈ C∞0 (B(0, 1)), we can solve (7.5) for δf , and vice versa.

Going back to (7.4), the arguments in the proof of Proposition 6.2 (or its conclusion directly, together
with Remark 6.2) show that δX(δa, δf) ∈ Hs and (δa, δf) ∈ Hs−3/2 imply√

1− |x|2δa− δf ∈ Hs−1/2

in the annulus U := {0 < |x| < 1}; i.e., the singularities of that particular linear combination in U can
be recovered without a derivative loss. Note that for any x ∈ U , the characteristic directions (zeros of W )
are given by θ = ±x⊥/|x|, and the characteristic codirections — by ξ = ±x/|x|. Then the integral of f ,
starting from x, in a characteristic direction θ is exactly

√
1− |x|2. This is the value of u for characteristic

directions, see (5.8) and (6.14), and confirms (6.15).

7.2. The linearized map for a = 0 and f radial has an infinite dimensional kernel. Let now a and f
be general radial smooth functions of compact support. Then the characteristic variety of Example 4.1 and
Section 7

Σ0 = {(x, ξ); x and ξ are collinear}
is included in the characteristic variety Σ in this case but the latter can be larger.

We study now δXa,f for

(7.6) a = 0, f radial.

We also assume that f is smooth and has compact support. With some abuse of notation, we replace f by
f = f(|x|), where f has even smooth extension. By Proposition 3.1,

(7.7) δX0,f (δa, δf) = −IJBfδa+ I0δf,

see (4.6). We restrict δX0,f to radial δa, δf , as well.
We will use Radon type of parameterization for IJBfδa by setting ω = θ⊥. Write

RJBfδa(p, ω) = IJBfδa(pω,−ω⊥) =

∫
δ(p− ω · x)Bf(x, ω⊥)δa(x) dx.

Here δ is the Dirac Delta function, not to be confused with the variation symbol in δa, δf . Since f is radial,
for any rotation U , we have Bf(Ux,Uω⊥) = Bf(x, ω⊥). Since δa is radial as well, we easily get that
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IJBfδa is independent of ω, i.e., IJBfδa = IJBfδa(p). We claim that IJBfδa(p) is an even function of p.
Indeed, set ω = (1, 0). Then

RJBfδa(−p) =

∫
δ(−p− x1)Bf(x, (0, 1))δa(x) dx

=

∫
δ(p+ x1)Bf(x, (0, 1))δa(x) dx because δ is even

=

∫
δ(p− x1)Bf(x, (0, 1))δa(x) dx after the change x1 7→ −x1

= RJBfδa(p).

In the last equation, we also used the fact that f is radial.
To study the kernel of δX0,f , we write, see (7.7),

(7.8) RJBfδa−Rδf = 0,

where, with some change of notation again, R is the classical Radon transform acting on radial functions,
i.e., considered as a map on functions of a single variable. It is easy to see that, see also [14],

Rg(p) = 2

∫ ∞
0

g
(√

p2 + t2
)

dt, p ≥ 0.

It is known, see [22], and can be easily seen that this equation can be written in the form

Rg(p) = 2

∫ ∞
p

(
1− p2

r2

)−1/2

g(r) dr, p ≥ 0.

This an equation of Abel type with explicit inversion given by (see [11, 22])

(7.9) g(r) = − 1

π

∫ ∞
r

(p2 − r2)−1/2 d

dp
Rg(p) dp.

Moreover, the Abel transform R is given by a composition of the cosine Fourier transform Fc and the zero
order Hankel one H0 (see [11]), with a proper normalization, i.e., R = FcH0. If h ∈ C∞(R+) is of
compact support, and admits a smooth even extension, then we get a direct confirmation that the equation
Rg = h has a (unique) solution given by g = H0Fch. Indeed, for such h, Fch has smooth even extension
in the Schwartz class, and then H0Fch is well defined and solves Rg = h.

This shows that the function δ in (7.9) is given by

(7.10) δf(r) = − 1

π

∫ ∞
r

(p2 − r2)−1/2 d

dp
IJBfδa(pω, ω⊥) dp,

see also (7.7). We recall that IJBfδa is independent of ω. We summarize this into the following.

