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Abstract. The boundary rigidity problem consists of determining a compact, Riemann-
ian manifold with boundary, up to isometry, by knowing the boundary distance function
between boundary points. Lens rigidity consists of determining the manifold, by knowing
the scattering relation which measures, besides the travel times, the point and direction of
exit of a geodesic from the manifold if one knows its point and direction of entrance. Tensor
tomography is the linearization of boundary rigidity and length rigidity. It consists of de-
termining a symmetric tensor of order two from its integral along geodesics. In this paper
we survey some recent results obtained on these problems using methods from microlocal
analysis, in particular analytic microlocal analysis. Although we use the distribution version
of analytic microlocal analysis, many of the ideas were based on the pioneer work of the
Sato school of microlocal analysis of which Professor Kawai was a very important member.

1. Boundary Rigidity and Tensor Tomography

Let (M,∂M, g) be a compact Riemannian manifold with boundary. Denote by ρg the
distance function in the metric g. The boundary rigidity problem consists of whether ρg(x, y),
known for all x, y on ∂M , determines the metric uniquely. It is clear that any isometry which
is the identity at the boundary will give rise to the same distance functions on the boundary.
Therefore, the natural question is whether this is the only obstruction to unique identifiability
of the metric. The boundary distance function only takes into account the shortest paths
and it is easy to find counterexamples where ρg does not carry any information about certain
open subset of M , so one needs to pose some restrictions on the metric. One such condition
is simplicity of the metric.

Definition 1. We say that the Riemannian metric g is simple in M , if ∂M is strictly convex
w.r.t. g, and for any x ∈M , the exponential map expx : exp−1

x (M) →M is a diffeomorphism.

By strictly convex we mean convex (any two points are connected by a unique minimizing
geodesic), and the second fundamental form on the boundary is positive.

Michel [18] conjectured that a simple metric g is uniquely determined, up to an action of
a diffeomorphism fixing the boundary, by the boundary distance function ρg(x, y) known for
all x and y on ∂M .

This problem also arose in geophysics in an attempt to determine the inner structure of
the Earth by measuring the travel times of seismic waves. It goes back to Herglotz [15] and
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Wiechert and Zoeppritz [38] who considered the case of a radial metric conformal to the
Euclidean metric. Although the emphasis has been in the case that the medium is isotropic,
the anisotropic case has been of interest in geophysics since the Earth is anisotropic. It has
been found that even the inner core of the Earth exhibits anisotropic behavior [8].

Unique recovery of g (up to an action of a diffeomorphism fixing the boundary) from the
boundary distance function is known for simple metrics conformal to each other [10], [6],
[19], [20], [21], [4], for flat metrics [13], for locally symmetric spaces of negative curvature [5].
In two dimensions it was known for simple metrics with negative curvature [9] and [22], and
recently it was shown in [24] for simple metrics with no restrictions on the curvature. In [29],
the authors proved a local result for metrics in a small neighborhood of the Euclidean one.
This result was used in [17] to prove a semiglobal solvability result assuming that one metric
is close to the Euclidean and the other has bounded curvature. Burago and Ivanov have
recently extended the latter result; they show that metrics close to the Euclidean metric are
boundary rigid [7].

It is known [25], that a linearization of the boundary rigidity problem near a simple metric
g is given by the following integral geometry problem: recover a symmetric tensor of order
2, which in any coordinates is given by f = (fij), by the geodesic X-ray transform

Igf(γ) =

∫
fij(γ(t))γ̇

i(t)γ̇j(t) dt

known for all geodesics γ in M . It can be easily seen that Igdv = 0 for any vector field v
with v|∂M = 0, where dv denotes the symmetric differential

(1.1) [dv]ij =
1

2
(∇ivj +∇jvi) ,

and ∇kv denote the covariant derivatives of the vector field v. This is the linear version of
the fact that ρg does not change on (∂M)2 := ∂M×∂M under an action of a diffeomorphism
as above. The natural formulation of the linearized problem is therefore that Igf = 0 implies
f = dv with v vanishing on the boundary. We will refer to this property as s-injectivity of
Ig. More precisely, we have.

Definition 2. We say that Ig is s-injective in M , if Igf = 0 and f ∈ L2(M) imply f = dv
with some vector field v ∈ H1

0 (M).

Any symmetric tensor f ∈ L2(M) admits an orthogonal decomposition f = f s +dv into a
solenoidal and potential parts with v ∈ H1

0 (M), and f s divergence free, i.e., δf s = 0, where
δ is the adjoint operator to −d given by [δf ]i = gjk∇kfij [25]. Therefore, Ig is s-injective, if
it is injective on the space of solenoidal tensors.

The inversion of Ig is a problem of independent interest in integral geometry, also called
tensor tomography. We first survey the recent results on this problem. S-injectivity, re-
spectively injectivity for 1-tensors (1-forms) and functions is known, see [25] for references.
S-injectivity of Ig was proved in [23] for metrics with negative curvature, in [25] for metrics
with small curvature and in [27] for Riemannian surfaces with no focal points. A conditional
and non-sharp stability estimate for metrics with small curvature is also established in [25].
In [30], we proved stability estimates for s-injective metrics (see (1.5) below) and sharp es-
timates about the recovery of a 1-form f = fjdx

j and a function f from the associated Igf
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which is defined by

Igf(γ) =

∫
fi(γ(t))γ̇

i(t)) dt.

The stability estimates proven in [30] were used to prove local uniqueness for the boundary
rigidity problem near any simple metric g with s-injective Ig.

Similarly to [36], we say that f is analytic in the set K (not necessarily open), if it is real
analytic in some neighborhood of K.

