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Abstract. Let (M, g) be a simple Riemannian manifold with boundary and
consider the geodesic ray transform of symmetric 2-tensor fields. Let the inte-
gral of such a field f along maximal geodesics vanish on an appropriate open
subset of the space of geodesics in M . Under the assumption that the metric g
is real-analytic, it is shown that there exists a vector field v satisfying f = dv
on the set of points lying on these geodesics and v = 0 on the intersection of
this set with the boundary ∂M of the manifold M . Using this result, a Helga-
son’s type of a support theorem for the geodesic ray transform is proven. The
approach is based on analytic microlocal techniques.

1. Introduction

Let (M, g) be an n-dimensional smooth compact Riemannian manifold with
boundary ∂M . We define the geodesic ray transform of a symmetric 2-tensor field
f as

(1) If(γ) =

l(γ)∫
0

fij(γ(t))γ̇i(t)γ̇j(t)dt,

where γ : [0, l(γ)] → M is any geodesic parameterized by its arc length with end-
points on the boundary ∂M , and we used the Einstein summation convention.

The transform I is not injective. Indeed, any potential tensor dv with v = 0 on
∂M belongs to its kernel [19]. Here dv is the symmetrized covariant derivative of
the one-form v given locally by (dv)ij = 1

2 (∇ivj +∇jvi). It is expected that this is
the only obstruction to injectivity for certain classes of manifolds, including simple
ones. We call this s-injectivity of I. Simple manifolds are those that are convex,
have no conjugate points and have strictly convex boundary, see next section.

The geodesic ray transform I arises naturally in boundary and lens rigidity prob-
lems, see e.g., [19, 23, 24, 25] and the references there. Recall that (M, g) is called
boundary rigid, if it is determined uniquely, up to isometry, by the boundary dis-
tance function ρg(x, y), (x, y) ∈ ∂M × ∂M . A linearization of ρ near a fixed simple
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metric (and M fixed) is given by If , where f is the variation of g. So the problem
of inverting I modulo potential fields is a linear version of the problem of recovering
g from ρg(x, y), (x, y) ∈ ∂M × ∂M modulo isometries.

In this paper, we prove support type of theorems for I on simple real-analytic
Riemannian manifolds. Without any conjugacy assumptions, I may fail to be s-
injective, as a simple example based on the symmetry of the sphere shows [25]. On
the other hand, there are non-simple manifolds, for which we still have s-injectivity,
see [25].

2. Main Results

Definition 2.1. We say that a compact Riemannian manifold (M, g) with boundary
is simple if

(a) The boundary ∂M is strictly convex: 〈∇ξν, ξ〉 > 0 for each ξ ∈ Tx(∂M)
where ν is the unit outward normal to the boundary.

(b) The map expx : exp−1
x M →M is a diffeomorphism for each x ∈M .

Note that (b) also implies that any two points in M are connected by unique
geodesic depending smoothly on its endpoints. This, together with (a) and the
assumption of no conjugate points is an equivalent characterization of a simple
manifold. Simple manifolds are diffeomorphic to balls, see [20].

From now on, we assume that M is a simple manifold. We fix a real analytic
atlas on M . Actually, just one chart would be enough, so we can think of M as the
closure of a subdomain of Rn. We say that a function, or more generally, a tensor
field is analytic on the set U , not necessarily open, if it is real analytic in some
neighborhood of U . Let g be an analytic Riemannian metric on M . In particular,
we have that M can be extended to a slightly larger open simple real analytic
manifold M̃ ⊃M such that g extends to M̃ to a metric (which we still denote by g)
that is still real analytic. Let us also extend all symmetric tensor fields f , a priori
defined on M only, as 0 in M̃ \M .

Then all maximal geodesic segments (that we call geodesics) in M can be viewed
as restriction to M of geodesic with endpoints in M̃ \M that we always assume
to be distinct. We will use the notation γ[x,y] for the geodesic connecting x and y.
This parametrization induces a natural topology in the set of all geodesics.

Given a set A of geodesics, we denote by MA the set of points lying on the
geodesics in A. Also, we denote by ∂AM the intersection of MA with the boundary
∂M .

We extend I by duality to act on tensor fields that are distributions in M̃ sup-
ported in M . We denote the space of compactly supported tensors by E ′(M̃), and it
will be clear from the context what the order of the tensor is. The condition v = 0
on ∂M then is replaced by the condition that the distribution-valued 1-form v van-
ishes outside M . This is consistent with the classical case. Indeed, if f ∈ C1(M),
and if f = dv with v = 0 on ∂M , then f = dv remains true for f and v extended
as zero to M̃ \M because the operation of extension as zero and the differential d
commute on v’s vanishing on ∂M .

We now give the statements of our main results.

