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Abstract. We prove the local invertibility, up to potential fields, and stability of the geodesic X-ray trans-

form on tensor fields of order 1 and 2 near a strictly convex boundary point, on manifolds with boundary

of dimension n ≥ 3. We also present an inversion formula. Under the condition that the manifold can be
foliated with a continuous family of strictly convex surfaces, we prove a global result which also implies

a lens rigidity result near such a metric. The class of manifolds satisfying the foliation condition includes

manifolds with no focal points, and does not exclude existence of conjugate points.

1. Introduction

Let (M, g) be a compact Riemannian manifold with boundary. The X-ray transform of symmetric covector
fields of order m is given by

(1.1) If(γ) =

∫
〈f(γ(t)), γ̇m(t)〉 dt,

where, in local coordinates, 〈f, vm〉 = fi1...imv
i1 . . . vim , and γ runs over all (finite length) geodesics with

endpoints on ∂M . When m = 0, we integrate functions; when m = 1, f is a covector field, in local
coordinates, fjdx

j ; when m = 2, f is a symmetric 2-tensor field fijdx
idxj , etc. The problem is of interest by

itself but it also appears as a linearization of boundary and lens rigidity problems, see, e.g., [21, 20, 24, 25,
27, 6, 5, 4]. Indeed, when m = 0, f can be interpreted as the infinitesimal difference of two conformal factors,
and when m = 2, fij can be thought of as an infinitesimal difference of two metrics. The m = 1 problem
arises as a linearization of recovery a velocity fields from the time of fly. The m = 4 problem appears in
linearized elasticity.

The problem we study is the invertibility of I. It is well known that potential vector fields, i.e., f which
are a symmetric differential dsv of a symmetric field of order m − 1 vanishing on ∂M (when m ≥ 1),
are in the kernel of I. When m = 0, there are no potential fields; when m = 1, potential fields are just
ordinary differentials dv of functions vanishing at the boundary; for m = 2, potential fields are given by
dsv = 1

2 (vi,j + vj,i), with v one form, v = 0 on ∂M ; etc. The natural invertibility question is then whether
If = 0 implies that f is potential; we call that property s-injectivity below.

This problem has been studied extensively for simple manifolds, i.e., when ∂M is strictly convex and any
two points are connected by a unique minimizing geodesic smoothly depending on the endpoints. For simple
metrics, in case of functions (m = 0), uniqueness and a non-sharp stability estimate was established in
[14, 13, 2] using the energy method initiated by Mukhometov, and for m = 1, in [1]. Sharp stability follows
from [24]. The case m ≥ 2 is harder with less complete results and the m = 2 one already contains all the
difficulties. In two dimensions, uniqueness for simple metrics and m = 2 has been proven in [19] following
the boundary rigidity proof in [16]. For any m, this was done in [15].

In dimensions n ≥ 3, the problem still remains open for m ≥ 2. Under an explicit upper bound of the
curvature, uniqueness and a non-sharp stability was proved by Sharafutdinov, see [20, 21] and the references
there, using a suitable version of the energy method developed in [17]. Convexity of ∂M is not essential
for those kind of results and the curvature assumption can be replaced by an assumption stronger than
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requiring no conjugate points, see [22, 7]. This still does not answer the uniqueness question for metrics
without conjugate points however. The first and the second author proved in [24, 25], using microlocal and
analytic microlocal techniques, that for simple metrics, the problem is Fredholm (modulo potential fields)
with a finitely dimensional smooth kernel. For analytic simple metrics, there is uniqueness; and in fact, the
uniqueness extends to an open and dense set of simple metrics in Ck, k � 1. Moreover, there is a sharp
stability L2(M)→ H1(M̃) estimate for f 7→ I∗If , where M̃ is some extension of M , see [23]. We study the
m = 2 case there for simplicity of the exposition but the methods extend to any m ≥ 2.

The reason why m ≥ 2 is harder than the m = 1 and the m = 0 cases can be seen from the analysis
in [24, 25]. When m = 0, the presence of the boundary ∂M is not essential — we can extend (M, g) to a

complete (M̃, g̃) and just restrict I to functions supported in a fixed compact set. When f is an one-form
(m = 1), we have to deal with non-uniqueness due to exact one-forms but then the symmetric differential
is ds just the ordinary one d. When n ≥ 2, ds is an elliptic operator but recovery of df from dsf is not a
local operator. One way to deal with the non-uniqueness due to potential fields is to project on solenoidal
ones (orthogonal to the potential fields). This involves solving an elliptic boundary value problem and the
presence of the boundary ∂M becomes an essential factor. The standard pseudo-differential calculus is not
suited naturally to work on manifolds with boundary.

In [26], the first two authors study manifolds with possible conjugate points of dimension n ≥ 3. The
geodesic manifold (when it is a smooth manifold) has dimension 2n − 2 which exceeds n when n ≥ 3. We
restrict I there to an open set Γ of geodesics. Assuming that Γ consists of geodesics without conjugate points
so that the conormal bundle {T ∗γ| γ ∈ Γ} covers T ∗M \ 0, we show uniqueness and stability for analytic
metrics, and moreover for an open and dense set of such metrics. In this case, even though conjugate points
are allowed, the analysis is done on the geodesics in Γ assumed to have no such points. We point out that
this condition allows for some trapping. Recently Guillarmou [8] in a very interesting paper has proven
s-injectivity in dimension n ≥ 3, in the case m = 2, when there are no conjugate points and the trapping is
hyperbolic.

A significant progress is done in the recent work [29], where the second and the third author prove the
following local result: if ∂M is strictly convex at p ∈ ∂M and n ≥ 3, then If , acting on functions (m = 0),
known for all geodesics close enough to the tangent ones to ∂M at p, determine f near p in a stable way.
The new idea in [29] was to introduce an artificial boundary near p cutting off a small part of M including
p and to apply the scattering calculus in the new domain Ωc, treating the artificial boundary as infinity, see
Figure 1. Then Ωc is small enough, then a suitable “filtered” backprojection operator is not only Fredholm,
but also invertible. We use this idea in the present work, as well. The authors used this linear results in a
recent work [28] to prove local boundary and lens rigidity near a convex boundary point.

The purpose of this paper is to invert the geodesic X-ray transform f 7→ If on one forms and symmetric
2-tensors (m = 1 and m = 2) for n ≥ 3 near a strictly convex boundary point. We give a local recovery
procedure for f on suitable open sets Ω ⊂ M from the knowledge of If(γ) for Ω-local geodesics γ, i.e. γ
contained in Ω with endpoints on ∂M ∩ Ω. More precisely, there is an obstacle to the inversion explained
above: one-forms or tensors which are potential, i.e. of the form dsv, where v is scalar or a one-form, vanishing
at ∂M ∩ Ω, have vanishing integrals along all the geodesics with endpoints there, so one may always add
a potential (exact) form or a potential two-tensor to f and obtain the same localized transform If . Our
result is thus the local recovery of f from If up to this gauge freedom; in a stable way. Further, under an
additional global convex foliation assumption we also give a global counterpart to this result.

We now state our main results more concretely. Let ρ be a local boundary defining function, so that ρ ≥ 0
in M . It is convenient to also consider a manifold without boundary (M̃, g) extending M . First, as in [29],
the main local result is obtained for sufficiently small regions Ω = Ωc = {x ≥ 0, ρ ≥ 0}, x = xc; see Figure 1.
Here x = 0 is an ‘artificial boundary’ which is strictly concave as viewed from the region Ω between it and
the actual boundary ∂M ; this (rather than ∂M) is the boundary that plays a role in the analysis below.

We set this up in the same way as in [29] by considering a function x̃ with strictly concave level sets from
the super-level set side for levels c, |c| < c0, and letting

xc = x̃+ c, Ωc = {xc ≥ 0, ρ ≥ 0}.
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(A convenient normalization is that there is a point p ∈ ∂M such that x̃(p) = 0 and such that dx̃(p) = −dρ(p);
then one can take e.g. x̃(z) = −ρ(z)− ε|z − p|2 for small ε > 0, which localizes in a lens shaped region near
p, or indeed x̃ = −ρ which only localizes near ∂Ω.) Here the requirement on x̃ is, if we assume that M is
compact, that there is a continuous function F such that F (0) = 0 and such that

Ωc ⊂ {x̃ < −c+ F (c)},
i.e. as c→ 0, Ωc is a thinner and thinner shell in terms of x̃. As in [29], our constructions are uniform in c
for |c| < c0. We drop the subscript c from Ωc, i.e. simply write Ω, again as in [29], to avoid overburdening
the notation.
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Figure 1. The functions ρ and x̃ when the background is flat space M̃ . The intersection
of ρ ≥ 0 and xc > 0 (where xc = x̃ + c, so this is the region x̃ > −c) is the lens shaped
region Op. Note that, as viewed from the superlevel sets, thus from Op, x̃ has concave level
sets. At the point z, L integrates over geodesics in the indicated small angle. As z moves
to the artificial boundary xc = 0, the angle of this cone shrinks like Cxc so that in the limit
the geodesics taken into account become tangent to xc = 0.

A weaker version, in terms of function spaces, of the main local theorem, presented in Corollaries 4.17-
4.18, is then the following. The notation here is that local spaces mean that the condition is satisfied on
compact subsets of Ω\{x = 0}, i.e. the conclusions are not stated uniformly up to the artificial boundary (but
are uniform up to the original boundary); this is due to our efforts to minimize the analytic and geometric
background in the introduction. The dot denotes supported distributions in the sense of Hörmander relative
to the actual boundary ρ = 0, i.e. distributions in x > 0 (within the extension M̃) whose support lies in

ρ ≥ 0, i.e. for Ḣ1, this is the H1
0 space.

Theorem 1.1. (See Corollaries 4.17-4.18.) With Ω = Ωc as above, there is c0 > 0 such that for c ∈ (0, c0),

if f ∈ L2(Ω) then f = u + dsv, where v ∈ Ḣ1
loc(Ω \ {x = 0}), while u ∈ L2

loc(Ω \ {x = 0}) can be stably
determined from If restricted to Ω-local geodesics in the following sense. There is a continuous map If 7→ u,
where for s ≥ 0, f in Hs(Ω), the Hs−1 norm of u restricted to any compact subset of Ω\{x = 0} is controlled
by the Hs norm of If restricted to the set of Ω-local geodesics.

Replacing Ωc = {x̃ > −c} ∩M by Ωτ,c = {τ > x̃ > −c+ τ} ∩M , c can be taken uniform in τ for τ in a
compact set on which the strict concavity assumption on level sets of x̃ holds.

The uniqueness part of the theorem generalizes Helgason’s type of support theorems for tensors fields for
analytic metrics [10, 11, 3]. In those works however, analyticity plays a crucial role and the proof is a form
of a microlocal analytic continuation. In contrast, no analyticity is assumed here.

As in [29], this theorem can be applied in a manner to obtain a global conclusion. To state this, assume
that x̃ is a globally defined function with level sets Σt which are strictly concave from the super-level set for
t ∈ (−T, 0], with x̃ ≤ 0 on the manifold with boundary M . Then we have:

Theorem 1.2. (See Theorem 4.19.) Suppose M is compact. Then the geodesic X-ray transform is injective
and stable modulo potentials on the restriction of one-forms and symmetric 2-tensors f to x̃−1((−T, 0]) in
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the following sense. For all τ > −T there is v ∈ Ḣ1
loc(x̃−1((τ, 0])) such that f − dsv ∈ L2

loc(x̃−1((τ, 0])) can
be stably recovered from If in the sense that for s ≥ 0 and f ∈ Hs locally on x̃−1((τ, 0]), the Hs−1 norm of
v restricted to compact subsets of x̃−1((τ, 0]) is controlled by the Hs norm of If on local geodesics.

Remark 1.3. This theorem, combined with Theorem 2 in [27] (with a minor change — the no-conjugate
condition there is only needed to guarantee a stability estimate, and we have it in our situation), implies
a local, in terms of a perturbation of the metric, lens rigidity uniqueness result near metric satisfying the
foliation condition.

Manifolds satisfying the foliation condition include manifolds without focal points [18]. Subdomains M of
Rn with the metric c−2(r)dx2, r = |x| satisfying the Herglotz [9] and Wiechert and Zoeppritz [30] condition
d
dr

r
c(r) > 0 on M satisfy it as well since then the Euclidean spheres |x| = r form a strictly convex foliation.

Conjugate points in that case may exist, and small perturbations of such metrics satisfy the condition, as
well. We can also formulate semi-global results: if we can foliate M \ K with K ⊂ M compact, then we
can recover f up to a potential field there in a stable way, with stability degenerating near ∂M . This
can be considered as a linearized model of the seismology problem for anisotropic speeds of propagation.
One such example is metrics c−2(r)dx2 (and close to them) for which d

dr
r
c(r) > 0 holds for a ≤ r ≤ b and

M ⊂ {|x| ≤ b}. Then f can be stably recovered for |x| > a up to a potential field.
Similarly to our work [28], this paper, and its methods, will have applications to the boundary rigidity

problem; in this case without the conformal class restriction. This paper is forthcoming.
The plan of the paper is the following. In Section 2 we sketch the idea of the proof, and state the main

technical result. In Section 3 we show the ellipticity of the modified version of LI, modified by the addition
of gauge terms. This essentially proves the main result if one can satisfy the gauge condition. In Section 4
we analyze the gauge condition and complete the proof of our main results.

2. The idea of the proof and the scattering algebra

We now explain the basic ideas of the paper.
The usual approach in dealing with the gauge freedom is to add a gauge condition, which typically, see

e.g. the work of the first two authors [25], is of the solenoidal gauge condition form, δsgf = 0, where δsg is
the adjoint of ds with respect to the Riemannian metric on M . Notice that actually the particular choice of
the adjoint is irrelevant; once one recovers f in one gauge, one could always express it in terms of another
gauge, e.g. in this case relative to a different Riemannian metric.

In order to motivate our gauge condition, we need to recall the method introduced by the last two authors
in [29] to analyze the geodesic X-ray transform on functions: the underlying analysis strongly suggests the
form the gauge condition should take.

As in [29] we consider an operator L that integrates over geodesics in a small cone at each point, now
multiplying with a one form or symmetric 2-tensor, in the direction of the geodesic, mapping (locally defined)
functions on the space of geodesics to (locally defined) one forms or tensors. The choice of the operator, or
more concretely the angle, plays a big role; we choose it to be comparable to the distance to the artificial
boundary, x = 0. In this case LI ends up being in Melrose’s scattering pseudodifferential algebra, at least once
conjugated by an exponential weight. (The effect of this weight is that we get exponentially weak estimates
as we approach the artificial boundary.) The main analytic problem one faces then is that, corresponding to
the gauge freedom mentioned above, LI is not elliptic, unlike in the scalar (function) setting.

Concretely L is defined as follows. Near ∂Ω, one can use coordinates (x, y), with x = xc = x̃ + c as
before, y coordinates on ∂Ω. Correspondingly, elements of TpM can be written as λ∂x + η ∂y. The unit
speed geodesics which are close to being tangential to level sets of x̃ (with the tangential ones being given
by λ = 0) through a point p can be parameterized by say (λ, ω) (with the actual unit speed being a positive
multiple of this) where ω is unit length with respect to say a Euclidean metric. The concavity of the level

sets of x̃, as viewed from the super-level sets, means that d2

dt2 x̃ ◦ γ is bounded below by a positive constant
along geodesics in Ωc, as long as c is small, which in turn means that, for sufficiently small C1 > 0, geodesics
with |λ| < C1

√
x indeed remain in x ≥ 0 (as long as they are in M). Thus, if If is known along Ω-local
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geodesics, it is known for geodesics (x, y, λ, ω) in this range. As in [29] we use a smaller range |λ| < C2x
because of analytic advantages, namely the ability work in the well-behaved scattering algebra. Thus, for
χ smooth, even, non-negative, of compact support, to be specified, in the function case [29] considered the
operator

Lv(z) = x−2

∫
χ(λ/x)v(γx,y,λ,ω) dλ dω,

where v is a (locally, i.e. on suppχ, defined) function on the space of geodesics, here parameterized by
(x, y, λ, ω). (In fact, L had a factor x−1 only in [29], with another x−1 placed elsewhere; here we simply
combine these, as was also done in [28, Section 3]. Also, the particular measure dλ dω is irrelevant; any
smooth positive multiple would work equally well.) In this paper, with v still a locally defined function on
the space of geodesics, for one-forms we consider the map L

(2.1) Lv(z) =

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ∂x + ω ∂y) dλ dω,

while for 2-tensors

(2.2) Lv(z) = x2

∫
χ(λ/x)v(γx,y,λ,ω)gsc(λ∂x + ω ∂y)⊗ gsc(λ∂x + ω ∂y) dλ dω,

so in the two cases L maps into one-forms, resp. symmetric 2-cotensors, where gsc is a scattering metric used
to convert vectors into covectors — this is discussed in detail below.

