
SHARP STABILITY ESTIMATE FOR THE GEODESIC RAY TRANSFORM

YERNAT M. ASSYLBEKOV AND PLAMEN STEFANOV

Abstract. We prove a sharp L2 → H1/2 stability estimate for the geodesic X-ray transform of
tensor fields of order 0, 1 and 2 on a simple Riemannian manifold with a suitable chosen H1/2

norm. We show that such an estimate holds for a family of such H1/2 norms, not topologically
equivalent, but equivalent on the range of the transform. The reason for this is that the geodesic
X-ray transform has a microlocally structured range.

1. Introduction

Let (M, g) be a smooth compact n-dimensional Riemannian manifold with boundary ∂M . We
assume that (M, g) is simple, meaning that ∂M is strictly convex and that any two points on ∂M
are joined by a unique minimizing geodesic. The weighted geodesic ray transform Im,κf of a smooth
covariant symmetric m-tensor field f on M is given by

(1.1) Im,κf(γ) :=

∫
κ(γ(t), γ̇(t))fi1...im(γ(t))γ̇i1(t) · · · γ̇im(t) dt,

where κ is a smooth weight, γ runs over the set Γ of all unit speed geodesics connecting boundary
points, and the integrand, written in local coordinates, is invariantly defined.

When κ = 1, we drop the subscript κ and simply write Im. It is well known and can be checked
easily that for every φ regular enough with φ = 0 on ∂M , we have dφ ∈ Ker I1. Similarly, for every
regular enough covector field v of order m− 1 vanishing at ∂M , we have dsv ∈ Ker Im, where ds is
the symmetrized covariant differential. Those differentials are called potential fields. Many works
have studied injectivity of those transforms up to potential fields and stability estimates.

In the present paper, the bundle of symmetric covariant m-tensors on M will be denoted by
SmM . If F is a notation for a function space (Hs, C∞, Lp, etc.), then we denote by F (M ;SmM ) the
corresponding space of sections of SmM . Note that S0

M = C and in this case we simply write F (M)
instead of F (M ;S0

M ).

The goal of this paper is to prove sharp L2(M ;SmM )→ H1/2 stability estimates for those trans-

forms when m = 0, 1, 2 with an appropriate choice of an H1/2 space on Γ. The Sobolev exponents
0 and 1/2 are natural in view of the properties of Im as a Fourier Integral Operator in the interior
M int of M . The complications happen near the boundary. Before stating the main results, we will
review the known estimates first.

If g = e is Euclidean, a natural parameterization of the lines in Rn is as follows:

(1.2) `z,θ = {x+ tθ, t ∈ R}, (z, θ) ∈ Σ := {(z, θ) ∈ Rn × Sn−1| z · θ = 0}.
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One defines the Sobolev spaces H̄s(Σ) by using derivatives w.r.t. z only, see also (2.2). Then, with
Ie0 being the Euclidean X-ray transform on functions,

(1.3) ‖f‖Hs(Rn)/C ≤ ‖Ie0f‖H̄s+1/2(Σ) ≤ C‖f‖Hs(Rn),

for every f ∈ C∞0 (Ω) with Ω ⊂ Rn a smooth bounded domain, see [17, Theorem II.5.1] with
C = C(s, n,Ω) (the constant on the right depends on n only). This implies the estimate for every
f ∈ Hs

Ω̄
, see the discussion of the Sobolev spaces in Section 2.1. It is straightforward to see that

the estimate still holds if we define Hs(Σ) using all derivatives, including the θ ones.
Estimate (1.3) was recently proved by Boman and Sharafutdinov [5] for symmetric tensor fields

of every order m for s = 0 and f replaced by the solenoidal part f s of f , which is the projection of
f to the orthogonal complement of its kernel in L2:

(1.4) ‖fs‖L2(Ω;SmΩ )/C ≤ ‖Iemf‖H1/2(Σ̄) ≤ C‖f
s‖L2(Ω;SmΩ ),

where Iem is the Euclidean ray transform of tensor fields of order m supported in Ω̄.
In the Riemannian case, injectivity of Im up to potential fields (called s-injectivity) has been

studied extensively, see, e.g., [9, 13, 14, 15, 19, 23, 22, 24, 31, 26, 27, 33, 32, 35]. The first
proofs of injectivity/s-injectivity of I0 and I1 for simple metrics in [16, 2, 1] provide a stability
estimate with a loss of an 1/2 derivative. The ray transform there is parameterized by endpoints
of geodesics. Another estimate with a loss of an 1/2 derivative, conditional when m = 2, follows
from Sharafutdinov’s estimate in [21] for Im, see (1.6) below. Stability estimates in terms of the
normal operator Nm = I∗mIm are established in [26]:

(1.5) ‖fs‖L2(M ;SmM )/C ≤ ‖Nmf‖H1(M1;SmM1
) ≤ C‖f s‖L2(M ;SmM ), ∀f ∈ L2(M ;SmM ), m = 0, 1,

where M1 c M is some extension of M with g extended to M1 as a simple metric. When m = 0,
fs = f above. In [7], this estimate was extended to the weighted transform I0,κ, with κ never
vanishing, under the assumption that the latter is injective, and even to more general geodesic-like
families of curves without conjugate points. An analogous estimate for the weighted version of I1,
assuming injectivity, is proved in [8]. Those estimates are based on the fact that Nm is a ΨDO of or-
der −1 elliptic on solenoidal tensor fields (or just elliptic for m = 0) and injective. The need to have
M1 there comes from the fact that the standard ΨDO calculus is not suited for studying operators
on domains with boundary. On the other hand, ΨDOs satisfying the transmission condition can
be used for such problems. In [14], it is showed that N0 does not satisfy the transmission condition
but satisfies a certain modified version of it. Then one can replace M1 by M in (1.5) for m = 0 at
the expense of replacing H1 by a certain Hörmander type of space. A sharp stability estimate for
I0,κ : H−1/2(M) → L2

µ(∂−SM) on the orthogonal complement on the kernel is established in [9];
see (2.1) and next section for the Sobolev norms we use.

