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Abstract. Let σ be the scattering relation on a compact Riemannian manifold M with non-
necessarily convex boundary, that maps initial points of geodesic rays on the boundary and initial
directions to the outgoing point on the boundary and the outgoing direction. Let ℓ be the length of
that geodesic ray. We study the question of whether the metric g is uniquely determined, up to an
isometry, by knowledge of σ and ℓ restricted on some subset D. We allow possible conjugate points
but we assume that the conormal bundle of the geodesics issued from D covers T ∗M ; and that
those geodesics have no conjugate points. Under an additional topological assumption, we prove
that σ and ℓ restricted to D uniquely recover an isometric copy of g locally near generic metrics,
and in particular, near real analytic ones.

1. Introduction and main results

Let (M, g) be a compact Riemannian manifold with boundary. Let Φt be the geodesic flow on
TM , where for each (x, ξ) ∈M , t 7→ Φt(x, ξ) is defined over its maximal interval containing t = 0,
in particular this interval is allowed to be the zero point only. Let SM be the unit tangent bundle.
Then ∂SM represents all elements in SM with a base point on ∂M .

Denote

(1) ∂±SM = {(x, ξ) ∈ ∂SM ; ±⟨ν, ξ⟩ < 0} ,
where ν is the unit interior normal, ⟨·, ·⟩ and stands for the inner product. The scattering relation

(2) Σ : ∂−SM → ∂+SM

is defined by Σ(x, ξ) = (y, η) = ΦL(x, ξ), where L > 0 is the first moment, at which the (unit speed)
geodesic through (x, ξ) hits ∂M again. If such an L does not exist, we formally set L = ∞ and we
call the corresponding geodesic trapped. This defines also L(x, ξ) as a function L : ∂−SM → [0,∞].
Note that Σ and L are not necessarily continuous.

It is convenient to think of Σ and L as defined on the whole ∂SM with Σ = Id and L = 0 on
∂+SM .

We parametrize the scattering relation in a way that makes it independent of pulling it back
by diffeomorphisms fixing ∂M pointwise. Let κ± : ∂±SM → B(∂M) be the orthogonal projection
onto the (open) unit ball tangent bundle that extends continuously to the closure of ∂±SM . Then
κ± are homeomorphisms, and we set

(3) σ = κ+ ◦ Σ ◦ κ−1
− : B(∂M) −→ B(∂M), ℓ = L ◦ κ−1

− : B(∂M) −→ [0,∞].

According to our convention, σ = Id, ℓ = 0 on ∂(B(∂M)) = S(∂M). We equip B(∂M) with the
relative topology induced by T (∂M), where neighborhoods of boundary points (those in S(∂M))
are given by half-neighborhoods.

First author partly supported by NSF Grant DMS-0400869.
Second author partly supported by NSF and a Walker Family Endowed Professorship.

1



2 P. STEFANOV AND G. UHLMANN

Let D be an open subset of B(∂M). The lens rigidity question we study in this paper is the
following:

Given M and g|T (∂M), do σ and ℓ, restricted to D, determine g uniquely, up to a pull back of a
diffeomorphism that is identity on ∂M?

More generally, one can ask whether one can determine the topology ofM as well. One motivation
for the lens rigidity problem is the study of the inverse scattering problem for metric perturbations
of the Laplacian. Suppose that we are in Euclidean space equipped with a Riemannian metric which
is Euclidean outside a compact set. The inverse problem is to determine the Riemannian metric
from the scattering operator, which is a Fourier integral operator, if the metric is non-trapping
(see [Gu]). It was proven in [Gu] that from the wave front set of the scattering operator, one can
determine, under some conditions on the metric including non-trapping, the scattering relation on
the boundary of a large ball. This uses high frequency information of the scattering operator. In the
semiclassical setting, Alexandrova has shown that the scattering operator associated to potential
and metric perturbations of the Euclidean Laplacian is a semiclassical Fourier integral operator
that quantizes the scattering relation [A1], [A2]. The scattering relation is also encoded in the
hyperbolic Dirichlet to Neumann map on ∂M . Lens rigidity is also considered in [PoR] in the
study of the AdS/CFT duality and holography, namely the idea that the “bulk” space-time can be
captured by conformal field theory on a “holographic screen”. The lens rigidity problem appears
also naturally when considering rigidity questions in Riemannian geometry [C1, C2].

The lens rigidity problem is also closely related to the boundary rigidity problem. Denote by ρg
the distance function in the metric g. The boundary rigidity problem consists of whether ρg(x, y),
known for all x, y on ∂M , determines the metric uniquely. It is clear that any isometry which is the
identity at the boundary will give rise to the same distance functions on the boundary. Therefore,
the natural question is whether this is the only obstruction to unique identifiability of the metric.
The boundary distance function only takes into account the shortest paths and it is easy to find
counterexamples where ρg does not carry any information about certain open subset of M , so one
needs to pose some restrictions on the metric. One such condition is simplicity of the metric.

Definition 1. We say that the Riemannian metric g is simple in M , if ∂M is strictly convex w.r.t.
g, and for any x ∈M , the exponential map expx : exp−1

x (M) →M is a diffeomorphism.

The manifold (M, g) is called boundary rigid if one can determine the metric (and more generally,
the topology) from the boundary distance function up to an isometry which is the identity at the
boundary. It is a conjecture of Michel [Mi] that the simple manifolds are boundary rigid. This
has been proved recently in two dimensions [PU], for subdomains of Euclidean space [Gr] or for
metrics close to Euclidean [BI], or symmetric spaces of negative curvature [BCG]. It was shown in
[SU3] that metrics a priori close to a metric in a generic set, which includes real-analytic metrics,
are boundary rigid. For other local results see [CDS], [E], [LSU], [SU1]. The lens rigidity problem
is equivalent to the boundary rigidity problem if the manifold is simple [Mi].

Of course there is more information in the lens rigidity problem if the manifold is not simple.
Even so, the answer to the lens rigidity problem, even when D = B(∂M), is negative, as shown
by the examples in [CK]. Note that in these examples the manifold is trapping, that is, there are
geodesics of infinite length. The natural conjecture is that the scattering relation for non-trapping
manifolds determines the metric uniquely up to the natural obstruction ([U]). There are very few
results about this problem when the manifold is not simple. Croke has shown that if a manifold is
lens rigid, a finite quotient of it is also lens rigid [C2].

We redefine σ in a way that removes the need to know g on T (∂M). Denote by T 0(∂M) the
tangent bundle T (∂M) considered as a conic set, i.e., vectors with the same direction in T (∂M) are
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identified. For any metric g|T (∂M), T
0(∂M)\0 is isomorphic to the unit tangent bundle S(∂M) (in

the metric g) but has the advantage to be independent of the choice of g. Given 0 ̸= ξ′ ∈ Bx(∂M),
we set

(4) λ = |ξ′|g ∈ [0, 1], θ = ξ′/|ξ′|g ∈ T 0
x (∂M),

i.e., λ and θ are polar coordinates of ξ′. If ξ′ = 0, then θ is undefined. If ξ′ = κ±(ξ), knowing
λ, θ is equivalent to knowing the angle that ξ makes with the boundary, and the direction of the
tangential projection of the same vector. Given two metrics g and ĝ on M , and (x, ξ′) ∈ B(∂M),

(x, ξ̂′) ∈ B̂(∂M), where B̂(∂M) is related to ĝ, we say that ξ′ ≡ ξ̂′ iff |ξ′|g = |ξ̂′|ĝ, and ξ′ = sξ̂′ for

some s > 0. In other words, we require that ξ′ and ξ̂′ have the same polar coordinates (4). Note

that this induces a homeomorphism B(∂M) 7→ B̂(∂M) given by ξ′ 7→ |ξ′|gξ′/|ξ′|ĝ if ξ′ ̸= 0, 0 7→ 0.
With that identification of B(∂M) for different metrics, it makes sense to study σ restricted to the
same set D for a family of metrics, and in particular, an a priori knowledge of g on T (∂M) is not
needed to define D and σ on it. If σ(x, ξ′) = (y, η′), we just think of ξ′ and η′ as expressed in the
polar coordinates (4). Also, the notion of D being open is independent of g.

Our first result is that we can recover the full jet of the metric under some non-degenerate
assumptions. We refer to section 3 for the definition of boundary normal coordinates.

Theorem 1. Let (M, g) be a compact Riemannian manifold with boundary. Let (x0, ξ0) ∈ S(∂M)
be such that the maximal geodesic γ0 through it is of finite length, and assume that x0 is not
conjugate to any point in γ0 ∩ ∂M . If σ and ℓ are known on some neighborhood of (x0, ξ0), then
the jet of g at x0 in boundary normal coordinates is determined uniquely.