The results that follow in this section are based on [32]. The first main result we discuss
is about s-injectivity for simple analytic metrics.

Theorem 1. Let g be a simple, real analytic metric in M . Then Ig is s-injective.

Sketch of the proof. Note that a simple metric g in M can be extended to a simple metric in
some M1 with M b M1. A simple manifold is diffeomorphic to a (strictly convex) domain
Ω ⊂ Rn with the Euclidean coordinates x in a neighborhood of Ω and a metric g(x) there.
For this reason, it is enough to prove the results of this section for domains Ω in Rn provided
with a Riemannian metric g.

The proof of Theorem 1 is based on the following. For smooth metrics, the normal operator
Ng = I∗g Ig is a pseudodifferential operator with a non-trivial null space which is given by

(1.2) (Ngf)kl(x) =
2√

det g

∫
f ij(y)

ρg(x, y)n−1

∂ρg

∂yi

∂ρg

∂yj

∂ρg

∂xk

∂ρg

∂xl
det

∂2(ρ2
g/2)

∂x∂y
dy, x ∈ Ω.

In the case that the metric g is real-analytic, Ng is an analytic pseudodifferential operator
with a non-trivial kernel. We construct an analytic parametrix, using the analytic pseudo-
differential calculus in [36], that allows us to reconstruct the solenoidal part of a tensor field
from its geodesic X-ray transform, up to a term that is analytic near Ω. If Igf = 0, we show

that for some v vanishing on ∂Ω, f̃ := f − dv must be flat at ∂Ω and analytic in Ω̄, hence
f̃ = 0. This is similar to the known argument that an analytic elliptic pseudodifferential op-
erator resolves the analytic singularities, hence cannot have compactly supported functions
in its kernel. In our case we have a non-trivial kernel, and complications due to the presence
of a boundary, in particular a lost of one derivative. For more details see [32]. �

As shown in [30], the s-injectivity of Ig for analytic simple g implies a stability estimate
for Ig. In next theorem we show something more, namely that we have a stability estimate
for g in a neighborhood of each analytic metric, which leads to stability estimates for generic
metrics.

As above, let M1 c M be a compact manifold which is a neighborhood of M and g extends
as a simple metric there. We always assume that our tensors are extended as zero outside M ,
which may create jumps at ∂M . Define the normal operator Ng = I∗g Ig, where I∗g denotes
the operator adjoint to Ig with respect to an appropriate measure. We showed in [30] that
Ng is a pseudo-differential operator in M1 of order −1.

We introduce the norm ‖·‖H̃2(M1) of Ngf in M1 ⊃M in the following way. Choose χ ∈ C∞
0

equal to 1 near ∂M and supported in a small neighborhood of ∂M and let χ =
∑J

j=1 χj

be a partition of χ such that for each j, on suppχj we have coordinates (x′j, x
n
j ), with xn

j a
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normal coordinate. Set

(1.3) ‖f‖2
H̃1 =

∫ J∑
j=1

χj

(
n−1∑
i=1

|∂xi
j
f |2 + |xn

j ∂xn
j
f |2 + |f |2

)
dx,

(1.4) ‖Ngf‖H̃2(M1) =
n∑

i=1

‖∂xiNgf‖H̃1 + ‖Ngf‖H1(M1).

In other words, in addition to derivatives up to order 1, ‖Ngf‖H̃2(M1) includes also second
derivatives near ∂M but they are realized as first derivatives of ∇Ngf tangent to ∂M .

The reason to use the H̃2(M1) norm, instead of the stronger H2(M1) one, is that this
allows us to work with f ∈ H1(M), not only with f ∈ H1

0 (M), since for such f , extended
as 0 outside M , we still have that Ngf ∈ H̃2(M1), see [30]. On the other hand, f ∈ H1(M)

implies Ngf ∈ H̃2(M1) despite the possible jump of f at ∂M .
Our stability estimate for the linearized inverse problem is as follows:

Theorem 2. There exists k0 such that for each k ≥ k0, the set Gk(M) of simple Ck(M)
metrics in M for which Ig is s-injective is open and dense in the Ck(M) topology. Moreover,
for any g ∈ Gk(M),

(1.5) ‖f s‖L2(M) ≤ C‖Ngf‖H̃2(M1), ∀f ∈ H1(M),

with a constant C > 0 that can be chosen locally uniform in Gk(M) in the Ck(M) topology.

Of course, Gk(M) includes all real analytic simple metrics in M , according to Theorem 1.

Sketch of the proof. The proof of the basic estimate (1.5) is based on the following ideas. For
g of finite smoothness, one can still construct a parametrix Qg of Ng as above that allows us
to reconstruct f s from Ngf up to smoothing operator terms. This is done in a way similar to
that in [30] in two steps: first we invert Ng modulo smoothing operators in a neighborhood
M1 of M , and that gives us f s

M1
, i.e., the solenoidal projection of f but associated to the

manifold M1. Next, we compare f s
M1

and f s and show that one can get the latter from the
former by an operator that loses one derivative. This is the same construction as in the proof
of Theorem 1 above but the metric is only Ck, k � 1.

After applying the parametrix Qg, the equation for recovering f s from Ngf is reduced to
solving the Fredholm equation

(1.6) (Sg +Kg)f = QgNgf, f ∈ SgL
2(M)

where Sg is the projection to solenoidal tensors, similarly we denote by Pg the projection
onto potential tensors. Here, Kg is a compact operator on SgL

2(M). We can write this as
an equation in the whole L2(M) by adding Pgf to both sides above to get

(1.7) (I +Kg)f = (QgNg + Pg)f.