Since it plays a crucial role even in the setup, by giving the bundles of which our tensors are sections
of, as well as the gauge condition, we need to discuss scattering geometry and the scattering pseudodiffer-
ential algebra, introduced by Melrose in [12], at least briefly. There is a more thorough discussion in [29,
Section 2], though the cotangent bundle, which is crucial here, is suppressed there. Briefly, the scattering
pseudodifferential algebra Ψm,l

sc (X) on a manifold with boundary X is the generalization of the standard
pseudodifferential algebra given by quantizations of symbols a ∈ Sm,l, i.e. a ∈ C∞(Rn × Rn) satisfying

(2.3) |Dα
zD

β
ζ a(z, ζ)| ≤ Cαβ〈z〉l−|α|〈ζ〉−|β|

for all multiindices α, β in the same way that on a compact manifold without boundary X̃, Ψm(X̃) arises
from (localized) pseudodifferential operators on Rn via considering coordinate charts. More precisely, Rn
can be compactified to a ball Rn, by gluing a sphere at infinity, with the gluing done via ‘reciprocal polar
coordinates’; see [29, Section 2]. One then writes Ψm,l

sc (Rn) for the quantizations of the symbols (2.3). Then
Ψm,l

sc (X) is defined by requiring that locally in coordinate charts, including charts intersecting with ∂X, the
algebra arises from Ψm,l

sc (Rn). (One also has to allow smooth Schwartz kernels on X×X which are vanishing

to infinite order at ∂(X × X), in analogy with the smooth Schwartz kernels on X̃ × X̃.) Thus, while the
compactification is extremely useful to package information, the reader should keep in mind that ultimately
almost all of the analysis reduces to uniform analysis on Rn. Since we are working with bundles, we also
mention that scattering pseudodifferential operators acting on sections of vector bundles are defined via local
trivializations, in which these operators are given by matrices of scalar scattering pseudodifferential operators
(i.e. are given by the Rn definition above if in addition these trivializations are made to be coordinate charts),
up to the same smooth, infinite order vanishing at ∂(X ×X) Schwartz kernels as in the scalar case.

Concretely, the compactification Rn, away from 0 ∈ Rn ⊂ Rn, is just [0,∞)x×Sn−1
ω , where the identifica-

tion with Rn \{0} is just the ‘inverse polar coordinate’ map (x, ω) 7→ x−1ω, with r = x−1 the standard radial
variable. Then a straightforward computation shows that translation invariant vector fields ∂zj on Rnz lift to

the compactification (via this identification) to generate, over C∞(Rn), the Lie algebra Vsc(Rn) = xVb(Rn)
of vector fields, where on a manifold with boundary Vb(X) is the Lie algebra of smooth vector fields tangent
to the boundary of X. In general, if x is a boundary defining function of X, we let Vsc(X) = xVb(X). Then
Ψ1,0

sc (X) contains Vsc(X), corresponding to the analogous inclusion on Euclidean space, and the vector fields
in Ψ1,0

sc (X) are essentially the elements of Vsc(X), after a slight generalization of coefficients (since above
a does not have an asymptotic expansion at infinity in z, only symbolic estimates; the expansion would
correspond to smoothness of the coefficients).
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Now, a local basis for Vsc(X), in a coordinate chart (x, y1, . . . , yn−1), is

x2∂x, x∂y1 , . . . , x∂yn−1

directly from the definition, i.e. V ∈ Vsc(X) means exactly that locally, on U ⊂ X

V = a0(x2∂x) +
∑

aj(x∂yj ), aj ∈ C∞(U).

This gives that elements of Vsc(X) are exactly smooth sections of a vector bundle, scTX, with local basis
x2∂x, x∂y1 , . . . , x∂yn−1

. In the case of X = Rn, this simply means that one is using the local basis x2∂x = −∂r,
x∂yj = r−1∂ωj , where the ωj are local coordinates on the sphere. An equivalent global basis is just ∂zj ,

j = 1, . . . , n, i.e. scTRn = Rnz × Rn is a trivial bundle with this identification.

The dual bundle scT ∗X of scTX correspondingly has a local basis dx
x2 ,

dy1
x , . . . , dyn−1

x , which in case of

X = Rn becomes −dr, r dωj , with local coordinates ωj on the sphere. A global version is given by using the

basis dzj , with covectors written as
∑
ζj dzj ; thus scT ∗Rn = Rnz ×Rnζ ; this is exactly the same notation as in

the description of the symbol class (2.3), i.e. one should think of this class as living on scT ∗Rn. Thus, smooth
scattering one-forms on Rn, i.e. sections of scT ∗Rn, are simply smooth one-forms on Rn with an expansion
at infinity. Similar statements apply to natural bundles, such as the higher degree differential forms scΛkX,
as well as symmetric tensors, such as Sym2scT ∗X. The latter give rise to scattering metrics gsc, which are
positive definite inner products on the fibers of scTX (i.e. positive definite sections of Sym2scT ∗X) of the

form gsc = x−4dx2 +x−2h̃, h̃ a standard smooth 2-cotensor on X (i.e. a section of Sym2T ∗X). For instance,
one can take, in a product decomposition near ∂X, gsc = x−4dx2 + x−2h, h a metric on the level sets of x.

The principal symbol of a pseudodifferential operator is the equivalence class of a as in (2.3) modulo
Sm−1,l−1, i.e. modulo additional decay both in z and in ζ on Rn × Rn. In particular, full ellipticity is
ellipticity in this sense, modulo Sm−1,l−1, i.e. for a scalar operator lower bounds |a(z, ζ)| ≥ c〈z〉l〈ζ〉m
for |z| + |ζ| > R, where R is suitably large. This contrasts with (uniform) ellipticity in the standard
sense, which is a similar lower bound, but only for |ζ| > R. Fully elliptic operators are Fredholm between
the appropriate Sobolev spaces Hs,r

sc (X) corresponding to the scattering structure, see [29, Section 2]; full
ellipticity is needed for this (as shown e.g. by taking ∆ − 1 on Rn, ∆ the flat positive Laplacian). If a is
matrix valued, ellipticity can be stated as invertibility for large (z, ζ), together with upper bounds for the
inverse: |a(z, ζ)−1| ≤ c−1〈z〉−l〈ζ〉−m; this coincides with the above definition for scalars.

We mention also that the exterior derivative d ∈ Diff1
sc(X; scΛk, scΛk+1) for all k. Explicitly, for k = 0, in

local coordinates, this is the statement that

df = (∂xf) dx+
∑
j

(∂yjf) dyj = (x2∂xf)
dx

x2
+
∑
j

(x∂yj )
dyj
x
,

with x2∂x, x∂yj ∈ Diff1
sc(X), while dx

x2 ,
dyj
x are smooth sections of scT ∗X (locally, where this formula makes

sense). Such a computation also shows that the principal symbol, in both senses, of d, at any point ξ dxx2 +∑
j ηj

dyj
x , is wedge product with ξ dxx2 +

∑
j ηj

dyj
x . A similar computation shows that the gradient with

respect to a scattering metric gsc is a scattering differential operator (on any of the natural bundles), with

principal symbol given by tensor product with ξ dxx2 +
∑
j ηj

dyj
x , hence so is the symmetric gradient on one

forms, with principal symbol given by the symmetrized tensor product with ξ dxx2 +
∑
j ηj

dyj
x . Note that all

of these principal symbols are actually independent of the metric gsc, and d itself is completely independent
of any choice of a metric (scattering or otherwise).

If we instead consider the symmetric differential ds with respect to a smooth metric g on X, as we are
obliged to use in our problem since its image is what is annihilated by the (g-geodesic) X-ray transform
I, it is a first order differential operator between sections of bundles T ∗X and Sym2T ∗X. Writing dx, dyj ,
resp., dx2, dx dyj and dyi dyj for the corresponding bases, this means that we have a matrix of first order
differential operators. Now, as the standard principal symbol of ds is just tensoring with the covector at
which the principal symbol is evaluated, the first order terms are the same, modulo zeroth order terms,
as when one considers dsgsc , and in particular they correspond to a scattering differential operator acting
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between section of scT ∗X and Sym2scT ∗X. (This can also be checked explicitly using the calculation done
below for zeroth order term, but the above is the conceptual reason for this.) On the other hand, with
dx2 = dx ⊗ dx, dx dyi = 1

2 (dx ⊗ dyi + dyi ⊗ dx), etc., these zeroth order terms form a matrix with smooth
coefficients in the local basis

dx2 ⊗ ∂x, dx2 ⊗ ∂yj , dx dyi ⊗ ∂x, dx dyi ⊗ ∂yj , dyk dyi ⊗ ∂x, dyk dyi ⊗ ∂yj
of the homomorphism bundle hom(T ∗X,Sym2T ∗X). In terms of the local basis

dx2

x4
⊗ (x2∂x),

dx2

x4
⊗ (x∂yj ),

dx

x2

dyi
x
⊗ (x2∂x),

dx

x2

dyi
x
⊗ (x∂yj ),

dyk dyi
x2

⊗ (x2∂x),
dyk dyi
x2

⊗ (x∂yj )

of hom(scT ∗X,Sym2scT ∗X), these are all smooth, and vanish at ∂X to order 2, 3, 1, 2, 0, 1 respectively,
showing that ds ∈ Diff1

sc(X, scT ∗X,Sym2scT ∗X), and that the only non-trivial contribution of these zeroth

order terms to the principal symbol is via the entry corresponding to dyk dyi
x2 ⊗ (x2∂x) = dyk dyi ⊗ ∂x, which

however is rather arbitrary.
Returning to the choice of gauge, in our case the solenoidal gauge relative to g would not be a good

idea: the metric on M is an incomplete metric as viewed at the artificial boundary, and does not interact
well with LI. We circumvent this difficulty by considering instead the adjoint δs relative to a scattering
metric, i.e. one of the form x−4dx2 +x−2h, h a metric on the level sets of x. While δs, ds are then scattering
differential operators, unfortunately δsds on functions, or one forms, is not fully elliptic in the scattering
sense (full ellipticity is needed to guarantee Fredholm properties on Sobolev spaces in a compact setting),
with the problem being at finite points of scT ∗X, X = {x ≥ 0}. For instance, in the case of X being the
radial compactification of Rn, we would be trying to invert the Laplacian on functions or one-forms, which
has issues at the 0-section. However, if we instead use an exponential weight, which already arose when LI
was discussed, we can make the resulting operator fully elliptic, and indeed invertible for suitable weights.

Thus, we introduce a Witten-type (in the sense of the Witten Laplacian) solenoidal gauge on the scattering
cotangent bundle, scT ∗X or its second symmetric power, Sym2scT ∗X. Fixing z > 0, our gauge is

e2z/xδse−2z/xfs = 0,

or the e−2z/x-solenoidal gauge. (Keep in mind here that δs is the adjoint of ds relative to a scattering
metric.) We are actually working with

fz = e−z/xf

throughout; in terms of this the gauge is

δszf
s
z = 0, δsz = ez/xδse−z/x.

Theorem 2.1. (See Theorem 4.15 for the proof and the formula.) There exists z0 > 0 such that for z ≥ z0

the following holds.
For Ω = Ωc, c > 0 small, the geodesic X-ray transform on e2z/x-solenoidal one-forms and symmetric

2-tensors f ∈ ez/xL2
sc(Ω), i.e. ones satisfying δs(e−2z/xf) = 0, is injective, with a stability estimate and a

reconstruction formula.
In addition, replacing Ωc = {x̃ > −c} ∩M by Ωτ,c = {τ > x̃ > −c+ τ} ∩M , c can be taken uniform in τ

for τ in a compact set on which the strict concavity assumption on level sets of x̃ holds.

3. Ellipticity up to gauge

With L defined in (2.1)-(2.2), the main analytic points are that, first, LI is (after a suitable exponential
conjugation) a scattering pseudodifferential operator of order −1, and second, by choosing an additional
appropriate gauge-related summand, this operator LI is elliptic (again, after the exponential conjugation).
These results are stated in the next two propositions, with the intermediate Lemma 3.2 describing the gauge
related summand.
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Proposition 3.1. On one forms, resp. symmetric 2-cotensors, the operators Nz = e−z/xLIez/x, lie in

Ψ−1,0
sc (X; scT ∗X, scT ∗X), resp. Ψ−1,0

sc (X; Sym2scT ∗X,Sym2scT ∗X),

for z > 0.

Proof. The proof of this proposition follows that of the scalar case given in [29, Proposition 3.3] and in a
modified version of the scalar case in [28, Proposition 3.2]. For convenience of the reader, we follow the latter
proof very closely, except that we do not emphasize the continuity statements in terms of the underlying
metric itself, indicating the modifications.

Thus, recall that the map

(3.1) Γ+ : SM̃ × [0,∞)→ [M̃ × M̃ ; diag], Γ+(x, y, λ, ω, t) = ((x, y), γx,y,λ,ω(t))

is a local diffeomorphism, and similarly for Γ− in which (−∞, 0] takes the place of [0,∞); see the discussion

around [29, Equation (3.2)-(3.3)]; indeed this is true for more general curve families. Here [M̃ × M̃ ; diag]

is the blow-up of M̃ at the diagonal z = z′, which essentially means the introduction of spherical/polar
coordinates, or often more conveniently projective coordinates, about it. Concretely, writing the (local)

coordinates from the two factors of M̃ as (z, z′),

(3.2) z, |z − z′|, z − z
′

|z − z′|
give (local) coordinates on this space. Since the statement regarding the pseudodifferential property of LI
is standard away from x = 0, we concentrate on the latter region. Correspondingly, in our coordinates
(x, y, λ, ω), we write

(γx,y,λ,ω(t), γ′x,y,λ,ω(t)) = (Xx,y,λ,ω(t),Yx,y,λ,ω(t),Λ[x,y,λ,ω(t),Ω[x,y,λ,ω(t))

for the lifted geodesic γx,y,λ,ω(t).
Recall from [29, Section 2] that coordinates on Melrose’s scattering double space, on which the Schwartz

kernels of elements of Ψs,r
sc (X) are conormal to the diagonal, near the lifted scattering diagonal, are (with

x ≥ 0)

x, y, X =
x′ − x
x2

, Y =
y′ − y
x

.

Note that here X,Y are as in [29] around Equation (3.10), not as in [29, Section 2] (where the signs are
switched), which means that we need to replace (ξ, η) by (−ξ,−η) in the Fourier transform when computing

principal symbols. Further, it is convenient to write coordinates on [M̃ × M̃ ; diag] in the region of interest
(see the beginning of the paragraph of Equation (3.10) in [29]), namely (the lift of) |x− x′| < C|y − y′|, as

x, y, |y − y′|, x
′ − x
|y − y′| ,

y′ − y
|y − y′| ,

with the norms being Euclidean norms, instead of (3.2); we write Γ± in terms of these. Note that these

are x, y, x|Y |, xX|Y | , Ŷ . Moreover, by [29, Equation(3.10)] and the subsequent equations, combined also with

Equations (3.14)-(3.15) there, λ, ω, t are given in terms of x, x′, y, y′ as

(Λ ◦ Γ−1
± )
(
x, y, x|Y |, xX|Y | , Ŷ

)
= x

X − α(x, y, x|Y |, xX|Y | , Ŷ ))|Y |2

|Y | + x2Λ̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)
with Λ̃± smooth,

(Ω ◦ Γ−1
± )
(
x, y, x|Y |, xX|Y | , Ŷ

)
= Ŷ + x|Y |Ω̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)
with Ω̃± smooth and

±(T ◦ Γ−1
± )
(
x, y, x|Y |, xX|Y | , Ŷ

)
= x|Y |+ x2|Y |2T̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)
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with T̃ smooth.
In particular,

(Λ ◦ Γ−1
± ) ∂x + (Ω ◦ Γ−1

± ) ∂y

=
(
x
X − α(x, y, x|Y |, xX|Y | , Ŷ ))|Y |2

|Y | + x2Λ̃±

(
x, y, x|Y |, xX|Y | , Ŷ

))
∂x

+
(
Ŷ + x|Y |Ω̃±

(
x, y, x|Y |, xX|Y | , Ŷ

))
∂y.