Until now, this was known for simple metrics only [LSU]. The proof in [LSU] is non-constructive
and relies heavily on the convexity of the boundary, using geodesics converging to a point. When
(M, g) is simple, knowledge of x, y, ℓ (the graph of the boundary distance function) determines ξ,
η uniquely [Mi]. The proof of Theorem 1 shows in particular that this can be greatly extended.
As a corollary we extend the result of [LSU] on the determination of the jet of the metric from
the boundary distance function for simple manifolds to any manifold with non-conjugate points
without the convexity assumption on the boundary.

A linearization of the boundary rigidity problem and the lens rigidity problem, see section 4.4,
is the following integral geometry problem. Given a family of geodesics Γ with endpoints on ∂M ,
we define the ray transform

(5) IΓf(γ) =

∫
⟨f(γ(t)), γ̇2(t)⟩ dt, γ ∈ Γ,

of symmetric 2-tensor fields f (playing the role of the variation of the metric g), where ⟨f, θ2⟩ is the
action of f on the vector θ. Locally, ⟨f, θ2⟩ = fijθ

iθj . We will omit the subscript Γ to denote an
integral over a chosen geodesic, or over all geodesics. Any such f can be decomposed orthogonally
into a potential part dv and a solenoidal one f s (see section 4), and I vanishes on potential tensors.
The linearized boundary rigidity or lens rigidity problem then is the following: can we recover
uniquely the solenoidal projection fs of f from its ray transform? If so, we call IΓ s-injective.

S-injectivity of I was proved for metrics with negative curvature in [PS], for metrics with a
specific a priori upper bound on the curvature in [Sh1, Sh2, D, Pe], and for simple Riemannian
surfaces [Sh3], see also [ShU]. A conditional and non-sharp stability estimate for metrics with small
curvature is also established in [Sh1]. In [SU2], we proved stability estimates for s-injective simple
metrics, see (30); and sharp estimates about the recovery of a 1-form f = fjdx

j and a function f
from the associated If . Recently, a sharp stability estimate for 2-tensors was proved in [S]. These
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stability estimates were used in [SU2] to prove local uniqueness for the boundary rigidity problem
near any simple metric g with an s-injective I. In [SU3], we showed that the simple metrics g for
which I is s-injective is generic, and applied this to the boundary rigidity problem. We note that in
all the above mentioned results the metric has no conjugate points. On the other hand, in [SU4] we
proved generic s-injectivity for a class of non-simple manifolds described below. Within that class,
the boundary is not necessarily strictly convex, we might have conjugate points on the metric, the
manifold might be trapping, and we have partial or incomplete information, i.e., we do not know
the scattering relation or the ray transform for all sets of geodesics.

Given (x, ξ) ∈ D, let γκ−1
− (x,ξ) denote the geodesic issued from κ−1

− (x, ξ) with endpoint π(σ(x, ξ)),

where π is the natural projection onto the base point. With some abuse of notation, we define

ID(x, ξ) = I(γκ−1
− (x,ξ)), (x, ξ) ∈ D.

Definition 2. We say that D is complete for the metric g, if for any (z, ζ) ∈ T ∗M there exists a
maximal in M , finite length unit speed geodesic γ : [0, l] →M through z, normal to ζ, such that

{(γ(t), γ̇(t)); 0 ≤ t ≤ l} ∩ S(∂M) ⊂ D,(6)

there are no conjugate points on γ.(7)

We call the Ck metric g regular, if a complete set D exists, i.e., if B(∂M) is complete.

If z ∈ ∂M and ζ is conormal to ∂M , then γ may reduce to one point. Since (6) includes
points where γ is tangent to ∂M , and σ = Id, ℓ = 0 there, knowing σ and ℓ on them provides
no information about the metric g. On the other hand, we require below that D is open, so the
purpose of (6) is to make sure that we know σ near such tangent points.

Definition 3. We say that (M, g) satisfies the Topological Condition (T) if any path in M
connecting two boundary points is homotopic to a polygon c1 ∪ γ1 ∪ c2 ∪ γ2 ∪ · · · ∪ γk ∪ ck+1 with the
properties that for any j,

(i) cj is a path on ∂M ;
(ii) γj : [0, lj ] → M is a geodesic lying in M int with the exception of its endpoints and is

transversal to ∂M at both ends; moreover, κ−(γj(0), γ̇j(0)) ∈ D;

Notice that (T) is not only topological assumption because it depends on g. It is an open
condition w.r.t. g, i.e., it is preserved under small C2 perturbations of g.

We showed in [SU4] that if D is complete, then IDf recovers the singularities of fs. Next, see
also Theorem 3 below, under the same conditions, and assuming (T) as well, ID is s-injective for
real-analytic metrics, and if k ≫ 2, also for generic metrics.

To define the Ck(M) norm in a unique way, and to make sense of real analytic g’s, we choose
and fix a finite real analytic atlas on M .

Clearly, any simple manifold satisfies the regularity condition and condition (T). Even in this
case our results improve the known ones because the data, given by the set D, can be a subset of
all possible points and directions on the boundary. Examples of non-simple manifolds satisfying
the regularity condition and condition (T) can be constructed as follows. Let (M ′, ∂M ′) be a
simple compact Riemannian manifold with boundary with dimM ′ ≥ 2, and let M ′′ be a compact
Riemannian manifold with or without boundary. LetM be a small enough C2 perturbation ofM ′×
M ′′. Then M is regular. Indeed, for M ′×M ′′, as a complete set, one can choose any neighborhood
of the geodesics above fixed points of M ′′. Since our conditions remain true under small enough
perturbations, this proves our claim. In particular, on any manifold, a small enough neighborhood
of a finite length geodesics segment that may have conjugate points (a “perturbed cylinder”) falls
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into this class. Also, the interior of a ”perturbed torus”: a small enough neighborhood of a periodic
geodesic on a Riemannian manifold, is in this class. This shows that there are manifolds satisfying
our assumptions that are trapping. For more details, we refer to [SU4].

Theorem 2 below says, loosely speaking, that for the classes of manifolds and metrics we study, the
uniqueness question for the non-linear lens rigidity problem can be answered locally by linearization.
This is a non-trivial local injectivity type of theorem however because our success heavily depends
on the a priori stability estimate that the s-injectivity of ID implies, and the latter is based on
certain hypoelliptic properties of ID, as shown in [SU4], see (30). We work with two metrics g

and ĝ; and will denote objects related to ĝ by σ̂, ℓ̂, etc. Note that (T) is not assumed in the next
theorem.

Theorem 2. Let g0 ∈ Ck(M) be a regular Riemannian metric on M with k ≫ 2 depending on
dim(M) only. Let D be open and complete for g0, and assume that there exists D′ ⋐ D so that
Ig0,D′ is s-injective. Then there exists ε > 0, such that for any two metrics g, ĝ satisfying

(8) ∥g − g0∥Ck(M) + ∥ĝ − g0∥Ck(M) ≤ ε,

the relations

σ = σ̂, ℓ = ℓ̂ on D
imply that there is a Ck+1 diffeomorphism ψ :M →M fixing the boundary such that

ĝ = ψ∗g.

Next theorem is a version of [SU4, Theorem 3]. It states that the requirement that Ig0,D′ is
s-injective is a generic one for g0.

Theorem 3. Let G ⊂ Ck(M), with k ≫ 2 depending on dim(M) only, be an open set of regular

Riemannian metrics on M such that (T) is satisfied for each one of them. Let the set D′ ⊂ B(∂M)
be open and complete for each g ∈ G. Then there exists an open and dense subset Gs of G such that
Ig,D′ is s-injective for any g ∈ Gs.

Theorems 2 and 3 combined imply that there is local uniqueness, up to isometry, near a generic
set of regular metrics.

Corollary 1. Let D′, G, Gs be as in Theorem 3, and let D ⋑ D′ be open and complete for any
g ∈ G. Then the conclusion of Theorem 2 holds for any g0 ∈ Gs.

Remark 1. Condition (T) in Theorem 3, and Corollary 1 in some cases can be replaced by the

assumption that (M, g) can be extended to (M̃, g̃) that satisfies (T). One such case is if (M̃, g̃) is a

simple manifold, and we study σ, ℓ on its maximal domain, i.e., D = B(∂M). In particular, we get
local generic lens rigidity for subdomains of simple manifolds when D is maximal. See section 5 for
more details.