Then the solenoidal projection of the solution of (1.7) solves (1.6). A finite rank modification
of Kg above can guarantee that I + Kg has a trivial kernel, and therefore is invertible, if
and only if Ng is s-injective. The problem then reduces to that of invertibility of I + Kg.
The operators above depend continuously on g ∈ Ck, k � 1. Since for g analytic, I +Kg is
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invertible by Theorem 1, it would still be invertible in a neighborhood of any analytic g, and
estimate (1.5) is true with a locally uniform constant. Analytic (simple) metrics are dense
in the set of all simple metrics, and this completes the sketch of the proof of Theorem 2. For
more details see [32]. �

The analysis of Ig can also be carried out for symmetric tensors of any order, see e.g.,
[25] and [26]. Since we are motivated by the boundary rigidity problem, and to simplify the
exposition, we study only tensors of order 2.

Theorem 2 and especially estimate (1.5) allow us to prove the following local generic
uniqueness result for the non-linear boundary rigidity problem.

Theorem 3. Let k0 and Gk(M) be as in Theorem 2. There exists k ≥ k0, such that for
any g0 ∈ Gk, there is ε > 0, such that for any two metrics g1, g2 with ‖gm − g0‖Ck(M) ≤ ε,
m = 1, 2, we have the following:

(1.8) ρg1 = ρg2 on (∂M)2 implies g2 = ψ∗g1

with some Ck+1(M)-diffeomorphism ψ : M →M fixing the boundary.

Sketch of the proof. We prove Theorem 3 by linearizing and using Theorem 2, and especially
(1.5), see also [30]. This requires first to pass to special semigeodesic coordinates related to
each metric in which gin = δin, ∀i. We denote the corresponding pull-backs by g1, g2 again.
Then we show that if g1 and g2 have the same distance on the boundary, then g1 = g2 on
the boundary with all derivatives. As a result, for f := g1 − g2 we get that f ∈ C l

0(Ω̄) with
l� 1, if k � 1; and fin = 0, ∀i. Then we linearize to get

‖Ng1f‖L∞(Ω1) ≤ C‖f‖2
C1 ,

where Ω1 ⊃ Ω̄ is as above. Combine this with (1.5) and interpolation estimates, to get
∀µ < 1,

‖f s‖L2 ≤ C‖f‖1+µ
L2 .

One can show that tensors satisfying fin = 0 also satisfy ‖f‖L2 ≤ C‖f s‖H2 , and using this,
and interpolation again, we get

‖f‖L2 ≤ C‖f‖1+µ′

L2 , µ′ > 0.

This implies f = 0 for ‖f‖ � 1. Note that the condition f ∈ C l
0(Ω̄) is used to make sure

that f , extended as zero in Ω1 \ Ω, is in H l
0(Ω), and then use this fact in the interpolation

estimates. Again, for more details see [32]. �

Finally, in [32] it is proven a conditional stability estimate of Hölder type. A similar
estimate near the Euclidean metric was proven in [37] based on the approach in [29].

Theorem 4. Let k0 and Gk(M) be as in Theorem 2. Then for any µ < 1, there exits k ≥ k0

such that for any g0 ∈ Gk, there is an ε0 > 0 and C > 0 with the property that that for any
two metrics g1, g2 with ‖gm−g0‖C(M) ≤ ε0, and ‖gm‖Ck(M) ≤ A, m = 1, 2, with some A > 0,
we have the following stability estimate

‖g2 − ψ∗g1‖C2(M) ≤ C(A)‖ρg1 − ρg2‖
µ
C(∂M×∂M)

with some diffeomorphism ψ : M →M fixing the boundary.
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Sketch of the proof. To prove Theorem 4, we basically follow the uniqueness proof sketched
above by showing that each step is stable. The analysis is more delicate near pairs of points
too close to each other. An important ingredient of the proof is stability at the boundary,
that is also of independent interest:

Theorem 5. Let g0 and g1 be two simple metrics in Ω, and Γ ⊂⊂ Γ′ ⊂ ∂Ω be two sufficiently
small open subsets of the boundary. Then for some diffeomorphism ψ fixing the boundary,∥∥∂k

xn(ψ∗g1 − g0)
∥∥

Cm(Γ̄)
≤ Ck,m

∥∥ρ2
g1
− ρ2

g0

∥∥
Cm+2k+2

(
Γ′×Γ′

),
where Ck,m depends only on Ω and on a upper bound of g0, g1 in Cm+2k+5(Ω̄).

Theorem 4 can be used to obtain stability near generic simple metrics for the inverse
problem of recovering g from the hyperbolic Dirichlet-to-Neumann map Λg. It is known that
g can be recovered uniquely from Λg, up to a diffeomorphism as above, see e.g. [3]. This
result however relies on a unique continuation theorem by Tataru [35] and it is unlikely to
provide Hölder type of stability estimate as above. By using the fact that ρg is related to
the leading singularities in the kernel of Λg, we proved a Hölder stability estimate under the
assumptions above, relating g and Λg. We refer to [31] for details. �

