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Stability

Stability

Stability is related to propagation of singularities. As a general principle, it
is necessary (and sufficient) to be able to “detect” all singularities, i.e., the
WF(f ). Since ut = 0 for t = 0, each singularity (x , ξ) splits into two parts
with equal energy and they start to travel in positive (ξ) and negative
(−ξ) direction. We need to detect one of them, at least.

Let T1 ≤ ∞ be the length of the longest (maximal) geodesic through Ω̄.
Then the “stability time” is T1/2. One can show that T0 ≤ T1/2. If
T1 = ∞, we say that the speed is trapping in Ω.

Theorem 1

T > T1/2 =⇒ stability.
T < T1/2 =⇒ no stability, in any Sobolev norms.

The second part follows from the fact that Λ is a smoothing FIO on an
open conic subset of T ∗Ω (to be discussed later). In particular, if the
speed is trapping, there is no stability, whatever T .
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Stability

Comparison between the uniqueness and the stability
conditions

For uniqueness:

For any x ∈ K, we want to have some unit speed path from x reaching the
observation part Γ ⊂ ∂Ω for time 0 ≤ t ≤ T .

For stability:

For any x ∈ K and for any ξ 6= 0 we want the unit speed geodesic γx ,ξ to
reach the observation part Γ ⊂ ∂Ω for time |t| ≤ T .

Examples:

c = 1, Ω = [−1, 1]2. Then T0 = 1, T1/2 =
√

2.

c = 1, Ω = {|x | < 1}. Then T0 = T1/2 = 1.
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Stability

Why is stability related to our ability to detect all singularities? This will
be made more precise below. Consider a toy problem now. Let us say that
we solve Pg = h, h known, and P is a ΨDO of order 0 (assume a compact
manifold for simplicity). If P is elliptic, then there is a parametrix Q (of
order 0 as well) so that QP = I + K , where K is smoothing, and in
particular, compact. Then

‖f ‖ ≤ C (‖QPf ‖+ ‖Kf ‖) ≤ C ′(‖Pf ‖+ ‖Kf ‖).

Almost there but we have the K term.

If we know in addition that P is injective, there is a beautiful functional
analysis argument saying that the estimate above holds without the K
term but with a different constant

‖f ‖ ≤ C ′′‖Pf ‖.
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Stability

This argument has a downside — there is not control over the constant
C ′′.

How is this connected to detection of all singularities? To detect all
singularities, as singularities of the data, means that P must be
hypoelliptic. We just assumed that it was elliptic. So it was a good toy
problem.

What if P cannot detect all singularities? Assume that it is of order −∞
in some open cone. In other words, its essential support “has a gap”.
Choose f with WF(f ) exactly in that “gap”. Then Pf ∈ C∞, while f may
be as singular as we like. The estimate

‖f ‖Hs1 ≤ C‖Pf ‖Hs2

cannot hold because that estimate implies f ∈ Hs1 if Pf ∈ Hs2 . But we
just saw that we can choose f outside of any Sobolev space (with proper
wave front set) and then Pf ∈ C∞.
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Stability Reconstruction. Modified time reversal

Reconstruction. Modified time reversal

Time reversal, harmonic extension

Given h (that eventually will be replaced by Λf ), solve
(∂2

t − c2∆)v = 0 in (0,T )× Ω,
v |[0,T ]×∂Ω = h,

v |t=T = φ,
∂tv |t=T = 0,

(1)

where φ is the harmonic extension of h(T , ·):

∆φ = 0, φ|∂Ω = h(T , ·).

Note that the initial data at t = T satisfies compatibility conditions of first
order (no jump at {T}×∂Ω). Then we define the following pseudo-inverse

Ah := v(0, ·) in Ω̄.
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Stability Reconstruction. Modified time reversal

Why would we do that? We are missing the Cauchy data at t = T ; the
only thing we know there is its value on ∂Ω. The time reversal methods
just replace it by zero. We replace it by that data (namely, by (φ, 0)),
having the same trace on the boundary, that minimizes the energy.

Recall: Given U ⊂ Rn, the energy in U is given by

EU(t, u) =

∫
U

(
|∇u|2 + c−2|ut |2

)
dx .

We define the space HD(U) to be the completion of C∞
0 (U) under the

Dirichlet norm

‖f ‖2HD
=

∫
U
|∇u|2 dx .

The norms in HD(Ω) and H1(Ω) are equivalent, so

HD(Ω) ∼= H1
0 (Ω).

