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Abstract

We prove that, asymptotically, any cluster of quasimodes close to each other approximates
at least the same number of resonances, counting multiplicities. As a consequence, we get that
the counting function of the number of resonances close to the real axis is bounded from below
essentially by the counting function of the quasimodes.

1 Introduction

The purpose of this paper is to obtain sharp lower bounds of the number of resonances (scattering
poles) close to the real axis. We consider a situation where one can construct realquasimodes, i.e.,
a sequence of approximate real “resonances” and corresponding approximate solutions supported
in a fixed compact set. Our main result states, loosely speaking, that quasimodes are perturbed
resonances near the real axis and that the number of resonances close to the real axis is at least
equal to that of the quasimodes, counting multiplicities.

Quasimode constructions with polynomially small errors are known for a long time in various
situations, see e.g. [C], [R], [L], [P1], [C-P] (see also [P2] for a construction with an exponentially
small error). It has been an open problem however, for problems in unbounded domains, whether
the mere fact that one can construct quasimodes implies existence of resonances close to them. In
particular, it was not known whether an elliptic periodic trapped ray in obstacle scattering generated
a sequence of resonances converging to the real axis, although a construction of quasimodes in this
case was available. The first result in this direction appeared in [St-V2, Lemma 1] in the study
of resonances caused by Rayleigh surface waves in linear elasticity. It was shown, for general
compactly supported perturbations in odd dimensional spaces, that existence of real quasimodes
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with polynomially small error implied existence of resonances converging to the real axis at the
same rate. An important role in the proof of that lemma played ana priori exponential estimate
on the cut-off resolvent, established by Zworski (see the remarks before Lemma 1 in section 3).
The method in [St-V2] however, was not sensitive enough to obtain information on the density
of those resonances, it could only prove their existence. An asymptotic formula for the Rayleigh
resonances for the specific problem studied in [St-V1], [St-V2] for convex obstacle was obtained
in [Sj-V].

A major step ahead was made by Tang and Zworski [T-Z], who considered any space dimension
and non necessarily compactly supported perturbations. They observed that one can localize not
only near the real axis as done in [St-V2, Lemma 1], but in fact, one can localize near a quasimode
to obtain that if the quasimode is large enough, then there is always a resonance close to it. This
confirmed the expectation that quasimodes are perturbed resonances. The results in [T-Z] also
imply lower bounds on the number of resonances near the real axis. For any known construction
we get at least linear bound. If quasimodes are “well distributed” in some sense, one could also
obtain finer bounds. However, if quasimodes are distributed in a “unregular” way, more precisely,
if there can be multiple quasimodes or clusters of quasimodes too close to each other, then the
results in [T-Z] could only prove that anyone of those multiple quasimodes or clusters produces one
resonance only. This restricts the possibility of obtaining sharp lower bounds in those situations.

In the present paper we show that such clusters of quasimodes produce (asymptotically) at
least the same number of resonances, see Theorem 1 and Corollary 1. To prove this, we develop
further the ideas in [St-V2], [T-Z]. We then use these ideas to compare the counting function of
quasimodes and resonances, respectively. To this end, using known upper polynomial bounds on
the number of resonances (see (2), (3)), we get similar bounds on the number of quasimodes; then
we group quasimodes in such disjoint clusters, see the proof of Theorem 2. Next, we estimate their
lengths from above and the distance between them from below and then apply the local result of
Corollary 1, obtaining at least as many resonances in some neighborhood of any of those clusters
and proving that those neighborhoods still do not intersect. This implies a lower bound on the
number of resonances asymptotically equal to the number of quasimodes.

The results we prove and especially Theorem 2, reduce the problem of obtaining lower bounds
of the number of resonances to that of estimating the number of quasimodes. It allows us to obtain
the optimal lower bound for any construction of almost orthogonal quasimodes as long as we can
control the density of quasimodes. We would like to make the obvious remark that the lower bound
we obtain is connected with the specific quasimodes we start with, one may have other resonances
close to the real axis having different nature. As a possible application of our results we consider
the classical obstacle problem with an elliptic periodic broken ray (see section 4). In this case we
obtain the lower boundcrn suggested by the quasimode construction in [P1].

This paper is organized as follows. In Section 2 we state the main results. The proofs are in
Section 3. In Section 4 we present an application to the case of an elliptic broken ray in obstacle
scattering.
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2 Introduction and Statement of the Main Results

We consider first the “black box scattering” framework as developed in [Sj-Z1], [Sj-Z2], [Sj] (see
also [T-Z]). We refer to those works for details. For the sake of simplicity and to avoid repeating
the assumptions for noncompactly supported perturbations, we restrict our exposition to the case
of compactly supported perturbations of the Laplacian. Our main results however, hold under the
general assumptions in [T-Z] provided that the polynomial estimates (2), (3) hold either for the
number of the resonances or for the number of quasimodes.

Let H be a complex Hilbert space with

H D HR0
˚ L2(Rn n B(0, R0)),

whereR0 > 0 is fixed andB(0, R0) is the ball with center0 and radiusR0. For eachh 2 (0, h0]

we have a unbounded self-adjoint operator

P(h) W H �! H

with domainD(P(h)) independent ofh whose projection ontoL2(Rn n B(0, R0)) coincides with
H 2(Rn n B(0, R0)). It is also required that

1B(0,R0)(P(h) C i)�1 W H ! H

is compact, where1B(0,R0) denotes the orthogonal projector ontoHR0
and we define similarly

1RnnB(0,R0). Next, we assume that

1RnnB(0,R0)P(h)u D �h2�(ujRnnB(0,R0)).