2. Lens rigidity for a class of non-simple manifolds

Suppose we have a Riemannian metric in Euclidean space which is the Euclidean metric
outside a compact set. The inverse scattering problem for metrics is to determine the Rie-
mannian metric by measuring the scattering operator (see [14]). A similar obstruction to
the boundary rigidity problem occurs in this case with the diffeomorphism ψ equal to the
identity outside a compact set. It was proven in [14] that from the wave front set of the
scattering operator, one can determine, under some conditions on the metric including non-
trapping, the scattering relation on the boundary of a large ball. This uses high frequency
information of the scattering operator. In the semiclassical setting Alexandrova [1], [2] has
shown for a large class of operators that the scattering operator associated to potential and
metric perturbations of the Euclidean Laplacian is a semiclassical Fourier integral operator
that quantizes the scattering relation. The scattering relation maps the point and direction
of a geodesic entering the manifold to the point and direction of exit of the geodesic. As
mentioned in the previous section, the boundary rigidity problem only takes into account
the shortest paths. For non-simple manifolds in particular, if we have conjugate points or
the boundary is not strictly convex, we need to look at the behavior of all the geodesics and
the scattering relation encodes this information. We proceed to define in more detail the
scattering relation and the lens rigidity problem and state our results. We note that we also
consider the case of incomplete data, that is when we don’t have information about all the
geodesics entering the manifold. More details can be found in [33], [34].

Denote by SM = {(x, ξ) ∈ TM ; |ξ| = 1} the unit sphere bundle and set

(2.1) ∂±SM = {(x, ξ) ∈ ∂SM ; ±〈ν, ξ〉 < 0} ,
where ν is the unit interior normal, 〈·, ·〉 and stands for the inner product. The scattering
relation

(2.2) Σ : ∂−SM → ∂+SM



BOUNDARY AND LENS RIGIDITY 7

is defined by Σ(x, ξ) = (y, η) = Φ`(x, ξ), where Φt is the geodesic flow, and ` > 0 is the first
moment, at which the unit speed geodesic through (x, ξ) hits ∂M again. If such an ` does
not exists, we formally set ` = ∞ and we call the corresponding initial condition and the
corresponding geodesic trapping. This defines also `(x, ξ) as a function ` : ∂−SM → [0,∞].
Note that Σ and ` are not necessarily continuous.

It is convenient to think of Σ and ` as defined on the whole ∂SM with Σ = Id and ` = 0
on ∂+SM .

We parametrize the scattering relation in a way that makes it independent of pulling it
back by diffeomorphisms fixing ∂M pointwise. Let κ± : ∂±SM → B(∂M) be the orthogonal
projection onto the (open) unit ball tangent bundle that extends continuously to the closure
of ∂±SM . Then κ± are homeomorphisms, and we set

(2.3) σ = κ+ ◦ Σ ◦ κ−1
− : B(∂M) −→ B(∂M).

According to our convention, σ = Id on ∂(B(∂M)) = S(∂M). We equip B(∂M) with the
relative topology induced by T (∂M), where neighborhoods of boundary points (those in
S(∂M)) are given by half-neighborhoods, i.e., by neighborhoods in T (∂M) intersected with

B(∂M).
It is possible to define σ in a way that does not require knowledge of g|T (∂M) by thinking

of any boundary vector ξ as characterized by its angle with ∂M and the direction of its
tangential projection. Let D be an open subset of B(∂M). A priori, the latter depends on
g|T (∂M). By the remark above, we can think of it as independent of g|T (∂M) however.

The lens rigidity question we study is the following:

Given M and D, do σ and `, restricted to D, determine g uniquely, up to a pull back of
a diffeomorphism that is identity on ∂M?

The answer to this question, even when D = B(∂M), is negative, see [12]. The known
counter-examples are trapping manifolds.

The boundary rigidity problem and the lens rigidity one are equivalent for simple metrics.

2.1. Main assumptions.

Definition 3. We say that D is complete for the metric g, if for any (z, ζ) ∈ T ∗M there
exists a maximal in M , finite length unit speed geodesic γ : [0, l] → M through z, normal to
ζ, such that

{(γ(t), γ̇(t)); 0 ≤ t ≤ l} ∩ S(∂M) ⊂ D,(2.4)

there are no conjugate points on γ.(2.5)

We call the Ck metric g regular, if a complete set D exists, i.e., if B(∂M) is complete.

If z ∈ ∂M and ζ is conormal to ∂M , then γ may reduce to one point.

Topological Condition (T): Any path in M connecting two boundary points is ho-
motopic to a polygon c1 ∪ γ1 ∪ c2 ∪ γ2 ∪ · · · ∪ γk ∪ ck+1 with the properties that for any
j,

(i) cj is a path on ∂M ;
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(ii) γj : [0, lj] → M is a geodesic lying in M int with the exception of its endpoints and is
transversal to ∂M at both ends; moreover, κ−(γj(0), γ̇j(0)) ∈ D;

Notice that (T) is an open condition w.r.t. g, i.e., it is preserved under small C2 pertur-
bations of g. To define the CK(M) norm below in a unique way, we choose and fix a finite
atlas on M .

2.2. Results about the linear problem. We refer to [33] for more details about the
results in this subsection. It turns out that a linearization of the lens rigidity problem is
again the problem of s-injectivity of the ray transform I. Here and below we sometimes drop
the subscript g. Given D as above, we denote by ID (or Ig,D) the ray transform I restricted
to the maximal geodesics issued from (x, ξ) ∈ κ−1

− (D).
The first result of this subsection generalizes Theorem 1.

Theorem 6. Let g be an analytic, regular metric on M . Let D be complete and open. Then
ID is s-injective.

Sketch of the proof. Since we know integrals over a subset of geodesics only, this creates
difficulties with cut-offs in the phase variable that cannot be analytic. For this reason, the
proof of Theorem 6 is different than that of Theorem 1.