Theorem 2.2. Let (M, g) be a simple analytic Riemannian manifold, and let M̃
be as above. Assume that A is an open set of geodesics with endpoints in M̃ \M
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satisfying
(2)
any geodesic in A is homotopic, within the set A, to a geodesic lying outside M .

(a) Then, given a symmetric 2-tensor field f ∈ E ′(M̃) supported in M , we have
that If(γ) = 0 for each γ ∈ A if and only if for each γ0 ∈ A, there exists a
neighborhood U of γ0 and a 1-form v ∈ D′(M̃U ), so that f = dv in M̃U , and v = 0
outside M .

(b) If, in addition,

(3) π1(MA, ∂AM) = 0,

then there is a unique v defined in M̃A, vanishing outside M so that f = dv in M̃A.

Condition (2) means the following: Given γ = γ[x,y] ∈ A, there exists continuous
curves α(t), β(t), 0 ≤ t ≤ 1, on ∂M , so that (i) α(0) = x, β(0) = y; (ii) γ[α(t),β(t)] ∈
A; and (iii) α(1) = β(1) =: z and γ[z,z] ∈ ∂M .

Condition (3) means that any closed path with a base point on ∂M is homotopic
to a path lying on ∂M , see also [10, 13].

Our next theorem is a version of Helgason’s support theorem in the geodesic ray
transform setting.

Theorem 2.3. Let (M, g) be a simple analytic Riemannian manifold. Let K be a
closed geodesically convex subset of M . If for a symmetric 2-tensor field f ∈ E ′(M̃)
supported in M , we have that If(γ) = 0 for each geodesic γ not intersecting K,
then there exists a 1-form v ∈ D′(M̃ int \K) such that f = dv in M̃

int \K, and v = 0
in M̃

int \M .

We say that K is geodesically convex if for any two points in K, the unique
geodesic that connects them lies in K as well. Here and below, B

int
stands for the

interior of the set B.
Although we have stated our results only for symmetric 2-tensor fields, these

results hold with minor modifications for tensor fields of any rank. For ease of
notation and readability, we have limited ourselves to tensors of rank 2 only. Similar
results for functions (tensors of rank 0) were obtained by the first author in [12].

It is well known than a symmetric 2-tensor field f ∈ L2(M) can be written
uniquely as the orthogonal sum of two fields; a solenoidal part fs and a potential
part dv with v|∂M = 0 [19]. Then I(dv) = 0 is a consequence of the following
identity

(4)
d

dt
〈v(γ(t)), γ̇(t)〉 = 〈dv(γ(t)), γ̇(t)⊗ γ̇(t)〉.

Following [23], we say I is s-injective, if If = 0 implies fs = 0. S-injectivity under
a small curvature assumption has been established in [19, 20, 5]. In the 2D case,
s-injectivity is known for all simple metrics [18]. The second author and Uhlmann
have studied the question of s-injectivity of geodesic ray transform in [23, 24, 25].
Among the results there, it is shown that on a compact Riemannian manifold with
boundary, for a generic set of simple metrics that includes real-analytic simple
metrics, the geodesic ray transform is s-injective. Also in [25], it is shown that the
same result is true for a class of non-simple Riemannian manifolds and for the case
where the geodesic ray transform is restricted to certain subsets Γ of the space of
geodesics. The set Γ is such that the collection of their conormal bundles covers
T ∗M .
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This paper also deals with the partial data case as in [25], but we allow for a
more general open set Γ. In particular, we do not impose the condition that the
collection of conormals of Γ covers T ∗M . Thereby, we are able to prove support
theorems for the geodesic ray transform.

We use analytic microlocal analysis to prove our results. Guillemin first intro-
duced the microlocal approach in the Radon transform setting. For more details
see the book [9]. In 1987, Boman and Quinto in [3] used analytic microlocal tech-
niques to prove support theorems for Radon transforms with positive real-analytic
weights. Since then, other support theorems have been proven by Boman, Grin-
berg, Gonzalez, Quinto and Zhou in both collaborative and individual works. Some
references are [1, 2, 3, 4, 7, 8, 15, 16, 27]. Also the results of the second author
and Uhlmann in [24, 25] involve analytic microlocal analysis. Our proofs rely on
techniques introduced in [23, 24, 25].