2. Preliminaries

We allow the geodesics to have segments on ∂M , then they are called geodesics if they satisfy
the geodesic equation in a half-neighborhood of each boundary point. Such segments are included
in determining the maximal interval, where Φt(x, ξ) is defined. If (M̃, g̃) is any extension of (M, g)
(a Riemannian manifold of the same dimension of which M is a submanifold), then any geodesic

in M̃ restricted to M is a geodesic in M . For the maximal geodesics in M we have the following
property that indicates that the property of γ to be maximal in M does not change under such
extensions.
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Lemma 1. Let γ(t), 0 ≤ t ≤ l, 0 ≤ l < ∞, be a maximal geodesic in M . Let (M̃, g̃) be any C1,1

extension of (M, g). Then there is no interval I ⊃ [0, l] strictly larger than [0, l], such that γ can

be extended as a geodesic in M̃ for t ∈ I, and {γ(t); t ∈ I} ⊂M .

Proof. Suppose that there is such I. Without loss of generality, we may assume that I ⊃ [0, l+ δ],
δ > 0. Then γ solves the geodesic equation for t ∈ [0, l + δ], with the Christoffel symbols Γk

ij

depending on g and its first derivatives restricted to M . Since g̃ is continuous and has continuous
first derivatives across ∂M , their restriction to M depends on g only. Therefore, γ is a geodesic in
M for t ∈ I, and this is a contradiction. □

In [SU4] we studied geodesics originating from points outside M given some extension (M̃, g̃).
We connect the notion of D being open with the analysis in [SU4] by the following.

Lemma 2. Let M̃ be an extension of M , and let g̃ be a C1,1 extension of g on M̃ . Let γ0 : [0, l] 7→
M̃ int be a unit speed geodesic with endpoints in M̃ int \M such that

(9)
{
(γ0(t), γ̇0(t)); t ∈ [0, l]

}
∩ ∂−SM ⊂ κ−1

− (D).

Then there exists a neighborhood W of (x0, ξ0) = (γ0(0), γ̇0(0)) such that any geodesic γ with initial
conditions in W and the same interval of definition t ∈ [0, l] still satisfies (9).

Moreover, if g̃ belongs to a class of extensions satisfying ∥g̃∥C1,1 ≤ A with some A > 0, then W
can be chosen independently of g̃.

Proof. Let E0 be the l.h.s. of (9). Then E0 is compact in SM̃ . Given any neighborhood U of E0 (in

SM̃), the set ∂SM \ U is compact, therefore there exists a neighborhood W of (x0, ξ0) such that
the geodesic flow throughW for 0 ≤ t ≤ l will miss that set, therefore, its only common points with
∂−SM must be in U . To construct U , we first choose a neighborhood Ux,ξ in SM̃ of each point

(x, ξ) ∈ κ−1
− (D) so that Ux,ξ ∩ ∂−SM ⊂ κ−1

− (D). This is easy to do in local coordinates because D
is open. Then we set U = ∪(x,ξ)∈κ−1

− (D)Ux,ξ.

To prove the second part, we use the theorem of continuous dependence of solutions of an ODE,
over a fixed interval, on the initial conditions and on the coefficients of the ODE. As long the
Lipschitz constant related to the generator of the geodesic flow is uniformly bounded, we can
choose W uniformly w.r.t. g̃. □

Lemma 3. Let (M, g), (M̃, g̃), γ0 be as in Lemma 2. Let H be a hypersurface through x0 = γ0(0)
transversal to γ0, and set H = SM ∩ π−1(H). Then there exists a small enough neighborhood U
of (x0, ξ0) in H, so that the geodesics issued from U with interval of definition t ∈ [0, l] satisfy (9)
and are transversal to ∂M at all common points with it except for a closed set of initial conditions
in U of measure zero.

Proof. We only need to prove the statement about the measure zero set. We study the geodesic
flow on SM issued from U . The corresponding geodesic is tangent to ∂M at some point x if the
corresponding integral curve in the phase space is tangent to ∂SM at π−1(x). By Sard’s theorem,
this happens only on a closed set of measure zero. □

Those lemmas will be used to reformulate the results in [SU4] in the situation in the paper.
In [SU4], we extended the geodesics slightly outside M and parametrized them by initial points
and directions on surfaces Hm transversal to them, see section 4.3, instead by points and direc-
tions on ∂M . This can be done, because when studying IΓ, the metric g is known and can be
extended outside M in a known way. The reason for doing this was to prevent working with a
parametrization, where the geodesics can be tangent to the surface, which is the case with ∂M . We
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can still do this even for the lens rigidity problem, using the boundary recovery result in section 3
below, see Proposition 2. We prefer however to parametrize the scattering relation by points on
∂M and corresponding directions. This does not preserve the smooth structure of the previous
parametrization but the lemmas above show that it preserves the topology, at least.

3. Recovery of the jet of g on ∂M .

In this section, we prove Theorem 1. We start with some remarks and preliminaries. We first
recall the definition of boundary normal coordinates (x′, xn), xn ≥ 0, x′ ∈ Rn−1 near a boundary
point, also called semigeodesic coordinates. Given p ∈M in a small enough neighborhood of some
p0 ∈ ∂M , we let xn to be the distance to ∂M , and x′ to be the local coordinates of the closest point
on ∂M to p in any fixed in advance local coordinates on ∂M . In those coordinates, gin = δin, ∀i,
the lines x′ = const. are geodesics, and Γn

in = Γi
nn = 0, ∀i.

If ∂M is convex in a neighborhood of some point x0, then it is known that the jet of g near x0 in
boundary normal coordinates is uniquely determined by studying the “short” geodesics connecting
x0 and y, and then letting y → x0, see [LSU]. This argument does not provide explicit recovery
however. A constructive approach is proposed in [UW]. If ∂M is strictly convex near x0, then there
is also a conditional Lipschitz stability estimate, see [SU3]. In Theorem 3 we show that we can
do this also without the convexity assumption, or more generally, without assuming existence of
“short geodesics” issued from x0 converging to a point by studying “long geodesics” that converge
to a geodesic tangential to the boundary at x0. A non-conjugacy condition is imposed. Note that
there is no generic assumption. This part of the proof is constructive but the one relying on “short
geodesics” (l∗0 = 0 below) is not, although perhaps it can be made constructive using the argument
sin [UW].

Let (M̃, g̃) be a smooth extension of (M, g). Let x0 ∈ M , y0 ∈ M be endpoints of a geodesic
γ0 : [0, 1] →∈ M , and assume that x0, y0, are not conjugate points on γ0. Then there exist

neighborhoods U ∋ x0, V ∋ y0 in M̃ , such that for x ∈ U , the exponential map neigh(γ̇0(0)) ∋
ξ 7→ y = expx ξ ∈ V is a local diffeomorphism, therefore it has a smooth inverse V ∋ y 7→ ξ :=

exp−1
x y ∈ TxM̃ such that exp−1

x0
y0 = γ̇0(0). The geodesic γx,ξ : [0, 1] → M̃ then connects x and

y and is unique among the geodesics issued from x in directions close enough to ξ. One can also
define a travel time function τ(x, y) on U × V , smooth for x ̸= y, by τ(x, y) = | exp−1

x y|g with
τ(x0, y0) = |γ̇(0)|g. If there are no conjugate points on γ0, then τ locally minimizes the distance
but in general, this is no longer true. On the other hand, τ is always a critical value of the length
functional and of the energy functional.

In the situation described in the paragraph above, we will call y ∈ V visible from x ∈ U , if
γx,ξ ⊂ M . In the next theorem, given (x, ξ) ∈ TM , we call y ∈ M reachable from (x, ξ), if there
exists s ≥ 0, such that γx,ξ(s) ∈M for t ∈ [0, s], and γx,ξ(s) = y.

The so defined function τ solves the eikonal equation |gradx τ |2g = 1 in U despite the possible
existence of pairs of conjugate points not in U × V . Indeed, clearly, dτ(γx,ξ(t), y)/dt|t=0 = −|ξ|g.
Next, by the Gauss lemma, the x-derivatives of τ(x, y) in directions perpendicular to ξ vanish.
Therefore, ⟨ξ, gradx τ⟩ = −|ξ|g, and the two vectors are parallel, therefore, gradx τ = −ξ/|ξ|g, and
|grady τ |2g = 1. Also, if η = gradyτ , then for some l ≥ 0, Φl(x, ξ) = (y, η). In particular, η′ = grad′yτ ,
where the prime stands for a tangential projection. If σ is locally known, then integrating the known
η′ = η′(y) along a curve on ∂M connecting y and y0 recovers uniquely τ(x0, y) up to a constant.