HavingP(h), one constructs a self-adjoint operatorP ](h) onH] D HR0
˚ L2(M n B(0, R0)),

whereM D (R n RZ)n for someR � R0. Denoting byN(P ](h), [��, �]) the number of
eigenvalues (counting multiplicities) in[��, �], one also assumes that

N(P ](h), [��, �]) D O((�=h2)n]=2), 8� > 1 (1)

with somen] � n.
Then one defines resonances ResP(h) of P(h) by the method of complex scaling [Sj-Z1], [Sj].

They are also the poles of the meromorphic continuation of the cut-off resolvent�(P(h) � z)�1�

from Imz < 0 into a conic neighborhood of the real line in the upper half-plane, where� 2
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C 1
0 is a cut-off function with� D 1 nearB(0, R0). The poles of that cut-off resolvent and

their multiplicities do not depend on the particular choice of�. Notice that here we accept the
convention that scattering poles are in the upper half-plane. Our interest is in applications to
classical situations, whereP is as before, but independent ofh. Then we only need to verify the
assumptions above forh D 1 and setP(h) D h2P . In this case we define resonances ofP , denoted
by ResP , as the poles of the meromorphic continuation of the cut-off resolvent�(P � �2)�1�

from the lower half-plane into a conic neighborhood of the real line in the upper half-plane. The
relationship between semi-classical resonancesz of P(h) D h2P and the classical ones� of P is
�2 D h�2z. SinceP is self-adjoint, resonances ofP form a set symmetric about the imaginary
axis. We will be interested in those resonances that lie in Re� > 0. We always include quasimodes
and resonances with their multiplicities. By definition, the multiplicity of a resonancez0 of P(h)

or a resonance�0 of P is the rank of the operator

1

2� i

I

jz�z0j�1

�(P(h) � z)�1� dz, or
1

2� i

I

j���0j�1

�(P � �2)�1� �d�,

respectively.
We assume finally that we have a polynomial estimate on the number of resonances in a small

neighborhood of the real axis:

#fz 2 ResP(h)I 0 < a � jzj � bI 0 � Im z � hN g � Ca,bh�n]

, (2)

#f� 2 ResP I 1 � j�j � r I 0 � Im � � j�j�N g � Crn]

, r > 1, (3)

for someN > 0. If the powern] is different from that in (1), then we denote byn] the largest
number of the two. Estimates of this type were proven in [M], [Z1], [Sj-Z1], [Sj-Z2] [V], [Sj]. We
notice that for the proofs of the results below we need this estimate either for the counting function
of the resonances or for that of the quasimodes.

We are now ready to state our main results.

Theorem 1 Let P(h) be an operator satisfying the hypotheses above and let0 < a0 � a(h) �
b(h) � b0 < 1 be two functions. Assume that there exists a sequencefhlg1

lD1
� (0, h0] with

hl ! 0 as l ! 1 having the following property: For anyh 2 fhlg1
lD1

, there exist an integer

m(h) � 1, finite setsfEj(h)gm(h)
jD1 � [a(h), b(h)] andfuj(h)gm(h)

jD1 � H, such that
8
<
:

k(P(h) � Ej(h))uj(h)kH � R(h), j D 1, 2, . . . , m(h),ˇ̌
(ui(h), uj(h))H � ıij

ˇ̌
� R(h), i, j D 1, 2, . . . , m(h),

supp(1RnnB(0,R0)uj(h)) � K �� Rn, j D 1, 2, . . . , m(h)

with some functionR(h) D O(h1). Then, for any positive functionS(h) satisfyingS(h) �
h�n]�1R(h) andDe�D=h � S(h) D O(h1) for some constantD > 0, and for any integerk � 1,
there existsh(S, k) > 0 such that for allh < h(S, k), h 2 fhlg1

lD1
, the operatorP(h) has at least

m(h) resonances (counting multiplicities) in the set

z 2 [a(h) � 6hk, b(h) C 6hk] C i[0, 2S(h)h�n]�1]. (4)
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Remark 1. The constant6 appearing above is not significant and can be replaced by one. We
keep it however in order to conform with the notation in [T-Z].

Remark 21. It is enough above to assume that
ˇ̌
(ui(h), uj(h))H � ıij

ˇ̌
� ˛=m(h), i, j D

1, 2, . . . , m(h), with ˛ < 1.

Remark 3. In the formulation of Theorem 1 we assume thath belongs to a sequencefhlg
having in mind applications to the classical setting. However, we would like to note that Theorem 1
remains true if we assume thath belongs to an interval(0, h1). To see that it is enough to observe
that Lemma 2 in Section 3 holds forh in an interval as well.

In the classical setting Theorem 1 implies the following.

Corollary 1 LetP be an operator (independent ofh) satisfying the assumptions above withh D 1.
Assume that there exists a sequenceml � 1, l D 1, 2, . . . with the following property: for any
l D 1, 2, . . . we haveml numbers�l,j > 0, j D 1, . . . , ml such thatal � �l,j � bl , j D 1, . . . , ml

with bl � al % 1, asl ! 1, bl=al � C and there existul,j 2 H, j D 1, . . . , ml satisfying
8
<
:

k(P � �2
l,j

)ul,j kH � R(�l,j ),ˇ̌
(ul,i , ul,j)H � ıij

ˇ̌
� R(�l,j ),

supp(1RnnBR0
ul,j ) � K �� Rn

for any i, j D 1, . . . , ml with some functionR(�) D O(��1). Then, for any functionS(�) �
2�2n]C3R(�) satisfyingDe��D � S(�) D O(��1) with someD > 0 and for any integerk � 1

there exists�(S, k) > 0, such that for anyal > �(S, k) the operatorP has at leastml resonances
(counting multiplicities) in the set

� 2 [al � a�k
l , bl C a�k

l ] C i[0, S(al)].

The corollary above enables us to obtain sharp lower bounds on the number of the scattering
poles close to the real axis.

