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The Boundary Rigidity Problem (Travel Time
Tomography)

Let M be a compact domain (manifold) with boundary. Let
g = {gij} be a Riemannian metric on M. Let dg (x , y) be the
distance between any two boundary points x , y (in the metric g).

Boundary Rigidity: Does dg , known on ∂M × ∂M,
determine g uniquely?

In fact, any isometry fixing ∂M pointwise does not change dg , so
in the question above, we want to determine g up to such an
isometry.
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Travel Time Seismology

This problem was first studied in the beginning of the 20th century
by Herglotz, and Wiechert & Zoeppritz in an attempt to recover
the inner structure of the Earth from travel times of seismic waves.
They solved explicitly a partial case of this problem: when M is a
ball, and g is a radially symmetric isotropic metric, i.e.,

ds2 = c−2(r)dx2, r := |x |.

They imposed the following condition:

d

dr

r

c(r)
> 0.

Travel time seismology is still one of the main methods to study

the inner structure of the Earth today.

Other possible applications: in medical imaging.
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Figure : Travel times of P-waves through Earth. Picture taken from the
web page of L. Braile, Purdue University.
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Boundary rigidity has obvious counter-examples, like a very slow
region inside, which would not affect the boundary distance
function. Some conditions are needed.

One of those conditions is g to be simple :

I ∀(x , y) ∈ ∂M × ∂M, ∃ unique minimizing geodesic connecting
x , y , depending smoothly on (x , y) (i.e., no caustics);

I ∂M is strictly convex.

The best known results so far are

I boundary rigidity for simple metrics in 2D (Pestov &
Uhlmann);

I boundary rigidity for simple metrics near a metric in a generic
set, including the real analytic (simple) ones (S &
Uhlmann);

I near metrics with an explicit upper bound on the curvature
(lassas, Sharafutdinov & Uhlmann).
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R. Michel conjectured in 1981 [Invent. Math. 65(1981)] that
simple manifolds are boundary rigid, i.e., uniquely determined by
their boundary distance function, up to an isometry. Still an open
problem.

Assume that g is isotropic, i.e., gij(x) = c−2(x)δij . Physically, this
corresponds to a variable wave speed that does not depend on the
direction of propagation. In the class of the isotropic metrics, we
do not have the freedom to apply isometries and we would expect
g to be uniquely determined. This is known to be true for simple
metrics (Mukhometov, Romanov, et al.) More generally, we
can fix g0 and we have uniqueness of the recovery of the conformal
factor c(x) in c−2g0.
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The problem we consider in this work is the partial data problem of
recovery of a conformal factor:

Boundary Rigidity with partial data:

Does dc−2g0 , known on ∂M × ∂M near some p, determine c(x)
near p uniquely?

We measure the distance betwen pairs of points here

p

We want to recover c(x) here

x

y

dc−2g0(x, y)

M
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Local boundary rigidity

Theorem 1 (S-Uhlmann-Vasy)

Let dimM ≥ 3. If ∂M is strictly convex near p, and d = d̃ near
(p, p), then c = c̃ near p.

Moreover, there is conditional Hölder stability.

In particular, this theorem shows that the local geophysics problem
(modeled that way) is solvable. Of course, not knowing that fact
until now did not prevent many people from “solving it”.

The only results so far of similar nature is for real analytic metrics
(Lassas, Sharafutdinov & Uhlmann). We can recover the
whole jet of the metric at ∂M and then use analytic continuation.
This is the first local result without analyticity assumptions.
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Lens Rigidity

Define the scattering relation L and the length (travel time)
function `:

∂M

x

v
y w

M

L : (x , v)→ (y ,w), `(x , v)→ [0,∞].

Diffeomorphisms preserving ∂M pointwise do not change L, `!

Lens rigidity: Do L, ` determine g uniquely, up to isometry?
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No, in general but the counterexamples are harder to construct.

The lens rigidity problem and the boundary rigidity one are
equivalent for simple metrics! Indeed, then dg (x , y), known for x ,
y on ∂M determines σ, ` uniquely, and vice-versa. This is also true
locally, near a point p where ∂M is strictly convex.

For non-simple metrics (caustics and/or non-convex boundary), the
Lens Rigidity is the right problem to study.

There are fewer results: local generic rigidity near a class of
non-simple metrics (S & Uhlmann) , the torus is lens rigid
(Croke).
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Lens Rigidity with partial data

Lens Rigidity with partial data:

Does the lens relation L, known for points near p, and “almost
tangent directions” determine c(x) near p uniquely?