Assume further that γ0 is transversal to ∂M at both ends and does not touch ∂M elsewhere.
Then

(10) σ(x,−grad′xτ(x, y)) = (y, grad′y(x, y)), ℓ(x,−grad′xτ(x, y)) = τ(x, y),
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Therefore, at least in this non-degenerate situation, knowledge of τ(x, y) recovers uniquely σ, ℓ
locally.

The travel (arrival) times are widely used in the applied literature. Assume that g on T (∂M)
is known and fixed. Fix x, y on ∂M . We call the number τ ≥ 0 a travel time between x and y, if
there exists a geodesic of length τ connecting x and y. Then we have a map that associates to any
(x, y) ∈ ∂M × ∂M a subset of [0,∞]. In the situation above, τ(x, y) is one of the possible travel
times between x and y.

Proof of Theorem 1. We will show first that the assumptions about (x0, ξ0) in the theorem are
preserved under a small perturbation of that point in S(∂M). Let U be a neighborhood of (x0, ξ0)

in TM̃ . Since γ0 ∩ ∂M consists of points that are not conjugate to x0, there is an open set
W ⊃ γ0∩∂M in M̃ that stays away from the points conjugate to x along the geodesics t 7→ expx tξ,
0 ≤ t ≤ l0 if (x, ξ) ∈ U and if U is small enough. Here l0 is the length of γ0. On the other hand,
the possible common points of those geodesics with ∂M must be in W , if U is small enough, as in
the proof of Lemma 2. By Lemma 1, there exists s > 1 so that (x0, sξ0) ∈ U , and expx0

(sξ0) ̸∈M .
The geodesics issued from (x, ξ) ∈ U close enough to (x0, sξ0), and the same time interval [0, l0]
of definition, still have endpoints outside M , therefore they are longer than the maximal segment
in M . On the other hand, we showed that they meet ∂M at points that are not conjugate to
x0. We can now replace sξ0 by ξ0 and rescale the corresponding geodesic. This shows that the
assumption of the theorem is preserved in a small neighborhood of (x0, ξ0) in TM̃ , not necessarily in
S(∂M). We now restrict that neighborhood to S(∂M). Let, in fixed boundary normal coordinates,
X ×Ξ ⊂ S(∂M) be such a neighborhood of (x0, ξ0). In the beginning, (x0, ξ0) is as in the theorem
but later, we will repeat the arguments with (x0, ξ0) an arbitrary point in X × Ξ ⊂ S(∂M).

Let ξε = ξ0 + εν, 0 < ε≪ 1, where ν is the interior unit normal at x0. In the coordinate system
above, ν = (0, . . . , 0, 1). Let γε be the geodesic issued from (x0, ξε) until it hits ∂M for the first
time. By a compactness argument, we can choose a sequence εj → 0 such that yεj → y∗0 that can
be different from y0 but we still have that y∗0 ∈ ∂M and y∗0 is reachable from (x0, ξ0). Then lεj → l∗0
with some l∗0 ≥ 0. If y∗0 ̸= x0, then x0 and y∗0 are not conjugate points on γ0 by assumption, and
the function τ(x, y) is then well-defined and smooth near (x0, y

∗
0) satisfying the eikonal equation.

Next, γεj connects x0 and yεj , and only the endpoints are not in M int. The advantage now is that
γεj hits ∂M at x0 transversely, its interior lies in the interior of M but it might be tangent to ∂M
at yεj .

For a fixed j, by [Sh2] (see the proof of Lemma 2.3 there) if U is a small enough neighborhood of
x0 on ∂M , then U can be expressed as the disjoint union U+ ∪H ∪U−, where H is a hypersurface
on ∂M through x0, and at least one of the half-neighborhoods U± is visible from yεj , let us say

that this is U+. If γεj is transversal to ∂M at yεj , then even better, the whole U is visible from yεj
if U is small enough. If n = 2, then H reduces to the point x0 and the modifications are obvious.
We set τ(x) = τ(x, yεj ), where τ is the localized travel time function discussed above. Note that τ
depends on (x0, ξ0) that we will vary later in the proof, and on j.

We will show first that we can recover g|T (∂M) near x0. Recall that without knowledge of g|T (∂M),
σ and ℓ are considered as parametrized by polar coordinates, see (4). Choose local boundary normal
coordinates near x0 and yεj . In boundary normal coordinates, σ, ℓ determine uniquely Σ, L in a
trivial way. In particular, ξε is uniquely characterized by the direction of ξ0 and by the relation
λ = (1 + ε2)−1/2. We use below the notation (y, η) = Σ(x, ξ).

Since x0 and yεj are not conjugate by the first paragraph of this proof, for η ∈ SyεjM close enough

to η0, the map η 7→ x ∈ ∂M is a local diffeomorphism as long as the geodesic connecting x and yεj
is not tangent to ∂M at x. That condition is fulfilled for x = x0 by construction, and is therefore
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true on U+ if the latter is small enough. Moreover, that map is known (with η parametrized by
polar coordinates, as above) for x ∈ U+, if U+ is small enough, because it is determined by the
inverse of Σ near (x0, ξ0). Then we know (x,−ξ) = Σ(yεj ,−η) in polar coordinates, and we know

L(yεj ,−η) = L(x, ξ) = τ(x) on U+. Take an one-sided derivative of τ at x0, from U+, to recover

grad′ τ(x0) = −ξ′εj/|ξεj |g = −(1 + ε2j )
−1/2ξ0. Take the limit εj → 0 to recover ξ0. Since ξ0 is unit

in the unknown metric g|T (∂M), this allows us to recover the quadratic form g(x0) restricted to
vectors in the direction of ξ0.

We use now the fact that a symmetric n×n tensor fij can be recovered by knowledge of fijv
i
kv

j
k

for N = n(n + 1)/2 “generic” vectors vk, k = 1, . . . , N ; and such N vectors exist in any open set
on the sphere, see e.g. [SU4]. We apply this to the tensor g(x0)|Tx0 (∂M) in any fixed coordinates.

Thus choosing appropriate n(n− 1)/2 perturbations of θ0’s, we recover g(x0). Next, we vary x0 in
X to recover g in X as well.

Let g′ be another metric with the same σ, ℓ in X × Ξ; then g′ = g in X. One can replace g′

by a diffeomorphic metric that we call g′ again, so that g′ and g have the same boundary normal
coordinates (x′, xn) near x0 = (x′0, 0). Set f = g − g′. Then fin = 0, ∀i. We will show that

(11) ∂kxnfij
∣∣
X

= 0, ∀k.
We just showed that (11) holds for k = 0. We will show next that it holds for k = 1.

Note that we know now all tangential derivatives of g in some neighborhood of x0 on ∂M . We
showed above that τ(x), defined as above and depending also on yεj , solves the eikonal equation

(12) gαβτxατxβ + τ2xn = 1.

Next, in U+, we know τxα , α ≤ n− 1, we know g, therefore by (12), we get τ2xn . We recover τ2xn

on U+, and therefore τ2xn(x0) by continuity. Since τxn(x0) = −εj/|ξεj |g, and therefore, τxn < 0 near

x0, we can take a negative square root to recover τxn on U+ ∪H, and the tangential derivatives of
τxn .

Differentiate (12) w.r.t. xn at x = x0 to get

(13)

[
∂gαβ

∂xn
τxατxβ + 2gαβτxαxnτxβ + 2τxnxnτxn

] ∣∣∣∣
x=x0

= 0.

Therefore,

Gαβ(x0)ξ
α
0 ξ

β
0 /|ξεj |

2
g =

(
−2gαβτxαxnτxβ + 2τxnxnεj/|ξεj |g

) ∣∣∣
x=x0

,

where Gαβ = ∂gαβ/∂xn. Assume first that y∗0 ̸= x0. Then τ is smooth near (x0, y
∗
0), τxnxn(x0) =

τxnxn(x0, yεj ) remains bounded and even has a limit, as j → ∞. Similarly the other terms above
have a limit. Therefore, the second term on the r.h.s. above tends to zero, as j → ∞, and we

recover Gαβ(x0)ξ
α
0 ξ

β
0 , and therefore (∂gαβ/∂x

n)(x0)ξ
α
0 ξ

β
0 .