Thus, a smooth metric g0 = dx2 + h applied to this yields

(3.3)

(Λ ◦ Γ−1
± ) dx+ (Ω ◦ Γ−1

± )h(∂y) = x
(
x(Λ ◦ Γ−1

± )
dx

x2
+ (Ω ◦ Γ−1

± )
h(∂y)

x

)
= x

(
x2
(X − α(x, y, x|Y |, xX|Y | , Ŷ ))|Y |2

|Y | + xΛ̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)) dx
x2

+
(
Ŷ + x|Y |Ω̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)) h(∂y)

x

)
,

while so gsc applied to this yields

(3.4)

x−1
(
x−1(Λ ◦ Γ−1

± )
dx

x2
+ (Ω ◦ Γ−1

± )
h(∂y)

x

)
= x−1

((X − α(x, y, x|Y |, xX|Y | , Ŷ ))|Y |2

|Y | + xΛ̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)) dx
x2

+
(
Ŷ + x|Y |Ω̃±

(
x, y, x|Y |, xX|Y | , Ŷ

)) h(∂y)

x

)
.

Notice that on the right hand side of (3.4) the singular factor of x−1 in front of dx
x2 disappears due to the

factor x in Λ, while on the right hand side of (3.3) correspondingly dx
x2 has a vanishing factor x2. This means,

as we see below, that the dx
x2 component behaves trivially at the level of the boundary principal symbol of

the operator Nz,0 defined like Nz but with g0 in place of gsc, so in fact one can never have full ellipticity in
this case; this is the reason we must use gsc in the definition of Nz.

One also needs to have Λ[x,y,λ,ω(t),Ω[x,y,λ,ω(t) evaluated at (x′, y′), since this is the tangent vector λ′∂x′+

ω′∂y′ with which our tensors are contracted as they are being integrated along the geodesic. In order to
compute this efficiently, we recall from [29, Equation (3.14)] that

x′ = x+ λt+ α(x, y, λ, ω)t2 +O(t3), y′ = y + ωt+O(t2),

with the O(t3), resp. O(t2) terms having smooth coefficients in terms of (x, y, λ, ω). Correspondingly,

λ′ =
dx

dt
= λ+ 2α(x, y, λ, ω)t+O(t2), ω′ =

dy

dt
= ω +O(t).

This gives that in terms of x, y, x′, y′, λ′ is given by

Λ′ ◦ Γ−1
± = Λ ◦ Γ−1

± + 2α(x, y,Λ ◦ Γ−1
± ,Ω ◦ Γ−1

± )(T ◦ Γ−1
± ) + (T ◦ Γ−1

± )2Λ̃′ ◦ Γ−1
± ,

with Λ̃′ smooth in terms of x, y,Λ ◦ Γ−1
± ,Ω ◦ Γ−1

± , T ◦ Γ−1
± . Substituting these in yields

Λ′ ◦ Γ−1
± = x

X − α(x, y, x|Y |, xX|Y | , Ŷ )|Y |2

|Y | + 2x|Y |α(x, y, x|Y |, xX|Y | , Ŷ )

+ x2|Y |2Λ̃′(x, y, x|Y |, xX|Y | , Ŷ )

= x
X + α(x, y, x|Y |, xX|Y | , Ŷ )|Y |2

|Y | + x2|Y |2Λ̃′(x, y, x|Y |, xX|Y | , Ŷ )
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while

Ω′ ◦ Γ−1
± = Ŷ + xΩ̃′(x, y, x|Y |, xX|Y | , Ŷ ).

Correspondingly,

(Λ′ ◦ Γ−1
± ) ∂x + (Ω′ ◦ Γ−1

± ) ∂y = x−1
(
x−1(Λ′ ◦ Γ−1

± )x2∂x + (Ω′ ◦ Γ−1
± )x∂y

)
= x−1

((X + α(x, y, x|Y |, xX|Y | , Ŷ )|Y |2

|Y | + x|Y |2Λ̃′±

(
x, y, x|Y |, xX|Y | , Ŷ

))
x2∂x

+
(
Ŷ + x|Y |Ω̃′±

(
x, y, x|Y |, xX|Y | , Ŷ

))
x∂y

)
.

Then, similarly, near the boundary as in [29, Equation (3.13)], one obtains the Schwartz kernel of Nz on
one forms:

(3.5)

K[(x, y,X, Y )

=
∑
±
e−zX/(1+xX)χ

(X − α(x, y, x|Y |, xX|Y | , Ŷ )|Y |2

|Y | + xΛ̃±

(
x, y, x|Y |, x|X||Y | , Ŷ

))
(
x−1(Λ ◦ Γ−1

± )
dx

x2
+ (Ω ◦ Γ−1

± )
h(∂y)

x

)(
x−1(Λ′ ◦ Γ−1

± )x2∂x + (Ω′ ◦ Γ−1
± )x∂y

)
|Y |−n+1J±

(
x, y,

X

|Y | , |Y |, Ŷ
)
,

with the density factor J smooth, positive, = 1 at x = 0; there is a similar formula for 2-tensors. Note that
the factor x−1 in (3.4), as well as another x−1 from writing

(Λ′ ◦ Γ−1
± ) ∂x + (Ω′ ◦ Γ−1

± ) ∂y = x−1
(
x−1(Λ′ ◦ Γ−1

± )x2∂x + (Ω′ ◦ Γ−1
± )x∂y

)
are absorbed into the definition of L, (2.1)-(2.2), hence the different powers (−2 for functions, 0 on one-forms,
2 for 2-cotensors) appearing there. Here

x, y, |Y |, X|Y | , Ŷ

are valid coordinates on the blow-up of the scattering diagonal in |Y | > ε|X|, ε > 0, which is the case auto-
matically on the support of the kernel due to the argument of χ, cf. the discussion after [29, Equation(3.12)],
so the argument of χ is smooth on this blown up space. In addition, due to the order x vanishing of Λ,

x−1(Λ ◦ Γ−1
± )

dx

x2
+ (Ω ◦ Γ−1

± )
h(∂y)

x
, resp. x−1(Λ ◦ Γ−1

± )x2∂x + (Ω ◦ Γ−1
± )x∂y

are smooth sections of scT ∗X, resp. scTX, pulled back from the left, resp. right, factor of X2, thus their
product defines a smooth section of the endomorphism bundle of scT ∗X.

Since this homomorphism factor is the only difference from [29, Proposition 3.3], and we have shown its
smoothness properties as a bundle endomorphism, this proves the proposition as in [29, Proposition 3.3].

If we defined Nz,0 as Nz but using a smooth metric g0 in place of gsc, we would have the Schwartz kernel

(3.6)

K[
0(x, y,X, Y )

=
∑
±
e−zX/(1+xX)χ

(X − α(x, y, x|Y |, xX|Y | , Ŷ )|Y |2

|Y | + xΛ̃±

(
x, y, x|Y |, x|X||Y | , Ŷ

))
(
x(Λ ◦ Γ−1

± )
dx

x2
+ (Ω ◦ Γ−1

± )
h(∂y)

x

)(
x−1(Λ′ ◦ Γ−1

± )x2∂x + (Ω′ ◦ Γ−1
± )x∂y

)
|Y |−n+1J±

(
x, y,

X

|Y | , |Y |, Ŷ
)
,
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and

x(Λ ◦ Γ−1
± )

dx

x2
+ (Ω ◦ Γ−1

± )
h(∂y)

x
, resp. x−1(Λ ◦ Γ−1

± )x2∂x + (Ω ◦ Γ−1
± )x∂y

are again smooth sections of scT ∗X, resp. scTX, pulled back from the left, resp. right, factor of X2, but, as
pointed out earlier, with the coefficient of dx

x2 vanishing, thus eliminating the possibility of ellipticity in this
case. �

Before proceeding, we compute the principal symbol of the gauge term dszδ
s
z. For this recall that dsz =

e−z/xdsez/x, with ds defined using the background metric g (on one forms; the metric is irrelevant for
functions), and δsz is its adjoint with respect to the scattering metric gsc (not g). In order to give the
principal symbols, we use the basis

dx

x2
,
dy

x

for one forms, with dy
x understood as a short hand for dy1

x , . . . , dyn−1

x , while for 2-tensors, we use a decom-
position

dx

x2
⊗ dx

x2
,
dx

x2
⊗ dy

x
,
dy

x
⊗ dx

x2
,
dy

x
⊗ dy

x
.

Note that symmetry of a 2-tensor is the statement that the 2nd and 3rd (block) entries are the same (up to
the standard identification), so for symmetric 2-tensors we can also use

dx

x2
⊗s

dx

x2
,
dx

x2
⊗s

dy

x
,
dy

x
⊗s

dy

x
,

where the middle component is the common dx
x2 ⊗ dy

x and dy
x ⊗ dx

x2 component.

Lemma 3.2. On one forms, the operator dszδ
s
z ∈ Diff2,0

sc (X; scT ∗X, scT ∗X) has principal symbol(
ξ + iz
η⊗

)(
ξ − iz ιη

)
=

(
ξ2 + z2 (ξ + iz)ιη

(ξ − iz)η⊗ η ⊗ ιη

)
.

On the other hand, on symmetric 2-tensors dszδ
s
z ∈ Diff2,0

sc (X; Sym2scT ∗X,Sym2scT ∗X) has principal
symbol ξ + iz 0

1
2η⊗ 1

2 (ξ + iz)
a η⊗s

(ξ − iz 1
2 ιη 〈a, .〉

0 1
2 (ξ − iz) ιsη

)

=

 ξ2 + z2 1
2 (ξ + iz)ιη (ξ + iz)〈a, .〉

1
2 (ξ − iz)η⊗ 1

4 (η⊗)ιη + 1
4 (ξ2 + z2) 1

2η ⊗ 〈a, .〉+ 1
2 (ξ + iz)ιsη

(ξ − iz)a 1
2aιη + 1

2 (ξ − iz)η⊗ a〈a, .〉+ η ⊗s ιη,


where a is a suitable symmetric 2-tensor.

Proof. This is an algebraic symbolic computation, so in particular it can be done pointwise. Since one can
arrange that the metric gsc used to compute adjoints is of the form x−4dx2 + x−2dy2, where dy2 is the flat
metric, at the point in question, one can simply use this in the computation. With our coordinates at the
point in question, trivializing the inner product, gsc, the inner product on one-forms is given by the matrix(

1 0
0 Id

)
while on 2-tensors by 

1 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 Id

 .
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First consider one-forms. Recall from Section 2 that the full principal symbol of d, in Diff1
sc(X;C, scT ∗X),

with C the trivial bundle, is, as a map from functions to one-forms,

(3.7)

(
ξ
η⊗

)
.

Thus the symbol of dsz = e−z/xdsez/x, which conjugation effectively replaces ξ by ξ+iz (as e−z/xx2Dxe
z/x =

x2Dx + iz), is (
ξ + iz
η⊗

)
.

Hence δsz has symbol given by the adjoint of that of dsz with respect to the inner product of gsc, which is(
ξ − iz ιη

)
.

Thus, the principal symbol of dszδ
s
z is the product,(

ξ2 + z2 (ξ + iz)ιη
(ξ − iz)η⊗ η ⊗ ιη

)
,

proving the lemma for one forms.
We now turn to symmetric 2-tensors. Again, recall from Section 2 that the full principal symbol of the

gradient relative to g, in Diff1
sc(X; scT ∗X; scT ∗X ⊗ scT ∗X), is, as a map from one-forms to 2-tensors (which

we write in the four block form as before) is

(3.8)


ξ 0
η⊗ 0
0 ξ
b η⊗

 ,

where b is a 2-tensor on Y = ∂X, and thus that of ds (with symmetric 2-tensors considered as a subspace of
2-tensors) is 

ξ 0
1
2η⊗ 1

2ξ
1
2η⊗ 1

2ξ
a η⊗s

 ,

with a a symmetric 2-tensor (the symmetrization of b). (Notice that a, b only play a role in the principal
symbol at the boundary, not in the standard principal symbol, i.e. as (ξ, η)→∞.) Here a arises due to the
treatment of ds, which is defined using a standard metric g, as an element of Diffsc(X; scT ∗X,Sym2scT ∗X); it
is acting on the one-dimensional space Span{dxx2 } by multiplying the coefficient of dxx2 to produce a symmetric
2-tensor on Y . Note that here the lower right block has (ijk) entry (corresponding to the (ij) entry of
the symmetric 2-tensor and the k entry of the one-form) given by 1

2 (ηiδjk + ηjδik). Thus the symbol of

dsz = e−z/xdsez/x, which conjugation effectively replaces ξ by ξ + iz (as e−z/xx2Dxe
z/x = x2Dx + iz), is

ξ + iz 0
1
2η⊗ 1

2 (ξ + iz)
1
2η⊗ 1

2 (ξ + iz)
a η⊗s

 .

Thus, δsz has symbol given by the adjoint of that of dsz with respect to this inner product, which is(
ξ − iz 1

2 ιη
1
2 ιη 〈a, .〉

0 1
2 (ξ − iz) 1

2 (ξ − iz) ιsη

)
.

Here the lower right block has (`ij) entry given by 1
2 (ηiδ`j + ηjδi`). Here the inner product 〈a, .〉 as well as

ιη are with respect to the identity because of the trivialization of the inner product; invariantly they with
respect to the inner product induced by h. Correspondingly, the product, in the more concise notation for
symmetric tensors, has the symbol as stated, proving the lemma. �
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The proof of the next proposition, on ellipticity, relies on the subsequently stated two lemmas, whose
proofs in turn take up the rest of this section.

Proposition 3.3. First consider the case of one forms. Let z > 0. Given Ω̃, a neighborhood of X ∩M =
{x ≥ 0, ρ ≥ 0} in X, for suitable choice of the cutoff χ ∈ C∞c (R) and of M ∈ Ψ−3,0

sc (X), the operator

Az = Nz + dszMδsz, Nz = e−z/xLIez/x, dsz = e−z/xdsez/x,

is elliptic in Ψ−1,0
sc (X; scT ∗X, scT ∗X) in Ω̃.

On the other hand, consider the case of symmetric 2-tensors. Then there exists z0 > 0 such that for
z > z0 the following holds. Given Ω̃, a neighborhood of X ∩M = {x ≥ 0, ρ ≥ 0} in X, for suitable choice
of the cutoff χ ∈ C∞c (R) and of M ∈ Ψ−3,0

sc (X; scT ∗X, scT ∗X), the operator

Az = Nz + dszMδsz, Nz = e−z/xLIez/x, dsz = e−z/xdsez/x,

is elliptic in Ψ−1,0
sc (X; Sym2scT ∗X,Sym2scT ∗X) in Ω̃.

Proof. The proof of this proposition is straightforward given the two lemmas we prove below. Indeed, as
we prove below in Lemma 3.4, provided χ ≥ 0, χ(0) > 0, the operator e−z/xLIez/x has positive definite
principal symbol at fiber infinity in the scattering cotangent bundle when restricted to the subspace of scT ∗X
or Sym2scT ∗X given by the kernel of the symbol of δsz, where the inner product is that of the scattering
metric we consider (with respect to which δs is computed); in Lemma 3.5 we show a similar statement for
the principal symbol at finite points under the assumption that χ is sufficiently close, in a suitable sense,
to an even positive Gaussian, with the complication that for 2-tensors we need to assume z > 0 sufficiently
large. Thus, if we add dszMδsz to it, where M has positive principal symbol, and is of the correct order, we
obtain an elliptic operator, completing the proof of Proposition 3.3. �

We are thus reduced to proving the two lemmas we used.

Lemma 3.4. Both on one-forms and on symmetric 2-tensors, Nz is elliptic at fiber infinity in scT ∗X when
restricted to the kernel of the principal symbol of δsz.

