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1 Introduction

In this paper we study expansions of solutions of the wave equation in a compact set with initial data
supported in the same set. We consider the general framework of the “black box scattering” introduced
by Sjöstrand and Zworski [SjZ] (see sec. 2). In particular, this includes the classical case of scattering by
obstacle with Dirichlet or Neumann boundary conditions and metric perturbations of the Laplacian with a
metric equal to the Euclidean one outside a large ball. Denote by U(t) the solution group corresponding to
the wave equation in the energy space and let χ be the multiplication with a compactly supported function
χ(x) equal to 1 on some compact set containing the “black box” (the scatterer). Then we are interested in
asymptotic expansions of χU(t)χ, as t → ∞.

If we study the wave equation in a bounded domain, then one can use the Fourier method to get expansion
of U(t) in terms of the eigenvalues and eigenfunctions of the corresponding Laplacian (with self-adjoint
boundary conditions). In the case under consideration, one gets expansions in terms of the resonances and
resonance states. This has been confirmed in the non-trapping case by Lax-Phillips [LP] and Vainberg [Va1]
in odd dimensions (see also [Va2]) and in the black box setting by Tang and Zworski [TZ2]. In this case,

χU (t)χg =
∑

Im λj≤A

mj∑

m=1

eitλj tm−1wj,m(x) + O(e−(A−ε)t)g, g ∈ D, ε > 0. (1)

Here u(t, x) = U (t)g is the solution to the wave equation with initial data u|t=0 = 0, ut|t=0 = g (see also
sec. 2), D is the domain of the corresponding Hamiltonian and mj is the order of singularity of the Laurent
expansion of the resolvent at the resonance λ = λj . The functions wj,m(x) are resonance states (see also
section 3). In this paper we accept the convention that resonances lie in the upper half-plane Im λ > 0. Note
that the sum above is finite.

Much less is known in case of trapping scatterers. We will study here systems with a sequence of
resonances λj converging rapidly to the real axis, i.e., Im λj = O(|λj|−∞). Such “almost real” resonances
exist for example in the classical obstacle scattering assuming the existence of non-degenerate elliptic periodic
ray [SV2] (see also [TZ1], [S]); for the system of linear elasticity in exterior domain with Neumann boundary
conditions [SV1], [SV2], [Vo], [S2]; for transparent obstacles [PV]. Recently, Tang and Zworski [TZ2] obtained
for the first time an expansion of the type (1) for trapping systems (having “almost real” resonances) in the
black box setting. They showed that

χU (t)χg =
∑

Im λj≤〈λ〉−K−1

mj∑

m=1

eitλj tm−1wj,m(x) + EK(t)g, g ∈ DM , (2)
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where K � 1, M � 1. For the error term we have ‖EK‖DM→H ≤ CN t−N , if the space dimension
n is odd, ‖EK‖DM→H ≤ t−n+1 for n even and N can be chosen arbitrary large by choosing M large
enough. This expansion is proved under the following separation condition: for K � 1, ∃k > 0, such that
|λ − µ| ≥ C max{|λ|, |µ|}−k for any two distinct resonances λ and µ in Im λ ≤ 〈λ〉−K and the algebraic
multiplicities of those resonances are uniformly bounded. The sum above is infinite and the outer sum is
absolutely convergent, while the absolute convergence of the double sum is unclear. The main argument in
proving (2) is showing that the cut-off resolvent is polynomially bounded on a contour around each resonance
near the real axis. This estimate relies on a priori exponential estimate of the resolvent first observed by
Zworski [Z] and on the “semi-classical maximum principle” [TZ1, Lemma 2] (see also Lemma 1 below), which
in turn is a significant improvement over [SV2, Lemma 1]. The approach in [TZ2] is used in [CZ] to obtain
resonance expansions in two hyperbolic cases where the separation condition holds. In a recent paper, Burq
and Zworski [BZ] showed that one can sum up in (2) over resonances λj with |λj| ≤ tε with ε = ε(M, K) > 0
and this gives an error term of the same type with larger K and M but without any assumptions on the
resonances.

In this paper we present a generalization of the result in [TZ2]. We study a case, where the resonances
near the real axis are separated from the other resonances by a polynomial region of the type 〈λ〉−K ≤
Im λ ≤ 〈λ〉−K+2n#+ε, ε > 0, K � 1 and our main result is formulated in Theorem 1. We do not assume
however that the resonances below that region are separated from each other. Our assumption is satisfied
for example for the system of linear elasticity with Neumann boundary conditions and we discuss this in
section 4. The general case remains open. It should be noted also that our results can be also formulated in
the semiclassical setting.

Below we will denote by C different positive constants that may change from line to line.

Acknowledgments. The author would like to thank Maciej Zworski for the numerous discussions on this
subject and for his encouragement to write this paper.

2 Assumptions and Main Result

We will recall briefly the black box scattering formalism as introduced in [SjZ] (see also [TZ2]). Let H be a
complex Hilbert space with orthogonal decomposition

H = HR0 ⊕ L2(Rn \ BR0 ),

where BR0 := {x ∈ Rn; |x| < R0} and R0 is fixed. Let P be a self-adjoint operator in H with domain D ⊂ H
such that 1Rn\BR0

D = H2(Rn \ BR0 ), 1Rn\BR0
P = −∆|Rn\BR0

, (P + i)−1 is compact and P ≥ 0. For
simplicity, we will assume that P has no eigenvalues. Those conditions guarantee that R(λ) := (P − λ2)−1 :
H → D admits a meromorphic extension as an operator from Hcomp to Dloc from the lower half-plane
to the whole complex plane when n is odd, and to the logarithmic plane if n is even. The poles of this
extension that we will still denote by R(λ) are called resonances and we will denote the set of resonances by
R(P ). Each resonance has finite multiplicity defined as the rank of the residue and the Laurant expansion
at the pole has finite order of singularity not exceeding the multiplicity. We will always include resonances
according to their multiplicities. We also assume that for the “reference operator” P#, constructed from P ,
on HR0 ⊕ L2(M \ BR0 ), M := (R \ RZ)n for some R > R0, we have