Remark 1. We would like to warn the reader that the following “natural conjec-
ture” is wrong in general: under the assumptions of Theorem 2.2(a), for example,
prove that fs = 0 in MA. That would imply f = dv with v having the required
properties. To show that this is not the way to prove our results, assume that the
closure of ∂M ∩MA does not coincide with the whole ∂M . We will construct first
a solenoidal field f (therefore equal to its solenoidal projection fs), so that f = dv
with some v vanishing on ∂M ∩MA but such that v is not identically zero on the
whole ∂M . Then If(γ) = 0 for all geodesics in A. To construct f , it is enough
to solve the elliptic system δdv = 0 in M , with boundary data as described. Then
δf = 0 (with f = dv), therefore f = fs. Next, f is analytic in the interior of M
by elliptic regularity. Therefore, if f = 0 in MA, then f = 0 identically, that con-
tradicts the choice of the boundary conditions. Therefore, the “natural conjecture”
has been disproved. One may think that this is at odds with our Proposition 1 that
seem to provide a proof for that conjecture. Note however that although δfs = 0 in
the interior of M , this in general is not true in a neighborhood of M since fs may
have jumps at ∂M .

That fact should not be surprising. The solenoidal projection is one possible rep-
resentative of any single class of symmetric tensors f equivalent under the relation
f1 ≡ f2 iff f1 − f2 = dv with some v so that v = 0 on ∂M . That representative
is global in nature — changes of f away from MA in our case, change fs every-
where. There is no reason why we would be able to reconstruct it from partial data.
Another representative of the class of a fixed f is the unique tensor h satisfying
(6) below. That representative is local, it depends only on f and M near a fixed
geodesic. It is therefore more plausible that we might be able to reconstruct it from
localized data. On the other hand, the fact that it is local causes technical prob-
lems — moving too far away from a fixed geodesic, we need to work with another
such representative and to compare it with the previous one, when their domains
intersect. Finally, since such h is constructed by solving some ODE, see (5) below,
we cannot rely on ellipticity arguments to show that the wave front set is preserved.
This explains the need for Lemma 3.2.

3. Preliminary constructions

Let γ0, be a maximal geodesic in the closure of M̃ connecting x0 6= y0. Using
normal coordinates at x0, one can easily construct coordinates x = (x′, xn) in M̃ so
that xn is the distance to x0, and ∂/∂xn is normal to ∂/∂xα, α < n, see [23]. They
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are actually semi-geodesic normal coordinates to any geodesic sphere centered at x0.
In those coordinates, the metric g satisfies gni = δni, ∀i, and hence the Christoffel
symbols satisfy Γi

nn = Γn
ni = 0. Thus we get global coordinates in M̃ , and in

particular, in M , of the type above. All lines of the type x′ = const. are now
geodesics with xn an arc length parameter.

Let U be a tubular neighborhood of γ0 inM , given by |x′| < ε, a(x′) ≤ xn ≤ b(x′),
where xn = a(x′) and xn = b(x′) locally parametrize ∂M . Given a symmetric 2-
tensor field f (for now, we assume f ∈ C∞(M)), one can always construct an one
form v in U so that for

(5) h := f − dv

one has

(6) hni = 0, ∀i, v(x′, a(x′)) = 0.

The form v is defined by solving a system of ODE’s. This construction can be found
in several papers, see [6, 21, 19, 23, 24], and is based on the following. We have
∇ivj = ∂ivj − Γk

ijvk. First let i = n. Then we solve

(dv)nn = ∂nvn − Γk
nnvk = fnn

for vn. Since in U , Γk
nn = 0, we get

(7) ∂nvn = fnn, vn(x′, a(x′)) = 0.

Using this we solve for the remaining vi’s. We have ∂nvi + ∂ivn − 2Γk
nivk = 2fin.

Since Γn
ni = 0 for 0 ≤ i ≤ n, this set of equations reduces to a linear system for the

variables vi, 1 ≤ i ≤ i− 1:

(8) ∂nvi−2Γα
nivα = 2fin−∂ivn, vi(x′, a(x′)) = 0, 1 ≤ α ≤ n−1, 1 ≤ i ≤ n−1.

If we assume that If = 0, then we get that vn vanishes on the other part of ∂M ,
as well, i.e., for xn = b(x′). We do not automatically get this for vi, i < n though.
Next lemma shows that this is actually true for those components of v as well.

We denote now by Ũ a tubular neighborhood of γ0 of the same type but related
to M̃ .

Lemma 3.1. Let f be supported in M , and If(γ) = 0 for all maximal geodesics
in Ũ belonging to some neighborhood of the geodesics x′ = const. Then v = 0 in
Ũ int \M .