Proof. This is very similar to the scalar setting. With

S =
X − α(Ŷ )|Y |2

|Y | , Ŷ =
Y

|Y | ,

the Schwartz kernel of Nz at the scattering front face x = 0 is, by (3.5), given by

e−zX |Y |−n+1χ(S)
((
S
dx

x2
+ Ŷ · dy

x

)(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

))
on one forms, respectively

e−zX |Y |−n+1χ(S)(((
S
dx

x2
+ Ŷ · dy

x

)
⊗
((
S
dx

x2
+ Ŷ · dy

x

))))
((

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
)
⊗
(

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
))

on 2-tensors, where Ŷ is regarded as a tangent vector which acts on covectors, and where (S+2α|Y |)(x2∂x)+

Ŷ · (x∂y) maps one forms to scalars, thus(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
⊗
(

(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)
)

maps symmetric 2-tensors to scalars, while S dxx2 + Ŷ · dyx maps scalars to one forms, so(
S
dx

x2
+ Ŷ · dy

x

)
⊗
(
S
dx

x2
+ Ŷ · dy

x

)
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maps scalars to symmetric 2-tensors. In order to make the notation less confusing, we employ a matrix
notation, (

S
dx

x2
+ Ŷ · dy

x

)(
(S + 2α|Y |)(x2∂x) + Ŷ · (x∂y)

)
=

(
S(S + 2α|Y |) S〈Ŷ , ·〉
Ŷ (S + 2α|Y |) Ŷ 〈Ŷ , ·〉

)
,

with the first column and row corresponding to dx
x2 , resp. x2∂x, and the second column and row to the

(co)normal vectors. For 2-tensors, as before, we use a decomposition

dx

x2
⊗ dx

x2
,
dx

x2
⊗ dy

x
,
dy

x
⊗ dx

x2
,
dy

x
⊗ dy

x
,

where the symmetry of the 2-tensor is the statement that the 2nd and 3rd (block) entries are the same. For
the actual endomorphism we write
(3.9)

S2

S〈Ŷ , ·〉1
S〈Ŷ , ·〉2

〈Ŷ , ·〉1〈Ŷ , ·〉2

((S + 2α|Y |)2Ŷ1Ŷ2 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉1 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉2 Ŷ1Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2
)

=


S2(S + 2α|Y |)2 S2(S + 2α|Y |)〈Ŷ , ·〉1 S2(S + 2α|Y |)〈Ŷ , ·〉2 S2〈Ŷ , ·〉1〈Ŷ , ·〉2
S(S + 2α|Y |)2Y1 S(S + 2α|Y |)Ŷ1〈Ŷ , .〉1 S(S + 2α|Y |)Ŷ1〈Ŷ , .〉2 SŶ1〈Ŷ , ·〉1〈Ŷ , ·〉2
S(S + 2α|Y |)2Y2 S(S + 2α|Y |)Ŷ2〈Ŷ , .〉1 S(S + 2α|Y |)Ŷ2〈Ŷ , .〉2 SŶ2〈Ŷ , ·〉1〈Ŷ , ·〉2
(S + 2α|Y |)2Ŷ1Ŷ2 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉1 (S + 2α|Y |)Ŷ1Ŷ2〈Ŷ , ·〉2 Ŷ1Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2

 .

Here we write subscripts 1 and 2 for clarity on Ŷ to denote whether it is acting on the first or the second
factor, though this also immediately follows from its position within the matrix.

Now, the standard principal symbol is that of the conormal singularity at the diagonal, i.e. X = 0, Y = 0.
Writing (X,Y ) = Z, (ξ, η) = ζ, we would need to evaluate the Z-Fourier transform as |ζ| → ∞. This was
discussed in [29] around Equation (3.8); the leading order behavior of the Fourier transform as |ζ| → ∞ can

be obtained by working on the blown-up space of the diagonal, with coordinates |Z|, Ẑ = Z
|Z| (as well as

z = (x, y)), and integrating the restriction of the Schwartz kernel to the front face, |Z|−1 = 0, after removing

the singular factor |Z|−n+1, along the equatorial sphere corresponding to ζ, and given by Ẑ · ζ = 0. Now,
concretely in our setting, in view of the infinite order vanishing, indeed compact support, of the Schwartz
kernel as X/|Y | → ∞ (and Y bounded), we may work in semi-projective coordinates, i.e. in spherical

coordinates in Y , but X/|Y | as the normal variable; the equatorial sphere then becomes (X/|Y |)ξ+ Ŷ ·η = 0

(with the integral of course relative to an appropriate positive density). With S̃ = X/|Y |, keeping in mind
that terms with extra vanishing factors at the front face, |Y | = 0 can be dropped, we thus need to integrate

(3.10)

(
S̃2 S̃〈Ŷ , ·〉
S̃Ŷ Ŷ 〈Ŷ , ·〉

)
χ(S̃) =

(
S̃

Ŷ

)
⊗
(
S̃ Ŷ

)
χ(S̃),

on this equatorial sphere in the case of one-forms, and the analogous expression in the case of symmetric
2-tensors. Now, for χ ≥ 0 this matrix is a positive multiple of the projection to the span of (S̃, Ŷ ). As

(S̃, Ŷ ) runs through the (ξ, η)-equatorial sphere, we are taking a positive (in the sense of non-negative)
linear combination of the projections to the span of the vectors in this orthocomplement, with the weight
being strictly positive as long as χ(S̃) > 0 at the point in question. But by Lemma 3.2, the kernel of the
standard principal symbol of δsz consists of covectors of the form v = (v0, v

′) with ξv0+η ·v′ = 0. Hence, if we

show that for each such non-zero vector (v0, v
′) there is at least one (S̃, Ŷ ) with χ(S̃) > 0 and ξS̃+ η · Ŷ = 0

and S̃v0 + Ŷ · v′ 6= 0, we conclude that the integral of the projections is positive, thus the principal symbol
of our operator is elliptic, on the kernel of the standard principal symbol of δsz. But this is straightforward
if χ(0) > 0:
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(1) if v′ = 0 then ξ = 0 (since v0 6= 0), one may take S̃ 6= 0 small, Ŷ orthogonal to η (such Ŷ exists as
η ∈ Rn−1, n ≥ 3),

(2) if v′ 6= 0 and v′ is not a multiple of η, then take Ŷ orthogonal to η but not to v′, S̃ = 0,

(3) if v′ = cη with v′ 6= 0 (so c and η do not vanish) then ξv0 + c|η|2 = 0 so with Ŷ still to be chosen if

we let S̃ = −η·Ŷξ , then S̃v0 + Ŷ · v′ = c(Ŷ · η)(1 + |η|2
ξ2 ) which is non-zero as long as Ŷ · η 6= 0; this

can be again arranged, together with Ŷ · η being sufficiently small (such Ŷ exists again as η ∈ Rn−1,

n ≥ 3), so that S̃ is small enough in order to ensure χ(S̃) > 0.

This shows that the principal symbol is positive definite on the kernel of the symbol of δsz.
In the case of symmetric 2-tensors, the matrix (3.10) is replaced by

(3.11)


S̃2

S̃Ŷ1

S̃Ŷ2

Ŷ1 ⊗ Ŷ2

⊗ (S̃2 S̃〈Ŷ , ·〉1 S̃〈Ŷ , ·〉2 〈Ŷ ⊗ Ŷ , ·〉
)
χ(S̃),

which again is a non-negative multiple of a projection. For a symmetric 2-tensor of the form v = (vNN , vNT , vNT , vTT )
in the kernel of the principal symbol of δsz, we have by Lemma 3.2 that

(3.12)

ξvNN + η · vNT = 0,

ξvNT +
1

2
(η1 + η2) · vTT = 0,

where η1 resp. η2 denoting that the inner product is taken in the first, resp. second, slots. Taking the inner
product of the second equation with η gives

ξη · vNT + (η ⊗ η)vTT = 0.

Substituting this into the first equation yields

ξ2vNN = (η ⊗ η)vTT .

We now consider two cases, ξ = 0 and ξ 6= 0.
If ξ 6= 0, then for a symmetric 2-tensor being in the kernel of the principal symbol of δsz at fiber infinity

and of (3.11) for (S̃, Ŷ ) satisfying ξS̃ + η · Ŷ = 0, i.e. S̃ = −ηξ · Ŷ is equivalent to

(3.13)

vNN = ξ−2(η ⊗ η)vTT ,

vNT = − 1

2ξ
(η1 + η2) · vTT((η · Ŷ

ξ

)2 η ⊗ η
ξ2

+
η · Ŷ
ξ2

(η
ξ
⊗ Ŷ + Ŷ ⊗ η

ξ

)
+ Ŷ ⊗ Ŷ

)
· vTT = 0,

and the last equation is equivalent to((η · Ŷ
ξ

η

ξ
+ Ŷ

)
⊗
(η · Ŷ

ξ

η

ξ
+ Ŷ

))
· vTT = 0.

If η = 0, the first two equations say directly that vNN and vNT vanish, while the last one states that
(Ŷ ⊗ Ŷ ) · vTT = 0 for all Ŷ (we may simply take S̃ = 0); but symmetric 2-tensors of the form Ŷ ⊗ Ŷ span
the space of all symmetric 2-tensors (as w1 ⊗w2 +w2 ⊗w1 = (w1 +w2)⊗ (w1 +w2)−w1 ⊗w1 −w2 ⊗w2),
so we conclude that vTT = 0, and thus v = 0 in this case. On the other hand, if η 6= 0 then taking
Ŷ = εη̂ + (1− ε2)1/2Ŷ ⊥ and substituting into this equation yields((

1 +
|η|2
ξ2

)2

ε2η̂ ⊗ η̂ +
(

1 +
|η|2
ξ2

)
ε(1− ε2)1/2(η̂ ⊗ Ŷ ⊥ + Ŷ ⊥ ⊗ η̂) + (1− ε2)Ŷ ⊥ ⊗ Ŷ ⊥

)
· vTT = 0.

Note that S̃ = −ε |η|ξ , so |S̃| is small when |ε| is sufficiently small. Substituting in ε = 0 yields (Ŷ ⊥ ⊗ Ŷ ⊥) ·
vTT = 0; since cotensors of the form Ŷ ⊥ ⊗ Ŷ ⊥ span η⊥ ⊗ η⊥ (η⊥ being the orthocomplement of η), we
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conclude that vTT is orthogonal to every element of η⊥ ⊗ η⊥. Next, taking the derivative in ε at ε = 0
yields (η̂ ⊗ Ŷ ⊥ + Ŷ ⊥ ⊗ η̂) · vTT = 0 for all Ŷ ⊥; symmetric tensors of this form, together with η⊥ ⊗ η⊥, span
all tensors in (η ⊗ η)⊥. Finally taking the second derivative at ε = 0 shows that (η̂ ⊗ η̂) · vTT = 0, this in
conclusion vTT = 0. Combined with the first two equations of (3.13), one concludes that v = 0, thus the
desired ellipticity follows.

On the other hand, if ξ = 0 (and so η 6= 0), then for a symmetric 2-tensor being in the kernel of the

principal symbol of δsz at fiber infinity and of (3.11) for (S̃, Ŷ ) satisfying ξS̃ + η · Ŷ = 0, i.e. η · Ŷ = 0 is
equivalent to

(3.14)

η · vNT = 0,

(η1 + η2) · vTT = 0,

S̃2vNN + 2S̃Ŷ · vNT + (Ŷ ⊗ Ŷ ) · vTT = 0.

Since there are no constraints on S̃ (apart from |S̃| small), we can differentiate the last equation up to two

times and evaluate the result at 0 to conclude that vNN = 0, Ŷ · vNT = 0 and (Ŷ ⊗ Ŷ ) · vTT = 0. Combined
with the first two equations of (3.14), this shows v = 0, so again the desired ellipticity follows.

Thus, in summary, both on one forms and on symmetric 2-tensors the principal symbol at fiber infinity
is elliptic on the kernel of that of δsz, proving the lemma. �

Lemma 3.5. For z > 0 on one forms Nz is elliptic at finite points of scT ∗X when restricted to the kernel
of the principal symbol of δsz. On the other hand, there exists z0 > 0 such that on symmetric 2-tensors Nz
is elliptic at finite points of scT ∗X when restricted to the kernel of the principal symbol of δsz.

Proof. Again this is similar to, but technically much more involved than, the scalar setting. We recall from
[29] that the kernel is based on using a compactly supported C∞ localizer, χ, but for the actual computation
it is convenient to use a Gaussian instead χ0 instead. One recovers the result by taking φ ∈ C∞c (R), φ ≥ 0,
identically 1 near 0, and considering an approximating sequence χk = φ(./k)χ0. Then the Schwartz kernels
at the front face still converge in the space of distributions conormal to the diagonal, which means that the
principal symbols (including at finite points) also converge, giving the desired ellipticity for sufficiently large
k.

Recall that the scattering principal symbol is the Fourier transform of the Schwartz kernel at the front
face, so we now need to compute this Fourier transform. We start with the one form case. Taking χ(s) =

e−s
2/(2ν(Ŷ )) as in the scalar case considered in [29] for the computation (in the scalar case we took ν = z−1α;

here we leave it unspecified for now, except demanding 0 < ν < 2z−1α as needed for the Schwartz kernel
to be rapidly decreasing at infinity on the front face), we can compute the X-Fourier transform exactly as
before, keeping in mind that this needs to be evaluated at −ξ (just like the Y Fourier transform needs to be
evaluated at −η) due to our definition of X:

|Y |2−ne−iα(−ξ−iz)|Y |2
(
D2
σ − 2α|Y |Dσ −Dσ〈Ŷ , ·〉

Ŷ (−Dσ + 2α|Y |) Ŷ 〈Ŷ , ·〉

)
χ̂((−ξ − iz)|Y |)

= c
√
ν|Y |2−neiα(ξ+iz)|Y |2

(
D2
σ − 2α|Y |Dσ −Dσ〈Ŷ , ·〉

Ŷ (−Dσ + 2α|Y |) Ŷ 〈Ŷ , ·〉

)
e−ν(ξ+iz)2|Y |2/2

with c > 0, and with Dσ differentiating the argument of χ̂. One is left with computing the Y -Fourier
transform, which in polar coordinates takes the form∫

Sn−2

∫
[0,∞)

ei|Y |Ŷ ·η|Y |2−neiα(ξ+iz)|Y |2

(
−Dσ(−Dσ + 2α|Y |) −Dσ〈Ŷ , ·〉
Ŷ (−Dσ + 2α|Y |) Ŷ 〈Ŷ , ·〉

)
χ̂(−(ξ + iz)|Y |)|Y |n−2 d|Y | dŶ ,

and the factors |Y |±(n−2) cancel as in the scalar case. Explicitly evaluating the derivatives, writing

φ(ξ, Ŷ ) = ν(Ŷ )(ξ + iz)2 − 2iα(Ŷ )(ξ + iz),
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yields

(3.15)

∫
Sn−2

∫ ∞
0

ei|Y |Ŷ ·η
(
iν(ξ + iz)(iν(ξ + iz) + 2α)|Y |2 + ν iν(ξ + iz)|Y |〈Ŷ , ·〉

Ŷ (iν(ξ + iz) + 2α)|Y | Ŷ 〈Ŷ , ·〉

)
× e−φ|Y |2/2 d|Y | dŶ .

We extend the integral in |Y | to R, replacing it by a variable t, and using that the integrand is invariant

under the joint change of variables t→ −t and Ŷ → −Ŷ . This gives

1

2

∫
Sn−2

∫
R
eitŶ ·η(

iν(ξ + iz)(iν(ξ + iz) + 2α)t2 + ν iν(ξ + iz)t〈Ŷ , ·〉
Ŷ (iν(ξ + iz) + 2α)t Ŷ 〈Ŷ , ·〉

)
× e−φt2/2 dt dŶ .

Now the t integral is a Fourier transform evaluated at −Ŷ ·η, under which multiplication by t becomes DŶ ·η.

Since the Fourier transform of e−φ(ξ,Ŷ )t2/2 is a constant multiple of

(3.16) φ(ξ, Ŷ )−1/2e−(Ŷ ·η)2/(2φ(ξ,Ŷ )),

we are left with∫
Sn−2

φ(ξ, Ŷ )−1/2

(
iν(ξ + iz)(iν(ξ + iz) + 2α)D2

Ŷ ·η + ν iν(ξ + iz)〈Ŷ , ·〉DŶ ·η

Ŷ (iν(ξ + iz) + 2α)DŶ ·η Ŷ 〈Ŷ , ·〉

)
× e−(Ŷ ·η)2/(2φ(ξ,Ŷ )) dŶ ,

which explicitly gives

(3.17)

∫
Sn−2

φ(ξ, Ŷ )−1/2iν(ξ + iz)(iν(ξ + iz) + 2α)
(
− (Ŷ ·η)2

φ(ξ,Ŷ )2
+ 1

φ(ξ,Ŷ )

)
+ ν iν(ξ + iz)〈Ŷ , ·〉i Ŷ ·η

φ(ξ,Ŷ )

Ŷ (iν(ξ + iz) + 2α)i Ŷ ·η
φ(ξ,Ŷ )

Ŷ 〈Ŷ , ·〉


× e−(Ŷ ·η)2/(2φ(ξ,Ŷ )) dŶ .

Now observe that the top left entry of the matrix is exactly

−νφ(ξ, Ŷ )
(
− (Ŷ · η)2

φ(ξ, Ŷ )2
+

1

φ(ξ, Ŷ )

)
+ ν =

ν(Ŷ · η)2

φ(ξ, Ŷ )
= ν(ξ + iz)(ν(ξ + iz)− 2iα)

(Ŷ · η)2

φ(ξ, Ŷ )2
.

Thus, the matrix in the integrand is(
−ν(ξ+iz)

φ (Ŷ · η)

Ŷ

)
⊗
(
− (ν(ξ+iz)−2iα)

φ (Ŷ · η) 〈Ŷ , ·〉
)
.