N (P#, r) := #{λ2 ∈ spec P#; 0 ≤ λ ≤ r) = O(rn#
)

with some n# ≥ n. Then (see [Sj] and the references herein), for some θ > 0 for the number of resonances
Nθ(r) in {|λ| ≤ r, arg λ < θ} we have

Nθ(r) ≤ Cθr
n#

, r ≥ 1. (3)
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The solution to the wave equation (∂2
t + P )u = 0 with initial conditions u|t=0 = f1, ∂tu|t=0 = f2 can be

expressed in the corresponding energy space by the unitary group

U(t) = exp
(

0 I
−P 0

)
t =

(
∂tU (t) U (t)
∂2

t U (t) ∂tU (t)

)
,

where U (t) : Dk → Dk+1 and u = U (t)f solves the wave equation (∂2
t +P )u = 0 with initial data (u, ut)|t=0 =

(0, f). In particular, this shows that in order to study the local behavior of U(t), it is enough to study U (t).
We will also use the notation Dk := (P + i)−kH.

We are ready now to formulate our main result.

Theorem 1 Assume that for some K > 7n#/2 there are no resonances of P in 〈λ〉−K ≤ Im λ ≤ 〈λ〉−K+2n#+ε,
ε > 0, for |λ| � 1. Then

χU (t)χg = −i

∞∑

l=1

∑

λj∈R(P); Re λj∈Il

Im λj <〈λ〉−K

χRes{eitλR(λ), λj}χg + EK(t)g, g ∈ DM , (4)

M ≥ (K+1)/2, where Res{f(z), z0} stands for the residue of f at the pole z0. Here Il = [al, bl], al < bl < al+1

is any sequence of intervals such that dist{Il, Il+1} = bl+1 − al ≥ a−k
l , k > n#, and Re (R(P ) ∩ {Imλ <

〈λ〉−K}) ⊂ ∪lIl. The outer sum is absolutely convergent. The error term EK(t) satisfies ‖EK(t)‖DM→H ≤
CN t−N , N = (2M − K)/(K − n# + 1 + ε), n odd, and ‖EK(t)‖DM→H ≤ Ct−min(n−1,N), n even.

Remark 1. Even though the outer sum is absolutely convergent, we cannot guarantee that the double
sum is absolutely convergent or even convergent (see also [TZ2]).

Remark 2. For any resonance λj , we have χRes{eitλR(λ), λj}χg =
∑mj−1

m=0 eiλjttmwj,q(x) (compare with
(1)). Since Imλj > 0, each term above decreases exponentially fast, while the error term Ek(t) tends to
zero only at a polynomial rate! The exponential rate of decay however depends on λ and becomes small
for large λ’s. We do not have effective lower bounds on wj,q’s, but based on the upper bounds (see (20)),
we expect that the terms in (4) corresponding to resonances close to the upper boundary Imλ = 〈λ〉−K

would be comparable to the error term EK(t), while if λj is close to the real axis, for example exponentially
close, then the corresponding terms will dominate over EK(t). Also, we may have the accumulative effect of
infinite many wj,q.

Remark 3. The assumption of a resonance free zone 〈λ〉−K ≤ Imλ ≤ 〈λ〉−K+2n#+ε, |λ| � 1 can be
relaxed. It is enough to assume that in this zone we have the following property: There exist k0 > 0 and
n0 > 0 such that for any a > 0 large enough the number of resonances in this zone with a ≤ Re λ ≤ a+a−k0

does not exceed n0. Then Theorem 1 still holds with different M and N depending on k0, n0. Also, we may
have to deform the contour Im λ = 〈λ〉−K in order to include in (4) a possible sequence of resonances above
it that may converge to this curve faster than any polynomial of 1/|λ| as in [BZ]. Notice that the so relaxed
assumption is satisfied if the resonances there are “separated” as in [TZ2].

3 Proof of Theorem 1

Technically, it is convenient to work in the semiclassical setting. Set P (h) := h2P , where 0 < h < 1. The
poles of the analytic continuation of the resolvent R(z, h) := (P (h)−z)−1 : Hcomp → Hloc from Ω∩{Im z < 0}
to Ω, where Ω is a neighborhood of some energy level E > 0 are resonances of P (h) and with some abuse
of notation we will denote them by R(P (h)). Thus the relationship between the resonances λ ∈ R(P ) of P
and the resonances z ∈ R(P (h)) is given by λ = h−1z1/2. Here and below we denote by χ the multiplication
by a compactly supported function χ(x) equal 1 on BR, R > R0. More precisely, χ = 1HR0

⊕ χ̃, where χ̃ is
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the multiplication by the restriction χ̃(x) of χ(x) on Rn \ BR0 . It is convenient to assume that 0 ≤ χ ≤ 1.
We will use the notation Rχ(z, h) := χR(z, h)χ and Rχ(λ) := χR(λ)χ. Sometimes we will denote Rχ(z, h)
simply by Rχ(z).

First we formulate an a priori exponential estimate on the resolvent. As mentioned in the Introduction,
this estimate was first observed by M. Zworski [Z]. In this generality it was proved in [TZ1], [TZ2].

Proposition 1 Under the conditions above, let Ω be a simply connected compact neighborhood of E > 0 in
Re z > 0. Then for 0 < h < h0 with some h0 > 0 we have

‖Rχ(z, h)‖H→H ≤ eCΩh−n#
ln(1/g(h)) for z ∈ Ω, |z − zj| ≥ g(h), ∀zj ∈ R(P (h)), g(h) � 1.

The following “semi-classical maximum principle” is a modification of [TZ2, Lemma 4.1] (see also [TZ1,
Lemma 2] and [SV2, Lemma 1]). We formulate here a more general version of this lemma suitable for our
purposes.