Proof. Let first f ∈ C∞(M). We will give another, invariant definition of v. For
any x ∈ Ũ and any ξ ∈ TxŨ \ {0} so that γx,ξ stays in Ũ , we set

(9) u(x, ξ) =
∫ 0

τ−(x,ξ)

fij(γx,ξ(t))γ̇i
x,ξ(t)γ̇

j
x,ξ(t) dt,

where τ−(x, ξ) ≤ 0 is determined by γx,ξ(τ−(x, ξ)) ∈ ∂M . Extend the definition
of γx,ξ for ξ 6= 0 not necessarily unit as a solution of the geodesic equation. Then
u(x, ξ) is homogeneous of order 1 in ξ. Moreover, u is odd in ξ for ξ/|ξ| close enough
to ±en := ±(0, . . . , 0, 1) because If = 0 there. If f = dv with v = 0 outside M ,
then u(x, ξ) = 〈v(x), ξ〉 with v considered as a vector field here. This is the basis
for our definition. We set (now v is identified with a covector field using the metric)

(10) v(x) = ∂ξ

∣∣
ξ=en

u(x, ξ), ∀x ∈ Ũ .

It is easy to check that v = 0 outside M , i.e., for xn < a(x′) or for xn > b(x′). In
particular, we get that (7) is satisfied because ξk∂u/∂ξk = u by the homogeneity
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of u; thus setting ξ = en, we get vn(x) = u(x, en). We need to show that for
h = f − dv, one has hni = 0, see (6). Let u be as above but related to h instead of
f . Then

(11) u(x, en) = 0, ∂ξ

∣∣
ξ=en

u(x, ξ) = 0.

We also have Gu(x, ξ) = hijξ
iξj , where G = ξi∂xi − Γk

ijξ
iξj∂ξk is the generator of

the geodesic flow. Differentiate w.r.t. ξα, α < n, at ξ = en, using (11) and the fact
that Γk

nn = 0 to get 0 = hαn. Since the field v with the properties (6) is unique,
this completes the proof of the lemma in the case f ∈ C∞.

Let now f be a distribution in M̃ , supported in M . We claim that u(x, ξ) is
a well defined distribution of x (in the interior of M̃) depending smoothly on ξ.
Indeed, let φ(x) be a test function supported in the interior of M̃ . We can always
assume that its support is small enough. The map x 7→ y = γx,ξ(t) is a local
diffeomorphism depending smoothly on t and ξ for ξ close enough to en. Indeed,
this is true for ξ = en because then γx,ξ(t) = x+ tξ; and for ξ close to en it is true
by a perturbation argument. Let x = x(y, ξ, t) be the resulting function. Then we
can also write η(y, ξ, t) := γ̇i

x,ξ(t). Then∫
u(x, ξ)φ(x) dx =

∫ ∫ 0

−∞
fij(γx,ξ(t))γ̇i

x,ξ(t)γ̇
j
x,ξ(t)φ(x) dt dx

=
∫ ∫ 0

−∞
fij(y)ηi(y, ξ, t)ηj(y, ξ, t)φ(y, ξ, t)J(y, ξ, t) dt dy,

where J is the corresponding Jacobian. Since f is a distribution, our claim is proved.
Therefore, (10) is well defined in this case as well, and the rest of the proof

remains the same. �

Remark 2. For h as in (5), we therefore have hin = 0, ∀i, everywhere in Ũ , and h
is supported in M as well. Also, along all geodesics γ lying in a small neighborhood
of x′ = const., we have If(γ) = Ih(γ) = 0. The so constructed h depends on the
choice of γ0, and we will use it in the next section. Notice also that h = 0 is an
indication whether f = dv in Ũ with some v vanishing near one of the endpoints of
γ because the solution to (7), (8) is unique.

We always work in M̃ below, therefore, in the next lemma, WFA(f) is in the
interior of T ∗M̃ . We denote by π the canonical projection onto the base.

Lemma 3.2. Let f ∈ E ′(M̃) be a symmetric tensor field in M̃ supported in M .
Assume that WFA(f)∩π−1(U) does not contain covectors conormal to the geodesics
x′ = const., i.e, of the type (x, ξ′, 0). Then the same is true for the tensor h = f−dv
constructed above.

Proof. It is enough to prove this for v. The proof for vn is straightforward since

(12) vn(x) =
∫ xn

−∞
fnn(x′, yn) dyn.

The integral above is a convolution with the Heaviside function H and the analysis
of its analytic wave front set follows easily, see e.g., sections 8.2 and 8.5 in [11]. We
will not pursue this, instead we turn our attention to the proof for vi, i < n, that
implies the proof for vn as a partial case. Note that {vi}n−1

i=1 , that we temporarily
denote by v (instead of v′) solves an ODE system of the type

(13) ∂nv −A(x′, xn)v = w, v|xn�0 = 0,
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where A is a real-analytic matrix, w satisfies the wave front assumptions of the
lemma, and w = 0 for xn < a(x′). By the Duhamel’s principle, the solution of (13)
is given by

v(x′, xn) =
∫ xn

−∞
Φ(x′, xn, yn)w(x′, yn) dyn,

where Φ is analytic. The r.h.s. above is an integral operator with kernel

K(x, y) = Φ(x′, xn, yn)H(xn − yn)δ(x′ − y′)