The energy norm of a pair [f , g ] is given by

‖[f , g ]‖2H(Ω) = ‖f ‖2HD(Ω) + ‖g‖2L2(Ω,c−2dx)

.
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Stability Reconstruction. Modified time reversal

Consider the “error operator” K defined by AΛ = I− K . It is
straightforward to see that

Kf = first component of: UΩ,D(−T )ΠΩURn(T )[f , 0],

where

URn(t) is the dynamics in the whole Rn,

UΩ,D(t) is the dynamics in Ω with Dirichlet BC,

ΠΩ : H(Rn) → H(Ω) is the orthogonal projection.

That projection is given by ΠΩ[f , g ] = [f |Ω − φ, g |Ω], where φ is the
harmonic extension of f |∂Ω.

Obviously,
‖Kf ‖HD

≤ ‖f ‖HD
.

If we can show that K is a contraction (‖K‖ < 1), we can use Neumann
series to invert I− K .
Plamen Stefanov (Purdue University ) Microlocal Analysis of TAT, II 8 / 41
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Stability Reconstruction. Modified time reversal

K is a contraction for T > T1/2!

We saw that ‖Kf ‖ ≤ ‖f ‖. By unique continuation, ‖Kf ‖ < ‖f ‖,
f 6= 0.

Assume for a moment that T > T1 (twice the stability time). Then
u ∈ C∞ in Ω because all singularities have left. Hence, K is compact.

K ∗K is also compact (and self-adjoint), with spectral radius ≤ 1. It
cannot have one as an eigenvalue by the inequality above. Therefore,
the largest eigenvalue is < 1.

Then ‖Kf ‖2 = (K ∗Kf , f ) < ‖f ‖2. Therefore, K is a contraction.

If T > T1/2, K is a sum of an operator with norm ≤ 1/2 + ε and a
compact one. Its essential spectrum is not affected by the compact part,
so in (1/2,∞), its spectrum is discrete. The same kind of arguments show
that K is a contraction as well.
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cannot have one as an eigenvalue by the inequality above. Therefore,
the largest eigenvalue is < 1.

Then ‖Kf ‖2 = (K ∗Kf , f ) < ‖f ‖2. Therefore, K is a contraction.

If T > T1/2, K is a sum of an operator with norm ≤ 1/2 + ε and a
compact one. Its essential spectrum is not affected by the compact part,
so in (1/2,∞), its spectrum is discrete. The same kind of arguments show
that K is a contraction as well.
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Stability Reconstruction. Modified time reversal

A picture explaining ‖Kf ‖ < ‖f ‖.

t=T

t=T/2

t=0

t=3T/2

∂Ω

t=-T

Γ
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Reconstruction, whole boundary

Reconstruction, whole boundary

Theorem 2

Let T > T1/2. Then AΛ = I− K, where ‖K‖L(HD(Ω)) < 1. In particular,
I− K is invertible on HD(Ω), and the inverse thermoacoustic problem has
an explicit solution of the form

f =
∞∑

m=0

KmAh, h := Λf .

If T > T1, then K is compact.

We have the following estimate on ‖K‖:

Corollary 3

‖Kf ‖HD(Ω) ≤
(

EΩ(u,T )

EΩ(u, 0)

)1/2

‖f ‖HD(Ω), ∀f ∈ HD(Ω), f 6= 0,

where u is the solution with Cauchy data (f , 0).
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Reconstruction, whole boundary Critical values of T

Summary: Dependence on T

(i) T < T0 =⇒ no uniqueness
Λf does not recover uniquely f . ‖K‖ = 1.

(ii) T0 < T < T1/2 =⇒ uniqueness, no stability
Uniqueness but not stability (there are invisible singularities). We do
not know if the Neumann series converges. ‖Kf ‖ < ‖f ‖ but ‖K‖ = 1.

(iii) T1/2 < T < T1 =⇒ stability and explicit reconstruction
This assumes that c is non-trapping. The Neumann series converges
exponentially but maybe not as fast as in the next case (K is
contraction but not compact). There is stability (we detect all
singularities but some with 1/2 amplitude). ‖K‖ < 1.