Lemma 1 Fix k > 0, n# > 0. Let 0 < h < 1 and a(h) ≤ b(h). Suppose that F (z, h) is a holomorphic
function of z defined in a neighborhood of

Ω(h) = [a(h) − 5w(h), b(h) + 5w(h)] + i[−S−(h), S+(h)h−n#−ε],

where 0 < S−(h) ≤ S+(h) ≤ w(h)h3n#/2+2ε, ε > 0 and w(h) → 0, as h → 0. If F (z, h) satisfies

|F (z, h)| ≤ AeAh−n#
ln(1/h) on Ω(h), (5)

|F (z, h)| ≤ M (h) on [a(h) − 5w(h), b(h) + 5w(h)] − iS−(h) (6)

with M (h) → ∞, as h → 0, then there exists h1 = h1(S−, S+, A, k, ε) > 0 such that

|F (z, h)| ≤ 2e3M (h), ∀z ∈ Ω̃ := [a(h) − w(h), b(h) + w(h)] + i[−S−(h), S+(h)]

for h ≤ h1.

Sketch of the Proof: The proof follows those of [TZ2, Lemma 4.1] and [TZ1, Lemma 2] with some
modifications. Set

f(z, h) := (πα2)−1/2

∫ b(h)+3w(h)

a(h)−3w(h)

exp
(
− (x − z)2

α2

)
dx, α := S+(h)h−n#−ε.

Then f(z, h) is holomorphic in Ω(h) and for h � 1 satisfies:

|f(z, h)| ≤ e in Ω(h), (7)

|f(z, h)| ≥ 1
2

in Ω̃(h), (8)

|f(z, h)| ≤ Ce−h−n#−ε

in Ω(h) ∩ {Re z ≤ a(h) − 4w(h) or Re z ≥ b(h) + 4w(h)}. (9)

Next, we apply the maximum principle to the function

G(z, h) := eiz/S+(h)f(z, h)F (z, h)

in Ω(h). On the upper part of ∂Ω(h), the exponential function above compensates for the exponential
growth (5) of F , so |G| = o(1), as h → 0, there. On the sides, the exponential function is bounded by
exp(S−(h)/S+(h)) < e and the exponential growth of F is controlled by f in view of (9) so we have again
|G| = o(1). On the lower part Im z = −S−(h) of ∂Ω(h), we have |G| ≤ e|fF | ≤ e2M (h) by (7) and (6).
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Thus |G| ≤ e2M (h) on ∂Ω(h) for h � 1. By the maximum principle, this is true in Ω(h) as well. Using the
fact that |eiz/S+(h)| ≥ 1/e on ∂Ω̃(h) and (8), we get

1
2e

|F | ≤ |eiz/S+(h)||F ||f | ≤ e2M (h),

which proves the lemma. 2

Typically, Lemma 1 is applied to Rχ(z) (or to some multiple of it) and then one can use the classical
estimate ‖Rχ(z)‖ ≤ 1/|Imz| in the lower half-plane Im z < 0, so in this case M (h) = 1/S−(h).

Let Ω(h) be as above with

w(h) := hk, S+(h) := hk+3n#/2+2ε, k > 0, ε > 0.

Let z1(h), z2(h) . . . zp(h) be all resonances in Ω(h) and denote by m1, . . . , mp the corresponding multiplic-
ities. Set m := m1 + . . .+mp. Assume also that all resonances in Ω(h) actually lie in [a(h), b(h)]+ i[0, S−(h)]
with S−(h) := hk+5n#/2+2ε. Let

z̃j(h) := z̄j(h) − 2iS−(h), j = 1 . . . p,

where the bar denotes complex conjugate (see Figure 1). Note that zj and z̃j are symmetric about the line
Im z = −S−(h) (the lower part of ∂Ω(h)). Set

G(z, h) :=
(z − z1)m1 . . . (z − zp)mp

(z − z̃1)m1 . . . (z − z̃p)mp
.

Ω(h)

b+h
k

a-h
k

a-5h
k

b+5h
k

h
k+n / 2+ε

0

#

∼

ba

-3S_(h)

Ω(h)

-S_(h)

S+= h
k+3n / 2+2ε

#

S_= h
k+5n / 2+2ε

#

Figure 1: resonances zj are denoted by •; z̃j are denoted by ◦

It is easy to see that
|G(z, h)| ≤ 1 for Im z ≥ −S−(h). (10)

The function F := GRχ is holomorphic in Ω(h) and satisfies the assumptions of Lemma 1 if we assume
that dist(∂Ω(h),R(P )) ≥ ChK with some K > 0. Indeed, by Proposition 1, the exponential estimate is
satisfied in the complement (in Ω(h)) of disks centered at the resonances with radii hN with fixed N � 1
(see [TZ2]). Those disks may intersect but can form connected unions of size not more than O(hN−n#

) that
will stay away from ∂Ω(h). Since F is holomorphic in those disks, applying the maximum principle, we get
the exponential estimate in the whole Ω(h) (see also the proof of Theorem 1 in [S]). Note that this condition
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and therefore the exponential estimate are automatically satisfied if we increase ε and k. On the lower part
of ∂Ω(h) we have the resolvent estimate ‖Rχ(z)‖ ≤ 1/|Im z| for Im z < 0 and (10), thus ‖GRχ‖ ≤ 1/S−(h)
on ∂Ω(h) ∩ {Im z = −S−(h)}. By Lemma 1, ‖GRχ‖ ≤ 2e3/S−(h) in Ω̃(h) for h small enough.

We now claim that
1/C ≤ |G(z, h)| on ∂Ω̃(h). (11)

with some C > 0 depending only on the constant in (3). It is enough to estimate (z − z̃j)/(z− zj) on ∂Ω̃(h).
We have

∣∣∣∣
z − z̃j

z − zj
− 1

∣∣∣∣ =
∣∣∣∣
zj − z̃j

z − zj

∣∣∣∣ ≤
4S−(h)

hk+3n#/2+2ε/2
= 8hn#

, ∀z ∈ ∂Ω̃(h) \ {Im z = −S−(h)} (12)

for 0 < h < 1/2 because |z − zj | ≥ hk+3n#/2+2ε − hk+5n#/2+2ε ≥ hk+3n#/2+2ε/2 for h < 1/2 if Im z =
hk+3n#/2+2ε and we have greater lower bound for z on the right and left sides of ∂Ω̃(h). Therefore,

∣∣∣∣
z − z̃j

z − zj

∣∣∣∣
mj

≤ (1 + 8hn#
)mj , ∀z ∈ ∂Ω̃(h) \ {Im z = −S−(h)}

On the other hand, (12) is trivially true on the lower side Im z = −S−(h) of ∂Ω̃(h) because |(z−z̃j)/(z−zj )| =
1 there. Since (1 + x)1/x < e, 0 < x < ∞, we get

|G(z, h)| ≤ (1 + 8hn#
)m1+...+mp = (1 + 8hn#

)m ≤ (1 + 8hn#
)Ch−n#

≤ e8C .