The case m ≥ 2 is harder and the m = 2 one contains all the difficulties already. S-injectivity is
known under an a priori upper bound of the curvature [23] and also for an open dense set of simple
metrics, including real analytic ones [27] (and for a class of non-simple metrics, see [30]). It was
shown in [18] that Im is s-injective on arbitrary simple surfaces for all m ≥ 2. Under a curvature
condition, using the Pestov identity, Sharafutdinov [23] proved the stability estimate

(1.6) ‖f‖L2(M ;SmM ) ≤ C
(
‖Imf‖H1(∂−SM) +m(m− 1)‖Imf‖L2(∂−SM)

∥∥jνf |∂M∥∥L2(∂M ;Sm−1
M )

)
,

∀f ∈ H1(M ;SmM ), m = 0, 1, 2, where jνf equals f “shortened” by the unit normal ν and the spaces
above are introduced in the next section. This estimate is of conditional type when m = 2 since
f appears on the r.h.s. as well; and not sharp since one would expect Imf to be in some form of
an H1/2 norm, as in (1.3). In terms of the normal operator, a non-sharp stability estimate for I2
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was established in [27]; and in [24], the second author proved the sharp stability estimate (1.5) for
m = 2:

(1.7) ‖fs‖L2(M ;S2
M )/C ≤ ‖N2f‖H1(M1;S2

M1
) ≤ C‖fs‖L2(M ;S2

M ), ∀f ∈ L2(S2
M ).

The new ingredient in [24] was to use the Korn inequality estimating ‖v‖H1(M ;S1
M ) in terms of

‖v‖L2(M ;S1
M ) + ‖dsv‖L2(M ;S2

M ).

The main result of this paper is a sharp estimate of the kind (1.3), (1.4) (but for g non- necessarily
Euclidean) for simple metrics and m = 0, 1, 2. Our starting point are the estimates (1.5) for m = 0, 1
and (1.7) for m = 2. As evident from (1.3), and the remark after it, there is some freedom in defining
the Sobolev space for Imf since its range is microlocally structured, see also Example 6. We show
that if one defines a Sobolev space, using as derivatives at least n − 1 non-trivial Jacobi fields
covering M and pointwise linearly independent in M , then an analog of (1.3) and (1.4) holds.

We define first the space H
1/2
Γ , called Hs

Γ(∂−SM1) in section 2.4, in the following way. Let
M1 c M be close enough to M so that g extends as a simple metric to M1. We parameterize
the maximal unit geodesics Γ1 in M1 by initial points on ∂M1 and incoming unit directions, i.e.,
by ∂−SM1, see (2.1) below. This defines a smooth structure in the interior of Γ1 and natural

Sobolev spaces in that interior (see also next section). We define H
1/2
Γ as the subspace of H1/2(Γint

1 )
consisting of the functions supported in Γ; the latter identified with their initial points and directions
on ∂−SM1 (but the geodesics are restricted to M). While the dot product depends on the extension,
the topology does not.

Clearly, if we try a similar parameterization by ∂−SM , we do not get a diffeomorphic relation at
the boundary of Γ consisting of geodesics tangent to ∂M (and having only one common point with

∂M). One can still give an intrinsic definition of H
1/2
Γ without extending (M, g). We parameterize

the maximal unit geodesics in M in some neighborhood of the boundary by a point z on each
one maximizing the distance to ∂M and a unit direction θ at that point, see also Figure 1 and
section 2.4. One can view this as taking the strictly convex foliation dist(·, ∂M) = p, 0 ≤ p � 1
first and then taking geodesics tangent to each such hypersurface. For this reason, we call it the
foliation parameterization. One can extend it smoothly to geodesic in M1 c M , with g extended

as a simple metric there, in a natural way. Then we define H
1/2
Γ as the subspace of H1/2(Γint

1 )
consisting of functions supported in Γ; and this space is topologically equivalent to one in the
previous paragraph by Proposition 2.2. We refer to section 2.4 for more details. The resulting
space is independent of the extension (M1, g). In Theorem 1.1 below, we show that one can use

prove sharp estimates with the H
1/2
Γ norm of Im,κf , as a special case.

The space H
1/2
Γ is too large in the Euclidean case, at least, as evident from (1.3) and (1.4), where

the derivatives used in the definition of H̄1/2(Σ) are the z-ones only. We show that a smaller space
can be chosen in the Riemannian case, as well. As mentioned above, we define a space (a family

of such, actually) H̄
1/2
Γ in section 3, roughly speaking as H

1/2
Γ but we use k ≥ n− 1 derivatives on

∂−SM having the properties that the corresponding Jacobi fields are pointwise linearly independent

over every point of M . If k = 2n − 2, we have H̄
1/2
Γ = H

1/2
Γ but for n − 1 ≤ k < 2n − 2, H̄

1/2
Γ is

a proper subspace of H
1/2
Γ . Therefore, those spaces are not topologically equivalent, at least not

when k changes; but they are, on the range of Im.
Our main result is the following.
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Theorem 1.1. Let (M, g) be a simple manifold. Let H̄
1/2
Γ be any of the spaces defined in section 3.