Let g be an analytic regular metrics in M , and let M1 c M be the manifold where g
is extended analytically. There is an analytic atlas in M , and ∂M can be assumed to be
analytic, too. In other words, now (M,∂M, g) is a real analytic manifold with boundary.
We denote by A(M) (respectively A(M1)) the set of analytic functions on M (respectively
M1). Next, f s

M1
denotes the solenoidal part of the tensor f , extended as zero to M1, in the

manifold M1.
The main step is to show that IDf = 0 implies f s ∈ A(M). In order to do that one shows

that f s
M1

∈ A(M1). Let us first notice, that in M1 \M , f s
M1

= −dvM1 , where vM1 satisfies
δdvM1 = 0 in M1 \M , v|∂M1 = 0 since f = 0 in M1 \M . Therefore, vM1 is analytic up to
∂M1. Therefore, we only need to show that f s

M1
is analytic in the interior of M1. Below,

WFA(f) stands for the analytic wave front set of f , see [28, 36].
The crucial point is the following microlocal analytic regularity result.

Proposition 1. Let γ0 be a fixed maximal geodesic in M with endpoints on ∂M , without
conjugate points, and let Igf(γ) = 0 for γ ∈ neigh(γ0). Let g be analytic in neigh(γ0). Then

(2.6) N∗γ0 ∩WFA(f s
M1

) = ∅.

Sketch of the proof. Set f = f s
M1

. Let Uε be a tubular neighborhood of γ0, and x = (x′, xn)
be semigeodesic coordinates in it such that x′ = 0 on γ0. Fix x0 ∈ γ0 ∩M . We can assume
that x0 = 0 and gij(0) = δij. Then we can assume that Uε = {−l1−ε < xn < l2 +ε, |x′| < ε}
with the part of γ0 corresponding to xn 6∈ [−l1, l2] outside M .

Fix ξ0 = ((ξ0)′, 0) with ξ0
n = 0. We will show that

(2.7) (0, ξ0) 6∈ WFA(f).

We choose a local chart for the geodesics close to γ0. Set first Z = {xn = 0; |x′| < 7ε/8},
and denote the x′ variable on Z by z′. Then z′, θ′ (with |θ′| � 1) are local coordinates in
neigh(γ0) determined by (z′, θ′) → γ(z′,0),(θ′,1) where the latter denotes the geodesic through
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the point (z′, 0) in the direction (θ′, 1). Let χN(z′) be a smooth cut-off function equal to 1 for
|z′| ≤ 3ε/4 and supported in Z, also satisfying |∂αχN | ≤ (CN)|α|, |α| ≤ N . Set θ = (θ′, 1),
|θ′| � 1, and multiply

If
(
γ(z′,0),θ

)
= 0

by χN(z′)eiλz′·ξ′ , where λ > 0, ξ′ is in a complex neighborhood of (ξ0)′, and integrate w.r.t.
z′ to get

(2.8)

∫∫
eiλz′·ξ′χN(z′)fij

(
γ(z′,0),θ(t)

)
γ̇i

(z′,0),θ(t)γ̇
j
(z′,0),θ(t) dt dz′ = 0.

Set x = γ(z′,0),θ(t). If θ′ = 0, we have x = (z′, t). By a perturbation argument, for θ′

fixed and small enough, (t, z′) are analytic local coordinates, depending analytically on θ′.
In particular, x = (z′ + tθ′, t) + O(|θ′|) but this expansion is not enough for the analysis
below. Performing a change of variables in (2.8), we get

(2.9)

∫
eiλz′(x,θ′)·ξ′aN(x, θ′)fij(x)b

i(x, θ′)bj(x, θ′) dx = 0

for |θ′| � 1, ∀λ, ∀ξ′, where, for |θ′| � 1, the function (x, θ′) 7→ aN is positive for x in a
neighborhood of γ0, vanishing for x 6∈ Uε, and satisfies the same estimate as χN . The vector
field b is analytic, and b(0, θ′) = θ, aN(0, θ′) = 1.

To clarify the approach, note that if g is Euclidean in neigh(γ0), then (2.9) reduces to∫
eiλ(ξ′,−θ′·ξ′)·xχfij(x)θ

iθj dx = 0,

where χ = χ(x′ − xnθ′). Then ξ = (ξ′,−θ′ · ξ′) is perpendicular to θ = (θ′, 1). This implies
that

(2.10)

∫
eiλξ·xχfij(x)θ

i(ξ)θj(ξ) dx = 0

for any function θ(ξ) defined near ξ0, such that θ(ξ) · ξ = 0. This has been noticed and
used before if g is close to the Euclidean metric (with χ = 1), see e.g., [29]. We will assume
that θ(ξ) is analytic. A simple argument (see e.g. [25, 29]) shows that a constant symmetric
tensor fij is uniquely determined by the numbers fijθ

iθj for finitely many θ’s (actually, for
N ′ = (n + 1)n/2 θ’s); and in any open set on the unit sphere, there are such θ’s. On the
other hand, f is solenoidal. To simplify the argument, assume for a moment that f vanishes
on ∂M . Then ξif̂ij(ξ) = 0. Therefore, combining this with (2.10), we need to choose
N = n(n− 1)/2 vectors θ(ξ), perpendicular to ξ, that would uniquely determine the tensor

f̂ on the plane perpendicular to ξ. To this end, it is enough to know that this choice can be
made for ξ = ξ0, then it would be true for ξ ∈ neigh(ξ0). This way, ξif̂ij(ξ) = 0 and the N
equations (2.10) with the so chosen θp(ξ), p = 1, . . . , N , form a system with a tensor-valued
symbol elliptic near ξ = ξ0. The C∞ ΨDO calculus easily implies the statement of the
lemma in the C∞ category, and the complex stationary phase method below, or the analytic
ΨDO calculus in [36] with appropriate cut-offs in ξ, implies the lemma in this special case
(g locally Euclidean).