Proposition 7.1. Let f ∈ C∞0 (R2) be radial. Then the linearized map δX0,f (with a = 0) has an infinite
dimensional kernel, including all radial pairs (δa, δf) with δa smooth function of compact support, and δf
given by (7.10).

In other words, besides the inability to recover the singularities (without support restrictions), we actu-
ally have an infinite dimensional kernel. Therefore, in this case, the non-trapping condition is a necessary
condition for the problem to be well posed, as well.
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7.3. Non-uniqueness for the Identification Problem for radial a, f near a = 0. We show next that
not only does the linearized map δXa,f can have an infinite dimensional kernel in the case above, but the
non-linear map (a, f) 7→ Xaf has a rich set of radial pairs with the same image.

Theorem 7.1. Let a ∈ C∞0 and f ∈ C∞0 be radial. Then there exists a radial f0 ∈ C∞0 so that

(7.11) Xaf = X0f0.

Proof. We will work again with the Radon transform parameterization Raf(p, ω) = Xaf(pω,−ω⊥) in-
stead, see (2.5). As above, it is straightforward to check that

Raf(p, ω) = Raf(−p,−ω).

We saw above that Raf(p, ω) is actually independent of ω, and an even function of p. Then for any k =
0, 1, . . . , ∫

Raf(p, ω)pk dp = Ck = const.,

and Ck = 0 if k is odd. Therefore, the integral above is a restriction of the homogeneous polynomial Ck|ξ|k
to the unit sphere. Therefore, Raf ∈ SH , and by the Helgason range characterization theorem, see [14],
(7.11) holds with some f0 ∈ S(R2). By the support theorem, f0 is compactly supported. Since Xaf is
independent of ω, we get that f0 must be radial. �

We can actually make this constructive. By (7.9), writing f0 = f0(r), we get

f0(r) = − 1

π

∫ ∞
r

(p2 − r2)−1/2 d

dp
Xaf(pω,−ω⊥) dp,

recall that Xaf(pω, ω⊥) is independent of ω.

APPENDIX A. I∗b Ia AS A ΨDO

As explained in Section 2, we view Xaf and Iwf as functions on Z, with a natural measure dz there.
Then Xa, and more generally, Iw have well defined transpose (w.r.t. the distribution pairing) and conjugate
(w.r.t. the L2 product) operators X ′a and X∗a ; and I ′w, I∗w, respectively. Below, we use the notation θ⊥ for the
line given by s 7→ pθ⊥.

Proposition A.1.

I ′wψ(x) =

∫
S1

w(x, θ)ψ(x− (x · θ)θ, θ) dθ.

Proof. For φ ∈ C∞0 (R2), ψ ∈ C∞0 (Z), we have∫
Z

(Iwφ)ψ dz =

∫
Z

∫
R
w(z + sθ, θ)φ(z + sθ)ψ(z, θ) ds dz.

Set x = z + sθ, z ∈ θ⊥. For any fixed θ, (z, s) 7→ x is a diffeomorphism with a Jacobian equal to 1. Its
inverse is given by

z = x− (x · θ)θ, s = x · θ.
Therefore, ∫

Z
(Iwφ)ψ dz =

∫
S1

∫
R2

w(x, θ)φ(x)ψ(x− (x · θ)θ, θ) dx dθ,

and this proves the proposition. �
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Proposition A.2. For any two smooth functions a and b,

I ′bIaf(x) =

∫ A
(
x, y, x−y|x−y|

)
|x− y|

f(y) dy,

where

(A.1) A(x, y, θ) = b(x, θ)a(y, θ) + b(x,−θ)a(y,−θ).
Moreover, I ′bIa is a classical ΨDO of order −1 with amplitude

(A.2)
π

|ξ|

(
b(x, ξ⊥/|ξ|)a(y, ξ⊥/|ξ|) + b(x,−ξ⊥/|ξ|) a(y,−ξ⊥/|ξ|)

)
,

and principal symbol
π

|ξ|

(
a(x, ξ⊥/|ξ|)b(x, ξ⊥/|ξ|) + a(x,−ξ⊥/|ξ|)b(x,−ξ⊥/|ξ|)

)
.

Proof. By Proposition A.1,

I ′bIaf(x) =

∫
S1

b(x, θ)

∫
a(x− (x · θ)θ + tθ, θ)f(x− (x · θ)θ + tθ) dtdθ

=

∫
S1

b(x, θ)

∫
a(x+ tθ, θ)f(x+ tθ) dt dθ.