Then
(a) If I0,κ is injective, then for all f ∈ L2(M),

‖f‖L2(M)/C ≤ ‖I0,κf‖H̄1/2
Γ

≤ C‖f‖L2(M).

(b) For all f ∈ L2(M ;S1
M ),

‖fs‖L2(M ;S1
M )/C ≤ ‖I1f‖H̄1/2

Γ

≤ C‖fs‖L2(M ;S1
M ).

(c) If I2 is s-injective, then for all f ∈ L2(M ;S2
M ),

‖fs‖L2(M ;S2
M )/C ≤ ‖I2f‖H̄1/2

Γ

≤ C‖fs‖L2(M ;S2
M ).

Note that if κ is constant, or more generally related to an attenuation depending on the position
only, then I0,κ is injective on surfaces [20], and I1 is injective, too [1]. The transform I0,κ is not
injective for all, say non-zero, weights [4, 3] when n = 2 and g is Euclidean but it is injective for
n ≥ 3 under some conditions on the metric, as it follows from [35, 32], for example. Injectivity and
stability of I1,κ has been studied in [8] and the estimate there implies an estimate of the type above
which we do not formulate. Conditions for injectivity of I2 can be found in [23, 21, 28, 27, 33].

Theorem 1.1 generalizes (1.3) and (1.4) to the Riemannian case, in particular. In section 3,

we present several specific realizations of the H̄
1/2
Γ norms with k < 2n − 2 (strictly), i.e., Sobolev

spaces defined with fewer derivatives. Whether one can define such spaces in the natural ∂−SM or
B(∂M) parameterizations (see section 2.4) for which Theorem 1.1 would remain valid, is an open
problem, see also Example 5.

Acknowledgments. The authors thank Gabriel Paternain and François Monard for the discussion
about the results in [14] and for their helpful comments which helped improve the exposition, in
particular.

2. Preliminaries

2.1. Sobolev spaces. Consider a simple manifold (M, g). Let SM := {(x, v) ∈ TM : |v|g(x) = 1}
be its unit sphere bundle and ∂±SM be the set of inward/outward unit vectors on ∂M ,

(2.1) ∂±SM := {(x, v) ∈ SM : x ∈ ∂M and ± 〈v, ν(x)〉g(x) < 0},

where ν is the inward unit normal to ∂M . By dΣ2n−1 we denote the Liouville volume form on SM
and by dΣ2n−2 its induced volume form on ∂±SM . Following [21], the Sobolev spaces Hs(SM),
Hs

0(SM), H−s(SM) and Hs(∂±SM), Hs
0(∂±SM), H−s(∂±SM), for s ≥ 0, are the ones w.r.t. the

measures dΣ2n−1 and dΣ2n−2, respectively, defined in a standard way.
We recall that for s ≥ 0, there are several “natural” ways to define a Sobolev space when Ω ⊂ Rn

is a domain (or a manifold) with a smooth boundary: Hs(Ω) is the restriction of distributions
in Hs(Rn) to Ω; next, Hs

0(Ω) is the completion of C∞0 (Ω) in Hs(Ω); and Hs
Ω̄

is the space of

all u ∈ Hs(Rn) supported in Ω̄, also equal to the completion of C∞0 (Ω) in Hs(Rn), also the
space of all f which, extended as zero outside Ω̄, belong to Hs(Rn). We have Hs

Ω̄
= Hs

0(Ω) for
s 6= 1/2, 3/2, . . . , and Hs

Ω̄
⊂ Hs

0(Ω) ⊂ Hs(Ω) in general; and Hs
0(Ω) = Hs(Ω) for 0 ≤ s ≤ 1/2. We

have Hs(Ω)∗ = H−s
Ω̄

and (Hs
Ω̄

)∗ = H−s(Ω), for all s ∈ R. Those definitions extend naturally to

manifolds with boundary. We refer to [12] for more details.
In a similar way, we can define the weighted Sobolev spaces on Hs

µ(∂−SM), s ∈ R. More

precisely, for k ≥ 0 integer, Hk
µ(∂−SM) is the Hk-Sobolev space on ∂−SM w.r.t. the measure
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dµ(x, v) := 〈v, ν(x)〉g(x) dΣ2n−2(x, v). For arbitrary s ≥ 0, Hs
µ(∂−SM) is defined via complex

interpolation. Restricted to distributions supported in the compact set Γ however, the factor µ is
bounded by below (and above) by a positive constant and it can be removed from the definition.

2.2. Geodesics and the scattering relation. One way to parameterize the geodesics going from
∂M into M is by the set ∂−SM , see also Section 2.4. More precisely, for (x, v) ∈ ∂−SM), we write
γx,v(t), 0 ≤ t ≤ τ(x, v), for the unique geodesic with x = γx,v(0) and v = γ̇x,v(0). Here and in
what follows, we set τ(x, v) := max{t : γx,v(s) ∈M for all 0 ≤ s ≤ t} for (x, v) ∈ SM , i.e. the first
positive time when γx,v exits M . If (M, g) is simple, then τ is smooth up to the boundary S∂M
of ∂−SM ; more precisely, the extension as τ(x,−v) to ∂−SM (and extended by continuity on the
common boundary) is smooth, see [21, Lemma 4.1.1]. Note that τ is not smooth when x is not
restricted to ∂M ; the normal derivative has a square root type of singularity at ∂M .