We show now that (∂gαβ/∂x
n)(x0)ξ

α
0 ξ

β
0 is uniquely determined if y∗0 = x0 as well. This happens,

for example, if ∂M is convex at x0, as in [LSU] but not only in that case. The arguments there
still work in our case, and below we follow [LSU, Theorem 2.1]. The argument that follows is not

constructive, and we show that (∂fαβ/∂x
n)(x0)ξ

α
0 ξ

β
0 = 0. Assume that this is not true. Without

loss of generality, we may assume that (∂fαβ/∂x
n)(x0)ξ

α
0 ξ

β
0 > 0. Since g′ = g on X, the Taylor

expansion of g′, g w.r.t. xn shows that

(14) fαβ(x)ξ
αξβ > 0

in some neighborhood of (x0, ξ0) in M , excluding (x, ξ) for which xn = 0, i.e., excluding the
boundary points. Let γ′εj be as above but related to g′. Since σ′ = σ, ℓ′ = ℓ near (x0, ξ0), γ

′
εj has
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the same first encounter point with ∂M , and the same length, as γεj . Parametrize both γεj and
γ′εj by t ∈ [0, 1]. Then as in [LSU], since the geodesics minimize the energy functional, and since

γεj and γ′εj have the same length, we get If(γεj ) ≤ 0 for j ≫ 1. On the other hand, integrating

(14) over γεj which interior lies in the interior of M , we get a contradiction.
To recover ∂g/∂xn at x0, we need to perturb ξ0. As we showed above, (x0, ξ) satisfies the

assumptions of the theorem, if ξ ∈ Ξ. We can therefore recover Gαβ(x0)ξ
αξβ for such ξ, which

recovers Gαβ(x0), and therefore ∂g/∂xn at x = x0.
Since we can apply this argument to any (x0, ξ0) ∈ X × Ξ, we get (11) for k = 1.
To recover the higher order derivatives, we proceed in the same way. Assume that we have proved

(11) for k replaced by 0, . . . , k− 1. Let (x0, ξ0) ∈ X×Ξ. For each j, we recover consecutively ∂mxnτ ,
m = 2, . . . , k on U+∪H by (12), differentiated m−1 times. Then we can also recover the tangential
derivatives of ∂mxnτ there. If for the corresponding y∗0 we have y∗0 ̸= x0, to recover ∂kg/∂(xn)k, we
differentiate (12) k times, and solve for ∂kgαβ/∂(xn)k at x = x0. The only unknown term in the
r.h.s. will be ∂k+1τ/∂(xn)k+1 at x = x0 but it will be multiplied by τxn(x0) that equals −εj/|ξεj |g.
Then taking the limit j → ∞ will recover ∂kgαβ/∂(x

n)kξαξβ at (x0, ξ0) as above. If y∗0 = x0,

assume that ∂kfαβ/∂(x
n)kξαξβ ̸= 0 at (x0, ξ0). Without loss of generality we may assume that

it is positive. We write the Taylor expansion of f w.r.t. xn at xn = 0, using (11) that holds for
0, . . . , k − 1. Then we see that (14) holds as before near (x0, ξ0) excluding the boundary points.
The we get a contradiction as before. We now vary ξ0 first, and then x0, to prove (11). □

Remark 2. If g has a finite smoothness g ∈ Ck(M), then the proof above implies that we can
recover ∂αg|∂M for |α| ≤ k − 2 in boundary normal coordinates.

4. Local interior rigidity; Proof of Theorem 2

Given a symmetric 2-tensor f = fij , the divergence of f is an 1-tensor δf defined by

[δf ]i = gjk∇kfij

in any local coordinates, where ∇ is the covariant derivative of the tensor f . Given an 1-tensor
(a vector field or an 1-form that we identify through the metric) v, we denote by dv the 2-tensor
called symmetric differential of v:

[dv]ij =
1

2
(∇ivj +∇jvi) .

Operators d and −δ are formally adjoint to each other in L2(M). It is easy to see that for each
smooth v with v = 0 on ∂M , we have I(dv)(γ) = 0 for any geodesic γ with endpoints on ∂M . This
follows from the identity

(15)
d

dt
⟨v(γ(t)), γ̇(t)⟩ = ⟨dv(γ(t)), γ̇2(t)⟩.

It is known (see [Sh1] and (16) below) that for g smooth enough, each symmetric tensor f ∈
L2(M) admits unique orthogonal decomposition f = fs + dv into a solenoidal tensor Sf := fs

and a potential tensor Pf := dv, such that both terms are in L2(M), f s is solenoidal, i.e., δfs = 0
in M , and v ∈ H1

0 (M) (i.e., v = 0 on ∂M). In order to construct this decomposition, introduce
the operator ∆s = δd acting on vector fields. This operator is elliptic in M , the Dirichlet problem
satisfies the Lopatinskii condition, and has a trivial kernel and cokernel. Denote by ∆s

D the Dirichlet
realization of ∆s in M . Then

(16) v = (∆s
D)

−1 δf, fs = f − d (∆s
D)

−1 δf.
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Therefore, we have

P = d (∆s
D)

−1 δ, S = Id− P,
and for any g ∈ C1(M), the maps

(17) (∆s
D)

−1 : H−1(M) → H1
0 (M), P,S : L2(M) −→ L2(M)

are bounded and depend continuously on g, see [SU3, Lemma 1] that easily generalizes for manifolds.
This admits the following easy generalization: for s = 0, 1, . . . , the resolvent above also continuously
maps Hs−1 into Hs+1 ∩H1

0 , similarly, P and S are bounded in Hs, if g ∈ Ck, k ≫ 2 (depending
on s). Moreover those operators depend continuously on g.

Notice that even when f is smooth and f = 0 on ∂M , then fs does not need to vanish on ∂M .
In particular, fs, extended as 0 to M̃ , may not be solenoidal anymore. To stress on the dependence
on the manifold, when needed, we will use the notation vM and fsM as well.

Operators S and P are orthogonal projectors. The problem about the s-injectivity of I, restricted
to a subset of geodesics, then can be posed as follows: if If = 0 on those geodesics, show that
fs = 0, in other words, show injectivity on the subspace SL2 of solenoidal tensors.

4.1. Shift of a small perturbation of a metric to a solenoidal one, after [CDS]. The
following lemma is a slight generalization of [CDS, Lemma 2.2]. The reason we include it is that
we need to track the dependence of the constants on g. Note first that g is solenoidal w.r.t. itself,
and let ĝ be close enough to it. The lemma below show that we can replace ĝ by an isometric copy
h so that h is solenoidal w.r.t. g. Then f = h− g is a solenoidal tensor w.r.t. g that is convenient
when linearizing near g.

Let k ≥ 2, and α ∈ (0, 1) be fixed. Let τM denote the vector bundle on M , let τ ′M be the
covector bundle, and let S2τ ′M stand for all symmetric tensor fields of type (0, 2). For a small

enough neighborhood Ω of zero in Ck,α
0 (τM ), the map

(18) ev :M →M, ev(x) = expx v(x)

is well defined for all v ∈ Ω. Moreover, ev ∈ Diff k,α
0 (M), if Ω is small enough. We define Ck,α

through a fixed choice of a finite atlas onM , and in particular, independently of the metric. Instead
of trying to find a diffeomorphism ψ, we will look for a vector field v, and then ψ = ev.

Lemma 4. Let (M, g0) be a compact Riemannian manifold with boundary, let k ≥ 2 be an integer,

and let α ∈ (0, 1). Let Ω ⊂ Ck,α
0 (τM ) be a neighborhood of zero such that (18) is well defined. Then

there exists a neighborhood G ⊂ Ck,α(S2τ ′M ) of zero and a continuous map β : G → Ω such that

β(0) = 0 and the tensor field
(
eβ(f)

)∗
(g0 + f) is solenoidal w.r.t. g0 for every f ∈ G.

There exist m, and δ > 0, so that the conclusion above holds for g0 replaced by any metric
g ∈ U := {g; ∥g−g0∥Cm(S2τ ′M ) < δ} with G = {f ; ∥f∥Ck,α(S2τ ′M ) < δ}. Moreover, ∥β(f)∥Ck,α(τM ) ≤
C∥f∥Ck,α(S2τ ′M ) for such f and g.

Proof. The proof in [CDS] is based on an application of the implicit function theorem in Banach
spaces, see e.g., [AMR, Theorem 2.5.7]. Consider the map

F : Ω× Ck,α(S2τ ′M ) → Ck−2,α(τ ′M )

given by

F (v, f) = δ(e∗v(g0 + f)).