Now, if we take

ν = z−1α

as in the scalar case in [29], then

ν(ξ + iz)− 2iα = ν(ξ − iz),

while

φ = (ξ + iz)(ν(ξ + iz)− 2iα) = ν(ξ2 + z2)
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is real, so the matrix, with this choice of ν, is orthogonal projection to the span of (−ν(ξ+iz)
φ (Ŷ · η), Ŷ ). The

expression (3.17) becomes

(3.18)

(ξ2 + z2)−1/2∫
Sn−2

ν−1/2

(
−ν(ξ+iz)

ξ2+z2 (Ŷ · η)

Ŷ

)
⊗
(
−ν(ξ−iz)

ξ2+z2 (Ŷ · η) 〈Ŷ , ·〉
)
e−(Ŷ ·η)2/(2ν(ξ2+z2)) dŶ ,

which is thus a superposition of positive (in the sense of non-negative) operators, which is thus itself positive.
Further, if a vector (v0, v

′) lies in the kernel of the principal symbol of δsz, i.e. (ξ − iz)v0 + ιηv
′ = 0, then

orthogonality to (−ν(ξ+iz)
ξ2+z2 (Ŷ · η), Ŷ ) for any particular Ŷ would mean

0 = −ν(ξ − iz)

ξ2 + z2
(Ŷ · η)v0 + Ŷ · v′ =

ν

ξ2 + z2
(η · v′)(Ŷ · η) + Ŷ · v′.

Note that Sn−2 is at least one dimensional (i.e. is the sphere in at least a 2-dimensional vector space).
Consider v′ 6= 0; this would necessarily be the case of interest since v0 = −(ξ− iz)−1(η ·v′). If η = 0, picking

Ŷ parallel to v′ shows that there is at least one choice of Ŷ for which this equality does not hold. If η 6= 0,
and v′ is not a multiple of η, we can take Ŷ orthogonal to η and not orthogonal to v′, which again gives a
choice of Ŷ for the equality above does not hold. Finally, if v′ is a multiple of η, the expression at hand is

just ν|η|2
ξ2+z2 (Ŷ · v′) + Ŷ · v′, so choosing any Ŷ not orthogonal to v′ again gives a Ŷ for which the equality

does not hold. Therefore, (3.18) is actually positive definite when restricted to the kernel of the symbol of
δsz, as claimed.

We now turn to the 2-tensor version. With Bij corresponding to the terms with i factors of S and j
factors of S + 2α|Y | prior to the Fourier transform, the analogue of (3.15) is

(3.19)

∫
Sn−2

∫ ∞
0

ei|Y |Ŷ ·η


B22 B21〈Ŷ , ·〉1 B21〈Ŷ , ·〉2 B20〈Ŷ , ·〉1〈Ŷ , ·〉2
B12Y1 B11Ŷ1〈Ŷ , .〉1 B11Ŷ1〈Ŷ , .〉2 B10Ŷ1〈Ŷ , ·〉1〈Ŷ , ·〉2
B12Y2 B11Ŷ2〈Ŷ , .〉1 B11Ŷ2〈Ŷ , .〉2 B10Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2
B02Ŷ1Ŷ2 B01Ŷ1Ŷ2〈Ŷ , ·〉1 B01Ŷ1Ŷ2〈Ŷ , ·〉2 B00Ŷ1Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2


× e−φ|Y |2/2 d|Y | dŶ ,

with

B00 = 1,

B10 = iν(ξ + iz)|Y |,
B20 = −ν2(ξ + iz)2|Y |2 + ν,

B01 = i(ν(ξ + iz)− 2iα)|Y |,
B11 = −ν(ξ + iz)(ν(ξ + iz)− 2iα)|Y |2 + ν,

B21 = −iν2(ξ + iz)2(ν(ξ + iz)− 2iα)|Y |3 + (3iν2(ξ + iz) + 2αν)|Y |,
B02 = −(ν(ξ + iz)− 2iα)2|Y |2 + ν,

B12 = −iν(ξ + iz)(ν(ξ + iz)− 2iα)2|Y |3,
B22 = ν2(ξ + iz)2(ν(ξ + iz)− 2iα)2|Y |4 + ν(−6ν2(ξ + iz)2 + 12iνα(ξ + iz) + 4α2)|Y |2 + 3ν2.

Note that the leading term of Bjk, in terms of the power of |Y | involved, is simply (iν(ξ + iz)|Y |)j(i(ν(ξ +
iz) − 2iα)|Y |)k; this arises by all derivatives in (3.9) arising by Fourier transforming in S (which gives

a derivative −Dσ in the dual variable σ) falling on the exponential, e−νσ
2/2, which is then evaluated at

σ = −(ξ + iz)|Y |. However, for the full scattering principal symbol all terms are relevant.
Next, we extend the |Y | integral to R, writing the corresponding variable as t and do the Fourier transform

in t (with a minus sign, i.e. evaluated at −Ŷ · η) as in the one-form setting. This replaces t by DŶ ·η, as
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above, and in view of (3.16), explicitly evaluating the derivatives, we obtain the following analogue of (3.17)

(3.20)

∫
Sn−2


C22 C21〈Ŷ , ·〉1 C21〈Ŷ , ·〉2 C20〈Ŷ , ·〉1〈Ŷ , ·〉2
C12Y1 C11Ŷ1〈Ŷ , .〉1 C11Ŷ1〈Ŷ , .〉2 C10Ŷ1〈Ŷ , ·〉1〈Ŷ , ·〉2
C12Y2 C11Ŷ2〈Ŷ , .〉1 C11Ŷ2〈Ŷ , .〉2 C10Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2
C02Ŷ1Ŷ2 C01Ŷ1Ŷ2〈Ŷ , ·〉1 C01Ŷ1Ŷ2〈Ŷ , ·〉2 C00Ŷ1Ŷ2〈Ŷ , ·〉1〈Ŷ , ·〉2


× φ(ξ, Ŷ )−1/2e−(Ŷ ·η)2/(2φ(ξ,Ŷ )) dŶ ,

where, with ρ = Ŷ · η,

C00 = 1,

C10 = −ν(ξ + iz)φ−1ρ,

C20 = ν2(ξ + iz)2φ−2ρ2 − 2iανφ−1(ξ + iz),

C01 = −(ν(ξ + iz)− 2iα)φ−1ρ,

C11 = ν(ξ + iz))(ν(ξ + iz)− 2iα)φ−2ρ2,

C21 = −ν2(ξ + iz)2(ν(ξ + iz)− 2iα)φ−3ρ3 + 2ανiφ−1ρ,

C02 = (ν(ξ + iz)− 2iα)2φ−2ρ2 + φ−1(ν(ξ + iz)− 2iα)2iα,

C12 = −ν(ξ + iz)(ν(ξ + iz)− 2iα)2φ−3ρ3 − 2iανφ−1ρ,

C22 = ν2(ξ + iz)2(ν(ξ + iz)− 2iα)2φ−4ρ4 − 4α2νφ−2ρ2 + 4α2νφ−1.

Note again that the highest order term, in terms of the power of ρ, of Cjk is (ν(ξ + iz))j(ν(ξ + iz) −
2iα)k(−1)j+kφ−j−k, corresponding to all derivatives Dρ falling on the exponential e−ρ

2/(2φ), evaluated at

ρ = Ŷ · η.
Notice that C11 is exactly the (1, 1) entry in the one-form calculation, (3.17), while C10, resp. C01, are

the factors in the (1, 2) and (2, 1) entries, for similar reasons. Now, it is easy to check that the matrix in
(3.20) is

(3.21)


C20

Ŷ1C10

Ŷ2C10

Ŷ1Ŷ2

⊗ (C02 C01〈Ŷ , ·〉1 C01〈Y, ·〉2 〈Ŷ , ·〉1〈Ŷ , ·〉2
)
.

Letting ν = z−1α as in the one-form setting, the second factor here is the adjoint (involving of complex

conjugates) of the first, in particular (with ρ = Ŷ · η)

C01 = −ν(ξ − iz)φ−1ρ, C02 = ν2(ξ − iz)2φ−2ρ2 + 2iαν(ξ − iz)φ−1, φ = ν(ξ2 + z2),

so (3.21) is just a positive multiple of projection to the span of (C20, Ŷ1C10, Ŷ2C10, Ŷ1Ŷ2). Thus, as in the
one form setting, we have a superposition of positive (in the sense of non-negative) operators, so it remains

to check that as Ŷ varies, these vectors span the kernel of δsz.
For a symmetric 2-tensor of the form v = (vNN , vNT , vNT , vTT ) in the kernel of the principal symbol of

δsz, we have by Lemma 3.2 that

(3.22)

(ξ − iz)vNN + η · vNT + a · vTT = 0,

(ξ − iz)vNT +
1

2
(η1 + η2) · vTT = 0,

where η1 resp. η2 denoting that the inner product is taken in the first, resp. second, slots. Taking the inner
product of the second equation with η gives

(ξ − iz)η · vNT + (η ⊗ η) · vTT = 0.
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Substituting this into the first equation yields

(ξ − iz)2vNN + ((ξ − iz)a− η ⊗ η) · vTT = 0,

so

vNN = (ξ − iz)−2(η ⊗ η − (ξ − iz)a) · vTT , vNT = −2−1(ξ − iz)−1(η1 + η2) · vTT .
For a fixed Ŷ for v in the kernel of the symbol of δsz to be in the kernel of the projection (3.21) means that(

C02(ξ − iz)−2(η ⊗ η − (ξ − iz)a)− C01(ξ − iz)−1(η ⊗ Ŷ + Ŷ ⊗ η) + Ŷ ⊗ Ŷ
)
· vTT = 0,

so recalling ν = z−1α, φ = ν(ξ2 + z2),(
(ξ + iz)−1(ξ2 + z2)−1(Ŷ · η)2 + 2iα(ξ2 + z2)−1)((ξ − iz)−1(η ⊗ η)− a)

+ (ξ2 + z2)−1(Ŷ · η)(η ⊗ Ŷ + Ŷ ⊗ η) + Ŷ ⊗ Ŷ
)
· vTT = 0.

Now, it is convenient to rewrite this in terms of ‘semiclassical’ (in h = z−1) variables

ξz = ξ/z, ηz = η/z.

It becomes (
(ξz + i)−1(ξ2

z + 1)−1(Ŷ · ηz)2 + 2iz−1α(ξ2
z + 1)−1)((ξz − i)−1(ηz ⊗ ηz)−z−1a)

+ (ξ2
z + 1)−1(Ŷ · ηz)(ηz ⊗ Ŷ + Ŷ ⊗ ηz) + Ŷ ⊗ Ŷ

)
· vTT = 0.

Letting z−1 = h→ 0, one obtains(
(ξz + i)−1(ξ2

z + 1)−1(Ŷ · ηz)2(ξz − i)−1(ηz ⊗ ηz)

+ (ξ2
z + 1)−1(Ŷ · ηz)(ηz ⊗ Ŷ + Ŷ ⊗ ηz) + Ŷ ⊗ Ŷ

)
· vTT = 0,

i.e. ((
(ξ2

z + 1)−1(Ŷ · ηz)ηz + Ŷ
)
⊗
(

(ξ2
z + 1)−1(Ŷ · ηz)ηz + Ŷ

))
· vTT = 0.

One can see that this last equation, when it holds for all Ŷ , implies the vanishing of vTT just as for the
principal symbol at fiber infinity. Indeed, if ηz = 0 then we have (Ŷ ⊗ Ŷ ) · vTT = 0 for all Ŷ , and

symmetric 2-tensors of the form Ŷ ⊗ Ŷ span the space of all symmetric 2-tensors (as w1 ⊗ w2 + w2 ⊗ w1 =
(w1 +w2)⊗ (w1 +w2)−w1 ⊗w1 −w2 ⊗w2), so we conclude that vTT = 0, and thus v = 0 in this case. On

the other hand, if ηz 6= 0 then taking Ŷ = εη̂z + (1− ε2)1/2Ŷ ⊥ and substituting into this equation yields((
1 +

|ηz|2
ξ2
z + 1

)2

ε2η̂z ⊗ η̂z +
(

1 +
|ηz|2
ξ2
z + 1

)
ε(1− ε2)1/2(η̂z ⊗ Ŷ ⊥ + Ŷ ⊥ ⊗ η̂z)

+ (1− ε2)Ŷ ⊥ ⊗ Ŷ ⊥
)
· vTT = 0.

Substituting in ε = 0 yields (Ŷ ⊥ ⊗ Ŷ ⊥) · vTT = 0; since cotensors of the form Ŷ ⊥ ⊗ Ŷ ⊥ span η⊥z ⊗ η⊥z (η⊥z
being the orthocomplement of ηz), we conclude that vTT is orthogonal to every element of η⊥z ⊗ η⊥z . Next,

taking the derivative in ε at ε = 0 yields (η̂z ⊗ Ŷ ⊥ + Ŷ ⊥ ⊗ η̂z) · vTT = 0 for all Ŷ ⊥; symmetric tensors of
this form, together with η⊥z ⊗ η⊥z , span all tensors in (ηz ⊗ ηz)⊥. Finally taking the second derivative at
ε = 0 shows that (η̂z ⊗ η̂z) · vTT = 0, this in conclusion vTT = 0. Combined with the first two equations
of (3.13), one concludes that v = 0. Correspondingly one concludes that for sufficiently large z > 0 one has
ellipticity at all finite points, which proves the lemma. �

As already explained, this lemma completes the proof of Proposition 3.3.
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4. The gauge condition and the proof of the main results

The still remaining analytic issue is to check that we can arrange the gauge condition, δszfz = 0. We do
this by considering various regions Ωj , which are manifolds with corners: they have the artificial boundary,
∂X, which is ‘at infinity’ in the scattering calculus sense, as well as the ‘interior’ boundary ∂intΩj , which
could be ∂M , or another (farther away) hypersurface.

Recall that our gauge freedom is that we can add to f (without changing If) any tensor of the form dsv,
with v vanishing at ∂M or on a hypersurface further away, such as ∂intΩj , i.e. to fz = e−z/xf (without

changing Iez/xfz) any tensor of the form dszvz = e−z/xdez/xvz with a similar vanishing condition. If we
let ∆z,s = δszd

s
z be the ‘solenoidal Witten Laplacian’, and we impose Dirichlet boundary condition on ∂intΩj

(to get the desired vanishing for vz), and we show that ∆z,s is invertible (with this boundary condition) on
suitable function spaces, then

Sz,Ωjφ = φsz,Ωj = φ− dsz∆−1
z,s,Ωjδ

s
zφ,

Pz,Ωjφ = dszQz,Ωjφ, Qz,Ωjφ = ∆−1
z,s,Ωjδ

s
zφ,

are the solenoidal (S), resp. potential (P) projections of φ on Ωj . Notice that Pz,Ωjφ is indeed in the range
of dsz applied to a function or one-form vanishing at ∂intΩj thanks to the boundary condition for ∆z,s,
which means that Qz,Ωj maps to such functions or tensors. Thus Sz,Ωjφ differs from φ by such a tensor, so

Iez/xfz = Iez/xSz,Ωjfz. Further,

δsSz,Ωjφ = δszφ− δszdsz∆−1
z,s,Ωjδ

s
zφ = 0,

so δszfz = 0, i.e. the gauge condition we want to impose is in fact satisfied.
Thus, it remains to check the invertibility of ∆z,s with the desired boundary condition. Before doing this

we remark:

Lemma 4.1. For z > 0, the operator ∆z,s = δszd
s
z is (jointly) elliptic in Diff2,0

sc (X) on functions.
On the other hand, there exists z0 > 0 such that for z ≥ z0 the operator ∆z,s = δszd

s
z is (jointly) elliptic

in Diff2,0
sc (X; scT ∗X, scT ∗X) on one forms. In fact, on one forms (for all z > 0)

(4.1) δszd
s
z =

1

2
∇∗z∇z +

1

2
dzδz +A+R,

where R ∈ xDiff1
sc(X; scT ∗X, scT ∗X), A ∈ Diff1

sc(X; scT ∗X; scT ∗X) is independent of z and where ∇z =
e−z/x∇ez/x, with ∇ gradient relative to gsc (not g), dz = e−z/xdez/x the exterior derivative on functions,
while δz is its adjoint on one-forms.