2.3. The weighted geodesic ray transform and its adjoint. Let κ be a smooth function on
SM . Then the weighted geodesic ray transform Im,κf of f ∈ C∞(M ;SmM ) in (1.1) can be expressed
in local coordinates as

Im,κf(x, v) =

∫ τ(x,v)

0
κ(γx,v(t), γ̇x,v(t))fi1...im(γx,v(t)) γ̇

i1
x,v(t) · · · γ̇imx,v(t) dt, (x, v) ∈ ∂−SM,

see also (1.1). Using Santaló formula [6, Lemma A.8], one can see that Im,κ is bounded from
L2(M ;SmM ) to L2

µ(∂−SM). Its properties as a Fourier Integral Operator suggest that those norms
are not sharp, see Proposition 2.3.

Consider the adjoint operator I∗m,κ : L2
µ(∂−SM)→ L2(M ;SmM ). Then again by Santaló’s formula

[6, Lemma A.8],

(Im,κf, w)L2
µ(∂−SM) =

∫
∂−SM

∫ τ(x,v)

0
κ(γx,v, γ̇x,v)fi1...im(γx,v) γ̇

i1
x,v · · · γ̇imx,v w̄(x, v) dt dµ(x, v)

=

∫
SM

κ(x, v)fi1...im(x)vi1 · · · vim w̄ψ(x, v) dΣ2n−1,

where wψ is the function on SM that is constant along geodesics and wψ|∂−SM = w. Hence, we
have

I∗m,κw(x) =

∫
SxM

vi1 · · · vim κ̄(x, v)wψ(x, v) dσx(v),

where dσx(v) is the measure on SxM such that dσx(v)dVolg(x) = dΣ2n−1(x, v).

2.4. Parameterizations of the geodesic manifold. There are three main parameterizations
of the set Γ of the maximal directed unit speed geodesics on a simple manifold (M, g). We in-
clude geodesics generating to a point corresponding to initial directions tangent to ∂M to make
Γ compact; we call that set ∂Γ. We recall those three parameterizations below, and we include
our foliation one for completeness. Note that the first three are global and their correctness is
guaranteed by the simplicity assumption.

∂−SM parameterization: by initial boundary points and incoming directions. Each γ ∈ Γ is
parameterized by an initial point x ∈ ∂M and initial unit direction v at x, i.e., by (x, v) ∈
∂−SM . We write γ = γx,v(t), 0 ≤ t ≤ τ(x, v), where the latter is the length of the maximal
geodesic issued from (x, v).

B(∂M) parameterization: by initial points and tangential projections of incoming directions.
Each γ ∈ Γ is parameterized by an initial point x ∈ ∂M and the orthogonal tangential



STABILITY ESTIMATE FOR THE GEODESIC RAY TRANSFORM 6

projection v′ of its initial unit direction v at x, i.e., by (x, v′) ∈ B(∂M), where B stands for
the unit ball bundle. We write somewhat incorrectly γ = γx,v′ .

∂M × ∂M parameterization: by initial and end points. Each γ ∈ Γ is parameterized by its
endpoints x and y on ∂M . If we think of γ as a directed geodesic, then the direction is
from x to y. We use the notation γ = γ[x,y].

foliation parameterization: Near ∂Γ, let z be the point where the maximum of dist(γ, ∂M) is
attained, and let θ ∈ SM be the direction at z. We use the notation γ = γ(·, z, θ). Away
from ∂Γ, we can use any of the other parameterizations. We give more details below.

Identifying Γ with the corresponding set of parameters, each one of them being a manifold,
introduces a natural manifold structure on it. While those differential structures are different (near
∂Γ), the first two ones are homeomorphic but not diffeomorphic. In the ∂−SM and in the B(∂M)
parameterizations, Γ is a compact manifold with boundary ∂Γ. The boundary in the first one can
be removed by allowing geodesics to propagate backwards. In the ∂M × ∂M one, Γ is a compact
manifold without a boundary; then ∂Γ is an incorrect notation and it represents the diagonal. If we
project the unit sphere bundle to the unit ball one in the standard way v 7→ v′, the resulting map is
not a diffeomorphism up to the boundary, i.e., at v tangent to ∂M . The foliation parameterization
makes Γ a manifold with a boundary ∂Γ as well but it allows a natural smooth extension of Γ to a
smooth manifold of geodesic Γ1 on an extended M1 cM , as we show below.