Its analytic singularities are union of those conormal to the diagonal, i.e., those
included in the set

{(x, x, ξ, η); ξ + η = 0};
and

{(x, y, ξ, η); x′ = y′, xn ≥ yn, ξ′ = −η′ 6= 0, ξn = ηn = 0}.1

To analyze WFA(v), we apply [11, Theorem 8.5.5]. Note first that WFA(K)X is
empty. In the notation of [11, Theorem 8.5.5], WFA

′(K) only changes the sign of η.
Then WFA

′(K)◦WFA(w), with WFA
′(K) considered as a relation, cannot contain

covectors with ξn = 0 because w has the same property.
Here f is a distribution, as always. All arguments apply for distributions, as we

showed in the proof of Lemma 3.1. Observe also that the kernel K satisfies the
conditions needed so that the corresponding integral operator extends to compactly
supported distributions. �

4. Analyticity at conormal directions

The next proposition reflects the fact that I and δ form a hypoelliptic system of
operators. Recall that the divergence δ is the formal adjoint to −d, see [19]. Next,
δfs = 0 in the interior of M , where fs is the solenoidal projection of f , see the
paragraph above (4). Note that fs may have a jump across ∂M , so its extension as
zero may not be divergence free. That is the main reason why we cannot just prove
that fs = 0 in MA. We will apply the proposition below eventually to f = fs;
then δfs (with fs extended as 0 outside M) will be in general non-zero distribution
supported on ∂M .

Proposition 1. Let γ0 be an open geodesic segment in M̃ with endpoints in M̃ \M .
Let f ∈ E ′(M̃) be a symmetric 2-tensor supported in M . Given (x0, ξ

0) ∈ N∗γ0 \ 0,
assume that (x0, ξ

0) 6∈ WFA(δf), and that If(γ) = 0 for all γ close enough to γ0.
Then (x0, ξ

0) 6∈ WFA(f).

Proof. We remark first that it is enough to assume that If(γ) is real analytic, if γ
is parametrized in an analytic way.

In the C∞ category, the proof follows directly from the following facts, see e.g.,
[25]. If ψ is a standard cutoff that restricts the geodesics to a small neighborhood of
γ0, then the operator I∗ψI is a pseudo-differential operator elliptic on N∗γ0 when
applied to solenoidal tensors. In other words, if Q is any elliptic pseudo-differential
operator of order −2, then (I∗I,Qδ) forms a (matrix-valued) pseudo-differential
operator of order −1 elliptic on N∗γ0. Since I∗ψIf = 0, and δf is smooth at (x, ξ),
this completes the proof in the smooth case.

The analytic case is more delicate because of the restrictions we have with the
cut-offs. The pseudo-differential operator theory is well developed, see e.g., [26] but

1In the published version, this second component of WFA(K) is mistakenly omitted.
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its FIO analog is not so clear (see also [22]). We follow here the approach based on
the application of the analytic stationary phase method, see [22].

If δf = 0, then the proposition still follows from [25, Proposition 2]. When δf is
only microlocally analytic at (x0, ξ

0), it follows from the proof of that proposition,
with one slight modification. Namely, we have to show that we still have, see
equation (56) in [25], that

(14)
∫
eλ[i(x−y)·ξ−(x−y)2/2]Cj(x, y, ξ, λ)fij(x) dx = O(e−λ/C), as λ→∞,

with a classical analytic symbol Cj , in the sense of [22], having the following prop-
erties: Cj is analytic near (x0, x0, ξ

0); equal to (ξ0)j when x = y = x0, ξ = ξ0; and
equal to 0 for x outside some neighborhood of x0. In order to do this, we start with∫

eλ[i(x−y)·ξ−(x−y)2/2]A(x, y, ξ)[δf ]i(x) dx = O(e−λ/C), as λ→∞, ∀i,

where A is an appropriate cut-off elliptic near (x0, x0, ξ
0), see [22]. To get (14), we

just integrate by parts. Then the proof of [25, Proposition 2] works in our case as
well without further modifications. �

5. Proof of Theorem 2.2

The “if” part of Theorem 2.2 is trivial. To prove the “only if” assertion of The-
orem 2.2(a), let γ0 ∈ A be as in the theorem. We have that γ0 can be continuously
deformed within the set A to a geodesic outside M . Without loss of generality,
we may assume that there is only one geodesic in that deformation, that is tan-
gent to ∂M . Therefore, there exist two continuous curves a(t), b(t), t ∈ [0, 1], on
∂M̃ so that γ[a(0),b(0)] is tangent to ∂M (and it is the only geodesic in the family
γ[a(t),b(t)] with that property); γ[a(t),b(t)] ∈ A for any t ∈ [0, 1]; and γ[a(1),b(1)] = γ0.
It is enough to prove that f = dv on M̃U with v = 0 outside M , where U is some
neighborhood of γ0.