Proof. Most of the computations for this lemma have been performed in Lemma 3.2. In particular, the
symbolic computation is algebraic, and can be done pointwise, where one arranges that gsc is as in Lemma 3.2.
Since the function case is simpler, we consider one-forms. Thus the full principal symbol of dsz (with
symmetric 2-tensors considered as a subspace of 2-tensors) is

ξ + iz 0
1
2η⊗ 1

2 (ξ + iz)
1
2η⊗ 1

2 (ξ + iz)
a η⊗s

 ,

that of δsz is (
ξ − iz 1

2 ιη
1
2 ιη 〈a, .〉

0 1
2 (ξ − iz) 1

2 (ξ − iz) ιsη

)
.

with the lower right block having (`ij) entry given by 1
2 (ηiδ`j + ηjδi`). Correspondingly, the product, ∆s

z,
has symbol

(4.2)

(
ξ2 + z2 + 1

2 |η|2 1
2 (ξ + iz)ιη

1
2 (ξ − iz)η⊗ 1

2 (ξ2 + z2) + ιsηη⊗s

)
+

(
〈a, .〉a 〈a, .〉η⊗s
ιsηa 0

)
,
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with the lower right block having `k entry 1
2 (ξ2 + z2)δ`k + 1

2 |η|2δ`k + 1
2η`ηk, and where we separated out

the a terms.
Now ellipticity is easy to see if a = 0, with a z-dependent lower bound then, and this can be used to

absorb the a term by taking z > 0 sufficiently large.
To make this more explicit, however, we note that, similarly, the principal symbol of the gradient relative

to gsc is 
ξ 0
η⊗ 0
0 ξ
0 η⊗

 ,

with no non-zero entry in the lower left hand corner unlike for the g-gradient in (3.8), and thus the adjoint
∇∗z of ∇z has principal symbol (

ξ − iz ιη 0 0
0 0 ξ − iz ιsη

)
.

Correspondingly, ∇∗z∇z has symbol

(4.3)

(
ξ2 + z2 + |η|2 0

0 ξ2 + z2 + |η|2
)
,

which is certainly elliptic (including at finite points in scT ∗∂XX!), and indeed is simply ξ2 + z2 + |η|2 times

the identity matrix. Now, d = ds going from functions to one-forms has symbol

(
ξ
η

)
, so its conjugate

e−z/xdez/x has symbol

(
ξ + iz
η

)
, its adjoint, δz has symbol

(
ξ − iz ιη

)
, and now dzδz has symbol(

ξ2 + z2 (ξ + iz)ιη
(ξ − iz)η η ⊗ ιη

)
.

Combining these, we see that the first term in (4.2), i.e. in the principal symbol of δszd
sz, is the same as

1
2∇∗z∇z + 1

2dzδz, with both terms non-negative, and the first actually positive definite, with a lower bound

ξ2 +z2 + |η|2 times the identity. This proves (4.1), with the principal symbol of A given by the second term
in (4.2), which is in particular independent of z. Since with C a bound for a, the symbol of A is bounded
by C2 + 2C|η| ≤ C2(1 + ε−1) + ε|η|2 for any ε > 0, in particular ε < 1, this shows that the principal symbol
of δszd

sz is positive definite if z > 0 is chosen large enough, completing the proof of the lemma. �

We now turn to the invertibility question. Let Ḣm,l
sc (Ωj) be the subspace of Hm,l

sc (X) consisting of

distributions supported in Ωj , and let H̄m,l
sc (Ωj) the space of restrictions of elements of Hm,l

sc (X) to Ωj .

Thus, Ḣm,l
sc (Ωj)

∗ = H̄−m,−lsc (Ωj). Here we shall be mostly interested in m = 1, l = 0; then at ∂intΩj , away

from ∂X, Ḣ1,0
sc (Ωj) is the standard H1

0 -space (which is Ḣ1 in Hörmander’s notation, which we adopt), while

H̄−1,0
sc is H−1 there (which is H̄−1 in Hörmander’s notation). Further, Ċ∞(Ωj), with the dot denoting

infinite order vanishing at all boundary hypersurfaces, or indeed C∞c (Ωj) (compact support), are dense in

H1,0
sc , so Ḣ1,0

sc (Ωj) is the completion of these spaces in the H1,0
sc (X)-norm. In addition, the norm on H1,0

sc (X)
is equivalent to ‖∇u‖2L2 + ‖u‖2L2 , where the norms are with respect to any scattering metric, and ∇ is any
differential operator with principal symbol given by d, such as the gradient relative to any (perhaps different
from the one giving the norm) scattering metric. For L2

sc = H0,0
sc , or for the weighted L2-spaces H0,l

sc , the
dots and bars do not make any difference (do not change the space) as usual. Further, the inclusion map

Ḣ1,1
sc → L2 (or indeed even H̄1,1

sc → L2) is compact. As usual, all these spaces can be defined for sections of

vector bundles, such as scT ∗ΩjX, by local trivializations. The norm on Ḣ1,0
sc (Ωj ,

scT ∗Ωj) is still induced by a

gradient ∇ with respect to any scattering differential operator the same way.

Lemma 4.2. The operator on functions ∆z,s = δszd
s
z, considered as a map Ḣ1,0

sc → (Ḣ1,0
sc )∗ = H̄−1,0

sc is
invertible for all z > 0.



INVERTING THE LOCAL GEODESIC X-RAY TRANSFORM ON TENSORS 23

On the other hand, there exists z0 > 0 such that for z ≥ z0, the operator ∆z,s = δszd
s
z on one forms is

invertible.

Remark 4.3. The reason for having some z0 > 0, and requiring z ≥ z0, in the one form case (rather than
merely z > 0) is that ds is relative to a standard metric g, not a scattering metric. The proof given below
in fact shows that if ds is replaced by dsgsc , relative to any scattering metric gsc, then one may simply assume
z > 0.

Proof. The following considerations apply to both the function case and the one-form case. Relative to the
scattering metric with respect to which δs is defined, the quadratic form of ∆z,s is 〈∆z,su, v〉 = 〈dszu, dszv〉.
So in particular

‖dszu‖2L2 ≤ ‖∆z,su‖H̄−1,0
sc
‖u‖Ḣ1,0

sc
≤ ε−1‖∆z,su‖2H̄−1,0

sc
+ ε‖u‖2

Ḣ1,0
sc
.

Correspondingly, if one has an estimate

(4.4) ‖u‖Ḣ1,0
sc
≤ C‖dszu‖L2 ,

or equivalently (for a different C)

‖∇u‖L2 + ‖u‖L2 ≤ C‖dszu‖L2 ,

then for small ε > 0, one can absorb ε‖u‖2
Ḣ1,0

sc
into the left hand side above, giving

‖u‖Ḣ1,0
sc
≤ C‖dszu‖L2 ≤ C ′‖∆z,su‖H̄−1,0

sc
.

This in turn gives invertibility in the sense discussed in the statement of the theorem since ∆z,s is formally
(and as this shows, actually) self-adjoint, so one has the same estimates for the formal adjoint.

On the other hand, if one has an estimate

(4.5) ‖u‖Ḣ1,0
sc
≤ C‖dszu‖L2 + C‖u‖Ḣ0,−1

sc
,

or equivalently

‖∇u‖L2 + ‖u‖L2 ≤ C‖dszu‖L2 + C‖u‖Ḣ0,−1
sc

,

then for ε > 0 small one gets

‖u‖Ḣ1,0
sc
≤ C‖dszu‖L2 + C‖u‖Ḣ0,1

sc
≤ C ′‖∆z,su‖H̄−1,0

sc
+ C ′‖u‖Ḣ0,−1

sc
.

Again, by formal self-adjointness, one gets the same statement for the adjoint, which implies that ∆z,s is

Fredholm (by virtue of the compactness of the inclusion Ḣ1,0
sc → Ḣ0,−1

sc ), and further that the invertibility

is equivalent to the lack of kernel on Ḣ1,0
sc (since the cokernel statement follows by formal self-adjointness).

Note that (4.5) follows quite easily from Lemma 4.1 (and is standard on functions as ds = ∇ then), in
the form case using the Dirichlet boundary condition to apply (4.1) to u and pair with u but we discuss
invertibility, taking advantage of Lemma 4.1 later.

Now, on functions, ds = ∇, and as dsz differs from ds by a 0th order operator, ‖∇u‖L2 ≤ C‖dszu‖L2 +

C‖u‖L2 automatically. In particular, (4.4) follows if one shows ‖u‖L2 ≤ C‖dszu‖L2 for u ∈ Ḣ1,0
sc , or equiva-

lently (by density) for u ∈ C∞c (Ωj), which is a Poincaré inequality.

To prove this Poincaré inequality, notice that ‖e−z/x(x2Dx)ez/xu‖L2 ≤ C‖dszu‖L2 certainly, so it suffices
to estimate ‖u‖L2 in terms of the L2 norm of

e−z/x(x2Dx)ez/xu = (x2Dx + iz)u.

But for any operator P , writing PR = (P + P ∗)/2 and PI = (P − P ∗)/(2i) for the symmetric and skew-
symmetric parts,

‖Pu‖2 = ‖PRu‖2 + ‖PIu‖2 + 〈i[PR, PI ]u, u〉.
It is convenient here to use a metric dx2

x4 + h
x2 where h is a metric, independent of x, on the level sets of x,

using some product decomposition. For then the metric density is x−(n+1) |dx| |dh|, so with P = x2Dx + iz,
P ∗ = x2Dx + i(n− 1)x− iz, so

PR = x2Dx + i
n− 1

2
x, PI = z− n− 1

2
x, i[PR, PI ] = ix2n− 1

2
,
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we have

‖(x2Dx + iz)u‖2L2 =
∥∥∥(x2Dx + i

n− 1

2

)
u
∥∥∥2

L2

+
∥∥∥(z− n− 1

2
x
)
u
∥∥∥2

L2
− n− 1

2
〈x2u, u〉

=
∥∥∥(x2Dx + i

n− 1

2

)
u
∥∥∥2

L2

+
〈(

(z− n− 1

2
x)2 − n− 1

2
x2
)
u, u

〉
.

Now, if Ωj ⊂ {x ≤ x0}, as long as x0 > 0 is sufficiently small so that(
z− n− 1

2
x
)2

− n− 1

2
x2

is positive (and thus bounded below by a positive constant) on [0, x0], which is automatic for sufficiently
small x0, or indeed for bounded x0 and sufficiently large z, one obtains that ‖u‖2L2 ≤ C‖(x2Dx + iz)u‖2L2 ,
and thus in summary that

‖u‖L2 ≤ C‖dszu‖L2 ,

as desired. This proves the lemma for functions, at least in the case of sufficiently small x0.
This actually suffices for our application, but in fact one can do better by noting that in fact even in

general this gives us the estimate

‖u‖L2 ≤ C‖dszu‖+ C‖u‖L2({x1≤x≤x0})

for suitable small x1 > 0. But by the standard Poincaré inequality, using the vanishing at x = x0, one
can estimate the last term in terms of C ′‖dszu‖, which gives the general conclusion for functions. Here, to

place us properly in the standard Poincaré setting, we note that with φ = ez/xu, the last required estimate
is equivalent to the weighted estimate ‖e−z/xφ‖L2({x1≤x≤x0}) ≤ C‖e−z/xdφ‖L2({x1≤x≤x0}), and now the
weights are bounded, so can be dropped completely.

It remains to deal with one-forms. For this we use that (4.1) and (4.3) give that

(4.6) δszd
s
z =

1

2
∇∗∇+

1

2
z2 +

1

2
dzδz +A+ R̃,

where A ∈ Diff1
sc(X) is independent of z and R̃ ∈ xDiff1

sc(X); this follows by rewriting ∇∗z∇z using (4.3),
which modifies R in (4.1) to give (4.6). Thus, in fact

(4.7) ‖dszu‖2 =
1

2
‖∇u‖2 +

1

2
z2‖u‖2 +

1

2
‖δszu‖2 + 〈Au, u〉+ 〈R̃u, u〉.

Since A ∈ Diff1
sc(X), |〈Au, u〉| ≤ C‖u‖Ḣ1,0

sc
‖u‖L2 , and there is a similar estimate for the last term. This gives

an estimate, for sufficiently large z,

(4.8) ‖∇u‖2 + z2‖u‖2 ≤ C‖dszu‖2 + C‖x1/2u‖2,
with the constant C on the right hand side depending on z, and thus

〈(1− Cx)u, u〉 ≤ C‖dszu‖2.
Again, if x0 is sufficiently small, this gives

‖u‖ ≤ C‖dszu‖,
and thus the invertibility, while if x0 is larger, this still gives

‖u‖L2 ≤ C‖dszu‖L2 + C‖u‖L2({x1≤x≤x0}).

One can then finish the proof as above, using the standard Poincaré inequality for one forms, see [24,
Section 6, Equation (28)]. �

A slight modification of the argument gives:
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Lemma 4.4. The operator on functions ∆z,s = δszd
s
z, considered as a map Ḣ1,r

sc → H̄−1,r
sc is invertible for

all z > 0 and all r ∈ R.
On the other hand, there exists z0 > 0 such that for z ≥ z0, the operator ∆z,s = δszd

s
z on one forms is

invertible as a map Ḣ1,r
sc → H̄−1,r

sc for all r ∈ R.

Proof. Since the function case is completely analogous, we consider one forms to be definite. Also note that
(full) elliptic regularity would automatically give this result if not for ∂intΩj .

An isomorphism estimate ∆z,s : Ḣ1,r
sc → H̄−1,r

sc is equivalent to an isomorphism estimate x−r∆z,sx
r :

Ḣ1,0
sc → H̄−1,0

sc . But the operator on the left is ∆z,s+F , where F ∈ xDiff1
sc. Thus, x−r∆z,sx

r is of the form

(4.6), with only R̃ changed. The rest of the proof then immediately goes through. �

Before proceeding with the analysis of the Dirichlet Laplacian, we first discuss the analogue of Korn’s
inequality that will be useful later.

Lemma 4.5. Suppose Ωj is a domain in X as above. For z > 0 and r ∈ R,

‖u‖H̄1,r
sc (Ωj)

≤ C(‖x−rdszu‖L2
sc(Ωj) + ‖u‖x−rL2

sc(Ωj)).

for one-forms u ∈ H̄1,r
sc (Ωj).

Proof. First note that if one lets ũ = x−ru, then ‖u‖H̄1,r
sc (Ωj)

is equivalent to ‖ũ‖H̄1,0
sc (Ωj)

, and ‖x−rdszu‖L2
sc(Ωj)+

‖u‖x−rL2
sc(Ωj) is equivalent to ‖dszũ‖L2

sc(Ωj) + ‖ũ‖L2
sc(Ωj) since the commutator term through dsz can be ab-

sorbed into a sufficiently large multiple of ‖u‖x−rL2
sc(Ωj) = ‖ũ‖L2

sc(Ωj). Thus, one is reduced to proving the
case r = 0.

Let Ω̃j be a domain in X with C∞ boundary, transversal to ∂X, containing Ωj . We claim that there is a

continuous extension map E : H̄1,0
sc (Ωj)→ Ḣ1,0

sc (Ω̃j) such that

(4.9) ‖dszEu‖L2
sc(Ω̃j)

+ ‖Eu‖L2
sc(Ω̃j)

≤ C(‖dszu‖L2
sc(Ωj) + ‖u‖L2

sc(Ωj)), u ∈ H̄1,0
sc (Ωj),

i.e. Eu is also continuous when on both sides the gradient is replaced by the symmetric gradient in the
definition of an H1-type space. Once this is proved, the lemma can be shown in the following manner. By
(4.1) of Lemma 4.1 any v ∈ Ḣ1,0

sc (Ω̃j), in particular v = Eu, satisfies, for any ε > 0,

‖∇v‖2
L2

sc(Ω̃j)
+ ‖v‖2

L2
sc(Ω̃j)

≤ 2‖dszv‖2L2
sc(Ω̃j)

+ ‖v‖2
L2

sc(Ω̃j)
+ C‖v‖L2

sc(Ω̃j)
‖v‖H̄1,0

sc (Ω̃j)

≤ 2‖dszv‖2L2
sc(Ω̃j)

+ C ′‖v‖2
L2

sc(Ω̃j)
+ ε‖v‖2

H̄1,0
sc (Ω̃j)

and now for ε > 0 small, the last term on the right hand side can be absorbed into the left hand side. Using
this with v = Eu, noting that E is an extension map so

‖∇u‖2L2
sc(Ωj)

+ ‖u‖2L2
sc(Ωj)

≤ ‖∇Eu‖2
L2

sc(Ω̃j)
+ ‖Eu‖2

L2
sc(Ω̃j)

,

we deduce, using (4.9) in the last step, that

‖u‖H̄1,0
sc (Ωj)

≤ C(‖dszEu‖L2
sc(Ω̃j)

+ ‖Eu‖L2
sc(Ω̃j)

) ≤ C ′(‖dszu‖L2
sc(Ωj) + ‖u‖L2

sc(Ωj)),

completing the proof of the lemma.
Thus, it remains to construct E. By a partition of unity, this can be reduced to a local extension, local

on X. Since ∂Ωj is transversal to ∂X, near points on ∂X ∩ ∂Ωj one can arrange that locally (in a model

in which a neighborhood of p is identified with an open set in Rn) ∂Ωj is the hypersurface xn = 0, Ωj is
xn > 0; the analogous arrangement can also be made away from ∂X near points on ∂Ωj . Since Hs,r

sc (X),

Ḣs,r
sc (Ω̃j), H̄

s,r
sc (Ωj), are locally, and also for compactly supported elements in the chart, are preserved by

local diffeomorphisms of X to Rn in the sense that X is replaced by Rn, Ωj by Rn+ (by virtue of these
spaces are well defined on manifolds with boundary, without additional information on metrics, etc., up
to equivalence of norms), it suffices to prove that there is a local extension map E1 that has the desired
properties.