Theorem 2 LetP be an operator (independent ofh) satisfying the assumptions above withh D 1.
Assume that there exist infinitely many real quasimodes ofP , i.e., a sequencef�j , ujg1

jD1, where
0 < �j % 1, uj 2 H and

8
<
:

k(P � �2
j )ujkH � R(�j ),

j(ui , uj)H � ıij j � R(�j ),

supp(1RnnBR0
uj) � K �� Rn,

i, j D 1, 2, . . . with a decreasing functionR(�) D O(��1). Fix a positive functionS(�) D
O(��1) such thatS(�) � 4�2n]C3R(�) and�S � S 0 � 0 with some > 0. Denote

Nquasi(r) D #f�j I �j � rg,
Nres(r) D #f� 2 ResP I 1 < Re� � r, 0 � Im � � S(Re�)g.

1due to M. Zworski
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Then for anyk � 1 there exists a constantCk such that

Nres(r) � Nquasi(r � r�k) � Ck , 8r � 1. (5)

An immediate application of Theorem 2 yields the following.

Corollary 2 Under the assumptions of Theorem 2, assume that

Nquasi(r) � p(r) C q(r), r � 1

with someC 1 function p(r) ! 1 as r ! 1 with polynomially bounded derivative and a
remainder termq(r). Then fork large enough we have

Nres(r) � p(r) C q(r � r�k) � Ck, 8r > 1.

If Nquasi(r) has asymptotic expansion or more generally if it can be bounded below by some asymp-
totic expansion like

Nquasi(r) �
NX

mD0

˛mrn]�m C o(rn]�N ),

asr ! 1 with 0 � N < n], then

Nres(r) �
NX

mD0

˛mrn]�m C o1(rn]�N ), 8r > 1

with the same coefficients̨m and a possibly different remainder term.

Remark 4. The constantCk appearing in the estimates above can be expected because the
quasimode construction is asymptotic and adding or removing a finite number of quasimodes does
not make a difference. However, if we want to estimate the numberNres(r2) � Nres(r1) of reso-
nances with real parts betweenr1 andr2 with 1 � r1 � r2, then the proof of Theorem 2 implies
thatNres(r2) � Nres(r1) � Nquasi(r2 � r�k

2 ) � Nquasi(r1 C r�k
1 ) for r1 large enough (see also next

remark).

Remark 5. Following a remark in [T-Z] due to Shu Nakamura, one can replacehk in Lemma 2
in Section 3 by a function!(h) D O(h1) such that

!2(h)

S(h)h�n]�1
! 1, ash ! 0.

Then the results in [T-Z] indicate that forh small enough there is a resonance near any quasimode
at a distance not greater than!(h). We can also replace6hk in the statement of Theorem 1 by
!(h) and claim the same, including the multiplicities. We can do the same thing in Corollary 1.
This implies the following property: Under the assumptions of Theorem 2, denote byf�j g1

jD1 and
frkg1

kD1
the quasimodes and resonances, respectively, ordered (by their real parts) and counted

with their multiplicities. Then there exists a subsequence of resonancesfrkj
g1
jD1, such that

jRe(rkj
� �j )j � !(�j) D O(��1

j ), jIm(rkj
� �j )j � S(�j ) D O(��1

j ), j � 1,

whereS(�) is as in Corollary 1 and!(�) can be chosen to be!(�) D �n]

S1=2(�).
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3 Proof of the main results

Before proceeding with the proof of Theorem 1, we will consider first a simpler case — when
resonances are replaced by eigenvalues and we have quasimodes. This example is not necessary
for the proof below, but it illustrates that in this case our results look natural and admit a simple
proof because we can use the spectral theorem. Consider a situation similar to that in Corollary 1.
Let P be a self-adjoint operator (independent ofh) with discrete spectrum in a Hilbert spaceH.
Suppose that the counting function for the eigenvalues ofP admits the boundC0rn]

. Assume that
in the interval[a, b], 1 � a < b, b � a < 1, we havem quasimodes�j D �2

j , j D 1, . . . , m

similar to those in Corollary 1, more precisely there exist�j 2 [a, b], uj 2 H, j D 1, . . . , m such
thatk(P � �j)uj k � R(�j), j(ui , uj) � ıij j � R(�j ) with R(�) D O(��1). We also assume
thatm � 2C0an]

which in fact follows from the assumptions already made similarly to the proofs
below. Thenuj admit an orthogonal decompositionuj D u0

j Cu00
j , with u0

j WD …[a�ı,bCı]uj , where
…[a�ı,bCı] is the spectral projector of the interval[a � ı, b C ı], ı > 0. Clearly,

ı2ku00
j k2 � k(P � �j)u00

j k2 � k(P � �j)u0
jk2 C k(P � �j)u00

j k2

D k(P � �j)ujk2 � R2(�j).

So, if we chooseı D an]C1R(a), we getku00
j k � a�n]�1 and

j(u0
i , u0

j) � ıij j � R(a) C 2(1 C R(a))1=2a�n]�1 C a�2n]�2 D O(a�n]�1).

Sincem is O(an]

), we get fora large enough (see Lemma 4) thatu0
1, . . . , u0

m are linearly in-
dependent. Therefore,…[a�ı,bCı]H is at leastm-dimensional, which proves that the number of
eigenvalues in[a � an]C1R(a), b C an]C1R(a)], counting the multiplicities, is at leastm. This cor-
responds well to the result in Corollary 1. Those arguments show also thatuj D u0

j C O(a�n]�1)

with u0
j 2 …[a�ı,bCı]H. By choosingı D R1=2(a) above, we can make the remainderO(a�1).