Since f and fs have the same line integrals in M , we can assume that f = fs in
M

int
, f = 0 outside M ; therefore δf = 0 in M

int
. For the argument that follows,

we need to know that fs|∂M is analytic. To this end, we choose another analytic
simple manifold M1/2 so that M b M1/2 b M̃ . Then f is compactly supported in
the interior of M1/2. Let fs

M1/2
be the solenoidal projection of f in M1/2. Recall

[19, 24], that fs
M1/2

= f − dv, where v solves the elliptic system δdv = δf in M1/2

with the regular boundary conditions v = 0 on ∂M1/2. Since δf = 0 near ∂M1/2,
and f is a distribution of finite order, the solution exists and is a distribution in
some Sobolev space. Moreover, since δf = 0 near ∂M1/2, we have that v is analytic
near ∂M1/2, up to ∂M1/2, see [14]. Then so is dv. In M1/2 \M , fs

M1/2
= −dv,

therefore, fs
M1/2

|∂M1/2 = −dv|∂M1/2 is analytic. If we prove the theorem for fs
M1/2

in M1/2, then we have the same for f in M . Indeed, it is easy to show that f = dv
in (M1/2)A with v = 0 outside M1/2 implies v = 0 in M1/2 \M by integrating (4).
Now we can replace M by M1/2 in the proof that follows, and call it M again. We
also denote fs

M1/2
by f .

The advantage that we have now is that f = fs is solenoidal in M , and analytic
near ∂M , up to ∂M . Let us denote by v0 the restriction of v to a collar neighborhood
of ∂M , where v0 is analytic. Therefore, after extending M to M1/2, and calling it
M again, we have the following.
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Lemma 5.1. There exists a neighborhood V of ∂M in M of the kind dist(x, ∂M) <
ε0, ε0 > 0, and a uniquely defined v0 there so that f = dv0 in V , v0 = 0 on ∂M ,
and v0 is analytic in V , up to the boundary ∂M .

Proof. Since we already proved existence of such v0 near ∂M , we only need to show
that it is unique. Near any p ∈ ∂AM , introduce normal boundary coordinates
(x′, xn) as in the beginning of section 3 but now ∂/∂xn is normal to ∂M , and xn

measures the distance to ∂M . Then we define v0 as the solution of (7), (8) for
xn � 1. If we have that f = dv near p with a possibly different v vanishing on ∂M ,
we immediately get that v = v0 because (7), (8) has unique solution, and if f = dv,
that solution is v. Now, v0 is defined near ∂M , and f = dv0. �

We extend v0 as zero outside M . Then we still have f = dv0 in Ṽ := (M̃ \M)∪V .
Let p ∈ γ[a(0),b(0)] be the point where γ[a(0),b(0)] is tangent to ∂M . By Lemma 5.1,
f = dv0 near p.

So we get that the statement of the theorem is true in some neighborhood of the
geodesics γ[a(t),b(t)], 0 ≤ t ≤ 2t0, with some 0 < t0 � 1 chosen so that all those
geodesics are in Ṽ .

We want to propagate this property to a neighborhood of the “surface” (that
might be self-intersecting and non-smooth)⋃

t∈[0,1]

γ[a(t),b(t)].

For any t, define a small cone Cε(t) with vertex at a(t) ∈ ∂M̃ as follows. In the
tangent space Ta(t)M̃ , consider the cone of all vectors making angle less than ε > 0
with γ̇[a(t),b(t)], where ε > 0 is fixed small enough. Then we define Cε(t) as the image
of that cone in M̃ under the exponential map. The choice of ε is the following: we
require that

(i) C2ε(t) ⊂ M̃A, ∀t ∈ [0, 1];
(ii) none of the geodesics inside the cone C̄2ε(t), t0 ≤ t ≤ 1 with vertices at a(t)

is tangent to ∂M ;
(iii) Cε(t) ⊂ Ṽ for 0 ≤ t ≤ t0.

This can be arranged by a compactness argument.
For any t, construct a tensor field ht in C2ε(t) as in the remark following the

proof of Lemma 3.1. Then ht = 0 outside M by Lemma 3.1. For t ≤ t0 we have
that ht = 0 in Cε(t) by (iii). Set

t∗ = sup {t ∈ (0, 1] : ht = 0 in Cε(t)} .
We aim to show that t∗ = 1. Assume that t∗ < 1. Then one can show that ht∗ = 0
in Cε(t∗) because ht∗ = 0 outside M .

We will show now that ht∗ = 0 in C2ε(t∗) as well. That will yield a contradiction
because then one can increase t∗ slightly to t to get Cε(t)∩M ⊂ C2ε(t∗)∩M for all
t > t∗ close enough to t∗. That would contradict the choice of t∗.