The general case is considered in [33], and is based on an application of a complex sta-
tionary phase argument [28] to (2.9) as in [16]. �
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Proposition 1 makes it possible to prove that f s ∈ A(M). We combine this with a bound-
ary determination theorem for tensors, a linear version of Theorem 10 below, to conclude
that then f = 0. �

Next, we formulate a stability estimate in the spirit of Theorem 2. We need first to
parametrize (a complete subset of) the geodesics issued from D in a different way that
would make them a manifold. The parametrization provided by D is inconvenient near the
directions tangent to ∂M .

Let Hm be a finite collection of smooth hypersurfaces in M int
1 . Let Hm be an open subset

of {(z, θ) ∈ SM1; z ∈ Hm, θ 6∈ TzHm}, and let ±l±m(z, θ) ≥ 0 be two continuous functions.
Let Γ(Hm) be the set of geodesics

(2.11) Γ(Hm) =
{
γz,θ(t); l

−
m(z, θ) ≤ t ≤ l+m(z, θ), (z, θ) ∈ Hm

}
,

that, depending on the context, is considered either as a family of curves, or as a point set.
We also assume that each γ ∈ Γ(Hm) is a simple geodesic (no conjugate points).

If g is simple, then one can take a single H = ∂M1 with l− = 0 and an appropriate
l+(z, θ). If g is regular only, and Γ is any complete set of geodesics, then any small enough
neighborhood of a simple geodesic in Γ has the properties listed in the paragraph above and
by a compactness argument one can choose a finite complete set of such Γ(Hm)’s, that is
included in the original Γ.

Given H = {Hm} as above, we consider an open set H′ = {H′
m}, such that H′

m b Hm,
and let Γ(H′

m) be the associated set of geodesics defined as in (2.11), with the same l±m. Set
Γ(H) = ∪Γ(Hm), Γ(H′) = ∪Γ(H′

m).
The restriction γ ∈ Γ(H′

m) ⊂ Γ(Hm) can be modeled by introducing a weight function αm

in Hm, such that αm = 1 on H′
m, and αm = 0 otherwise. More generally, we allow αm to be

smooth but still supported in Hm. We then write α = {αm}, and we say that α ∈ Ck(H), if
αm ∈ Ck(Hm), ∀m.

We consider Iαm = αmI, or more precisely, in the coordinates (z, θ) ∈ Hm,

(2.12) Iαmf = αm(z, θ)

∫ lm(z,θ)

0

〈
f(γz,θ), γ̇

2
z,θ

〉
dt, (z, θ) ∈ Hm.

Next, we set

(2.13) Iα = {Iαm}, Nαm = I∗αm
Iαm = I∗|αm|2I, Nα =

∑
Nαm ,

where the adjoint is taken w.r.t. the measure dµ := |〈ν(z), θ〉| dSz dθ on Hm, dSz dθ being
the induced measure on SM , and ν(z) being a unit normal to Hm.

S-injectivity of Nα is equivalent to s-injectivity for Iα, which in turn is equivalent to
s-injectivity of I restricted to suppα.

Theorem 7.
(a) Let g = g0 ∈ Ck, k � 1 be regular, and let H′ b H be as above with Γ(H′) complete.

Fix α = {αm} ∈ C∞ with H′
m ⊂ suppαm ⊂ Hm. Then if Iα is s-injective, we have

(2.14) ‖f s‖L2(M) ≤ C‖Nαf‖H̃2(M1).
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(b) Assume that α = αg in (a) depends on g ∈ Ck, so that Ck(M1) 3 g → C l(H) 3 αg

is continuous with l � 1, k � 1. Assume that Ig0,αg0
is s-injective. Then estimate (2.14)

remains true for g in a small enough neighborhood of g0 in Ck(M1) with a uniform constant
C > 0.

The theorem above allows us to formulate a generic result:

Theorem 8. Let G ⊂ Ck(M) be an open set of regular Riemannian metrics on M such that
(T) is satisfied for each one of them. Let the set D′ ⊂ ∂SM be open and complete for each
g ∈ G. Then there exists an open and dense subset Gs of G such that Ig,D′ is s-injective for
any g ∈ Gs.

Of course, the set Gs includes all real analytic metrics in G.

Corollary 1. Let R(M) be the set of all regular Ck metrics on M satisfying (T) equipped
with the Ck(M1) topology. Then for k � 1, the subset of metrics for which the X-ray
transform I over all simple geodesics through all points in M is s-injective, is open and
dense in R(M).

2.3. Results about the non-linear lens rigidity problem. Using the results above, we
prove the following about the lens rigidity problem on manifolds satisfying the assumptions
in Section 2.1. More details can be found in [34].

Theorem 9 below says, loosely speaking, that for the classes of manifolds and metrics
we study, the uniqueness question for the non-linear lens rigidity problem can be answered
locally by linearization. This is a non-trivial implicit function type of theorem however
because our success heavily depends on the a priori stability estimate that the s-injectivity
of ID implies; see Theorem 7; and the latter is based on the hypoelliptic properties of ID.
We work with two metrics g and ĝ; and will denote objects related to ĝ by σ̂, ˆ̀, etc.

Theorem 9. Let (M, g0) satisfy the topological assumption (T), with g0 ∈ Ck(M) a regular
Riemannian metric with k � 1. Let D be open and complete for g0, and assume that there
exists D′ b D so that Ig0,D′ is s-injective. Then there exists ε > 0, such that for any two
metrics g, ĝ satisfying

(2.15) ‖g − g0‖Ck(M) + ‖ĝ − g0‖Ck(M) ≤ ε,

the relations

σ = σ̂, ` = ˆ̀ on D
imply that there is a Ck+1 diffeomorphism ψ : M →M fixing the boundary such that

ĝ = ψ∗g.