We describe the foliation parameterization in more detail now. Fix a point q ∈ ∂M and assume
that ∂M is strictly convex at q w.r.t. g. Let ∂M1 be as above. We work in boundary normal
coordinates near q in which q = 0 and xn is the signed distance to ∂M , non-negative in M . We
can always assume that ∂M1 is given locally by xn = −δ with some 0 < δ � 1. Let Γ1 be a small
neighborhood of the geodesics tangent to ∂M at q extended until they hit ∂M1. Note that this
includes geodesic segments which may lie outside of M . We will choose a parameterization of Γ1

in the following way. First, since any geodesic γ ∈ Γ1 hits ∂M1 transversally at both ends when
δ � 1, we can parameterize γ by its initial point y′ ∈ ∂M1 and incoming unit directions w or their
projections w′ on Ty′∂M1. Denote this geodesic by γy′,w. The foliation parameterization of γ is by
(z, θ), where z = (z′, zn) is the point maximizing the signed distance form γ to ∂M (regardless of
whether γ is entirely outside M or hits ∂M), and by the direction θ at z which must be tangent to
the hypersurface xn = zn. In Figure 1 on the left, we illustrate this on an almost Euclidean looking
example (which is more intuitive) and in the right, we do this in boundary normal coordinates. We
call the corresponding geodesic γ(·, z, θ).

zn

z′

θ

y′
w′

w

∂M

∂M1

γz,θ

∂M
∂M1w

w′

γ

z

zn

θ

y′

z

Figure 1. The foliation parameterization by (z, θ)

Another way to describe the foliation parameterization, which explains it name, is to think of the
hyperplanes Σp := {xn = p}, |p| � 1, as a strictly convex foliation near q. Then γz,θ is the geodesic
through z ∈ Σzn tangent to it with unit direction θ ∈ SzΣzn . This defines a natural measure on the
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set of (z, θ) which we may identify with Γ1 given by d Volz dµθ, where dµθ is the natural measure
on SzΣp. Then (z, θ) belongs locally to the foliation TΣp, |p| � 1 with p = zn, (z′, θ) ∈ TΣp.

Let us compare the ∂−SM parameterization by (y′, w) ∈ ∂−SM1 to the B(∂M1) one by (y′, w′).
As we emphasized above, they are related by a diffeomorphism which becomes singular when w is
tangent to ∂M1. Such almost tangent geodesics (to ∂M1) however do not hit M ; therefore when
parameterizing If with supp f ⊆M , those two parameterizations are diffeomorphic to each other.

Proposition 2.1. Assume that ∂M is strictly convex at q. Then the map (y′, w) 7→ (z, θ) is a local
diffeomorphism.

Proof. Let τ(y′, w) be the travel time of the unit speed geodesic issued from (y′, w) ∈ ∂−SM1 to
z, i.e., τ maximizes γny′,w(τ) locally. Then τ is a critical point, i.e., γ̇ny′,w(τ) = 0. Let γy′0,w0

be a

geodesic tangent to ∂M at q = γy′0,w0
(τ0) with some τ0. To solve γ̇ny′,w(τ) = 0 for (y′0, w0) near

(y′, w), we apply the Implicit Function Theorem. Since γ̈ny′0,w0
(τ0) = −Γnij(q)γ̇

i
y′0,w0

(τ0)γ̇j
y′0,w0

(τ0) and

the latter equals twice the second fundamental form at q, we get a unique smooth τ(y′, w) with
τ(y′0, w0) = τ0.

Since z = γy′,w(τ(y′, w)) and θ = γ′y′,w(τ(y′, w)) (the prime stands for the projection onto the

first n− 1 coordinates in boundary normal coordinates), we get that (y′, w) 7→ (z, θ) is smooth.
To verify that the inverse map (z, θ) 7→ (y′, w) is smooth, it is enough to show that the travel

time t(z, θ) at which γz,θ(t) reaches ∂M1 = {zn = −δ} is a smooth function as well. This follows
easily from the fact that geodesics tangent to ∂M hit ∂M1 transversally when δ � 1. �

2.5. The space Hs
Γ. As before, we embed (M, g) in the interior of a simple manifold (M1, g) (the

metric on M1 is an extension of the metric on M). We also extend κ smoothly to SM1 and keep
the same notation for the extension. We denote by IM1

m,κ the geodesic ray transform on M1. The set
of the oriented geodesics through M will be called Γ as before. They are a subset of (the extensions
to) all oriented geodesics Γ1 in M1. The latter set is parameterized by ∂−SM1; and we identify
Γ1 with it. In particular, Γ1 becomes a manifold with boundary and Γ is a compact submanifold
contained in its interior. On ∂−SM1

∼= Γ1 we have two natural measures, as above: one is dΣ2n−2
1

and the other one is dµ1, the subscript 1 indicating that they are on Γ1. They are equivalent (define
equivalent Sobolev spaces) away from ∂Γ1.

Note that the simplicity is not really needed and assuming non-trapping instead of no conjugate
points is enough. The strict convexity of ∂M is convenient for parameterizing Γ on SM1 but that
assumption is not needed either, see e.g., [28].

In the (z, θ) coordinates, Γ is given by zn ≥ 0. For u supported in Γ, we define the Sobolev space
Hs

Γ as Hs
Ω̄

above. In particular, when s is a non-negative integer, identifying θ locally with some

parameterization in Rn−2, we define locally

(2.2) ‖u‖2Hs
Γ

=

∫
Rn×Rn−2

∑
|α|≤s

|∂αz,θu|2dz dθ.

This norm is not invariantly defined but under changes of variables, it transforms into equivalent
norms. Note that u above is considered as a function defined on Γ1 but supported in Γ, as in the
definition of Hs

Ω̄
above.

We make this definition global now. Without changing the notation, let Γ1 be the manifold of
all geodesics with endpoints on ∂M1, and let Γ be those intersecting M . We can choose an open
cover of Γ consisting of neighborhoods of geodesics tangent to M as above, plus an open set Γ0 of
geodesics passing through interior points only, and having a positive lower bound of the angle they
make with ∂M . In the latter, we take the classical Hs norm w.r.t. the parameterization (y′, w), for
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example. In the former neighborhood, we use the norms Hs
Γ defined above. Then using a partition

of unity, we extend the norm Hs
Γ to functions defined in Γ1 and supported in Γ. This defines a

Hilbert space which we call Hs
Γ again.