As an immediate consequence of our theorem, the answer is
affirmative when ∂M is strictly convex at p; and there is stability.
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Global Lens Rigidity under the foliation condition

We could use a layer stripping argument to get deeper and deeper
in M and prove that one can determine c in the whole M.

Foliation condition:

M is foliated by strictly convex hypersurfaces if, up to a nowhere
dense set, M = ∪t∈[0,T )Σt , where Σt is a smooth family of strictly
convex hypersurfaces and Σ0 = ∂M.

∂M

A more general condition: several families, starting form outside
M. Also, enough M \ foliation to be simple.
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Global Lens Rigidity under the foliation condition

Theorem 2 (S-Uhlmann-Vasy)

Let dimM ≥ 3, let c = c̃ on ∂M, let ∂M be strictly convex with
respect to both g = c−2g0 and g̃ = c̃−2g0. Assume that M can be
foliated by strictly convex hypersurfaces for g . Then if L = L̃ on
∂−SM, we have c = c̃ in M.

Moreover, there is conditional Hölder stability.

It is enough to be able to foliate just a part of M, if what is left is
a simple manifold.

A more general result compared to Mukhometov’s one:
conjugate points inside are allowed, or even trapped geodesics.
Example: a tubular neighborhood of a periodic geodesic on a
negatively curved manifold.
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It is enough to be able to foliate just a part of M, if what is left is
a simple manifold.

A more general result compared to Mukhometov’s one:
conjugate points inside are allowed, or even trapped geodesics.
Example: a tubular neighborhood of a periodic geodesic on a
negatively curved manifold.

14/24



Global Lens Rigidity under the foliation condition

Theorem 2 (S-Uhlmann-Vasy)

Let dimM ≥ 3, let c = c̃ on ∂M, let ∂M be strictly convex with
respect to both g = c−2g0 and g̃ = c̃−2g0. Assume that M can be
foliated by strictly convex hypersurfaces for g . Then if L = L̃ on
∂−SM, we have c = c̃ in M.

Moreover, there is conditional Hölder stability.
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Idea of the proof

The proof is based on two main ideas.

First, we use the approach in a recent paper by Uhlmann and
Vasy on the linear integral geometry problem.

Second, we convert the non-linear boundary rigidity problem to a
“pseudo-linear” one. Straightforward linearization, which works for
the problem with full data, fails here.
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Uhlmann and Vasy’s result

They consider the inversion of the geodesic ray transform

If (γ) =

∫
f (γ(s)) ds

known for geodesics intersecting some neighborhood of p ∈ ∂M
(where ∂M is strictly convex) “almost tangentially”. Then they
prove that those integrals determine f near p uniquely. It is a
Helgason support type of theorem for non-analytic curves! This
was extended recently by H. Zhou for arbitrary curves (∂M must
be strictly convex w.r.t. them) and non-vanishing weights.

The main trick in Uhlmann and Vasy is the following
revolutionary idea: Introduce an artificial, still strictly convex
boundary near p which cuts a small subdomain near p. Then use
Melorse’s scattering calculus to show that the I , composed with a
suitable “back-projection” is elliptic in that calculus. Since the
subdomain is small, it would be invertible as well.
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Consider

Pf (z) =

∫
SzM

x−2χ(x , z , γz,v )If (γz,v )dv ,

where χ is a smooth cutoff sketched below (angle ∼ x), and x is
the distance to the artificial boundary. In fact, P = I ∗x−2χI .

∂M
actual boundary

artificial boundary

M

17/24



Main idea of Uhlmann and Vasy

Note that the support of the weight χ decreases when we approach
the artificial boundary. From classical ΨDO point of view, this is
an elliptic ΨDO away from the artificial boundary (here, n ≥ 3 is
important!) since the conormals of the geodesic we use cover the
conormal bundle in the region of interest. The classical ΨDO
calculus however is not good (without modifications, at least) to
work on manifolds with boundary.

Instead, Uhlmann and Vasy proposed that we use Melrose’s
scattering calculus! This calculus works perfectly, and P is elliptic
there. Next, if the artificial boundary is close enough to the real
one (small domain), elliptic operators are actually invertible. Hence
the uniqueness, and even stability!
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The scattering ΨDO calculus of Melrose

The scattering ΨDO calculus can be defined as a version of the
classical ΨDO calculus on Rn

x with compactification of Rn
x × Rn

ξ .
Consider ΨDOs with symbols a(z , ζ) satisfying symbol-like
estimates both w.r.t. z and ζ (Hörmander, Parenti, Shubin)

|∂αz ∂
β
ζ a(z , ζ)| ≤ Cαβ〈z〉`〈ζ〉m.