This proves our claim.
The estimate we got on GR and (11) together imply ‖Rχ‖ = O(1/S−(h)) = O(h−k−5n#/2−2ε) on ∂Ω̃(h).

We have therefore proved the following.

Lemma 2 Assume that all resonances in

[a(h) − 6hk, b(h) + 6hk] + i[0, hk+n#/2]

lie in [a(h), b(h)] + i[0, hk+5n#/2+ε], ε > 0. Then

‖Rχ‖ = O(h−k−5n#/2−ε) on ∂Ω̃(h),

where Ω̃(h) := [a(h) − hk, b(h) + hk] + i[−hk+5n#/2+ε, hk+3n#/2+ε].

We note that we increased Ω(h) in order to make sure that all resonances outside the original Ω(h) are
at distance at least hK with some K > 0 and we also replaced 2ε by ε.

The rest of the proof follows closely that of [TZ2]. We have

χU (t)χg =
1
2π

∫ ∞−iα

−∞−iα

eitλRχ(λ)g dλ, g ∈ D, α > 0. (13)

In what follows we will assume that g is compactly supported (we can always assume that). Assume first that
n is odd. Then we are going to lift the contour of integration to the pole-free zone such that Rχ is polynomially
bounded on the new contour as well. Using (3) one can show (see [S], [SjV]) that for any k > n# + 1 all
resonances in Λ := {Im λ < 〈λ〉−K} can be grouped into clusters Ul with Re (Ul) ⊂ Il, where the intervals
Il := (al, bl) are as in Theorem 1 with the properties: |Il| = O(λ−k+1+n#

) and dist(Il, Il+1) ≥ 4λ−k+1,
1 � λ ∈ Il. Set h = hl := a−1

l and P (h) := h2P , h ∈ {hl}∞l=1. Then under the scaling λ 7→ h2λ2 =: z
the interval Il transforms into (1, b2

l /a2
l ) =: (a(h), b(h)) and we get that there are no resonances z of P (h)

(such that λ(z) ∈ Λ) with real parts in [a(h) − 7hk, b(h) + 7hk] \ [a(h), b(h)]. Simple calculations show
that the condition Im λ = 〈λ〉−K implies Im z = (2 + o(1))hK+1. Therefore the assumption that there are
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no resonances of P in 〈λ〉−K ≤ Im λ ≤ 〈λ〉−K+2n#+ε, λ � 1, guarantees that all resonances of P (h) in
[a(h)− 7hk, b(h) + 7hk] + i[0, hK−2n#+1−ε] actually lie in [a(h), b(h)]+ i[0, 3hK+1] for h small enough. So in
particular they lie in [a(h), b(h)] + i[0, hK+1−ε/2] for h small enough. Set

k := K − 5n#/2 + 1 − ε. (14)

Then k > n# + 1 for ε � 1 and we are in position to apply Lemma 2 with ε replaced by ε/2 to get
‖Rχ(z)‖ = O(h−K−1+ε/2) on ∂Ω̃(h). We also used the classical estimate ‖Rχ(z)‖ ≤ 1/|Imz| for Im z < 0,
so M (h) = 1/S−(h) in (6).

Applying the transform z 7→ h−1
√

z =: λ, λ ∈ [al, bl], h = 1/al, we get that

‖Rχ(λ)‖ = O(|λ|K−1) on Γl, (15)

where Γl is asymptotically close to the boundary of the rectangle

al −
1
2
a−k+1

l ≤ Re λ ≤ bl +
1
2
a−k+1

l , −1
2
a
−k−5n#/2−ε/2+1
l ≤ Imλ ≤ 1

2
a
−k−5n#/2−ε/2+1
l . (16)

Since we have the freedom to perturb al by ca−k+1
l , c � 1, we can actually assume that Γl exactly coincides

with the boundary of the rectangle above.
It remains to estimate the resolvent in the gaps between the intervals Il. We know that there are no

resonances λj in Λ with real parts in (bl, al+1), l = 1, 2, . . . and moreover al+1 − bl ≥ 4b−k+1
l . We can

replace the constant 4 there by any other by increasing k (this is not necessary in fact, since the terms ±5hk

in Lemma 1 can be replaced by ±(1 + ε)hk, ∀ε > 0). So, we have al+1 − bl ≥ 20b−k
l . Assume first that

al+1 − bl ≤ b−1
l . Set h := b−1

l , apply Lemma 1 and then go back to the λ variables. We get that

‖Rχ(λ)‖ = O(|λ|K−n#/2−1+ε) in Πl, (17)

where Πl is given by

Πl := [bl + 5b−k
l , al+1 − 5b−k

l ] +
i

2
[−a

−k−3n#/2−2ε
l , a

−k−3n#/2−2ε
l ]. (18)

Clearly the curve γ := Imλ = 1
2
〈λ〉−K+n#−1−ε (see (14)) lies below the upper boundary of Πl, so we have

in particular that (17) is satisfied on γ ∩Πl. Note that Πl and the rectangle (16) enclosed by Γl overlap for l
large enough. Similarly, Πl and Γl+1 intersect for the same reason. If the assumption al+1 − bl ≤ b−1

l is not
satisfied, we can cover (bl, al+1) by a sequence of overlapping intervals of length O(|λ|−1) and apply similar
arguments to get that the polynomial estimate (17) holds on γ ∩ {bl + 5b−k

l ≤ Re λ ≤ al+1 − 6a−k
l+1}.