To fulfill this program, consider ht∗ in C2ε(t∗). The support of ht∗ is included in
M and it does not intersect the interior of Cε(t∗). Increase the angle from ε to 2ε
until it does (if it does not, we are done). Let ε0 with ε < ε0 ≤ 2ε be the smallest
number with that property.

Consider the cone Cε0(t
∗). Then ht∗ = 0 in Cε0(t

∗), and suppht∗ and Cε0(t
∗) have

a common point q lying on the boundary of each set. The point q cannot be on ∂M̃
because ht∗ = 0 outside M . So q is an interior point of M̃ .
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We have that in M̃ , (δf)i = fs
ij∇jχ = −fs

ijν
jδ∂M , where χ is the characteristic

function of M . Therefore, δf may have only conormal analytic singularities at ∂M ,
i.e., singularities in N∗∂M . Let γ be the geodesic in M̃ on the surface ∂Cε0(t

∗)
that contains q. Since N∗γ does not intersect N∗∂M by (ii), we get that f has no
analytic singularities in N∗γ by Proposition 1. We want to point out that this is
true even if the base point is on ∂M . By Lemma 3.2, h has no analytic singularities
in N∗γ either.

Therefore, ht∗ = 0 in Cε0(t
∗), and ht∗ is defined at least in a small enough

neighborhood of q ∈ ∂Cε0(t
∗). Since the conormals to Cε0(t

∗) at q are not in WFA(h),
we have that ht∗ = 0 near q by the Sato-Kawai-Kashiwara theorem, see e.g., [17] or
[22, Theorem 8.2]. This contradicts the fact that q is on the boundary of suppht∗ .
Therefore, t∗ = 1. This completed the proof of Theorem 2.2(a).

Consider part (b): In any open set, where fs = dv, we have δdv = 0. Therefore,
v is analytic there, by elliptic regularity. Thus in any cone Cε(t) as above, the field
v having the property that f = dv in Cε(t), is in fact an analytic continuation of v0
from a neighborhood of ∂M in M to Cε(t)∩M . If MA is simply connected, then we
have uniqueness of that continuation. Under the assumption (3), this still works,
as we show below, see also [25] for a similar argument.

Let q ∈MA, and let p ∈ ∂AM be as in the proof above. Having a path connecting
q and p, we define v near q as an analytic continuation of v0 from the neighborhood
V of p, see Lemma 5.1, along that path. We need to show that this definition
is independent of the choice of the path. Any other path is homotopic to the
composition of the first one and a path on ∂AM , by (3). Near the boundary path,
f = dv0 by Lemma 5.1. This allows us to show that the two analytic continuations
coincide.

This completes the proof of Theorem 2.2.

6. Proof of Theorem 2.3

We now prove Theorem 2.3. The proof of this theorem follows from the following
lemmas and Theorem 2.2.

Lemma 6.1. For any x ∈ M \K, there is a geodesic passing through x that does
not intersect K.

Proof. Consider ξ ∈ SxM . If the geodesic starting at x in the direction ξ intersects
K, then the other half of this geodesic segment, that is, the one starting at x in the
direction −ξ does not intersect K by the geodesic convexity of K. So if L denotes
the set of unit directions ξ such that the geodesic passing through x in the direction
ξ intersects K, then we have (−L) ∩ L = ∅, where −L is the set of unit vectors ξ
such that −ξ ∈ L. If we assume that every geodesic passing through x intersects
K, then (−L) ∪ L = SxM . The set L is closed because, if a geodesic say γ passing
through x in the direction ξ ∈ SxM does not intersect K, there is a neighborhood
of ξ in SxM such that the geodesics in these directions also do not intersect K. We
now have a disconnection of SxM which is a contradiction. �

Lemma 6.2. Let x ∈M \K. Then there is a continuous deformation of a geodesic
passing through x that does not intersect K by such geodesics to a point on the
boundary ∂M .

Proof. By Lemma 6.1, there is a geodesic γ0 through x lying in M̃ \K. There is
ε > 0 so that the cone C0 constructed as in the previous section, with vertex at
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one of the endpoints of γ0 and angle ε, still does not intersect K. Consider any
continuous deformation of that cone to a cone in M̃ \M . If none of the cones in
this deformation touches K, then we are done. If some of them does, let us denote
the first cone in that family by C1. Let γ1 be its axis. It is enough to show that γ1

can be deformed to a geodesic in M̃ \M by a homotopy that does not intersect K.
Assume that n ≥ 3 first. Let p ∈ C1 ∩ K. Then p ∈ ∂C1. Let S be the

collection of all maximal geodesics in M̃ through p tangent to C1. Then S is a
smooth surface that is the image of TpC1 under the exponential map; more precisely,
S = expp

(
exp−1

p (M̃)∩ TpC1

)
. Then S separates M̃ into two parts M̃1 and M̃2 (we

do not include S in either of them, so actually, M̃ = M̃1 ∪ S ∪ M̃2). This is easily
seen by considering exp−1(M̃) first. In particular, S is diffeomorphic to an (n− 1)-
dimensional “disk”, i.e., to an (n − 1)-dimensional ball. On the other hand, M̃ is
diffeomorphic to an n-dimensional ball.