This shows thatuj approximate certain linear combinations of eigenfunctions with eigenvalues in
some small neighborhood of[a, b]. It is interesting to note that in case of a multiple quasimode
or cluster of quasimodes, this does not necessarily imply that eachuj is close to a single eigen-
function. A typical quasimode construction is a set of functions asymptotically concentrated near
some periodic ray(s). Although we get thatu0

j , j D 1, . . . , m are also concentrated there, this is
not necessarily true for some linearly independent system ofm eigenfunctions, because among
the eigenfunctions spanningfu0

jg we may have for example functions asymptotically concentrated
both near the ray(s) under consideration and near other rays not involved in that quasimode con-
struction. A similar remark applies to the resonance case, see Remark 6 below.

We start the proofs with recalling two lemmas from [T-Z]. The first lemma states ana priori
exponential estimate of the cut-off resolvent outside small neighborhoods of the resonances. An
estimate of this type was first proved by M. Zworski [Z2] for scattering by obstacles using methods
developed by Melrose [M] for obtaining upper bounds on the number of scattering poles. A similar
estimate (kindly suggested to the authors by M. Zworski) was next proved in [St-V1], [St-V2] for
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more general cases and was used for proving existence of infinitely many poles near the real axis
caused by the Rayleigh surface waves. The lemma below, belonging to Tang and Zworski, extends
this estimate to the semiclassical framework of “black-box scattering” and is based on techniques
developed by Sj¨ostrand [Sj].

Lemma 1 ([T-Z]) There exists� 2 (0, �), such that for any simply connected compact setQ� �
fz 2 CI max(��, 2� �2�) < argz < 2�g and positive functiong(h) � 1 defined on0 < h < h0,
there exist constantsA D A( Q�) > 0 andh1 with 0 < h1 < h0 such that

k�(P(h) � z)�1�kH!H � AeAh�n]
ln(1=g(h)), 8z 2 Q� n

[

zj 2ResP(h)\ Q�

D(zj , g(h)),

whereD(zj , g(h)) WD fz 2 CI jz � zj j � g(h)g.

The number� is actually connected with the size of a conic neighborhood ofRn, where one
can extend holomorphically the coefficients ofP(h) outsideB(0, R0) in case of non-compact
perturbations (see [Sj], [T-Z]).

The next lemma allows us to estimate the growth of the cut-off resolvent under the assumption
that it is holomorphic (there are no resonances) in some region near the real axis. As mentioned
in the Introduction, a lemma of this type appeared first in [St-V2] and was used to prove existence
of infinite number of scattering poles for the elasticity system with Neumann boundary conditions
in the following way. That lemma implied an a priori estimates of the resolvent on the real axis
contradicting the existence of quasimodes. In order to prove the lemma, under the assumption
that there are no resonances near the real axis, we applied the maximum principle for unbounded
domains (the Phragmén-Lindelöf principle) in a neighborhood of the real axis bounded by two
curves approaching the real axis polynomially fast. To estimate the resolvent on those curves,
the following observations were crucial: in the lower half-plane one has standard bounds of the
resolvent; while in the upper half-plane one can use the a priori exponential estimate on the cut-
off resolvent similar to that in the lemma above. Multiplying by a suitably chosen holomorphic
function that would compensate for the exponential growth on the upper curve, one is in a position
therefore to apply the maximum principle. Tang and Zworski [T-Z] observed that one can actually
localize those arguments in a rectangle near a fixed quasimode by multiplying by a suitable holo-
morphic “cut-off” function that is exponentially small at the left and right sides of that rectangle
neighborhood and uniformly bounded from below in a smaller set.

Lemma 2 ([T-Z]) Let fhlg1
lD1

� RC be a sequence such thathl ! 0, as l ! 1. Suppose that
F(z, h), h 2 fhlg1

lD1
is a holomorphic function ofz defined in a neighborhood of

�(h) D [E(h) � 5hk, E(h) C 5hk] C i[�S(h), S(h)h�n]�1]

with E(h) 2 R, whereS(h) is as in Theorem 1. IfF(z, h) satisfies

jF(z, h)j � AeAh�n]
ln(1=hS(h)) on �(h),

jF(z, h)j � 1=jIm zj on �(h) \ fIm z < 0g,
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then there existsh1 D h1(S, A, k) > 0, B D B(S, A, k) > 0 such that

jF(z, h)j � B=S(h), 8z 2 [E(h) � hk, E(h) C hk]

for h � h1, h 2 fhlg1
lD1

.

An inspection of the proof of the lemma in [T-Z] shows thatB andh1 are independent of the
choice ofE(h) andF(z, h) as long as the constantA appearing in the exponential estimate above
remains uniform. To see this, it is enough to note that the proof is based on application of the
maximum principle in�(h) to the product ofF and an auxiliary function depending onS andk

only. Thenh1 andB depend on the properties of that function and on the exponential bound above
used to estimate the maximum ofF on@�(h). We will apply Lemma 1 to�(P(h) � z)�1� using
Lemma 2. Then the uniformity ofA will be fulfilled, if [E(h) � 5hk, E(h) C 5hk] � (a0, b0) with
0 < a0 < b0 which will be always true.

We refer to [T-Z] for proof of Lemma 1 and Lemma 2.
Fix a cut-off function� 2 C 1

0 (Rn) with � D 1 nearK. In next lemma we will not indicate the
dependence onh.

Lemma 3 Let Q� be another cut-off function withQ� D 1 nearK an letz0 be a pole of�(P �z)�1 Q�,
i.e.,

�(P � z)�1 Q� D A0(z) C
NX

jD1

(z � z0)�jAj (6)

with A0(z) holomorphic nearz D z0, AN 6D 0 andN � 1. Let �j , j D 1, . . . , N � 1 be C 1
0 -

functions such that�1 D 1 nearK, supp�j � f�jC1 D 1g, j D 1, . . . , N � 2 andsupp�N �1 �
f Q� D 1g. Then

Aj �1 D A1(P � z0)�j�1(P � z0)�j�2 . . . �2(P � z0)�1, j D 2, . . . , N.