We are ready to construct the contour Γ. For bl + 5b−k
l < Re λ < al+1 − 7a−k

l+1, we choose Γ to coincide
with γ. For al ≤ λ ≤ bl, we set Γ to be that part of Γl that lies above γ (see Figure 2). We define Γ in
Re λ ≤ 0 as a symmetric image of Γ in Re λ ≥ 0.

al bl al+1 bl+1

Γl Γl+1
γ

Figure 2: The contour Γ

To finish the proof of Theorem 1, we will lift the contour of integration in (13). To this end, let us
choose the following closed (positively oriented) curve Cl: the upper part is Γ ∩ {|Reλ| ≤ 1

2 (bl + al+1)}, the
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lower part is {Imλ = −α, |Re λ| ≤ 1
2 (bl + al+1)}, and the sides are {Re λ = ±1

2 (bl + al+1), −α ≤ Imλ ≤
1
2 〈λ〉

−K+n#−1−ε}. By (15) and (17), ‖Rχ(λ)‖ = O(|λ|K−1) on Cl, ∀l. We can improve this estimate by
letting Rχ(λ) act on smoother functions in view of the inequality (see e.g. [TZ2])

‖Rχ(λ)‖DM→H ≤ CM |λ|−2M‖Rχ′(λ)‖, M > 0, (19)

where χ′ ∈ C∞
0 is such that χ′ = 1 on supp χ. This yields

‖Rχ(λ)‖DM→H = O(|λ|−2) on Cl, ∀l, with M ≥ (K + 1)/2. (20)

As mentioned above, without loss of generality we can assume that g is of compact support and χ = 1 on
supp g. Integrating over Cl and taking into account that integrals over the vertical sides tend to zero, as
l → ∞ in view of (20), we see that (13) transforms into

χU (t)χg =
∞∑

l=1

wl(t, x) + E(t)g, g ∈ DM

where

wl(t, x) :=
∑

λj∈R(P); Re λj∈Il

Im λj <〈λ〉−K

−iχRes{eitλR(λ), λj}χg =
∑

λj∈R(P); Re λj∈Il

Im λj <〈λ〉−K

eiλjt

mj−1∑

m=0

tmwl,m(x) (21)

and
E(t)g =

1
2π

∫

Γ

eitλRχ(λ)g dλ.

Using (19) and the fact that on Γ we have Imλ ≥ 1
2
〈λ〉−K+n#−1−ε, we get (see [TZ2] for more details)

‖E(t)g‖H = ‖
∫

Γ

eitλRχ(λ)g dλ‖ ≤ C

(∫ ∞

1

e−tx−K+n#−1−ε/2x−2M+K−1 dx + O(e−Ct)
)
‖g‖DM

= O(t−(2M−K)/(K−n#+1+ε))‖g‖DM .

To finish the proof for n odd, we notice that the intervals Il with the required properties exist because of the
polynomial estimate (3) of the number of resonances. In (4) one can sum over a different family of intervals
as long as dist{Il, Il+1} ≥ a−k

l , k > n#. If |Il| 6= O(a−k+n#

l ), then one can split Il into several subintervals
with gaps between them of required minimal length and then we apply what we already proved.

In the even dimensional case we have to deform the contour in a different way near λ = 0 (see [TZ2])
and the contribution of λ = 0 is O(t−n+1) (as in the unperturbed case).

The statement about the absolute convergence of the outer sum in (4) follows from the bound (15) on
Γl. For wl (see (21)) we have

‖wl(t, ·)‖ ≤ etcl

2π

∮

Γl

‖Rχ(λ)g‖ |dλ| ≤ Cetclλ−2|Γl|‖g‖DM ≤ Cetclλ−2|Il|‖g‖DM , (22)

where λ ∈ Il and cl = O(a−K+1
l ). This estimate easily implies the convergence of the outer sum in (4) for

any fixed t.
The estimate above grows exponentially as t → ∞, which is unnatural. Below we will show that the left

hand side of (22) admits a similar estimate with exp(tcl) replaced by a decaying term. Next proposition is
an analogue of the classical estimate ‖(P −λ2)−1‖ ≤ 1/dist{λ2, spec (P )} for a self-adjoint P . It holds under
the a priori exponential estimate (23). An estimate of this type with q = 1 has been proved by Burq [B1],
[B2] for a large class of elliptic operators in the exterior of an obstacle.

Notice that below we do not assume the resonance free zone condition of Theorem 1.
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Proposition 2 Assume that ∃q > 0, such that

Im λj ≥ C1e
−C2|λj |q for all resonances λj . (23)

Let d(λ) := min{dist(λ,R(P )), |λ|1−δ}, δ > 0 fixed, and set N# := n# + q. Then for any ε > 0 we have

‖Rχ(λ)‖ ≤ C|λ| 3N#
2 −1+ε

d(Re λ)
for 0 ≤ Imλ ≤ d(Re λ)

21|λ| 3N#
2 +ε

, |λ| � 1. (24)

Proof. Let λ0 � 1 and set h := 1/λ0. Assume that

λ ∈ W (λ0) := [λ0 −
1
2
d(λ0), λ0 +

1
2
d(λ0)] + i[0, d(λ0)λ

−N#/2−ε
0 ].