We will show that K is included in the closure of one of the M̃i, and does not
intersect the other one. Assume that this is not true. Then there are two points q1
and q2 in K, so that qi belongs to the interior of Mi, i = 1, 2. Then the geodesics
γ[p,qi], i = 1, 2, are contained in K by the convexity assumption. Moreover, their
only common point with S is the endpoint p, by the simplicity condition. Therefore,
γ[p,qi] ∈ (Mi ∪ S) ∩K, i = 1, 2. Then the velocity vectors of γ[p,qi] at p (with the
orientation fixed to be from p to qi) cannot be tangent to TpS and belong to different
half-spaces of TpM̃ . Since Tp∂C1 = TpS, this shows that a small enough part of
one of those geodesics near p is inside the cone C1, and a small part of the other is
outside it. This contradicts the fact that the interior of C1 does not contain points
of K.

We will deform now γ1 to a geodesic in M̃ \M , without intersecting K. Let M̃1

be the set which contains K. Then γ1 ∈ M̃2. The part of the boundary ∂M̃ ∩ M̃2

is diffeomorphic to a “disk”, i.e., to an (n − 1)-dimensional ball. In particular, it
is connected. Since γ1 ∈ M̃2, we fix one of the endpoints of γ1 and move the other
along a smooth curve in ∂M̃ ∩ M̃2 until it reaches the first one.

If n = 2, then C consists of two geodesics, and γ1 is one of them. Then the proof
above works in the same way with γ1 playing the role of S. �

Lemma 6.3. π1(M \K, ∂M) = 0.

Proof. Let c be a path in M \ K with a base point on ∂M . Fix a point p ∈ K
and let x 7→ projp(x) ∈ ∂M be the projection that maps x to the endpoint of the
geodesic from p to x until it hits ∂M . Using projp(x), project c on ∂M ∼= Sn−1.
This provides a way to continuously deform c to its projection on ∂M . �

Proof of Theorem 2.3 : Now the lemmas above together with Theorem 2.2 prove
Theorem 2.3.

Acknowledgments. The first author would like to thank John Lee for the sev-
eral discussions on this work. Both authors thank Gunther Uhlmann for suggesting
this problem.

References

[1] (MR1178765) J. Boman. Helgason’s support theorem for Radon transforms—a new proof and
a generalization, in “Mathematical methods in tomography (Oberwolfach, 1990),” Lecture
Notes in Math., 1497, Springer, Berlin, (1991), 1–5.



12 V. KRISHNAN AND P. STEFANOV

[2] (MR1197584) J. Boman, Holmgren’s uniqueness theorem and support theorems for real ana-
lytic Radon transforms, in “Geometric analysis (Philadelphia, PA, 1991),” Contemp. Math.,
140, Amer. Math. Soc., Providence, RI, (1992), 23–30,

[3] (MR0916130) J. Boman and E. T. Quinto, Support theorems for real-analytic Radon trans-
forms, Duke Math. J., 55 (1987), 943–948.

[4] (MR1080733) J. Boman and E. T. Quinto, Support theorems for Radon transforms on real
analytic line complexes in three-space, Trans. Amer. Math. Soc., 335 (1993), 877–890.

[5] (MR2216407) N. S. Dairbekov, Integral geometry problem for nontrapping manifolds, Inverse
Problems, 22 (2006), 431–445.

[6] (MR1666879) G. Eskin, Inverse scattering problem in anisotropic media, Comm. Math. Phys.,
199 (1998), 471–491.

[7] (MR1205492) F. Gonzalez and E. T. Quinto, Support theorems for Radon transforms on
higher rank symmetric spaces, Proc. Amer. Math. Soc., 122 (1994), 1045–1052.

[8] (MR1800789) E. L. Grinberg and E. T. Quinto, Morera theorems for complex manifolds, J.
Funct. Anal., 178 (2000), 1–22.

[9] (MR0516965) V. Guillemin and S. Sternberg, “Geometric asymptotics,” Mathematical Sur-
veys, No. 14, American Mathematical Society, Providence, R.I., 1977.

[10] (MR1867354) A. Hatcher, “Algebraic topology,” Cambridge University Press, Cambridge,
2002.
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