On the other hand, we have the space Hs
Γ(∂−SM1) of distributions on Γ defined through the

parameterization of Γ given by (y′, w) ∈ ∂−SM1 in a similar way: we define the Hs norm for
functions supported in the interior of Γ1 first (the behavior near the boundary of Γ1 corresponding
to w tangent to ∂M1 does not matter in what follows), and then define Hs

Γ(∂−SM1) as the subspace
of those u ∈ Hs(∂−SM1) which are supported in Γ. We define Hs(Γint) similarly, where Γint is the
interior of Γ.

Proposition 2.1 then implies the following.

Proposition 2.2. The Hilbert spaces Hs
Γ(∂−SM1) and Hs

Γ are topologically equivalent.

2.6. Mapping properties of Im,κ and I∗m,κ. We study the mapping properties of Im,κ, I∗m,κ
restricted a priori to tensor fields/functions supported in fixed compact subsets. This avoids the
more delicate question what happens near the boundaries of M and Γ but we do not need the
latter.

Proposition 2.3. Suppose that (M, g) is simple, κ ∈ C∞(SM), and m ≥ 0. Then, for s ≥ −1,

(a) IM1
m,κ : Hs

M (M,SmM )→ H
s+1/2
Γ is bounded,

(b) (IM1
m,κ)∗ : H

−s−1/2
Γ → H−s(M int

1 ;SmM ) is bounded.

Proof. Part (a) is proved in [29, Proposition 5.2] for m = 0 and s ≥ 0 but the proof applies to
s ≥ −1 as well (and it is actually simpler when s = −1). Its tensor version m ≥ 1 is an immediate
consequence.

To prove (b), it is enough to prove that

(2.3) IM1
m,κ : Hs

M1
(M1, S

m
M1

)→ Hs+1/2(Γint) is bounded,

then (b) would follow by duality. Here, IM1
m,κ is considered as the operator acting on tensor fields

supported in M1 restricted to geodesics in Γint. We can think of Γint as an open subset of the
geodesics Γint

2 , with Γ2 defined as Γ1 but related to an extension M2 of M1. Then by (a), IM1
m,κ :

Hs
M1

(SmM1
)→ H

s+1/2
Γ2

is bounded, which also proves (2.3) and therefore, (b). �

3. The spaces H̄
1/2
Γ

Let γ0(t), 0 ≤ t ≤ T is a fixed unit speed geodesic on a Riemannian manifold and let S be a
hypersurface intersecting γ0 transversally. We are interested in integrals of functions supported in
a compact set separated from the endpoints of γ0. We parameterize geodesic (directed) segments
close to γ0 (and that parameterization defines the topology) by initial points on S and initial unit
directions. Assume that S is oriented; then we insist that t increases on the positive side of S.
Then we can identify the unit directions with their projection on the unit ball bundle BS. We will
apply this construction when S is a piece of either ∂M or ∂M1. Note that we exclude geodesics
tangent to them in those cases.

Let (y1, . . . , y2n−2) be local coordinates near a fixed (z0, ω0) ∈ BS. Denote by γy(t) the geodesics
issued from (z, ω) parameterized by y. For some k ≤ 2n − 2 fixed, denote y = (y′, y′′) with
y′ = (y1, . . . , yk), y′′ = (yk+1, . . . , y2n−2) with y′ = y and y′′ non-existent if k = 2n − 2. Then we
define the H̄s

Γ norm near (z0, ω0) by using y′-derivatives only; more precisely for h supported near
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(z0, ω0), we set

(3.1) ‖h‖2H̄s =

∫ (
1 + |ξ′|2

)s ∣∣Fy′→ξ′h(ξ′, y′′)
∣∣2 dξ′ dy′′.

This is a special case of the spaces introduced in [10, Definition 10.1.6] and [11, Definition B.1.10].
Given a compact subset Γ ⊂ B(∂M1), and a finite cover of coordinate charts of that kind, we

use a partition of unity χj to complete that norm to a global one, which we call an H̄s
Γ norm:

‖h‖2H̄s
Γ

=
∑
j

‖χjh‖2H̄s .

This norm depends on the cover. We are going to require the following non-degeneracy condition
in each chart:

(3.2) ∀y′′, the map (t, y′)→ γ(y′,y′′)(t) is a submersion.

In other words, the differential of that map has full rank any time when the image is in M .
Another way to interpret (3.2) is to say that the Jacobi fields ∂yjγ(y′,y′′)(t), j = 1, . . . , k, projected

to γ̇⊥(y′,y′′)(t), span the latter at every point. Clearly, condition (3.2) requires k ≥ n − 1. When

k = 2n− 2 (no y′′ variables), (3.2) hold trivially.

Example 1. If we use the ∂−SM1 parameterization of Γ on ∂M1 and take k = 2n− 2, the space

H̄
1/2
Γ reduces to H

1/2
Γ (∂−SM1). The latter is equivalent to H

1/2
Γ defined through the foliation

parameterization, see Proposition 2.2.