We want to solve F (v, f) = 0 for v near f = 0 so that v = 0 when f = 0. It is shown then that Fv,
Ff exist (in Gâteaux sense), and are continuous (therefore they are Fréchet differentiable). Then
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it is shown that

(19) Fv(0, 0) = 2δd,

where the latter is considered as an operator from Ck,α
0 (τM ) to Ck−2,α(τ ′M ). Since δd is an isomor-

phism, the implicit function theorem yields the result.
To prove the second statement of the lemma, we recall the implicit function theorem in the form

presented in [AMR, Theorem 2.5.7]. Let F : X × Y → Z be a continuous map , where X, Y are
Banach spaces. Let F be Cr, r ≥ 1 near some (x0, y0), and assume that Fy(x0, y0) : Y → Z is
an isomorphism. Then the equation F (x, y) = z has unique Cr solution y = y(x, z) for (x, z) near
(x0, f(x0, y0)). To apply this to our setting, set x = (f, g), y = v; x0 = (0, g0), and

X = Cm(S2τ ′M )× Ck,α(S2τ ′M ), Y = Ck,α
0 (τM ), Z = Ck−2,α(S2τ ′M ).

Note that we are not using covariant derivatives in the spaces above, and they are independent of
g. Let F be as above but now g is not fixed. We choose m = m(k, r) so that F ∈ Cr (see, e.g.,
[FSU, Lemma 3]), i.e., that the derivative Dr

f,gF exist and is continuous. Then Fy(x0, y0) = 2δg0dg0
by (19), and it is an isomorphism. Now the statement of the theorem about m, U , and G follows
from [AMR, Theorem 2.5.7] by setting z = 0. Thus we get v = β(f, g) that is Cr in both variables.
For the purpose of the lemma, choosing r = 1 is enough. Since β ∈ C1, it is Lipshitz on G × U ,
that proves the last estimate in the lemma. □

Remark 3. Notice that under the assumptions of the lemma,
(
eβ(f)

)∗
(g0 + f) is a metric again for

δ ≪ 1, and belongs to Ck−1,α. Moreover, it is O
(
∥f∥Ck,α(S2τ ′M )

)
close to g in that norm.

We start with the proof of Theorem 2. We will split the proof into several steps. Let g0, g, ĝ, k
and ε be as in Theorem 2. Many of the steps below hold for ε≪ 1, and k ≫ 1, and in each of the
finite many steps we may need to decrease ε or increase k.

4.2. Choosing a suitable metric isometric to ĝ. Any two metrics such that one of them is a
pull-back of the other under a diffeomorphism fixing the boundary pointwise, will be called below
isometric. Such a diffeomorphism is necessarily Ck+1 if the metrics are Ck, see e.g., [SU3], and the
norm of its derivatives are controlled by those of the two metrics, see [SU3, Lemma 6].

We first find a metric isometric to ĝ, that we denote by ĝ again, so that the boundary normal
coordinates related to g and ĝ coincide in some neighborhood of the boundary, see e.g., the beginning
of the proof of Theorem 2.1 in [LSU]. We can still assume that (8) holds because it is preserved
with k replaced by k − 2 and ε replaced by Cε.

By Lemma 4, and the remark above, if ε≪ 1, since g and ĝ satisfy (8), if k ≥ 3, there is h ∈ Ck

isometric to ĝ so that h is solenoidal w.r.t. g. Moreover,

(20) ∥h− ĝ∥Ck−2 ≤ Cε,

and we can replace k − 2 by k − 1 if we work in the Ck,α spaces. By a standard argument, by a
diffeomorphism that identifies normal coordinates near ∂M for h and g, and is identity away from
some neighborhood of the boundary, we find a third ĝ1 isometric to h (and therefore to ĝ), so that
ĝ1 = ĝ near ∂M , and ĝ1 = h away from some neighborhood of ∂M (and there is a region that ĝ1
is neither). Then ĝ1 − h is as small as g − h, more precisely,

(21) ∥ĝ1 − h∥Cl−3 ≤ C∥g − h∥Cl−1 , l ≤ k.

This follows from the fact that ĝ1 = ϕ∗h, with a diffeomorphism ϕ that is identity on the boundary,
and

(22) ∥ϕ− Id∥Cl−2 ≤ C∥ĝ − h∥Cl−1 .
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Set

(23) f = h− g, f̃ = ĝ1 − g.

We aim to show that f = f̃ = 0. Estimate (21) implies

(24) ∥f̃ − f∥Cl−3 ≤ C∥f∥Cl−1 , ∀l ≤ k.

By (8), (20) and (24),

(25) ∥f∥Ck−2 ≤ Cε, ∥f̃∥Ck−4 ≤ Cε.

By Theorem 1, and the remark after it,

(26) ∂αf̃ = 0 on ∂M for |α| ≤ k − 6.

We have now two isometric copies of ĝ: the first one is h that has the advantage of being solenoidal
w.r.t. g; and the second one ĝ1 that has the same jet as g on ∂M . We need both properties below
to show that g = h, i.e., f = 0 (or g = ĝ1, i.e., f̃ = 0) but so far we cannot prove that h = ĝ1. The

next proposition shows that h and ĝ1 are equal up to O(∥f∥2) = O(∥f̃∥2).

Proposition 1. Let ĝ and g be in Ck, k ≥ 2 and isometric, i.e.,

ĝ = ψ∗g

for some diffeomorphism ψ fixing ∂M pointwise. Set f = ĝ − g. Then there exists v vanishing on
∂M , so that

f = 2dv + f2,

and for g belonging to any bounded set U in Ck, there exists C(U) > 0, such that

∥f2∥Ck−2 ≤ C(U)∥ψ − Id∥2Ck−1 , ∥v∥Ck−1 ≤ C(U)∥ψ − Id∥Ck−1 .

Proof. Extend g to M̃ in such a way that the Ck norm of the extension is bounded by C∥g∥Ck(M).

Set v(x) = exp−1
x (ψ(x)) that is a well defined vector field in C1(M) if ψ is close enough to identity in

C1 (it is enough to prove the theorem in this case only), and v = 0 on ∂M. Set ψτ (x) = expx(τv(x)),
0 ≤ τ ≤ 1. Let gτ = ψ∗

τg. Under the smallness condition above, v is small enough in C1, and

therefore ψτ is close enough to identity in the C1(M̃) norm. Therefore, ψτ : M → ψτ (M) ⊂ M̃ is
a diffeomorphism. Next, ψτ fixes ∂M pointwise, therefore, ψτ (M) =M .

The Taylor formula implies

ĝ = g +
d

dτ

∣∣∣
τ=0

gτ + h = g + 2dv + h,

where

|h| ≤ 1

2
max
τ∈[0,1]

∣∣∣d2gτ
dτ2

∣∣∣,
and 2dv is the linearization of gτ at τ = 0, see [Sh1]. To estimate h, write

gτij = gkl ◦ ψτ
∂ψk

τ

∂xi
∂ψl

τ

∂xj
,

and differentiate twice w.r.t. τ . Notice that∣∣∣∂2ψτ

∂τ2

∣∣∣ ≤ C∥v∥2L∞ ,
∣∣∣∂2∇ψτ

∂τ2

∣∣∣ ≤ C∥v∥2C1 .

This yields the stated estimate for f2 for k = 2. The estimates for k > 2 go along similar lines by
expressing the remainder h in its Lagrange form, and estimating the derivatives of h. □
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We apply Proposition 1 to h and ĝ1 to get by (22),

(27) f̃ = f + 2dv + f2, ∥f2∥Cl−3 ≤ C∥f∥2Cl−1 , ∀l ≤ k.

In other words, f̃s = f up to O(∥f∥2).
Next, with g extended as above, we extend ĝ1 so that ĝ1 = g outside M . Then g ∈ Ck and

ĝ1 ∈ Ck−6 by (26).

4.3. Reparametrizing the scattering relation. We proceed with some preliminary work that
would allow us to apply [SU4, Theorem 2]. Assume first that the underlying metric is fixed to

be g0. Let (M̃, g̃0) be a Ck extension as above. In [SU4], the geodesics are extended to M̃ \M ,
parametrized by initial points, and corresponding directions on a finite collection {Hm} of smooth

connected hypersurfaces in M̃ , having additional properties as explained below. Given two complete
D′ ⋐ D, we will construct such a family issued from a set D′′ with D′ ⋐ D′′ ⋐ D, that is also
complete.