This defines the class S`,m(Rn × Rn). Lower order in this calculus
means both lower order of differentiation and smaller growth at ∞.

The scattering class of ΨDOs is obtained from this one by
compactification of both Rn

x and Rn
ξ .
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The scattering ΨDO calculus of Melrose

In polar coordinates rω, r > 0, ω ∈ Sn−1, replace r by x := 1/r .
Then a neighborhood of ∞ becomes a neighborhood of 0, i.e.,
0 < x < C ; and x = 0 is the “infinite boundary”.

If one parameterizes Sn−1 locally by y ∈ Rn−1, then we have
coordinates

(x , y) ∈ R+ × Rn−1 =: Rn
+.

The standard basic vector fields ∂/∂r , ∂/∂(ry j) take the form:

x2
∂

∂x
, x

∂

∂y j
,

and they are complete, tangent to x = 0 and unit.

We do that both for z and its dual, ζ. Then the class Ψ`,m(Rn)

becomes the class Ψ`,m
sc (Rn

+) with symbols in S`,msc (Rn
+ ×Rn

+). This
can be done on manifolds with boundary, as well.
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If one parameterizes Sn−1 locally by y ∈ Rn−1, then we have
coordinates

(x , y) ∈ R+ × Rn−1 =: Rn
+.

The standard basic vector fields ∂/∂r , ∂/∂(ry j) take the form:

x2
∂

∂x
, x

∂

∂y j
,

and they are complete, tangent to x = 0 and unit.

We do that both for z and its dual, ζ. Then the class Ψ`,m(Rn)

becomes the class Ψ`,m
sc (Rn

+) with symbols in S`,msc (Rn
+ ×Rn

+). This
can be done on manifolds with boundary, as well.
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“Pseudo-linearization”

Back to the non-linear boundary (or lens) rigidity problem. We
may try to solve it by linearization, which is just the operator I .
This works well for the global problem (full data) but it is very
problematic for the local one (partial data). The problem is that
the stability for the linear problem degenerates at the artificial
boundary. Next, different speed have different geodesics, so that
remainder in the linearization cannot be restricted to the same
domain.

Instead, we reduce the problem to the inversion of a weighted
version of I acting on c − c̃ (two speeds with the same data), and
the weight depends of those speeds as well. This operator comes
from an identity in a 1998 paper by S & Uhlmann.
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The “pseudo-linear identity”

Let V and Ṽ be two vector fields, and X (t,X (0)) be the solution
with initial condition X (0). Then

X̃
(
t,X (0)

)
− X

(
t,X (0)

)
=

∫ t

0

∂X̃

∂X (0)

(
t − s,X (s,X (0))

)(
V − Ṽ

)(
X (s,X (0))

)
ds.

The beauty of this identity is that it is linear in V − Ṽ (with
weight depending on V and Ṽ ).

We take V , Ṽ to be the Hamiltonian vector fields. Same lens data
=⇒ the l.h.s. is zero. We get a weighed integral of the V − Ṽ
then. The last n components give us ∂(c − c̃). But we can invert
this. It is weighted version of Uhlmann and Vasy’s result.
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The proof is just to apply the fundamental theorem of calculus

F (t)− F (0) =

∫ t

0
F ′(s) ds

to the function

F (s) = X̃
(
t − s,X (s,X (0))

)
.
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Example

Herglotz and Wiechert & Zoeppritz showed that one can
determine a radial speed c(r) in the ball B(0, 1) satisfying

d

dr

r

c(r)
> 0.

The uniqueness is in the class of the radial speeds.

One can check directly that their condition is equivalent to the
following one: the Eucledian spheres {|x | = t}, t ≤ 1 are strictly
convex for c−2dx2 as well. Then B(0, 1) satisfies the foliation
condition. Therefore, if c̃(x) is another speed, not necessarily
radial, with the same lens relation, equal to c on the boundary,
then c = c̃. There could be conjugate points.

Therefore, speeds satisfying the Herglotz and Wiechert &
Zoeppritz condtion are conformally lens rigid.

Also, so is some neighborhood of those speeds in C k , k � 1.
24/24
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