Proof. Let us multiply (6) by(P � z) on the right. We get

� Q� C �(P � z)�1[ Q�, P ]

D A0(z)(P � z) C
NX

jD1

(z � z0)�jAj(P � z0 � z C z0)

D A0(z)(P � z) C
NX

jD1

�
(z � z0)�jAj (P � z0) � (z � z0)�jC1Aj

�

D A0(z)(P � z) � A1 C
NX

jD1

(z � z0)�j
�
Aj(P � z0) � AjC1

�
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with the conventionAN C1 D 0. Multiply by �l on the right and equate the singular powers of
z � z0 to get

Aj (P � z0)�l D AjC1�l , j, l D 1, . . . , N � 1.

Therefore, forj D 2, . . . , N ,

Aj�1 D Aj�1(P � z0)�1 D Aj�1�2(P � z0)�1

D Aj�2(P � z0)�2(P � z0)�1 D Aj�2�3(P � z0)�2(P � z0)�1

D Aj�3(P � z0)�3(P � z0)�2(P � z0)�1 D Aj�3�4(P � z0)�3(P � z0)�2(P � z0)�1

D . . .

D A1(P � z0)�j�1(P � z0)�j�2 . . . �2(P � z0)�1.

This proves the lemma. 2

Assume thatQ� D 1 on supp� in Lemma 3. Then we can choose�1 D �. Multiply (6) by � on
the right to get

�(P(h) � z)�1� D A0(z, h)� C
NX

jD1

(z � z0(h))�jA1(h)Qj(h), (7)

whereQj(h), j � 2 are unbounded butA1(h)Qj(h) are bounded operators. Notice thatA1(h) is
a finite rank operator, and by definition, Rank(A1(h)) is the multiplicity ofz0(h) and this rank is
independent of the choice of the cut-off functions�, Q� in (6). The above lemma says that the range
of the singular part of the cut-off resolvent is the same as the range of the residueA1.

Proof of Theorem 1. We are going to assume that

m(h) < Ch�n]

, h 2 fhlg1
lD1. (8)

At the end of the proof we will show that, in fact, this is always true.
Assume from now on thath 2 fhlg1

lD1
. Fix 0 � � � 1 as in Lemma 3. Letz1(h), z2(h), . . . ,

zM(h)(h) be all distinct poles of�(P(h) � z)�1� in (4) and denote byA(j)
1 (h), j D 1, . . . , M(h)

the corresponding residua. The sum of the ranks of allA
(j)
1 (h) is equal to the total number of

resonances in(4). Denote by…(h) the orthogonal projector inH onto [M(h)
jD1 A

(j)
1 (h)H and set

…0(h) D Id � …(h). Then Rank…(h) does not exceed the total number of resonances in (4)
counting multiplicities. Our goal is to prove that the latter is at leastm(h) and this will be achieved
if we prove that Rank…(h) � m(h).

By (7), …0(h)�(P(h) � z)�1� is holomorphic in(4). Then…0(h)�(P(h) � z)�1� is holomor-
phic in

z 2 �6(h) WD [a(h) � 6hk, b(h) C 6hk] C i[�S(h), 2S(h)h�n]�1].

10



SetEs(h) D a(h) C s(b(h) � a(h)), s 2 [0, 1]. Then…0(h)�(P(h) � z)�1� is holomorphic in a
neighborhood of

�5,s(h) WD [Es(h) � 5hk , Es(h) C 5hk ] C i[�S(h), S(h)h�n]�1] for anys 2 [0, 1]. (9)

We chooseg(h) WD hS(h) in Lemma 1. Forh � 1, �6(h) is included in a fixed compact set
satisfying the requirements of Lemma 1, thus

k�(P(h) � z)�1�kH!H � AeAh�n]
ln(1=hS(h)), z 2 �6(h) n

[

zj 2ResP(h)

D(zj , hS(h)). (10)

This implies

k…0(h)�(P(h)�z)�1�kH!H � AeAh�n]
ln(1=hS(h)), z 2 �6(h)n

[

zj 2ResP(h)

D(zj , hS(h)). (11)

We would like to prove this estimate in the whole�5,s(h) using the fact that…0(h)�(P(h)�z)�1�

is actually holomorphic in the larger domain�6(h). Notice that (11) holds in�5,s(h) with the
exclusion of the disksD(zj , hS(h)). Some of thosezj ’s can lie outside�5,s(h) and even outside
�6(h) and some of the disks can overlap. We claim that if some connected union of such disks
has common points with�5,s(h), then it lies entirely in�6(h). This follows easily from the
following. The distance between any point in@�5,s(h) and the exterior of�6(h) in Im z > 0

is at leasth�n]�1S(h) for h sufficiently small. On the other hand, because of (8), the diameter
of each maximal connected set having common points with�5,s(h), which is a union of such
disks centered in�6(h) , does not exceedm(h)hS(h) � Ch�n]C1S(h). There can be also disks
centered outside�6(h) and intersecting�6(h), not included in the those considerations but they do
not have common points with those unions of disks becauseCh�n]C1S(h) � h�n]�1S(h). This
proves the claim. The lemma does not guarantee that estimate (11) is fulfilled in the interior of any
such union of disks, but since the latter lies in�6(h), it is fulfilled on the boundary. Applying the
maximum principle in each such set, we get that the estimate holds inside as well (see Figure 1).
Therefore,

Ω6(h)

Ω5,s(h)

Es+5h
k

Es-5h
k

a-6h
k

b+6h
k

2S(h)h
-n -1

S(h)h
-n -1

0

-S(h)

#

#
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Figure 1

k…0(h)�(P(h) � z)�1�kH!H � AeAh�n]
ln(1=hS(h)), 8z 2 �5,s(h), 8s 2 [0, 1]. (12)

HereA is uniform ins.
SinceP(h) is selfadjoint, for Imz < 0 we have the standard estimate

k…0(h)�(P(h) � z)�1�kH!H � k�(P(h) � z)�1�kH!H � 1=jIm zj.