Then there are no resonances in W (λ0) for λ0 � 1. Apply the transform z = h2λ2. The image of W (λ0)
under that transform contains the domain

Ω0(h) := [1− 3
4
hd(h−1), 1 +

3
4
hd(h−1)] + i[0,

3
2
d(h−1)hN#/2+1+ε]

and there are no resonances z of P (h) in this domain. By Proposition 1, Rχ(z) satisfies the exponential
estimate (5) with n# replaced by N# in the smaller domain

Ω(h) := [1 − 1
2
hd(h−1), 1 +

1
2
hd(h−1)] + i[0, d(h−1)hN#/2+1+ε],

because the distance between Ω(h) and the closest resonance is at least g(h) = 1
2d(h−1)hN#/2+1+ε and

ln(1/g(h)) = ln2 + ln(1/d(h−1)) + (N#/2 + 1 + ε) ln(1/h) ≤ Ch−q. Set 5w(h) := 1
2
hd(h−1). Then we can

apply Lemma 1 to get

‖Rχ(z)‖ ≤ Ch3N#/2+1+2ε

d(h−1)
for z ∈ [1 − 1

10
hd(h−1), 1 + 1

10
hd(h−1)] + i[0, 1

10
d(h−1)h3N#/2+1+2ε]

for h � 1. Applying the inverse transform λ = h−1z1/2 = λ0z
1/2, we get the required estimate for λ ∈ Ω̃(h)

and in particular for λ = λ0(1 + i
2( 1

10d(λ0)λ
−3n#/2−1−2ε
0 (1 + O(λ−1

0 )))). Replacing 2ε by ε, we complete the
proof of the proposition. 2

Next proposition shows that although the resolvent may not be polynomially bounded near the real axis,
integral of it over bounded intervals is.

Proposition 3 Assume (23). Then for µ > 0 large enough
∫ µ+1

µ

‖Rχ(λ + iα)‖DM→Hdλ ≤ Cµ
5N#

2 −1+ε−2M for 0 ≤ α ≤ min{d(λ); µ ≤ λ ≤ µ + 1}
22µ

3N#
2 +ε

.

Proof. Let µ be as above. We can assume that dist(λ,R(P )) ≤ 1 for λ � 1, otherwise the estimate follows
easily from Lemma 1. So, d(µ) = dist(µ,R(P )) for µ � 1. By Proposition 2 and (19), for α as above,

‖Rχ(λ + iα)‖DM→H ≤ Cλ
3N#

2 −1+ε−2M

d(λ)
≤ Cλ

3N#
2 −1+ε−2M

∑

j

1
|λ − λj |

,

where the summation is taken over all resonances satisfying λj ∈ [µ − 1, µ + 2] + i[0, 2], if µ ≤ λ ≤ µ + 1.
According to (3), there are O(µn#

) such resonances. We therefore get
∫ µ+1

µ

‖Rχ(λ + iα)‖DM→Hdλ ≤ Cµ
3N#

2 −1+ε−2M
∑

j

∫ µ+1

µ

dλ

|λ − λj |
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= Cµ
3N#

2 −1+ε−2M
∑

j

∫ µ+1

µ

dλ√
(λ − Re λj)2 + (Imλj)2

≤ Cµ
3N#

2 −1+ε−2Mµn#
max

j
ln

1
Im λj

≤ Cµ
3N#

2 −1+ε+n#+q−2M .

This proves the proposition. 2

We are ready now to prove an improved version of estimate (22) by lifting the lower part of Γl above the
real axis. More precisely, we replace the contour Γl there by the boundary Γ′

l of the rectangle (compare with
(16))

al −
1
2
a−k+1

l ≤ Re λ ≤ bl +
1
2
a−k+1

l ,
1
23

dla
−3N#/2−ε
l ≤ Imλ ≤

1
2
a
−k−5n#/2−ε/2+1
l ,

where dl = minj(Im λj), with the minimum taken over all resonances λj with real parts in Il = [al, bl].
Arguing as in (22) and using Proposition 3, we get for 2M > 5N#/2 + 1 + ε

‖wl(t, ·)‖ ≤ Ce−tαlλ−2|Γl|‖g‖DM ≤ Ce−tαlλ−2|Il|‖g‖DM (25)

where αl := 1
23

dla
−3N#/2−ε
l and λ ∈ Il.

This estimate implies the following.

Theorem 2 Under the assumptions of Theorem 1, assume also that Im λj ≥ S(Re λj) with a decreasing
positive function S, such that −S′(λ)/S(λ) ≤ Cλq−1 for λ > 0 large enough. Assume also that K >
7n#/2 + q − 1. Then ∀ε > 0, ∃c > 0 such that we have the following estimate for 1 � A < B

∑

Il⊂[A,B]

∥∥∥
∑

λj∈R(P); Reλj∈Il

Im λj<〈λ〉−K

χRes{eitλR(λ), λj}χg
∥∥∥ ≤ C

∫ B

A

e−tS̃(x)

x2
dx‖g‖DM , S̃(x) := c|x|−3N#/2−εS(x)

(26)
for any g ∈ DM with 2M > max{K + 1, 5N#/2 + 1 + ε}, N# = n# + q.

Proof. The theorem follows directly from (25). Under the assumptions of the theorem, (23) is satisfied.
Thus dl = Imλj0 ≥ S(Re λj0 ), where λj0 is a resonance with real part in [al, bl]. Our assumption on S
implies that S(λ) ≤ CS(λ + h) for h = O(λ1−q), λ � 1. Tracing back the construction of Il, we see that
|Il| = O(λ1−q) for K as in the theorem. This implies dl ≥ cS(λ) for any λ ∈ Il with c > 0 independent of l

and λ. Therefore, in (25) we have αl > cS(λ)λ−3N#/2−ε, ∀λ ∈ Il. This implies (26) easily. 2

4 Rayleigh Resonances

Let Ω ⊂ Rn be the complement of a strictly convex obstacle and consider the elasticity system with Neumann
boundary conditions. The elasticity operator ∆e, acting on vector valued functions, has the form

∆ev = µ0∆v + (λ0 + µ0)∇(∇ · v),

where λ0 and µ0 are the Lamé constants satisfying µ0 > 0, nλ0 + 2µ0 > 0. We denote by P the self-adjoint
realization of P with Neumann boundary conditions on the boundary Γ = ∂Ω

(Bv)i :=
n∑

i=1

σij(v)νj |Γ = 0, i = 1, . . .n,

where σij(v) := λ0∇ · vδij + µ0(∂xjvi + ∂xivj) is the stress tensor and ν is the outer normal to Γ.
It is known [SV1] that in this case there exist a sequence of resonances λj with 0 < Re λj = O(|λj|−∞)

and a symmetric sequence −λ̄j . This result is proven in [SV1] for n = 3 but it also holds in any space
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dimension (see also [SjV]). If the boundary is analytic, the convergence is at an exponential rate [Vo]. There
is also a logarithmic resonance free zone, i.e., there are no other resonances in Λ := {Imλ ≤ C1 lnRe λ−C2}
with some C1 > 0, C2 > 0. Moreover, there is an asymptotic formula for the counting function N (r) =
{λ-resonance, λ ∈ Λ, |λ| ≤ r} of the form N (r) = Crn + O(rn−1), as r → ∞ (see [SjV]). Resonances with
this density exist for arbitrary boundary as well [SV2], [S2] but then we may not have a resonance free zone.
Existence of those resonances can be explained by the existence of Rayleigh surface waves propagating on
the boundary with speed CR slower than the two sound speeds of the elasticity system. Those surface waves
trap the energy near the boundary and in particular, there are singularities propagating on the boundary
[T].