For any (z0, ζ0) ∈ T ∗M , including the case where z0 ∈ ∂M , there is a maximal geodesic γ0
through z0 normal to ζ0, satisfying the conditions of Definition 2. Let us assume that γ0 is
parametrized by t ∈ [l−, l+], ±l± ≥ 0, and γ(0) = z, γ̇0(0) = ξ0, with ζ0 conormal to ξ0. Since γ0
is maximal in M , by Lemma 1, for any δ1 > 0 there exists δ ∈ (0, δ1) so that the extension γ̃0 of γ

to M̃ corresponding to t ∈ [l− − δ, l+ + δ] is well defined and has endpoints in M̃ int \M . By (6),{
(γ0(t), γ̇0(t)); l

− ≤ t ≤ l+
}
∩ S(∂M) ⊂ D.

The extension (γ̃0, ˙̃γ0) may have additional point on ∂M corresponding to l− − δ ≤ t ≤ l−, and
l+ ≤ t ≤ l++δ. However, we choose δ1 ≪ 1 so that they still belong to D, and this is possible to do
because D is open. Now, by Lemma 2, any geodesic that is obtained by a small enough perturbation
(z, ξ) of the initial conditions (z0, ξ0) of γ0 at t = 0, with the same interval t ∈ [l− − δ, l+ + δ], will
satisfy condition (9). Condition (7) will also be satisfied by a perturbation argument, if δ is small

enough as well. Now we can perturb g̃0 in the C2(M̃) topology to ensure the same property. Note

that if ∥g − g0∥C2(M) ≤ ε, one can choose an extension g̃ of g to M̃ so that ∥g̃ − g̃0∥C2(M) ≤ Cε
with g̃0 a fixed extension of g0 as above.

To summarize, we proved the following.

Lemma 5. Under the conditions of Theorem 2, for any (z0, ζ0) ∈ S∗M , there exists a geodesic in

the metric g̃0 through z0 normal to ζ0 with endpoints in M̃ int \M so that conditions (7), (9) are
satisfied.

Moreover, if that geodesic has initial conditions (z0, ξ0) at t = t0 for some t0 ∈ [0, l], and an
interval of definition 0 ≤ t ≤ l, properties (7) and (9) remain true under small enough perturbations

of (z0, ξ0), and g̃0 in C2(M̃).

Let us assume now that the underlying metric is g as in the theorem, with ε ≪ 1. Since D′ is
compact, there are finitely many geodesics{

γm(t); l−m − δm ≤ t ≤ l+m + δm
}
,

with the following properties. If γ̇m(0) = ξm ∈ SzmM , then for any m there exists neighborhoods
U ′
m ⋐ Um of (zm, ξm) in SM , such that if Γm, Γ′

m is the set of geodesic with initial conditions in
Um, respectively U ′

m, and the same interval of definition as γm, then for any (x, ζ) ∈ T ∗M there is
a geodesic γ ∈ ∪Γ′

m so that (7), (9) are satisfied with D replaced by D′; and all geodesics in ∪Γm

satisfy (7), (9) as well. Moreover,

(28) ∪Γ′
m ⊃ κ−1

− (D′),
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where Γ′
m is regarded as a point set in the phase space SM̃ consisting of the points on all integral

curves.
We will parametrize Γm, Γ′

m, with initial points outside M . Choose a family of finitely many

small enough smooth hypersurfaces {Hm} in M̃ int \M , each one transversal to γm. Without loss of

generality, we can assume that all geodesics in Γm can be extended in M̃ int\M so that they intersect
Hm once and are transversal to Hm as well. We still denote the set of the extended geodesics by Γm

and Γ′
m, respectively. Let Hm be the open subset of {(x, ξ) ∈ SM ; x ∈ Hm, ξ ̸∈ TxHm} formed by

those (x, ξ) that coincide with the left endpoint and the corresponding direction of some geodesic

in Γm. Then their endpoints belong to M̃ int \ M again, and their length is a smooth function
lm(x, ξ) > 0 (actually, we may even assume that lm is constant, if Um is small enough).

We have

(29) Γm = Γ(Hm) = {γx,ξ(t); 0 ≤ t ≤ lm(x, ξ), (x, ξ) ∈ Hm} ,

where γz,ξ, as usual, is the geodesic with initial conditions (x, ξ). We define H′
m in a similar way,

related to U ′
m. We consider also the geodesics in the metric ĝ defined as in (29). Then (7), (9) hold

for those geodesics, too, provided that ε≪ 1.
Combining the arguments above with Lemma 3, we have the following.

Proposition 2. Let g and ĝ1 be as in the end of Section 4.2. Then, if ε≪ 1,

Φlm(x,ξ)(x, ξ) = Φ̂lm(x,ξ)(x, ξ), ∀(x, ξ) ∈ Hm, ∀m,

where Φ̂ is related to ĝ1. Moreover, ∪Γm satisfies (7), (9), and ∪Γ′
m is complete in the sense that

N∗(∪Γ′
m) ⊃ T ∗M , and satisfies (28); similarly ∪Γ̂m and ∪Γ̂′

m have the same properties.

In other words, informally speaking, we pushed the boundary, where the scattering relation is
defined, to a collection of hypersurfaces outside M , so that the corresponding geodesics are always
transversal to them, and the endpoints are away from ∂M .

Proof of Proposition 2. The proof is straightforward, if the geodesic issued from (x, ξ), for 0 ≤ l ≤
lm(x, ξ), always intersects ∂M transversally. Observe that κ± = κ̂± because g and ĝ have the same

normals on ∂M , therefore σ = σ̂ implies Σ = Σ̂. The points (x, ξ) ∈ Hm where this transversality
does not hold is a closed set of measure zero by Lemma 3, and for such points, one can approximate
with points outside this set, and to use the continuity of Φt. □

4.4. Linearization near g. Now we are in the situation of [SU4], see Theorem 2 there. Choose
smooth functions αm supported in Hm and equal to 1 on H′

m. Set α = {αm} and Iαm = αmI, more
precisely,

Iαmf(z, ξ) = αm(x, ξ)

∫ lm(x,ξ)

0
⟨f(γz,ξ), γ̇2z,ξ⟩ dt, (z, ξ) ∈ Hm.

Also set

Iα = {Iαm}, Nαm = I∗αm
Iαm , Nα =

∑
Nαm ,

where the adjoint is taken w.r.t. the measure |⟨ν, ξ⟩|dΣ2n−2, where dΣ2n−2 is the induced measure
on ∂SM by the volume form, and ν is a unit normal to Hm.

In [SU4, Theorem 2] we showed that if for a fixed g, Iα is s-injective, then we have the following
a priori estimate

(30) ∥fs∥L2(M) ≤ C∥Nαf∥H̃2(M̃),
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with a suitable norm ∥ · ∥H̃2(M̃) so that H2(M̃) ⊂ H̃2(M̃) ⊂ H1(M̃). Moreover, (30) remains true

under small Ck perturbations of g with a constant C that can be choose uniformly. Note that (T)
is not needed in [SU4, Theorem 2].

Fix m and (x, ξ) ∈ Hm. Let {γx,ξ(t), 0 ≤ t ≤ lm(x, ξ)}, and {γ̂x,ξ(t), 0 ≤ t ≤ lm(x, ξ)} be the
geodesic issued from (x, ξ) related to g and ĝ1, respectively. By Proposition 2, their endpoints and
directions coincide. We reparametrize γx,ξ, γ̂x,ξ so that t ∈ [0, 1]; then they have the same speeds

|γ̇x,ξ(t)| = | ˙̂γx,ξ(t)| = lm(x, ξ) .
Define the following variation of γx,ξ, where exp is related to g:

(31) cτ (t) = expγx,ξ(t) (τv(t)) , v(t) = exp−1
γx,ξ(t)

(γ̂x,ξ(t)) ,

where 0 ≤ t ≤ 1, 0 ≤ τ ≤ 1. Then c0 = γx,ξ, c1 = γ̂x,ξ. Set g
τ = g + τ(ĝ1 − g). Let

(32) E(τ) =

∫ 1

0
⟨ċτ (t), ċτ (t)⟩gτ dt,

where, in local coordinates, ⟨ċτ (t), ċτ (t)⟩gτ = gτij(cτ )ċ
i
τ ċ

j
τ . Apply Taylor’s formula

E(1) = E(0) + E′(0) +

∫ 1

0
(1− τ)E′′(τ) dτ

to get

(33) E′(0) = −
∫ 1

0
(1− τ)E′′(τ) dτ

because E(0) = E(1) = l2m(x, ξ). Write

ψ(τ, s) =

∫ 1

0
⟨ċτ (t), ċτ (t)⟩gs dt =

∫ 1

0
gsij(cτ )ċ

j
τ ċ

i
τ dt,

where the second integrand is written in local coordinates. Then E(τ) = ψ(τ, τ). For E′ we get

(34) E′(τ) = ψτ (τ, τ) + ψs(τ, τ).