By this and (12) we conclude from Lemma 2 that

k…0(h)�(P(h) � z)�1�kH!H �
B

S(h)
for z 2 [Es(h) � hk , Es(h) C hk ] (13)

for 0 < h < h1(S, A, k) andB D B(S, A, k). Hereh1, B are independent ofs, thus we get the
estimate above forz 2 [a(h) � hk, b(h) C hk].

We haveuj(h) D �uj(h) D �(P(h) � z)�1�(P(h) � z)uj (h) for Im z < 0 and therefore for
z 62 ResP(h). Let us multiply this by…0(h) to get…0(h)uj(h) D …0(h)�(P(h) � z)�1�(P(h) �
z)uj(h). Since…0(h)�(P(h) � z)�1� is holomorphic in (4), we can setz D Ej (h) above. Hence,
for j D 1, . . . , m(h) with h as above, we have

k…0(h)uj (h)kH D k…0(h)�(P(h) � Ej(h))�1�(P(h) � Ej(h))uj(h)kH

� k…0(h)�(P(h) � Ej(h))�1�kH!Hk(P(h) � Ej(h))uj (h)kH

� B
R(h)

S(h)
� Bhn]C1. (14)

for h small enough. Sinceuj(h) form an orthonormal system up to an errorR(h), we get

ˇ̌
(…(h)ui(h), …(h)uj (h))H � ıij

ˇ̌
� 2 (1 C R(h))

1
2 Bhn]C1 C B2h2n]C2 C R(h).

Lemma 4 Letf1, f2, . . . , fN beN vectors in the Hilbert spaceH with
ˇ̌
(fi , fj)H � ıij

ˇ̌
� ", i, j D 1, . . . , N.

If " < 1=N , thenf1, f2, . . . , fN are linearly independent.

Proof. Assume that those vectors are linearly dependent. Thena1f1 C . . . C aN fN D 0 with
(a1, . . . , aN ) 6D 0. Without loss of generality we may assume that0 6D jaN j � jaj j, j D
1, . . . , N � 1. Divide byaN to get

fN D c1f1 C . . . C cN �1fN �1, jcj j � 1, j D 1, . . . , N � 1.

12



Multiply this by fN to get

1 � " � kfN k2
H D c1(f1, fN )H C . . . C cN (fN �1, fN )H � (N � 1)",

thus1 � N", which proves the lemma. 2

From Lemma 4 we therefore get that if

2 (1 C R(h))
1
2 Bhn]C1 C B2h2n]C2 C R(h) < 1=m(h), (15)

then…(h)uj (h), j D 1, . . . , m(h) are linearly independent. Condition (15) is fulfilled for small
h because of (8). Therefore we get Rank(…(h)) � m(h). This proves the theorem under the
assumption (8).

We will show now that the assumption (8) made at the beginning of the proof is not restrictive.
Assume thatm(hlj )=h�n]

lj
! 1, j D 1, 2, . . . for some subsequencefhlj g of fhlg1

lD1
. We can

remove some quasimodes to make sure thatm(h) � Ch�n]�1 and keep the limit above. Then
we get as above that the number of resonances ofP(h) in [a0, b0] would not beO(h�n]

), which
contradicts (2).

This completes the proof of Theorem 1. 2

Remark 6. By (14) we get thatuj(h) D …(h)uj (h) C O(hn]C1) and by choosingS(h) so
thatR(h)=S(h) D O(h1) we can achieve that the remainder is actuallyO(h1). This property is
similar to what we know about the case of eigenfunctions (see the discussion at the beginning of
this section). Namely,uj approximate functions in…(h)H, i.e., linear combinations of functions
in [kA

(k)
1 (h)H, where

A
(k)
1 (h) D

1

2� i

I

jz�zk j�1

�(P(h) � z)�1�dz

and as beforezk are the resonances in�6(h). But again, ifuj(h) are concentrated around some
set (microsupport) ash ! 0, this does not necessarily mean that we have functions inA

(k)
1 (h)H,

such that each one corresponds to a singlek rather to a combination of severalk ’s with the same
property. For example, the functions in eachA

(k)
1 (h)H may be asymptotically supported both near

the microsupport of this quasimode construction and the microsupport of some otherQuj(h)’s that
happen to have quasimodes close to those we consider.

Proof of Corollary 1. Sethl WD a�1
l

, P(h) WD h2P D a�2
l

P , h 2 fhlg1
lD1

. In this proof,
denote the functionR from Theorem 1 byRT . ThenP(h) satisfies the assumptions of Theorem 1
with a(h) D 1, b(h) D b2

l
=a2

l
, Ej(h) D a�2

l
�2

l,j
, m(h) D ml , RT (h) D R(al) D R(h�1),

uj(h) D ul,j . We obtain therefore existence ofl(ST , k) > 0, such that forl > l(ST , k) the
operator�(a�2

l
P � z)�1� has at leastml poles in the setz 2 [1 � 6a�k

l
, b2

l
=a2

l
C 6a�k

l
] C

i[0, 2ST (a�1
l

)an]C1
l

], whereST is any function satisfying the assumptions forS in Theorem 1.
By estimating the square root of that set, we conclude that�(a�2

l
P � �2)�1� has at leastml poles
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in � 2 [1 � 4a�k
l