(iv) T1 < T =⇒ stability and explicit reconstruction
The Neumann series converges exponentially, K is contraction and
compact (all singularities have left Ω̄ by time t = T ). There is
stability. ‖K‖ < 1.
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: The speed, T0 ≈ 1.15. Ω = [−1.28, 1.28]2, computations are done in
[−2, 2]2
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: Original

Plamen Stefanov (Purdue University ) Microlocal Analysis of TAT, II 14 / 41



Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: Neumann Series reconstruction, T = 4T0 = 4.6, error = 3.45%
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Numerical examples, smooth speed Nontrapping speed

Example 1: Nontrapping speed

Figure: Time Reversal, T = 4T0 = 4.6, error = 23%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: The speed, T0 ≈ 1.18
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: The original
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Neumann Series reconstruction, 10 steps, T = 4T0 = 4.7, error = 8.75%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Neumann Series reconstruction, 10% noise, 15 steps, T = 4T0 = 4.7,
error = 8.72%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Time Reversal, T = 4T0 = 4.7, error = 55%
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Numerical examples, smooth speed Trapping speed

Example 2: Trapping speed

Figure: Time Reversal with 10% noise, T = 4T0 = 4.7, error = 54%
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Original
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Neumann series, T = 4T0 = 4.7, error = 7.5%, 10 steps
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Time Reversal, T = 4T0 = 4.7, error = 27.7%
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Numerical examples, smooth speed Trapping speed

Example 3: The same trapping speed, Barbara

Figure: Time Reversal, T = 12T0 = 14.1, error = 99.67%

Plamen Stefanov (Purdue University ) Microlocal Analysis of TAT, II 26 / 41



Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: A trapping speed. Darker regions represent a slower speed. The circles of
radii approximately 0.23 and 0.67 are stable periodic geodesics. Left: the speed.
Right: the speed with two trapped geodesics
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Original, lower resolution than before
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Neumann series, 10 steps, T = 8T0 = 8.7, error = 9.7%
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Numerical examples, smooth speed A radial trapping speed example

Example 4: a radial trapping speed

Figure: Time Reversal, T = 8T0 = 8.7, error = 21.7%
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Measurements on a part of the boundary

Measurements on a part of the boundary

Let Γ ⊂ ∂Ω be a relatively open subset of ∂Ω.

Assume now that the observations are made on [0,T ]× Γ only, i.e., we
assume we are given

Λf |[0,T ]×Γ.

We consider f ’s with
supp f ⊂ K,

where K ⊂ Ω is a fixed compact.

We analyzed the uniqueness already. It holds if T > T0(Γ).
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Measurements on a part of the boundary Λ is an FIO

Stability

Heuristic arguments for stability: To be able to recover f from Λf on
[0,T ]× Γ in a stable way, we need to recover all singularities. In other
words, we should require that

∀(x , ξ) ∈ K × Sn−1, the geodesic through it reaches Γ at time |t| < T .

This defines a critical time T1(Γ,K) that is a sharp time for stability. We
show next that this is an “if and only if” condition (up to replacing an
open set by a closed one) for stability. Actually, we show a bit more.
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Measurements on a part of the boundary Λ is an FIO

Proposition 1

Λ = Λ+ + Λ−, where Λ± are elliptic Fourier Integral Operators of zeroth
order with canonical relations given by the graphs of the maps

(y , ξ) 7→
(
τ±(y , ξ), γy ,±ξ(τ±(y , ξ)),−|ξ|, γ̇′y ,±ξ(τ±(y , ξ))

)
,

where |ξ| is the norm in the metric c−2dx2, and the prime in γ̇′ stands for
the tangential projection of γ̇ on T∂Ω.

Corollary 4

If the stability condition is not satisfied on [0,T ]× Γ̄, then there is no
stability, in any Sobolev norms.

Here, τ±(x , ξ) is the time needed to reach ∂Ω starting from (x ,±ξ).
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Measurements on a part of the boundary Λ is an FIO

A reformulation of the stability condition

Every geodesic through K intersects Γ.

∀(x , ξ) ∈ K × Sn−1, the travel time along the geodesic through it
satisfies |t| < T .

Let us call the least such time T1/2, then T > T1/2 as before.
In contrast, any small open Γ suffices for uniqueness.

GK
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Measurements on a part of the boundary What is an FIO?

What is an FIO (with a canonical relation a graph)?

An operator that can be written in the form (locally)

Af =

∫
e iφ(x ,ξ)a(x , ξ)f̂ (ξ) dξ

with an amplitude in Sm is an example of a Fourier Integral Operator
(FIO). Here φ is homogeneous in ξ of order 1 and dxφ 6= 0 for ξ 6= 0. The
geometric optics construction is of this type. If φ = x · ξ, we get a ΨDO.

To find WF(Af ) near (x0, ξ0), multiply by χ ∈ C∞
0 , χ(x0) 6= 0, and take

the Fourier transform. In other words, multiply by χ(x)e−ix ·η, integrate in
η and look for the large η behavior. This gives as an integral with a phase
function

Φ = φ(x , ξ)− y · ξ − x · η.