An application of Theorem 1 immediately yields a resonance expansion of the solution operator U (t)
for this system. This result also holds under the weaker assumptions on the geometry of the boundary
considered in [SjV] that require a polynomial resonance free region for the Dirichlet problem (there are no
surface waves for the Dirichlet problem) and an additional assumption on the Neumann operator. In the
case of a strictly convex obstacle one can actually improve the estimate on the remainder. Denote by N (λ)
the Neumann operator related to this system defined as follows

N (λ) : Hs(Γ) 3 f 7→ Bv ∈ Hs−1(Γ),

where v is the λ-outgoing solution of the equation (∆e +λ2)v = 0 in Ω satisfying v = f on Γ (see also [SV1]).
In [SV1] it is shown that

‖N−1(λ)‖ ≤
C

ln |λ| for Im λ = a ln |Re λ|, |Reλ| > 2, (27)

with any fixed a > 0 and ‖ · ‖ can be any Hs norm, s ≥ 0. Let RD(λ) be the outgoing Dirichlet resolvent
and let KD(λ) : f → u be the outgoing solution operator of the homogeneous problem with Dirichlet data
f on Γ. Then

R(λ) = RD(λ) − KD(λ)N−1(λ)BRD(λ), (28)

where R(λ) is the Neumann outgoing resolvent related to P (see e.g. [SjV]). Now we can use the fact
that RD(λ) and KD(λ) are polynomially bounded in a logarithmic neighborhood of the real axis because
the Dirichlet problem is non-trapping. This, together with (27), allows us to conclude that Rχ(λ) is poly-
nomially bounded on Imλ = a ln |Re λ|. Let Γ be as above. Then the region above Γ and below the
curve Imλ = a ln |Re λ|, |Re λ| � 1 is free of resonances [SV1]. By the Phragmén-Lindelöf principle,
‖N−1(λ)‖ is polynomially bounded there. This allows us to lift the contour of integration from Γ to a line
Im λ = const. > 0 to obtain an exponential bound for the error term. As a result we get the following.

Theorem 3 Let U (t) be associated with the Neumann problem in linear elasticity, assume that the obstacle
O is strictly convex and let s > (7n/2 + 1). Then for any A > 0,

χU (t)χg = −i

∞∑

l=1

∑

λj∈R(P); Reλj∈Il
Im λj <A

χRes{eitλR(λ), λj}χg + EK(t)g, g ∈ Hs, (29)

where the error term EK(t) satisfies ‖EK(t)‖Hs→L2 ≤ Ce−(A−ε)t, ε > 0, n odd, and ‖EK(t)‖Hs→L2 ≤
Ct−n+1, n even. Here Il are as in Theorem 1 such that all resonances in Im λ < A have real parts in ∪Il.

Theorem 3 admits the following interpretation: near the boundary, each smooth enough solution of the elastic
wave equation with Neumann boundary conditions is a superposition of Rayleigh waves plus an exponentially
decaying term.

4.1 The 3D case

In what follows we will restrict next ourselves to the 3D case where it is known [S2] that the resonances
near the real axis are O(|λ|−∞) perturbations of the eigenvalues of a self-adjoint classical ΨDO P on the
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boundary with principal symbol cR|ξ|. They are also the poles of the Neumann operator N (λ). Our main
result here is (39) which gives a formula for the wl’s modulo an error term. We assume below that λ ∈ Λ.

As shown in [SV1], one can construct a parametrix for the Neumann operator N (λ). Here we are using
pseudodifferential operators with large parameter λ ∈ Λ and we will denote the corresponding class by Lm,k

(see e.g. [SV1], [SjV]). We have five microlocal regions related to P because the elasticity operator has two
wave speeds – a hyperbolic one, an elliptic one, two glancing ones and a mixed one which is hyperbolic
with respect to one of the wave speeds and elliptic withe respect to the other one. The parametrix has
a characteristic variety Σ := {cR|ξ|x = 1} in the elliptic region and is elliptic or hypoelliptic in the other
regions (see [SV1]) for more details). Moreover, near Σ we have the following: if WFλ(X) is near Σ, then
for the parametrix Ne in the elliptic region we have in block form (see [S2])

V ∗(λ)Ne(λ)V (λ)X(λ) =
(

A − λ 0
0 Q(λ)

)
X(λ) + R(λ). (30)

Here V (λ) is a classical ΨDO and V (λ) ∈ Ψ1 uniformly in λ, invertible for large λ uniformly in λ, A =
cR(−∆Γ)

1
2 mod Ψ0 is self-adjoint independent of λ and Q(λ) ∈ L1,1 is elliptic and self-adjoint for real λ,

R(λ) = O(|λ|−∞) is smoothing. For N (λ) we have

N (λ) = N (λ) + R(λ), (31)

where R(λ) stands for (another) smoothing operator with norm O(|λ|−∞) in each Hs space. Here N (λ) is
the parametrix constructed using the parametrices in each region via a suitable partition of unity.

Proposition 4 There exists a function 0 < S(λ) = O(|λ|−∞), such that

‖N−1(λ)‖ ≤ C

dist(λ, spec A) − S(λ)
for λ ∈ Λ, dist(λ, spec A) > S(λ).