Split the t-integral in two parts: for t > 0 and for t < 0, and replace t by −t in the second one to get

I ′bIaf(x) =

∫
S1

b(x, θ)

∫
a(x+ tθ, θ)f(x+ tθ) dtdθ

=

∫
S1

b(x, θ)

∫ ∞
0

a(x+ tθ, θ)f(x+ tθ) dt dθ

+

∫
S1

b(x, θ)

∫ ∞
0

a(x− tθ, θ)f(x− tθ) dt dθ.

(A.3)

Replace −θ by θ in the second integral to get

(A.4) I ′bIaf(x) =

∫
S1

∫ ∞
0

[b(x, θ)a(x+ tθ, θ) + b(x,−θ)a(x+ tθ,−θ)] f(x+ tθ) dt dθ.

Pass to polar coordinates y = x+ tθ, centered at x to finish the proof.
To write I ′bIa as a ΨDO, recall that if the Schwartz kernel of a linear operator is given by K(x, y, (x −

y)/|x− y|), then it is a formal ΨDO with an amplitude given by the Fourier transform of K w.r.t. the third
variable. Therefore, I ′bIa is a formal ΨDO with amplitude∫

eiz·ξ|z|−1A(x, y, z/|z|) dz =

∫
R+×S1

eirθ·ξA(x, y, θ) dr dθ = π

∫
S1

A(x, y, θ)δ(θ · ξ) dθ

=
π

|ξ|

(
A(x, y, ξ⊥/|ξ|) +A(x, y,−ξ⊥/|ξ|)

)
.

We used here the fact that A is an even function of θ and that the inverse Fourier transform of 1 is δ, see also
[16, Theorem 7.1.24]. Since this is a homogeneous function of ξ, with an integrable singularity that can be
cut-off resulting in a smoothing operator, this completes the proof. �

The mapping properties of those operators are well understood even in the more general setting of the
weighted geodesic transform. We summarize those properties below. Recall the definition of the Sobolev
space Hs(Z) in (2.6) first. Given a compact set K ⊂ R2, we also use the notation Hs(K) to denote the
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closed subspace of the distributions in Hs(R2) supported in K, see [35, Chapter 4.5], where those spaces
are denoted by Hs

K(M).

Proposition A.3. For any compact set K ⊂ R2, and any s ≥ 0,

(A.5) Iw : Hs−1/2(K) 7→ Hs
comp(Z), I ′w : Hs−1/2

comp (Z) 7→ Hs
loc(R

2)

are continuous.

Proof. We follow the proof of Proposition 5.1 in [33]. We can always assume that w is extended smoothly
for x outside K so that it vanishes outside a small neighborhood of K. Then we can replace R2 and Z by
compact manifolds, as explained in Section 2, and work with f ∈ C∞(T2).

Note first that I ′bIa : Hs → Hs+1. Next, if s ≥ 0 is an integer, for f supported in K,

(A.6) ‖Iwf‖2Hs(Z) ≤ C
∑
j≤2s

∣∣∣ (∂jpIwf, Iwf)L2(Z)

∣∣∣ = C
∑
j≤2s

∣∣∣ (I∗w∂jpIwf, f)L2(K)

∣∣∣.
The term ∂jpIwf is a sum of weighted X-ray transforms of derivatives of f up to order 2s, and therefore,
I∗w∂

j
pIw a ΨDO of order 2s− 1. This easily implies that for f ∈ C∞(T2),

‖Iwf‖2Hs(Z) ≤ C‖f ||
2
Hs−1/2(K)

.

The case of general s ≥ 0 follows by interpolation. The estimate then holds for any f ∈ Hs−1/2(T2), and
therefore, for any f ∈ Hs−1/2(K), as well.

To prove the second estimate, notice first that ∂αI∗wψ is a sum of operators of the kind I∗w but with
different weights applied to p-derivatives of ψ up to order |α|. Then for any integer j ≥ 0,

|(f, I∗a∂jpψ)L2 | = |(Iaf, ∂jpψ)L2(Z)| ≤ C‖f‖L2‖ψ‖Hj−1/2 .

This proves the second estimate for s = 0, 1, . . . . For general s ≥ 0 we use interpolation. �
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