Example 2. The classical parameterizations of lines in the Euclidean case by Σ, see (1.2), is an
example of such a coordinate system. In this case, z belongs to the hyperplane θ⊥ depending on
θ but near a fixed θ, one can always construct a local diffeomorphism smoothly depending on θ
allowing us to think of z as a variable on a fixed hyperplane. If that diffeomorphism is a unitary
map for each θ (which can be done), then this would not affect the definition of (3.1). Then we set
z = y′ ∈ Rn−1 and choose y′′ ∈ Rn−1 to be a local parameterization of θ. The map in (3.2) is given

by (t, z) 7→ z + tθ which is a diffeomorphism. Then the resulting space H̄
1/2
Γ is the one appearing

in (1.5). Here, and in the examples below, k = n− 1.

Example 3. Near a point on ∂−SM1 (or, equivalently, on BM1), we choose coordinates y′′ ∈ Rn−1

to parameterize points on ∂M1 and y′ ∈ Rn−1 to parameterize incident unit directions. Then the
map (3.2) is a submersion when its image is restricted to M by the simplicity of (M1, g), which can
be guaranteed if the extension is close enough to (M, g). Note that we need the initial points of
the geodesics to be outside M since (3.2) is the exponential map in polar coordinates, rather than

in the usual ones, and it is not an submersion when t = 0. The resulting H̄
1/2
Γ space would involve

derivatives w.r.t. the direction (but not w.r.t. the base point) only. While the specific definition
of the norm depends on the coordinates used, a change would yield an equivalent norm. One can

think of those coordinates as fan-beam ones on ∂M1 but we use the directions only to define H̄
1/2
Γ .

Example 4. With M1 as above, we swap y′ and y′′. More precisely, near a point on ∂−SM1

(or, equivalently, on BM1), we choose coordinates y′ ∈ Rn−1 to parameterize points on ∂M1 and

y′′ ∈ Rn−1 to parameterize incident unit directions. The corresponding Sobolev space H̄
1/2
Γ will

include derivative w.r.t. initial points on ∂M1 only in the chosen coordinate system. A change of
variables would include directional derivatives as well. For rays close enough to ones tangential
to ∂M , (3.2) will hold by a perturbation argument. Then we use a partition of unity do define

H̄1/2(Γ) near the boundary of Γ (consisting of geodesics tangent to ∂M generating to points). In
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the interior of Γ, we can swap y′ and y′′ (use derivatives w.r.t. the directions) or use all variables,
as in Example 2.

Example 5. One may wonder if one of the parameterizations on ∂M (rather than on ∂M1) would
work as well. If we view the ∂−SM parameterization as an ∂−SM1 one projected onto ∂−SM ,
then the natural measure would be dµ, see section 2.1. The derivatives w.r.t. initial points on
∂M (see also Figure 1, with directions tangent to ∂M fixed in some coordinate system (or varying
smoothly) would correspond to Jacobi fields which do not satisfy (3.2) at t = 0, as it is easy to
see. The directional derivatives at every fixed x ∈ M generate Jacobi fields vanishing at t = 0.
Therefore, (3.2) is not satisfied even if we take all possible derivatives. This shows that the space

H
1/2

µ,∂−SM
(here, µ stands for the measure) does not satisfy (3.2). Note that such a space can also

be defined as an complex interpolation space between similar spaces with s = 0 and s = 1, see [12,
Theorem B.9], where one can use classical definitions of norms through derivatives. The fact that

(3.2) fails in this case does not prove that we cannot use the H
1/2

µ,∂−SM
norm in our main results yet

however.

4. Proof of Theorem 1.1

The starting point are the stability estimates (1.5) for m = 0, 1 and (1.7) for m = 2, the latter due
to the second author [24, Theorem 1], valid for all symmetric 2-tensor field f ∈ L2(M ;S2

M ). First
we will estimate ‖NM1f‖H1(M1) in the first inequality in (1.5), respectively (1.7), by C‖If‖

H
1/2
Γ

,

see (2.2), with the corresponding ray transform I. We will take m = 2 below and the proof is the
same for m = 0, 1.

By Proposition 2.3(a), applied to the extension of f ∈ L2(M ;S2
M ) by zero to M1 \M , we have

IM1
2 f ∈ H1/2

Γ and that map is continuous. This proves the second inequality in the theorem, part

(c), because I2f = I2f
s. We also have supp(IM1

2 f) ⊂ Γ. Applying Proposition 2.3(b) with s = −1
to the middle term of (1.7), we obtain

(4.1) ‖fs‖L2(M ;S2
M ) ≤ C‖I

M1
2 f‖

H
1/2
Γ

, f ∈ L2(M ;S2
M ).

This completes the proof of the first inequality in the theorem with the H
1/2
Γ norm, i.e., when

k = 2n− 2 (in all charts). Then the norm ‖ · ‖H̄s
Γ

is equivalent to ‖ · ‖Hs
Γ
.