Sketch of the Proof: As in [SV1], we estimate Nf from below in all microlocal regions. If X is a λ-ΨDO
with wave front set outside the characteristic variety Σ := {cR|ξ| = 1}, then we have

‖Xf‖ ≤ C|λ|−2/3+ε‖Nf‖ + O(|λ|−∞)‖f‖, λ ∈ Λ. (32)

Outside the glancing regions we have O(|λ|−1) in the first term. If WFλ(X) is near Σ, then we can use (30)
to get as in [SV1, (5.5)–(5.7)]

dist(λ, spec P )‖Xf‖ ≤ C‖Nf‖ + O(|λ|−∞)‖f‖. (33)

Therefore,
‖Xf‖ ≤ Cdist(λ, spec P )−1

(
‖Nf‖ + O(|λ|−∞)‖f‖

)
, λ ∈ Λ. (34)

Here X has a symbol supported near Σ in the elliptic region. Combining (32) and (34), we get

‖f‖ ≤ Cdist(λ, spec P )−1
(
‖Nf‖ + O(|λ|−∞)‖f‖

)
, λ ∈ Λ. (35)

Here we used the fact that dist(λ, spec P ) ≤ |λ|2/3−ε, λ ∈ Λ, |λ| � 1, because of the known asymptotics of
spec P . This implies the proposition. 2

Relations (30) and (31) imply that

N (λ)X(λ) = X1(λ)(V ∗)−1(λ)
(

A − λ 0
0 Q(λ)

)
V −1(λ) + R(λ)

with X and R as in (30) and X1 a zero order λ-ΨDO such that This yields

N−1X1 = XT−1 − N−1RT−1, where T−1(λ) := V (λ)
(

(A − λ)−1 0
0 Q−1(λ)

)
V ∗(λ), (36)
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By Proposition 4, if dist(λ, spec A) > S(λ) + S1(λ), then ‖N−1(λ)‖ ≤ C/S1(λ). On the other hand,
under the same assumption, ‖(A − λ)−1‖ ≤ 1/(S(λ) + S1(λ)). Thus, for the remainder term above we get
‖N−1RT−1‖ ≤ ‖R‖/S2

1 . Below we choose S(λ) + S1(λ) = C|λ|−k+1, S(λ) = O(|λ|−∞), and this guarantees
that ‖R‖/S2

1 = O(|λ|−∞) in this case.
Following similar arguments, we also get

N−1X̃1 = O(|λ|−∞) (37)

if WFλ(X̃1) ∩ Σ = ∅ and λ is separated from spec A as above.
Let now λj, j = 1, . . . ,∞ be the resonances near the positive real axis. Since λj are O(|λj|−∞) pertur-

bations of the eigenvalues µj of A (see [S2]), the estimate on the remainder term in (36) and estimate (37)
are valid if λ ∈ Λ is at a distance at least C|λ|−k, k > 0 from the resonance set. Let Γl be the boundary of
the rectangle (compare with (15))

al −
1
2
a−k+1

l ≤ Re λ ≤ bl +
1
2
a−k+1

l , −1
2
a−k+1

l ≤ Imλ ≤ 1
2
a−k+1

l .

Here Il = (al, bl) are intervals as in section 3 and k − 1 > n# = n = 3. By Proposition 4,

‖N−1(λ)‖ ≤ C|λ|k−1 on each Γl. (38)

Proposition 4 also implies that (38) is fulfilled in the gap between two consecutive Γl’s, i.e., in [bl +
a−k+1

l /2, al+1 − a−k+1
l+1 /2] + i[−1, 1]. This allows us to construct a contour Γ as in section 3 and N−1

will satisfy (38) on Γ and also on small vertical bars between two consecutive Γl’s. By the symmetry, we
have similar bounds near the resonances −λ̄j close to the negative real axis. Let Ba be a ball with radius
a � 1 such that the obstacle is included in Ba and denote Ωa := Ω ∩ Ba. The following estimates

RD(λ) = O(|λ|) : L2(Ωa) −→ H2(Ωa), KD(λ) = O(|λ|) : H1/2(Γ) −→ H1(Ωa), for |Imλ| ≤ 1

follow easily from the fact that the Dirichlet problem is non-trapping for the elasticity system and RD(λ) =
O(1/|λ|) : L2(Ωa) −→ L2(Ωa). This allows us to conclude that on Γ and on the verticals bars we have

‖Rχ(λ)‖DM→H = O(|λ|−1−ε), 2M ≥ k + ε, ε > 0.

Since k − 1 > n = 3, we get that in the three dimensional case, Proposition 4 holds with s = 5 which is an
improvement over the requirement on s.

We will use (36) and (37) to estimate

wl(t, x) =
1
2π

∮

Γl

eitλRχ(λ)g dλ

(see also (21)). Since A is self-adjoint, the algebraic multiplicity of each eigenvalue of A is 1 (while the
geometric multiplicity, i.e., the dimension of the associated eigenspace can be greater that 1). Using this, we
find that

wl(t, x) =
∑

µj∈Il

ieitµj KD(µj)V (µj)diag(Πj, 0)V ∗(µj)BRD(µj)g + Rl(t, x)g, ∀l � 1 (39)

where Πj is the projection associated with the eigenvalue µj of A and

‖Rl(t, ·)‖DM→H = eO(λ−∞)tO(λ−∞), λ ∈ Il, ∀M > 0. (40)

In order to get (40), we used the fact that k can be chosen to be any (large enough) number. Although this
estimate is not uniform with respect to t, it shows that the remainder term Rl(t, x) is uniformly O(λ−∞) for
t in an interval of length larger that CNλN , ∀N > 0. If the boundary is analytic, then (40) is uniform for
0 ≤ t ≤ CeCλ since the resonances in this case converge exponentially fast to the real axis [Vo]. It is unclear
whether one can prove an estimate uniform in t (this would probably require replacing the eigenvalues µj in
the exponential term eitµj above by the resonances λj). Nevertheless, (39) gives the structure of wl(t, x) in
this case.
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[B1] N. Burq, Décroissance de lénergie locale de l’équation des ondes pour le problème extérieur et absence
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