By Theorem 8, the requirement that Ig0,D′ is s-injective is a generic one for g0. Therefore,
Theorems 9 and 8 combined imply that there is local uniqueness, up to isometry, near a
generic set of regular metrics.

Corollary 2. Let D′ b D, G, Gs be as in Theorem 8. Then the conclusion of Theorem 9
holds for any g0 ∈ Gs.
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2.4. Boundary determination of the jet of g. The first step of the proof of Theorem 9
is to determine all derivatives of g on ∂M . The following theorem is interesting by itself.
Notice that g below does not need to be analytic or generic.

Theorem 10. Let (M, g) be a compact Riemannian manifold with boundary. Let (x0, ξ0) ∈
S(∂M) be such that the maximal geodesic γx0,ξ0 through it is of finite length, and assume that
x0 is not conjugate to any point in γx0,ξ0 ∩ ∂M . If σ and ` are known on some neighborhood
of (x0, ξ0), then the jet of g at x0 in boundary normal coordinates is determined uniquely.

Sketch of the proof of Theorem 10. To make the arguments below more transparent, assume
that the geodesic γ0 issued from (x0, ξ0) hits ∂M for the first time transversally at γ0(l0) = y0,
l0 > 0. Then y0 is the only point on ∂M reachable from (x0, ξ0), and x0, y0 are not conjugate
points on γ0 by assumption. Assume also that γ0 is tangent of finite order at x0. Then there
is a half neighborhood V of x0 on ∂M visible from y0. The latter is not always true if γ0 is
tangent to ∂M of infinite order at x0.

Choose local boundary normal coordinates near x0 and y0, and let g0 be the Euclidean
metric in each of them w.r.t. to the so chosen coordinates. We can then consider a represen-
tation of Σ, denoted by Σ] below, defined locally on Rn−1 × Sn−1, with values on another
copy of the same space. If (x, θ) ∈ Rn−1 × Sn−1, then the associated vector at x ∈ ∂M is
ξ = θ/|θ|g; and Σ](x, θ) = Σ(x, ξ). The same applies to the second component of Σ](x, θ).
Namely, if (y, η) = Σ(x, ξ), then we set ω = η/|η|g0 , then Σ] : (x, θ) 7→ (y, ω). Similarly,
we set `](x, θ) = `(x, ξ). Let also θ0 and ω0 correspond to ξ0 and η0, respectively, where
Σ(x0, ξ0) = (y0, η0).

Set τ(x) := τ(x, y0), where τ is the smooth travel time function localized near x = x0 such
that τ(x0, y0) = l0. Then τ is well defined in a small neighborhood of x0 by the implicit
function theorem and the assumption that x0 and y0 are not conjugate on γ0. In the normal
boundary coordinates x = (x′, xn) near x0, gin = δin, ∀i. Since x0 and y0 are not conjugate,
for η ∈ Sy0M close enough to η0, the map η 7→ x ∈ ∂M is a local diffeomorphism as long as
the geodesic connecting x and y0 is not tangent to ∂M at x. Moreover, that map is known,
being the inverse of Σ. Similarly, the map Sn−1 3 ω 7→ x is a local diffeomorphism and is
also known. Then we know (x,−θ) = Σ](y0,−ω), and we know `](y0,−ω) = `](x, θ) = τ(x).
Then we can recover grad′ τ = −θ′/|θ|g, where the prime stands for tangential projection as

usual. Taking the limit ω → ω0, we recover |θ0|2g = gαβθ
α
0 θ

β
0 . We use again the fact that a

symmetric n × n tensor fij can be recovered by knowledge of fijp
i
kp

j
k for N = n(n + 1)/2

“generic” vectors pk, k = 1, . . . , N ; and such N vectors exist in any open set on Sn−1, see e.g.
[34]. Thus choosing appropriate n(n−1)/2 perturbations of θ0’s, we recover g(x0). Thus, we
recover g in a neighborhood of x0 as well; we can assume that V covers that neighborhood.

Note that we know all tangential derivatives of g in V 3 x0. Then τ solves the eikonal
equation

(2.16) gαβτxατxβ + τ 2
xn = 1.

Next, in V , we know τxα , α ≤ n − 1, we know g, therefore by (2.16), we get τ 2
xn . It is

easy to see that τxn ≤ 0 on the visible part, so we recover τxn there. We therefore know the
tangential derivatives of τxn on ∂M near x0.
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Differentiate (2.16) w.r.t. xn at x = x0 to get

(2.17)

[
dgαβ

dxn
τxατxβ + 2gαβτxαxnτxβ + 2τxnxnτxn

] ∣∣∣∣
x=x0

= 0.

Since γ0 is tangent to ∂M at x0, we have τxn(x0) = 0 by (2.16). The third term in the r.h.s.
of (2.17) therefore vanishes. Therefore the only unknown term in (2.17) is γαβ := dgαβ/dxn

at x = x0. Since τxα(x0) = −ξ0, using the fact that grad τ(x0) = −ξ0 again, we get that we

have to determine γαβ from γαβξ
α
0 ξ

β
0 . This is possible if as above, we repeat the construction

and replace ξ0 by a finite number of vectors, close enough to ξ0. So we get an explicit formula
for ∂g/∂xi|∂M in fact.