Let Φk(x′, xn) = (x′,−kxn) for xn < 0, and consider a variation of the standard construction of an H1(Rn+)
extension map on one-forms as follows. (Note that the usual extension map is given by trivialization of a
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bundle, in this case using dxj as a local basis of sections, and extending the coefficients using the extension
map on functions.) Let E1 given by

(E1

∑
j

uj dxj)(x
′, xn) =

3∑
k=1

ckΦ∗k(
∑

uj dxj), xn < 0,

and

(E1

∑
j

uj dxj)(x
′, xn) =

∑
uj dxj , xn ≥ 0,

with ck chosen so that E1 : C1(Rn+)→ C1(Rn). We can achieve this mapping property as follows. We have,
with ∂j acting as derivatives on the components, or equivalently but invariantly as Lie derivatives in this
case,

Φ∗kuj dxj = uj(x
′,−kxn) dxj , j 6= n,

Φ∗kun dxn = −kun(x′,−kxn) dxn,

∂iΦ
∗
kuj dxj = (∂iuj)(x

′,−kxn) dxj , i, j 6= n,

∂iΦ
∗
kun dxn = −k(∂iun)(x′,−kxn) dxn, i 6= n,

∂nΦ∗kuj dxj = −k(∂nuj)(x
′,−kxn) dxj , j 6= n,

∂nΦ∗kun dxn = k2(∂nuj)(x
′,−kxn) dxn,

so the requirements for matching the derivatives at xn = 0, which gives the C1 property, are, for j 6= n,

c1 + c2 + c3 = 1,

−c1 − 2c2 − 3c3 = 1,

while for j = n
−c1 − 2c2 − 3c3 = 1,

c1 + 4c2 + 9c3 = 1,

which gives a 3-by-3 system  1 1 1
−1 −2 −3
1 4 9

c1c2
c3

 =

1
1
1

 .

The matrix on the right is a Vandermonde matrix, and is thus invertible, so one can find ck with the desired
properties. With this, E1 : C1

c (Rn+) → C1
c (Rn) has the property that ‖E1u‖H1(Rn) ≤ C‖u‖H1(Rn+), since

each term in the definition of E1 has derivatives ∂i satisfying ‖∂iΦ∗ku‖L2(Rn) ≤ C‖∂iu‖L2(Rn+), and since

E1u ∈ C1
c (Rn) assures that the distributional derivative satisfies ∂iE1u ∈ L2(Rn), whose square norm can

be calculated as the sum of the squared norms over Rn+ = {xn > 0} and Rn− = {xn < 0}. Correspondingly,
E1 extends continuously, in a unique manner, to a map H1(Rn+)→ H1(Rn).

Before proceeding we note that with this choice of coefficients, E1 defined as the analogous map on
functions, is actually the standard H2 extension map. However, on one-forms the same choice, defined in
terms of pull-backs, i.e. natural operations, as above, rather than trivializing the form bundle, does not
extend continuously to H2. On the other hand, if one trivializes the bundle and uses the H2 extension map,
one does not have the desired property (4.9) for symmetric differentials, a property that we check below with
our choice of extension map.

Notice that, with Φ∗k acting on 2-tensors as usual, for all i, j,

dxi ⊗ (∂iΦ
∗
kuj dxj) + (∂jΦ

∗
kui dxi)⊗ dxj = Φ∗k((∂iuj + ∂jui)dxi ⊗ dxj),

as follows from a direct calculation, or indeed from the natural invariance of the symmetric gradient ds = dsg0
for a translation invariant Riemannian metric g0: the two sides are the ij component of 2dsΦ∗k, resp. 2Φ∗kd

s,
as for such a metric the symmetric gradient is actually independent of the choice of the metric (in this class).
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Since, summed over i, j, the left hand side is the symmetric gradient of Φ∗k
∑
uj dxj in xn < 0, while the

right hand side is the pull-back of the symmetric gradient from xn > 0, this shows that

‖dsΦ∗ku‖L2(Rn−) ≤ C‖dsu‖L2(Rn+).

This proves that one has
‖dsE1u‖L2(Rn) ≤ C‖dsu‖L2(Rn+).

Now, using a partition of unity {ρk} to localize on Ωj , as mentioned above, this gives a global extension
map from H1(Ωj):

∑
ψkE1,kρk, where ψk is identically 1 near supp ρk. While ds depends on the choice of a

metric, the dependence is via the 0th order term, i.e. one has dsgu = dsg0u+Ru for an appropriate 0th order
R. Using the Euclidean metric in the local model, this shows that

‖dsgψkE1,kρku‖L2(Rn) ≤ C(‖dsg0ρku‖L2(Rn+) + ‖ρku‖L2(Rn+)).

Since dsz differs from ds by a 0th order term, one can absorb this in the L2 norm (using also the continuity
of the extension map from L2 to L2):

‖dsg,zψkE1,kρku‖L2(Rn) ≤ C(‖dsg0,zρku‖L2(Rn+) + ‖ρku‖L2(Rn+)).

Summing over k proves (4.9), and thus the lemma. �

We now return to the analysis of the Dirichlet Laplacian.

Corollary 4.6. Let φ ∈ C∞c (Ωj \ ∂intΩj). Then on functions, for z > 0, k ∈ R, the operator φ∆−1
z,sφ :

H̄−1,k
sc → Ḣ1,k

sc is in Ψ−2,0
sc (X). There is z0 > 0 such that the analogous conclusion holds for one forms for

z ≥ z0.

Proof. This follows from the usual parametrix identity. Namely, by Lemma 4.1, ∆z,s has a parametrix
B ∈ Ψ−2,0

sc (X) so that
B∆z,s = Id +FL, ∆z,sB = Id +FR,

with FL, FR ∈ Ψ−∞,−∞sc (X). Let ψ ∈ C∞c (Ωj \ ∂intΩj) be identically 1 on suppφ. Thus,

ψ = B∆z,sψ − FLψ = Bψ∆z,s +B[∆z,s, ψ]− FLψ
and

ψ = ψ∆z,sB − ψFR = ∆z,sψB + [ψ,∆z,s]B − ψFR.
Then

ψ∆−1
z,sψ = ψ∆−1

z,s∆z,sψB + ψ∆−1
z,s([ψ,∆z,s]B − ψFR)

= ψ2B +Bψ∆z,s∆
−1
z,s([ψ,∆z,s]B − ψFR)

+ (B[∆z,s, ψ]− FLψ)∆−1
z,s([ψ,∆z,s]B − ψFR)

= ψ2B +Bψ([ψ,∆z,s]B − ψFR)

+ (B[∆z,s, ψ]− FLψ)∆−1
z,s([ψ,∆z,s]B − ψFR).

Multiplying from both the left and the right by φ gives

φ∆−1
z,sφ = φBφ+ φBψ([ψ,∆z,s]B − ψFR)φ

+ φ(B[∆z,s, ψ]− FLψ)∆−1
z,s([ψ,∆z,s]B − ψFR)φ.

Now, the first two terms on the right hand side are in Ψ−2,0
sc , resp. Ψ−∞,−∞sc , in the latter case using

the disjointness of supp dψ and φ for [ψ,∆z,s]Bφ, resp. that FL ∈ Ψ−∞,−∞sc for ψFRφ. For this reason,
([ψ,∆z,s]B − ψFR)φ and φ(B[∆z,s, ψ] − FLψ) are smoothing, in the sense that they map Hs,r

sc (X) to

Hs′,r′

sc (X) for any s′, r′, s, r, and they also have support so that they map into functions supported in

Ωj \ ∂intΩj , and they also can be applied to functions on Ωj . As ∆−1
z,s is continuous H̄−1,k

sc (Ωj)→ Ḣ1,k
sc (Ωj),

this shows that the last term is continuous from Hs,r
sc (X) to Hs′,r′

sc (X) for any s′, r′, s, r, which means that
it has a Schwartz (rapidly decaying with all derivatives) Schwartz kernel, i.e. it is in Ψ−∞,−∞sc (X). This
completes the proof. �
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Corollary 4.7. Let φ ∈ C∞c (Ωj \ ∂intΩj), χ ∈ C∞(Ωj) with disjoint support and with χ constant near

∂intΩj. Let z, z0 as in Corollary 4.6. Then the operator χ∆−1
z,sφ : H̄−1,k

sc (Ωj) → Ḣ1,k
sc (Ωj) in fact maps

Hs,r
sc (X)→ Ḣ1,k

sc (Ωj) for all s, r, k.

Similarly, φ∆−1
z,sχ : H̄−1,k

sc (Ωj)→ Ḣ1,k
sc (Ωj) in fact maps H̄−1,k

sc (Ωj)→ Hs,r
sc (X) for all s, r, k.

Proof. Since the second statement follows by duality, it suffices to prove the first.
As χφ = 0, we can write

χ∆−1
z,sφ = [χ,∆−1

z,s]φ = ∆−1
z,s[∆z,s, χ]∆−1

z,sφ.

By Corollary 4.6, [∆z,s, χ]∆−1
z,sφ ∈ Ψ−∞,∞sc (X) since it is in Ψ−1,0

sc (X) (this uses supp dχ disjoint from ∂intΩj)

but dχ and φ have disjoint supports. Thus, it maps Hs,r
sc (X)→ H−1,k

sc (X), and thus, in view of supp dχ, to
H̄−1,k

sc (Ωj), giving the conclusion. �

Corollary 4.8. Let φ ∈ C∞c (Ωj \ ∂intΩj), χ ∈ C∞(Ωj) with disjoint support and with χ constant near
∂intΩj. Let z, z0 as in Corollary 4.6.

Then φSz,Ωjφ ∈ Ψ0,0
sc (X), while χSz,Ωjφ : Hs,r

sc (X) → xkL2
sc(Ωj) and φSz,Ωjχ : xkL2

sc(Ωj) → Hs,r
sc (X)

for all s, r, k.

Proof. This is immediate from Sz,Ωj = Id−dsz∆−1
z,s,Ωjδ

s
z and the above results concerning ∆−1

z,s,Ωj , using

that dsz and δsz are differential operators, and thus preserve supports. �

We also need the Poisson operator associated to ∂intΩj . First note that if H is a (codimension 1)

hypersurface in Ωj which intersects ∂Ωj away from ∂intΩj , and does so transversally, then the restriction
map

γH : Ċ∞(Ωj)→ Ċ∞(H),

with the dots denoting infinite order vanishing at ∂Ωj , resp. ∂H, as usual, in fact maps, for s > 1/2,

(4.10) γH : Hs,r
sc (Ωj)→ Hs−1/2,r

sc (H)

continuously. This can be easily seen since the restriction map is local, and locally in Ωj , one can map a

neighborhood of p ∈ ∂H to a neighborhood of a point p′ ∈ ∂Rn−1 in Rn by a diffeomorphism so that H is
mapped to Rn−1, and thus by the diffeomorphism invariance of the spaces under discussion, the standard Rn
result with the usual Sobolev spaces Hs(Rn) = Hs,0

sc (Rn), using that weights commute with the restriction,
gives (4.10). The same argument also shows that there is a continuous extension map

(4.11) eH : Hs−1/2,r
sc (H)→ Hs,r

sc (Ωj), γHeH = Id,

since the analogous result on Rn is standard, and one can localize by multiplying by cutoffs without destroying
the desired properties.

Considering Ωj inside a larger domain Ω′, with ∂intΩj satisfying the assumptions for H, we have a

continuous extension map H̄s,r
sc (Ωj) → H̄s,r

sc (Ω′) by local reduction to Rn. Correspondingly, we also obtain
restriction and extension maps

γ∂intΩj : H̄s,r
sc (Ωj)→ Hs−1/2,r

sc (∂intΩj), e∂intΩj : Hs−1/2,r
sc (∂intΩj)→ H̄s,r

sc (Ωj).

With this background we have:

Lemma 4.9. Let z, z0 as in Corollary 4.6, and let k ∈ R.

For ψ ∈ H1/2,k
sc (∂intΩj) there is a unique u ∈ H̄1,k

sc (Ωj) such that ∆z,su = 0, γ∂intΩju = ψ.

This defines the Poisson operator BΩj : H
1/2,k
sc (∂intΩj)→ H̄1,k

sc (Ωj) solving

∆z,sBΩj = 0, γ∂intΩjBΩj = Id,

which has the property that, for s > 1/2, and for φ ∈ C∞(Ωj) supported away from ∂intΩj, φBΩj :

H
s−1/2,r
sc (∂intΩj)→ Hs,r

sc (Ωj).
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Proof. The uniqueness follows from the unique solvability of the Dirichlet problem with vanishing boundary
conditions, as we already discussed, while the existence by taking u = e∂intΩjψ −∆−1

z,s∆z,se∂intΩjψ, where

∆−1
z,s is, as before, the inverse of the operator with vanishing Dirichlet boundary conditions. The mapping

property also follows from this explicit description, the mapping properties of e∂intΩj as well as Corollary 4.7,
since one can arrange that e∂intΩj maps to distributions supported away from suppφ. �

Let Ω2 be a larger neighborhood of Ω; all of our constructions take place in Ω2. Let Ω̃j = Ωj \ ∂intΩj
(so the artificial boundary is included, but not the interior one). Let G be a parametrix for Az in Ω2; it is

thus a scattering pseudodifferential operator (ps.d.o.) with Schwartz kernel compactly supported in Ω̃2× Ω̃2.
Then GAz = I +E, where WF′sc(E) is disjoint from a neighborhood Ω1 (compactly contained in Ω2) of the
original region Ω, and E = − Id near ∂intΩ2. Now one has

G(Nz + dszMδsz) = I + E,

as operators acting on an appropriate function space on Ω2. We now apply Sz,Ω2 from both sides. Then

NzSz,Ω2 = Nz,

since

NzPz,Ω2
= Nzd

s
zQz,Ω2

= 0,

in view of the vanishing boundary condition Qz,Ω2 imposes. On the other hand,

δszSz,Ω2
= δsz − δszdszQz,Ω2

= 0

so

Sz,Ω2GNz = Sz,Ω2 + Sz,Ω2ESz,Ω2 .

In order to think of this as giving operators on Ω1, let e12 be the extension map from Ω1 to Ω2, extending
functions (vector fields) as 0, and r21 be the restriction map. (Note that e12 correspondingly maps into a
relatively low regularity space, such as L2, even if one starts with high regularity data.) Then, with the
understanding that Nz = Nze12,

r21Sz,Ω2GNz = r21Sz,Ω2e12 +K1, K1 = r21Sz,Ω2ESz,Ω2e12.

We have:

Lemma 4.10. Let z, z0 as in Corollary 4.6.
The operator K1 = r21Sz,Ω2

ESz,Ω2
e12 is a smoothing operator in the sense that it maps xkL2

sc(Ω1) to

H̄s,r
sc (Ω1) for every s, r, k. Further, for ψ ∈ C∞(Ω2) with support in Ω1, ψK1ψ ∈ Ψ−∞,−∞sc (X).
Further, for any s, r, k, given ε > 0 there exists δ > 0 such that if eδ1 is the extension map (by 0) from

Ωδ = {x ≤ δ} ∩ Ω1 to Ω1, then ‖K1eδ1‖L(xkL2
sc(Ωδ),H̄s,rsc (Ω1)) < ε.

Proof. This follows from Corollary 4.8. Indeed, with χ ≡ 1 near ∂intΩ2 but with E = − Id on suppχ, and
with φ ∈ C∞(Ω2) vanishing near suppχ, suppφ ∩WF′sc(E) = ∅, φ ≡ 1 near Ω1, and with T defined by the
first equality,

T = φSz,Ω2ESz,Ω2φ =φSz,Ω2χEχSz,Ω2φ

+ φSz,Ω2
(1− χ)EχSz,Ω2

φ

+ φSz,Ω2
χE(1− χ)Sz,Ω2

φ

+ φSz,Ω2
(1− χ)E(1− χ)Sz,Ω2

φ.