, a�1
l

bl(1 C 4a�k
l

)] C i[0, 2ST (a�1
l

)an]C1
l

] for l large enough. Setting� D al�,

we get at leastml resonances ofP in [al � 4a�kC1
l

, bl C 4(bl=al)a
�kC1
l

] C i[0, 2ST (a�1
l

)an]C2
l

].
Using the fact that4=al < 1, 4bl=a2

l
< 1 for largel , we get the conclusion of the corollary withk

replaced byk � 2 andS(�) D 2ST (��1)�n]C2. To complete the proof it remains to show that if
S(�) satisfies the assumptions of Corollary 1, thenST (h) determined byS(�) D 2ST (��1)�n]C2,
� D h�1, satisfies the assumptions of Theorem 1. Indeed, we haveST (h) D 1

2
S(h�1)hn]C2 thus

ST (h) � h�n]�1R(h�1) D h�n]�1RT (h) which is one of the hypotheses onST in Theorem 1.
The other condition about the exponential bound from below follows from the similar condition in
Corollary 1. 2

Proof of Theorem 2. We will assume first that

Nquasi(r) � C0(rn]

C 1) (16)

with someC0 > 0. Fix k � n] C 1. For any indexj denoteIj WD f�j g C 2(���k
j , ��k

j ] D
(�j � 2��k

j , �j C 2��k
j ]. Here and below we use the notationA C B WD fa C bI a 2 A, b 2 Bg

for any two number setsA andB, andf�j g1
jD1 is the set of quasimodes.

Consider [

j�1

�
f�jg C 2(���k

j , ��k
j ]

�
. (17)

We claim that the set above consists of infinitely many disjoint intervals. Indeed, fixa � 1. If
we assume that the whole interval[a, a C 1] is covered by (17), then we get that[a, a C 1] should
contain at least1

5
ak quasimodes. Sincek � n] C 1, we get a contradiction with (16).

Therefore, (17) consists of a sequence of disjoint intervals(Al , Bl ], l D 1, 2, . . .. Moreover,
the argument above proves thatBl � Al � 5C0B�kCn]

l
, l � 1. Each(Al , Bl ] containsml � 1

quasimodes�l,j , j D 1, . . . , ml , and
Sml

jD1

�
f�l,j g C 2(���k

l,j
, ��k

l,j
]
�

D (Al , Bl ]. Denote by

(al , bl ] � (Al , Bl ] the minimal interval containing
Sml

jD1

�
f�l,j g C (���k

l,j
, ��k

l,j
]
�
. ThenBl �bl >

b�k
l

, Al � al > 1
2
a�k

l
and therefore,

0 < bl � al � 5C0b�kCn]

l
, b�k

l < alC1 � bl , 8l � 1 (18)

(See Figure 2.) Fix a functionS satisfying the assumptions of Theorem 2 and apply Corollary 1
to [al , bl ] with S there replaced byS=2. Clearly,S=2 satisfies the assumptions of Corollary 1. We
get that the number of resonances in

(al , bl ] C
1

4
[�a�k

l , a�k
l ] C i[0,

1

2
S(al)] (19)

is at least equal to the numberml of quasimodes in(al , bl ] for l large enough (it is easy to see that
we can put the constant1=4 there by increasingk). By (18), those rectangles do not overlap for
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l � 1. We claim that this implies that

Nquasi(bl) � Nquasi(al) D ml � Nres(bl C
1

4
a�k

l ) � Nres(al �
1

4
a�k

l ). (20)

To prove the latter, in view of (19) and the definition ofNres, it is enough to show that

(al , bl ]C
1

4
[�a�k

l , a�k
l ]Ci[0,

1

2
S(al)] � f�I al�

1

4
a�k

l � Re� � blC
1

4
a�k

l , 0 � Im � � S(Re�)g.

Let us first observe�S � S 0 � 0 implies easily thatS(a) � 2S(a C 1=(2 )), 8a. Therefore,
S(al) � 2S(Re�) for Re� as above provided thatal � 1. This implies the inclusion above which
in turn proves our claim.

O(bl )

al bl al+1 bl+1

O(bl+1 )
-k+n

#
-k+n

#

>bl
-k

rr0

Imλ = S(Reλ)

Figure 2

Fix a realr0 in the gap between two rectangles (19), i.e.,

bl C
1

4
a�k

l � r0 � alC1 �
1

4
a�k

lC1, for somel � 1. (21)

Then, summing up inequalities (20) withl there replaced byl , l � 1, . . . , l(k), we obtain

Nres(r0) � Nres(al(k) �
1

4
a�k

l(k)) � Nquasi(r0) � Nquasi(al(k)), (22)

wherel(k) > 0 is that number for which all statements above hold withl � l(k). Let r > al(k)

be any number. Denote byr0 the closest numberr0 � r such thatr0 is of the type considered in
(21) (see Figure 2). Then by (18),0 � r � r0 � 5C0r�kCn]

and by (22),

Nres(r) � Nres(r0) � Nquasi(r0) �
�

Nquasi(al(k)) � Nres(al(k) �
1

4
a�k

l(k))

�

� Nquasi(r � 5C0r�kCn]

) � Ck.
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Replacingk by k Cn] C1, we see that we can replace5C0r�kCn]

above byr�k and thus complete
the proof of (5).