In the remainder of the proof, we consider the more interesting case when k < 2n− 2 and (3.2)
holds. Then the norm ‖ · ‖H̄s

Γ
is not equivalent to ‖ · ‖Hs

Γ
anymore since the former is defined with

fewer derivatives. The main idea is that in that case, locally, while (∂y1 , . . . , ∂yk) is not elliptic (in

R2n−2
y′,y′′ ), it is elliptic on the Lagrangian of Iκ,n; more precisely on the image of T ∗M \ 0 under the

canonical relation C, where WF(Iκ,nf) lies.
We can view Im,κ as a sum of several weighted geodesic X-ray transforms of the scalar components

of the tensor f (in a coordinate system near a fixed geodesic). It was shown in [15] that each such
transform, and therefore Im,κ itself, is an FIO with the following canonical relation C. Let (ζ, ω)
be the dual variables of (z, w), and ξ be the dual of x. Then (z, w, ζ, ω;x, ξ) ∈ C, if and only if
there exists t so that

x = γz,w(t), ξj γ̇
j
z,w(t) = 0, ζα = ξj

∂γjz,w(t)

∂zα
, ωα = ξj

∂γjz,w(t)

∂wα
.
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In particular, this shows that the dual variables (ζ, ω) along each geodesic are Jacobi fields projected
to its conormal bundle. Passing to the y variables, the last two equations become

η` = ξj
∂γjy(t)

∂y`
, ` = 1, . . . , 2n− 2,

where η is the dual to y. We can describe C in the following way. For a fixed (x, ξ), choose any

γjz,w through x normal to ξ (that set is diffeomorphic to Sn−2); then C(x, ξ) is the union of all
(y, η) so that y parameterizes some of those geodesics and η` is its Jacobi field corresponding to
∂y` at x projected to ξ, see [15]. By our assumption, for every such fixed geodesic, at least one of
those projections corresponding to ` = 1, . . . , k, would not vanish. This means that ∆y′ is elliptic
on the image of T ∗M \ 0 under C (which is conically compact, and therefore, ∆y′ it is elliptic in a
neighborhood of it), where WF(Im,κf) lies. Therefore, given s, one can build a left parametrix A
of order zero to get

(4.2) A(1−∆y′)
sχjIm,κf = (1−∆y)

sχjIm,κf +Rf

with R : C∞0 (M)→ C∞0 (M1) smoothing. Here the fractional powers are defined through the Fourier
transform and A is properly supported in some neighborhood of suppχj × suppχj . Summing up,
we get the estimate

(4.3) ‖Im,κf‖Hs ≤ C‖Im,κf‖H̄s
Γ

+ CN‖f‖H−N (M1)

with N as large as we want. On the other hand, the estimate

(4.4) ‖Im,κf‖H̄s
Γ
≤ C‖Im,κf‖Hs

is immediate.
Since we proved Theorem 1.1 with the H

1/2
Γ norm (when k = 2n − 2), by (4.3), (4.4), we can

replace that norm by any norm of the H̄
1/2
Γ ones at the expense of getting an error term; for (c) in

Theorem 1.1, for example, we get

‖f s‖L2(M ;S2
M )/C ≤ ‖I2f‖H̄1/2

Γ

≤ C‖fs‖L2(M ;S2
M ) + CN‖f s‖H−N (M1)

∀N , since I2f = I2f
s. Since I2 : SL2(M ;S2

M ) 7→ H̄
1/2
Γ , where S is the projection onto the

solenoidal tensors, is injective, a standard functional analysis argument implies that the last term
can be removed at the expense of increasing C, see [34, Proposition V.3.1].

The estimate which we prove and even the Euclidean estimate (1.3) may look unexpected. The
transform Iκ,m is overdetermined in the sense that it acts from an n dimensional space to an 2n−2
dimensional one. One could expect that n derivatives in the definition of the Sobolev spaces of
the image would be enough but it turns out that n− 1 suffice, under condition (3.2). In the next
example, we demonstrate, in a simple situation, that it is the shape of the the Lagrangian projected
on the image of T ∗M that matters; its structure is the one allowing us to get away with one less
variable.

Example 6. We will demonstrate explicitly how this argument works for the Radon transform R in
R2 with the “parallel geometry” paremeterization x ·ω = p, |ω| = 1, p ∈ R. We parameterize ω by
its polar angle ϕ and denote by (p̂, ϕ̂) the dual variables to (p, ω). It is well known, and also follows
from the analysis above that R is an FIO with a canonical relation which is a local diffeomorphism.
A direct computation [25] shows that under the a priori assumption supp f ∈ B(0, R), we have

(4.5) WF(Rf) ⊂ {(ϕ, p, ϕ̂, p̂); |ϕ̂| ≤ R|p̂|} .
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The symbol p̂ (corresponding to −i∂p) is not elliptic because it vanishes on the line p̂ = 0, ϕ̂ 6= 0.
On the other hand, that line is separated from the cone in the r.h.s. of (4.5). Using a partition of
unity on the unit circle |ϕ̂|2 + |p̂|2 = 1 one can always modify p̂ away from that cone to make it
elliptic of order 1 (for example, by adding a suitable elliptic pure imaginary symbol away from the
cone to ensure ellipticity in the transition region as well where the cutoff is neither 0 nor 1). This
would result in a smoothing error applied to f ; and will lead to an elliptic extension of p̂. This
shows that defining an H1/2 Sobolev space for Rf with the p derivative only should work; and this
is a partial case of (1.5) written in the (p, ϕ) coordinates.

We recall that the main argument in the proof of the main theorem was that ∆y′ was elliptic
on the range of the canonical relation C (away from the zero section). In Example 6, y′ = p and
clearly, the dual variable p̂ does not vanish on (4.5). In dimensions n = 2, that range has dimension
4, which is also the dimension of T ∗M and also of T ∗Γ, see also [15]. For general dimensions n ≥ 2,
this microlocal range has dimension 3n− 2 as it follows from [15]; and when n ≥ 3, this is strictly
smaller than the dimension 4n− 4 of the phase space T ∗Γ of all geodesics.
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