Singularities can only be related to the critical points of (x , ξ) 7→ Φ.
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Measurements on a part of the boundary What is an FIO?

This shows that

WF(Af ) ⊂
{
(x , η); (∇ξφ, ξ) ∈ WF(f ) for some (x , ξ) and ∇xφ(x , ξ) = η

}
.

In other words, WF(f ) and WF(Af ) are related by the canonical relation

(∇ξ, ξ) 7−→ (x ,∇xφ).

It does not need to be defined on the whole T ∗Ω, not necessarily single
valued. When φ = x · ξ, this relation is identity. When φ ≈ x · ξ, it is close
to it, and therefore it is locally a graph of a diffeomorphism. In the
geometric optics construction, considering t as a parameter, we get two
FIOs, and the canonical relations are just the geodesic flows on T ∗Rn

(identified with TRn) for ±t > 0.

The situation above is different though; we have a map from space-like
surface (t = 0) to a time-like one (R×∂Ω). It is still an FIO of graph type.
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Measurements on a part of the boundary Recovery of f is a Fredholm problem

Let A be the “modified time reversal” operator as before. Actually, φ will
be 0 because of χ below. Let χ ∈ C∞

0 ([0,T ]× ∂Ω) be a cutoff (supported
where we have data).

Theorem 5

AχΛ is a zero order classical ΨDO in some neighborhood of K with
principal symbol

1

2
χ(τ+(x , ξ), γx ,ξ(τ+(x , ξ))) +

1

2
χ(τ−(x , ξ), γx ,ξ(τ−(x , ξ))).

If [0,T ]× Γ satisfies the stability condition, and |χ| > 1/C > 0 there, then
(a) AχΛ is elliptic,
(b) AχΛ is a Fredholm operator on HD(K),
(c) there exists a constant C > 0 so that

‖f ‖HD(K) ≤ C‖Λf ‖H1([0,T ]×Γ).
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Measurements on a part of the boundary Recovery of f is a Fredholm problem

(b) follows by building a parametrix, and (c) follows from (b) and from the
uniqueness result.

In particular, we get that for a fixed T > T1, the classical Time Reversal is
a parametrix (of infinite order, actually).

Proof of the main statement:
To construct a parametrix for AχΛf , we apply again a geometric optic
construction. It is enough to assume that χΛf has a wave front set in a
conic neighborhood of some point (t0, y0, τ0, ξ

′
0) ∈ [0,T ]× ∂Ω, using the

notation above. For simplicity, assume that the eikonal equation is
solvable for t in some neighborhood of [0,T ]. Let τ0 < 0, for example.
Then we look for a parametrix of the solution of the “back-propagated”
wave equation with zero Cauchy data at t = T and boundary data χΛ+f
in the form

v(t, x) = (2π)−n

∫
e iφ+(t,x ,ξ)b(x , ξ, t)f̂ (ξ) dξ.

Let (x0, ξ0) be the intersection point of the bicharacteristic issued from
(t0, y0, τ0, ξ

′
0) with t = 0.
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Measurements on a part of the boundary Recovery of f is a Fredholm problem

The choice of that parametrix is justified by the fact that all singularities
of that solution must propagate along the geodesics close to γx0,ξ0 in the
opposite direction, as t decreases because there are no singularities for
t = T . The critical observation is that the first transport equation for the
principal term b0 of b is a linear ODE along bicharacteristics, and starting
from initial data b0 = χa0, where a0 = 1/2, at time t = 0, we will get that
b0(x , ξ)|t=0 is given by the value of χ/2 at the exit point of γx ,ξ on ∂Ω.
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Measurements on a part of the boundary Reconstruction

Reconstruction

One can constructively write the problem in the form

Reducing the problem to a Fredholm one

(I− K )f = BAχΛf with the r.h.s. given,

i.e., B is an explicit operator (a parametrix), where K is compact with 1
not an eigenvalue.

Constructing a parametrix without the ΨDO calculus.

Assume that the stability condition is satisfied in the interior of suppχ.
Then

AχΛf = (I− K )f ,

where I− K is an elliptic ΨDO with 0 ≤ σp(K ) < 1. Apply the formal
Neumann series of I− K (in Borel sense) to the l.h.s. to get

f ∼ (I + K + K 2 + . . . )AχΛf mod C∞.
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Measurements on a part of the boundary Reconstruction

Examples: Non-trapping speed, 1 and 2 sides missing

original NS, 3 sides, error = 7.99% NS, 2 sides,
error = 12.2%

Figure: Partial data reconstruction, non-trapping speed, T = 4T0.
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