Next, for x ∈ V but not on ∂V , we can recover τxnxn(x) by (2.17) because τxn(x) < 0.
By continuity, we recover τxnxn(x0), therefore we know τxnxn near x0, and all tangential
derivatives of the latter.

We differentiate (2.17) w.r.t. xn again, and as above, recover d2g/d(xn)2|∂M near x0. Then
we recover d3τ/d(xn)3, etc.

In the general case, we repeat those arguments with ξ0 replaced by ξ0 + εν, where ν is the
interior unit normal, and take the limit ε→ 0. �

Sketch of the proof of Theorem 9. We first find suitable metric ĝ1 isometric to ĝ, and then we
show that ĝ1 = g. First, we can always assume that g and ĝ have the same boundary normal
coordinates near ∂M . By [11], there is a metric h isometric to ĝ so that h is solenoidal w.r.t.
g. Moreover, h = ĝ + O(ε). By a standard argument, by a diffeomorphism that identifies
normal coordinates near ∂M for h and g, and is identity away from some neighborhood of
the boundary, we find a third ĝ1 isometric to h (and therefore to ĝ), so that ĝ1 = ĝ near ∂M ,
and ĝ1 = h away from some neighborhood of ∂M (and there is a region that ĝ1 is neither).
Then ĝ1 − h is as small as g − h, more precisely,

(2.18) ‖ĝ1 − h‖Ck−3 ≤ C‖g − h‖Ck−1 , k � 1.

Set

(2.19) f = h− g, f̃ = ĝ1 − g.

Estimate (2.18) implies

(2.20) ‖f̃ − f‖Cl−3 ≤ C‖f‖Cl−1 , ∀l ≤ k.

By (2.15), (2.20),

(2.21) ‖f‖Ck−1 ≤ Cε, ‖f̃‖Ck−3 ≤ Cε.

By Theorem 10,

(2.22) ∂αf̃ = 0 on ∂M for |α| ≤ k − 5.

It is known [25] that 2dv is the linearization of ψ∗τg at τ = 0, where ψτ is a smooth family
of diffeomorphisms, and v = dψτ/dτ at τ = 0. Next proposition is therefore a version of
Taylor’s expansion:
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Proposition 2. Let ĝ and g be in Ck, k ≥ 2 and isometric, i.e.,

ĝ = ψ∗g

for some diffeomorphism ψ fixing ∂M . Set f = ĝ− g. Then there exists v vanishing on ∂M ,
so that

f = 2dv + f2,

and for g belonging to any bounded set U in Ck, there exists C(U) > 0, such that

‖f2‖Ck−2 ≤ C(U)‖ψ − Id‖2
Ck−1 , ‖v‖Ck−1 ≤ C(U)‖ψ − Id‖Ck−1 .

We will sketch now the rest of the proof of Theorem 9. We apply Proposition 2 to h and
ĝ1 to get

(2.23) f̃ = f + 2dv + f2, ‖f2‖Cl−3 ≤ C‖f‖2
Cl−1 , ∀l ≤ k.

In other words, f̃ s = f up to O(‖f‖2).
We can assume that g is extended smoothly on M1 c M . Next, with g extended as above,

we extend ĝ1 so that ĝ1 = g outside M . This can be done in a smooth way by Theorem 10.
The next step is to reparametrize the scattering relation. We show that one can extend the

maximal geodesics of g, respectively ĝ1, outside M (where g = ĝ1), and since the two metrics
have the same scattering relation and travel times, they will still have the same scattering
relation and travel times if we locally push ∂M a bit outside M . Then we can arrange that
the new pieces of ∂M are transversal to the geodesics close to a fixed one, which provides
a smooth parametrization. By a compactness argument, one can do this near finitely many
geodesics issued from point on D, and still have a complete set. This puts as in the situation
of Theorem 7, where the set of geodesics is parametrized by α = {αj}.

Next, we linearize the energy functional near each geodesic (in our set of data) related to
g. Using the assumption that g and ĝ1 have the same scattering relation and travel times,
we deduct

(2.24) ‖Nαj
f̃‖L∞ ≤ C‖f̃‖2

C1 , ∀j.

Using interpolation inequalities, and the fact that the extension of f̃ outside M is smooth
enough across ∂M as a consequence of the boundary recovery, we get by (2.24), and (2.20),

(2.25) ‖Nαf̃‖H̃2(M1) ≤ C‖f̃‖3/2

C3 ≤ C ′‖f‖3/2

C5 .

Since Ig0,D′ is s-injective, so is Nα, related to g0, by the support properties of α. Now, since
g is close enough to g0 with s-injective Nα by (2.15), Nα (the one related to g) is s-injective
as well by Theorem 7. Therefore, by (2.25) and (2.14),

(2.26) ‖f s‖L2(M) ≤ C‖Nαf̃‖H̃2 ≤ C ′‖f‖3/2

C5 .

A decisive moment of the proof is that by Proposition 2, see (2.23), f̃ s = f + f s
2 , the latter

being the solenoidal projection of f2. Therefore,

‖f̃ s‖L2(M) ≥ ‖f‖L2(M) − C‖f‖2
C2 .

Together with (2.26), this yields

‖f‖L2(M) ≤ C
(
‖f‖2

C2 + ‖f‖3/2

C5

)
≤ C ′‖f‖3/2

C5
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because the C5 norm of f is uniformly bounded when ε ≤ 1. Using interpolation again, we
easily deduct ‖f‖L2(M) ≥ 1/C if f 6= 0. This contradicts (2.21) if ε� 1.

Now, f = 0 implies h = g, therefore, g and ĝ are isometric.
This concludes the sketch proof of Theorem 9. �
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