Since c0 = γx,ξ is a critical curve for the energy functional, we get ψτ (0, 0) = 0, therefore,

E′(0) =

∫ 1

0
⟨f̃ , γ̇2x,ξ⟩ dt,

recall (23). Together with (33) this yields

(35) If̃(γx,ξ) = −
∫ 1

0
(1− τ)E′′(τ) dτ.

To estimate the r.h.s. above, note that

(36) E′′(τ) = ψττ (τ, τ) + 2ψτs(τ, τ)

because ψss = 0. Note that

(37)

∣∣∣∣∂cτ (t)∂τ

∣∣∣∣+ ∣∣∣∣∂ċτ (t)∂τ

∣∣∣∣ ≤ C
(
|v(t)|+ |v̇(t)|

)
,

and

(38)

∣∣∣∣∂2cτ (t)∂τ2

∣∣∣∣+ ∣∣∣∣∂2ċτ (t)∂τ2

∣∣∣∣ ≤ C
(
|v(t)|+ |v̇(t)|

)2
.
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We have that | exp−1
x y| ≤ C|x−y| for |x−y| ≪ 1, where the norm is in any fixed coordinate chart,

and C > 0 depends on an upper bound of g in Ck, k ≫ 2. All constants below will have the same
property. This and (31) imply

(39) |v(t)| ≤ C |γ̂x,ξ(t)− γx,ξ(t)| ≤ C ′∥f̃∥C1 .

Since in fixed coordinates, Dx exp
−1
x y +Dy exp

−1
x y = 0 when x = y, we have∣∣Dx exp

−1
x y +Dy exp

−1
x y

∣∣ ≤ C|x− y|.
This allows us to estimate v̇(t), see (31), as follows

(40) |v̇(t)| ≤ C
(∣∣γ̂x,ξ(t)− γx,ξ(t)

∣∣+ ∣∣ ˙̂γx,ξ(t)− γ̇x,ξ(t)
∣∣) ≤ C ′∥f̃∥C1 .

By (35), (36), (37), (38), (39), (40),

|If̃(γx,ξ)| ≤ C ′∥f̃∥2C1 .

This is the same estimate that was used in the linearization argument in [SU2, SU3] and goes back
to [E], but now proven in this more general situation. Therefore,

(41) ∥Iαj f̃∥L∞ ≤ C∥f̃∥2C1 .

That implies the same for ∥Nαj f̃∥L∞ , see e.g., [SU3], therefore,

(42) ∥Nαj f̃∥L∞ ≤ C∥f̃∥2C1 , ∀j.

4.5. End of the proof of Theorem 2. We will use interpolation to estimate ∥Nαj f̃∥H̃2(M̃)

through some power of ∥Nαj f̃∥L∞ . Since Nαj is a ΨDO of order −1 and f̃ , extended as 0 outside
M , is smooth enough if k ≫ 2 by (26), we get

(43) ∥Nαj f̃∥2H̃2(M̃)
≤ ∥Nαj f̃∥2H2(M̃)

≤ C∥f̃∥H3(M)∥Nαj f̃∥L2(M̃).

Combine (42) and (43) to get

(44) ∥Nαf̃∥2H̃2(M̃)
≤ C∥f̃∥C3∥f̃∥2C1 ≤ C ′∥f∥3C5 ,

by (24).
Since Ig0,D′ is s-injective, so is Nα, related to g0, by the support properties of α. Now, since Nα

by (8) is s-injective for g = g0, we get from [SU4, Theorem 2] that Nα (the one related to g) is
s-injective as well provided that

(45) ∥g − g0∥Ck(M) ≤ ε0

with some k ≫ 1 and ε0 > 0. Moreover, (30) is true. Assume now that both (45) and (8)
are satisfied. The geodesics issued from suppα form a complete set by the second statement of
Proposition 2, therefore, by (44) and (30),

(46) ∥f̃ s∥L2(M) ≤ C∥Nαf̃∥H̃2 ≤ C ′∥f∥3/2
C5 .

By (27), f̃ s = f + fs2 , therefore,

∥f̃s∥L2(M) ≥ ∥f∥L2(M) − ∥fs2∥L2(M) ≥ ∥f∥L2(M) − C∥f∥2C2 .

Together with (46), this yields

∥f∥L2(M) ≤ C
(
∥f∥2C2 + ∥f∥3/2

C5

)
≤ C ′∥f∥3/2

C5
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because the C5 norm of f is uniformly bounded when ε ≤ 1. We can use now interpolation estimates
in Ck, see [Tri], and Sobolev embedding estimates to get ∥f∥C5 ≤ C∥f∥µ

C0 ≤ C ′∥f∥µ
Hn/2+1 with any

µ ∈ (0, 1) as long as k = k(µ) ≫ 1 in (25). Next, interpolation estimates in Sobolev spaces imply
∥f∥Hn/2+1 ≤ C∥f∥µ

L2 , so in the end, we get

∥f∥L2(M) ≤ C∥f∥3µ
2/2

L2(M)
.

Choose 2/3 < µ2 < 1 with a corresponding k ≫ 2, to get ∥f∥L2(M) ≥ 1/C if f ̸= 0. Choose ε ≪ 1
to get a contradiction with (25). This proves Theorem 3 for ε replaced by min(ε0, ε).

Now, f = 0 implies h = g, therefore, g and ĝ are isometric.
This concludes the proof of Theorem 2.

5. Proof of Theorem 3 and Corollary 1

Proof of Theorem 3. As we mentioned in the Introduction, Theorem 3 is a reformulation of [SU4,
Theorem 3], as we show below. Notice first, that the s-injectivity of Ig,D′′ for some D′′ ⊂ D′ implies
s-injectivity of Ig,D′ . One can always assume that M is equipped with a finite analytic atlas. Note
that the assumption that D′ is open implies that the corresponding set of geodesic is open in the
sense of [SU4] by Lemma 2. Let D′′ ⋐ D′ be such that D′′ is still complete and open. It can be
constructed as in Section 4.3. As in Section 4.3 again, with D′′ and D′ playing the roles of D′ and
D there, respectively, we construct Nα such that all geodesics through suppα cover κ−1

− (D′′) and

are contained in the interior of κ−1
− (D′). Then Nα is s-injective for each analytic g0 ∈ G by [SU4,

Theorem 1]. It is still s-injective under a small enough Ck, k ≫ 2, perturbation of g ∈ Ck(M) by
[SU4, Theorem 2]. Note that [SU4, Theorem 2] requires that the perturbation must be considered

in Ck(M̃) but one can use extensions of g near a fixed g0 so that their norms in Ck(M̃) are bounded
by ∥g∥Ck(M) with a fixed C. Using the fact that D′′ ⋐ D′, Lemma 2, and the support properties of

α, we deduce that Ig,D′ is s-injective for g close enough in Ck(M) to a fixed analytic g0 ∈ G. We
can therefore build Gs as a small enough neighborhood of the analytic metrics in G, that form a
dense set.

This completes the proof of Theorem 3. □

Corollary 1 is an immediate consequence of Theorem 2 and Theorem 3.

Proof of Remark 1. Condition (T) is not needed for [SU4, Theorem 2], see also (30) but it is used
in the proof of Theorems 2 (s-injectivity for analytic metrics) and Theorem 3 (generic s-injectivity)

there. Assume now that (T) in Theorem 3 of this paper is replaced by the assumption that (M̃, g̃)
is simple as in the remark. In the proof above, in this situation, we need to show that Nα is
s-injective for a dense set of metrics in G. Fix g0 ∈ G. It can be extended as g̃0 to M̃ so that (M̃, g̃)
is simple. Given ε > 0 we can find a real analytic g̃ so that ∥g̃ − g̃0∥Ck(M̃) ≤ ε for k fixed. Then

the ray transform I related to g̃ over all maximal geodesics in M̃ is s-injective, see [SU3, SU4]. Let
now Ng,αf = 0 in M , where g = g̃|M , and the subscript g in Ng,α indicates that this is the normal
operator related to g. Then we get after integration by parts that Igf(γ) = 0 for all maximal

geodesics in M . Let f̃ be the extension of f as zero outside M . Then Ig̃f̃(γ) = 0 for all maximal

geodesics in M̃ . Therefore, f̃ = dṽ in M̃ , ṽ ∈ H1
0 (M). Since f̃ = 0 in M̃ \M , on can see that the

same holds for ṽ as well, see also [Sh2]. Therefore, f is potential, thus Ig is s-injective, and so is
Ng,α, see [SU4, Lemma 2]. □
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