It remains to show that (16) is always fulfilled. Assume the opposite, that for anyM > 0 we
haveNquasi(rj ) > 2Mrn]

j for a sequencerj ! 1.
Form D 3, 4, . . . do the following: first, remove all quasimodes from(1, 2]. Then, ifNquasi(m)

> Mmn]

, remove some quasimodes from(m�1, m] until we getNquasi(m) D Mmn]

; if Nquasi(m)

� Mmn]

, do nothing. Since by the previous step we have achieved thatNquasi(m � 1) � M(m �
1)n]

< Mmn]

, it is possible to arrange the equalityNquasi(m) D Mmn]

by removing quasimodes
from (m � 1, m] only. We have infinitely manym’s for which we will have to remove quasimodes
because assuming the opposite, we would getNquasi(m) � Mmn]

, 8m D 2, 3, . . ., after removing
a finite number of quasimodes, which contradicts our assumption. Thus, we haveNquasi(mj) D
Mmn]

j for a sequencemj ! 1 andNquasi(m) � Mmn]

, 8m D 2, 3, . . .. The latter easily implies

Nquasi(r) � 2Mrn]

for all realr large enough, so (16) is fulfilled. Notice thatNquasi(r) now is the
counting function of the subset of the quasimodes obtained after the procedure above. Let us apply
what we have already proved to this subset of quasimodes. By (5),Nres(mj C 1) � Mmn]

j � C ,
which contradicts (3) if we chooseM large enough. 2

Proof of Corollary 2. Assume thatNquasi(r) � p(r) C q(r) with p(r) such thatjp0(r)j � CrN ,
8r � 1 with someN > 0. Thenjp(r) � p(r � r�k)j � Cr�kCN ! 0, asr ! 1, if k > N .
Therefore, the termp(r � r�k) in (5) can be replaced byp(r) with changing the constantCk .

4 An Application: Sharp lower bound on the number of the
resonances generated by an elliptic broken ray.

In this section we apply Theorem 2 to the following classical problem. Let� � Rn be a domain
with a compact complement (obstacle) O D Rn n � with smooth boundary. LetP D �� in
H WD L2(�) be the self-adjoint realization of the Laplacian with Dirichlet boundary conditions.
Resonances ofP can be defined by means of classical scattering theory as the poles of the mero-
morphic continuation of the cut-off resolvent. They are also the poles of the scattering matrix
[L-P]. The (modified) Lax-Phillips Conjecture is that in case of trapped light rays there are in-
finitely many resonances in a strip around the real line. If the trapping is “strong” enough, one
should have a sequence of resonances actually converging to the real axis.

A classical example of a trapped ray which is expected to produce many resonances near the
real axis, is an elliptic broken ray. Quasimodes associated with such a ray were constructed in
[P1] (see also [L]). In [St-V2] it was shown that there exists an infinite sequence of resonances
converging rapidly to the real line as a consequence of the existence of the quasimodes. The results
in [T-Z] provide at least a linear lower bound on the counting function of those resonances but the
possibility of obtaining a sharp bound seems limited without additional arguments. Below we
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apply Theorem 2 to show that we have the optimal boundcrn. Notice that in this casen] D n in
(3) (see [M]).

Next we sketch briefly some results from [P1]. Consider a broken periodic bicharacteristic in
T �� with vertices�j , j D 0, . . . , m. Assume that

(H1) �0 is anelliptic fixed point of the Poincar´e mapP, i.e., all eigenvalues ofDP(�0) lie on the
unit circle and are different froṁ 1.

(H2) The Poincar´e mapP is 5-elementary, i.e., ifei j̨ , 0 < j j̨ j < �, j D 1, . . . , n � 1 are the
eigenvalues ofDP(�0), thenk1˛1 C . . . C kn�1˛n�1 6D 0 for k1, . . . , kn�1 integers such that
1 � jk1j C . . . C jkn�1j � 5.

Then one constructs the Birkhoff normal form ofP near�0 D (0, 0) by

P(� , I) D
�
� C gradS(I) C O(jI jN ), I C O(jI jN C1)

�
, (� , I) 2 T n�1 � Rn�1

C ,

whereS 2 C 1, S(0) D 0, gradS(0) D (˛1, . . . , ˛n�1). Finally, we require that

(H3) the Birkhoff form is non-degenerate, i.e., detD2S(0) 6D 0.

Under those assumptions, Popov has constructed quasimodes ofP with error functionO(��1)

associated to that broken ray and has found an asymptotic formula for the counting function. He
proved that

Nquasi(r) D
meas(GE)

n(2�)n
rn C O(rn� ),

where > 0 andGE is a Cantor set with non-zero measure associated with the invariant tori of
the Poincar´e map. We refer to [P1] for the outline of the proof of this (see also [C-P, Sec. 4] for
further details).

A direct application of Theorem 2 yields the following.

Theorem 3 Let P be the Dirichlet Laplacian inL2(�) and assume that there exists an elliptic
periodic broken ray satisfying (H1), (H2) and (H3). Then there exists a positive functionS(�) D
O(��1), such that for the counting function

Nres(r) D #f� 2 ResP I 1 < Re� � r, 0 < Im � � S(Re�)g

we have

Nres(r) �
meas(GE)

n(2�)n
rn � Crn� ,

with some > 0, C � 0 andGE as above.
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[Sj-Z2] J. SJÖSTRAND AND M. ZWORSKI, Distribution of scattering poles near the real axis,
Comm. P.D.E.17(5-6)(1992), 1021–1035.

[St-V1] P. STEFANOV AND G. VODEV, Distribution of resonances for the Neumann problem in
linear elasticity outside a strictly convex body,Duke Math. J.78(3)(1995), 677–714.

[St-V2] P. STEFANOV AND G. VODEV, Neumann resonances in linear elasticity for an arbitrary
body,Comm. Math. Phys.176(1996), 645–659.

18



[T-Z] S.-H. TANG AND M. ZWORSKI, From quasimodes to resonances,Math. Res. Lett., to
appear.

[V] G. V ODEV, Sharp polynomial bounds on the number of scattering poles for perturbations
of the Laplacian,Comm. Math. Phys.146(1992), 39–49.

[Z1] M. Z WORSKI, Sharp polynomial bounds on the number of scattering poles,Duke Math.
J. 59(1989), 311–323.

[Z2] M. Z WORSKI, unpublished, 1990.

19