Now, E(1−χ)Sz,Ω2φ, φSz,Ω2(1−χ)E ∈ Ψ−∞,−∞sc (X) since they are in Ψ0,0
sc (X) and WF′sc(E)∩suppφ = ∅, so

they are smoothing. In combination with Corollary 4.8 this gives that T : Hs′,r′

sc (X)→ Hs,r
sc (X) continuously

for all s, r, s′, r′, so composing with the extension and restriction maps, noting r21φ = r21, φe12 = e12, proves
the first part of the lemma.

To see the smallness claim, note that

K1eδ1 = r21Teδ1 = r21(Tx−1)(xeδ2)
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xeδ2 : xkL2
sc(Ωδ)→ xkL2

sc(Ω1) has norm ≤ supΩδ
x ≤ δ, while Tx−1 : H0,k

sc (X)→ Hs,r
sc (X) is bounded, with

bound independent of δ, and the same is true for r21 : Hs,r
sc (X)→ H̄s,r

sc (Ω2), completing the proof. �

Now,
Sz,Ω1 − r21Sz,Ω2e12 = −dszQz,Ω1 + r21d

s
zQz,Ω2e12

= −dszQz,Ω1 + dszr21Qz,Ω2e12

= −dsz(Qz,Ω1
− r21Qz,Ω2

e12)

and with γ∂intΩ1
denoting the restriction operator to ∂intΩ1 as above,

γ∂intΩ1(Qz,Ω1 − r21Qz,Ω2e12) = −γ∂intΩ1Qz,Ω2e12,

so

r21Sz,Ω2
GNz = Sz,Ω1

+ dsz(Qz,Ω1
− r21Qz,Ω2

e12) +K1.

Thus, with BΩ1 being the Poisson operator for ∆z,s on Ω1 as above,

r21Sz,Ω2GNz = Sz,Ω1 + dsz(Qz,Ω1 − r21Qz,Ω2e12 +BΩ1γ∂intΩ1Qz,Ω2e12)

− dszBΩ1γ∂intΩ1Qz,Ω2e12 +K1,

so

Sz,Ω1r21Sz,Ω2GNz = Sz,Ω1 − Sz,Ω1d
s
zBΩ1γ∂intΩ1Qz,Ω2e12 + Sz,Ω1K1.

Now we consider applying this to vector fields in Ω = Ω0, writing e0j for the extension map to Ωj . Composing
from the right,

Sz,Ω1r21Sz,Ω2GNz = Sz,Ω1e01 − Sz,Ω1d
s
zBΩ1γ∂intΩ1Qz,Ω2e02 + Sz,Ω1K1e01.

Now:

Lemma 4.11. Let z, z0 as in Corollary 4.6.
The operator K ′1 = Sz,Ω1

dszBΩ1
γ∂intΩ1

Qz,Ω2
e02 is smoothing in the sense that for φ ∈ C∞c (Ω1 \ ∂intΩ1),

φSz,Ω1
dszBΩ1

γ∂intΩ1
Qz,Ω2

e02 : L2
sc(Ω)→ Hs,r

sc (X)

for all s, r, and indeed φSz,Ω1d
s
zBΩ1γ∂intΩ1Qz,Ω2φ ∈ Ψ−∞,−∞sc (X).

Further, for any s, r, k, given ε > 0 there exists δ > 0 such that if

Ω ⊂ Ωδ = {x ≤ δ} ∩ Ω1,

then

‖K ′1‖L(xkL2
sc(Ω),H̄s,rsc (Ω1)) < ε.

Proof. By Corollary 4.6, using that δsz is a differential operator,

ψQz,Ω2φ ∈ Ψ−∞,−∞sc (X)

whenever ψ, φ ∈ C∞(Ω2) have disjoint supports, also disjoint from ∂intΩ2 since this operator is in Ψ−1,0
sc (X)

directly from the corollary, and then the disjointness of supports gives the conclusion. Taking such ψ, φ, as
one may, with φ ≡ 1 near Ω, while ψ ≡ 1 near ∂intΩ1, we see that γ∂intΩ1

Qz,Ω2
e02 : xkL2

sc(Ω)→ Hs,r
sc (∂intΩ1)

for all s, r, k, i.e. mapping to Ċ∞(∂intΩ1). The first part then follows from BΩ1 mapping this to H̄1,r
sc (Ω1)

for all r, with the additional property that φ̃BΩ1
maps to Hs,r

sc (Ω) for all s, r if φ̃ has properties like φ, and
then Corollary 4.8 completes the argument.

For the smallness, we just need to proceed as in Lemma 4.10, writing

γ∂intΩ1
Qz,Ω2

e02 = γ∂intΩ1
(ψQz,Ω2

φx−1)(xe02),

where now ψQz,Ω2
φx−1 ∈ Ψ−∞,−∞sc (X), thus bounded between all weighted Sobolev spaces, with norm

independent of δ, while xe02 : xkL2
sc(Ωδ)→ xkL2

sc(Ω2) has norm ≤ δ. �
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Thus,

(4.12) Sz,Ω1
r21Sz,Ω2

GNz = Sz,Ω1
e01 +K2,

with K2 smoothing and small if Ω ⊂ {x ≤ δ}, with δ suitably small. This is exactly Equation (5.7) of
[25], and from this point on we can follow the argument of the global work of Stefanov and Uhlmann [25,
Section 5], with the addition of having a small rather than just compact error, giving invertibility.

Restricting to Ω from the left, the key remaining step is to compute Sz,Ω − r10Sz,Ω1
e01 in terms of the

already existing information. As above,

Sz,Ω − r10Sz,Ω1e01 = −dsz(Qz,Ω − r10Qz,Ω1e01),

but now we compute u = (Qz,Ω − r10Qz,Ω1
e01)f using that it is the solution of the Dirichlet problem

∆z,su = 0, γ∂intΩu = −γ∂intΩQz,Ω1
e01f , so

(4.13) u = −BΩγ∂intΩQz,Ω1
e01f,

and using that one can compute γ∂intΩQz,Ω1
e01f from dszQz,Ω1

e01f . Concretely, we have the following
lemma on functions:

Lemma 4.12. Let Ḣ1,0
sc (Ω1 \ Ω) denote the restriction of elements of Ḣ1,0

sc (Ω1) to Ω1 \ Ω (thus, these need
not vanish at ∂intΩ), and let ρΩ1\Ω be a defining function of ∂intΩ as a boundary of Ω1 \Ω, i.e. it is positive
in the latter set. Suppose that ∂xρΩ1\Ω > 0 at ∂intΩ; note that this is independent of the choice of ρΩ1\Ω
satisfying the previous criteria (so this is a statement on x being increasing as one leaves Ω at ∂intΩ). Then
on functions, for z > 0, k ∈ R, the map

dsz : Ḣ1,k
sc (Ω1 \ Ω)→ xkL2(Ω1 \ Ω)

is injective, with a continuous left inverse PΩ1\Ω : xkL2(Ω1 \ Ω)→ Ḣ1,k
sc (Ω1 \ Ω).

Proof. Consider k = 0 first.
The norm of dszu is certainly equivalent to that of ∇u in L2(Ω1 \ Ω) modulo the L2(Ω1 \ Ω) norm of u,

so one only needs to prove a local Poincaré inequality

(4.14) ‖u‖L2(Ω1\Ω) ≤ C‖dszu‖L2(Ω1\Ω)

to conclude that

‖u‖Ḣ1,0
sc (Ω1\Ω) ≤ C‖dszu‖L2(Ω1\Ω),

which proves the lemma in this case, since it proves that dsz, between these spaces, has closed range and is

injective, so it is an isomorphism between Ḣ1,0
sc (Ω1 \ Ω) and its range, and then its inverse in this sense can

be extended continuously to L2(Ω1 \ Ω).
But (4.14) can be proved similarly to Lemma 4.2, by showing that

(4.15) ‖u‖L2(Ω1\Ω) ≤ C‖(x2Dx + iz)u‖L2(Ω1\Ω).

Here we want to use P = x2Dx+ iz and ‖Pu‖2 again; we need to be careful at ∂intΩ since u does not vanish
there. Thus, there is an integration by parts boundary term, which we express in terms of the characteristic
function χΩ1\Ω:

‖Pu‖2L2(Ω1\Ω) = 〈χΩ1\ΩPu, Pu〉L2(Ω1) = 〈P ∗χΩ1\ΩPu, u〉L2(Ω1)

= 〈P ∗Pu, u〉L2(Ω1\Ω) + 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1).

Similarly,

‖PRu‖2L2(Ω1\Ω) = 〈P ∗RPRu, u〉L2(Ω1\Ω) + 〈[P ∗R, χΩ1\Ω]PRu, u〉L2(Ω1).
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On the other hand, with PI being 0th order, the commutator term vanishes for it. Correspondingly,

‖Pu‖2L2(Ω1\Ω) = 〈P ∗Pu, u〉L2(Ω1\Ω) + 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1)

= 〈P ∗RPRu, u〉L2(Ω1\Ω) + 〈P ∗I PIu, u〉L2(Ω1\Ω) + 〈i[PR, PI ]u, u〉L2(Ω1\Ω)

+ 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1)

= ‖PRu‖2L2(Ω1\Ω) + ‖PIu‖2L2(Ω1\Ω) + 〈i[PR, PI ]u, u〉L2(Ω1\Ω)

+ 〈[P ∗, χΩ1\Ω]Pu, u〉L2(Ω1) − 〈[P ∗R, χΩ1\Ω]PRu, u〉L2(Ω1).

Now, as P − PR is 0th order, [P ∗, χΩ1\Ω] = [P ∗R, χΩ1\Ω], so the last two terms on the right hand side give

(4.16) 〈[P ∗, χΩ1\Ω]iPIu, u〉L2(Ω1) = 〈x2∂xχΩ1\Ω(z− n− 1

2
x)u, u〉L2(Ω1),

which is non-negative, at least if x is sufficiently small (or z large) on ∂intΩ since χΩ1\Ω = χ(0,∞) ◦ ρΩ1\Ω.
Correspondingly, this term can be dropped, and one obtains (4.15) at least if x is small on Ω1 just as in
the proof of Lemma 4.2. The case of x not necessarily small on Ω1 (though small on Ω) follows exactly as
in Lemma 4.2 using the standard Poincaré inequality, and even the case where x is not small on Ω can be
handled similarly since one now has an extra term at ∂intΩ, away from x = 0, which one can control using
the standard Poincaré inequality. This gives

‖u‖Ḣ1,0
sc (Ω1\Ω) ≤ C‖dszu‖L2(Ω1\Ω),

showing the claimed injectivity. Further, this gives a continuous inverse from the range of dsz, which is closed
in L2(Ω1 \Ω); one can use an orthogonal projection to this space to define the left inverse PΩ1\Ω, completing
the proof when k = 0.

For general k, one can proceed as in Lemma 4.4, conjugating dsz by xk, which changes it by x times a
smooth one form; this changes x2Dx + iz by an element of xC∞(X), with the only effect of modifying the
xn−1

2 term in (4.16), which does not affect the proof. �

We now turn to one forms.

Lemma 4.13. Let Ḣ1,0
sc (Ω1 \ Ω) be as in Lemma 4.12, but with values in one-forms, and let ρΩ1\Ω be a

defining function of ∂intΩ as a boundary of Ω1\Ω, i.e. it is positive in the latter set. Suppose that ∂xρΩ1\Ω > 0
at ∂intΩ; note that this is independent of the choice of ρΩ1\Ω satisfying the previous criteria (so this is a
statement on x being increasing as one leaves Ω at ∂intΩ). Then for r ≤ −(n− 5)/2, on one-forms the map

dsz : Ḣ1,r
sc (Ω1 \ Ω)→ H0,r

sc (Ω1 \ Ω)

is injective, with a continuous left inverse PΩ1\Ω : H0,r
sc (Ω1 \ Ω)→ Ḣ1,r−2

sc (Ω1 \ Ω).

Remark 4.14. Unfortunately the argument given above for functions would give an unfavorable boundary
term, so instead we proceed proving the local Poincaré inequality directly and using our generalized Korn’s
inequality, Lemma 4.5, to avoid a loss of derivatives. However, our method still produces a loss of weight,
essentially because as presented the estimate would be natural for standard tensors, not scattering tensors,
hence the presence of the loss −2 in the weight in the statement of the lemma.

Proof. As in the work of the first two authors, [24, Section 6], we prove the Poincaré inequality using the
identity, see [20, Chapter 3.3],

(4.17)
∑
i

[v(γ(s))]iγ̇
i(s) =

∫ s

0

∑
ij

[dsv(γ(t))]ij γ̇
i(t)γ̇j(t) dt,

where γ is a unit speed geodesic of the original metric g (thus not of a scattering metric) with γ(0) ∈ ∂intΩ1

(so v(γ(0)) vanishes) and γ(τ) ∈ ∂intΩ ∪ ∂X, with γ|(0,τ) in Ω1 \ Ω. Identity (4.17) is just an application
of the Fundamental Theorem of Calculus with the s-derivative of the l.h.s. computed using the rules of
covariant differentiation. In this formula we use [dsv(γ(t))]ij for the components in the symmetric 2-cotensors
corresponding to the standard cotangent bundle, and similarly for [v(γ(s))]i. Notice that this formula gives
an explicit left inverse for dsz, as discussed below.
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Here we choose γ such that x ◦ γ is strictly monotone in the sense that − ∂
∂t (x ◦ γ) is bounded below (and

above) by a positive constant, thus (x ◦γ)2 ∂
∂t (x

−1 ◦γ) has the same property. Note that one can construct a
smooth family of such geodesics emanating from ∂intΩ1, parameterized by ∂intΩ, in a manner that, with dω
a smooth measure on ∂intΩ1, dω dt is equivalent to the volume form dg, i.e. also to dx dy1 . . . dyn−1. Thus,
for any k ≥ 0, using x(γ(s)) ≤ x(γ(t)) along the geodesic segment, t ∈ [0, s],

|e−z/x(γ(s))x(γ(s))k
∑
i

[v(γ(s))]iγ̇
i(s)|2

=
∣∣∣ ∫ s

0

∑
ij

e−z/x(γ(t))x(γ(t))k+1[dsv(γ(t))]ij γ̇
i(t)γ̇j(t)

× e−z(1/x(γ(s))−1/x(γ(t)))x(γ(t))−1 dt
∣∣∣2

≤ n2
(∫ τ

0

∑
ij

e−2z/x(γ(t))x(γ(t))2k+2|[dsv(γ(t))]ij γ̇
i(t)γ̇j(t)|2 dt

)
×
(∫ s

0

e−2z(1/x(γ(s))−1/x(γ(t)))x(γ(t))−2 dt
)
.

Thus,

|e−z/x(γ(s))x(γ(s))k
∑
i

[v(γ(s))]iγ̇
i(s)|2

≤ C ′
(∫ τ

0

∑
ij

e−2z/x(γ(t))x(γ(t))2k+2|[dsv(γ(t))]ij γ̇
i(t)γ̇j(t)|2 dt

)
×
(∫ s

0

e−2z(1/x(γ(s))−1/x(γ(t)))
(
− ∂

∂t
(x−1(γ(t)))

)
dt
)

≤ C ′
(∫ τ

0

e−2z/x(γ(t))x(γ(t))2k+2|dsv(γ(t))|2`2 dt
)(∫ x−1(γ(s))

r0

e−2z(1/x(γ(s))−r) dr
)

for suitable r0 > 0, where we wrote r = x−1, and we used the lower bound for (x ◦ γ)2 ∂
∂t (x

−1 ◦ γ) in the

second factor, and that γ is unit speed in the first factor, with `2 being the norm as a symmetric map
on TpX. The second factor on the right hand side is bounded by (2z)−1, so can be dropped. Now, as

τ dx + ζ dy = (x2τ) dxx2 + (xζ) dyx , so e.g. the dx2 component of dsv is x−4 times the dx2

x4 component in the
scattering basis, we have

(4.18) |dsv(γ(t))|`2 ≤ Cx(γ(t))−4|dsv(γ(t))|`2sc ,
so the right hand side is bounded from above by

C ′′z−1

∫ τ

0

e−2z/x(γ(t))x(γ(t))2k−6|dsv(γ(t))|2`2sc dt

Integrating in the spatial variable, γ(0) ∈ ∂intΩ1, and using that the second factor is (2z)−1, gives

‖e−z/xxkv(γ′)‖2L2(Ω1\Ω) ≤ Cz−1‖xk−3e−z/xdsv‖2L2(Ω1\Ω;Sym2scT∗X).

Using different families of geodesics with tangent vectors covering TX over Ω1 \ Ω,

‖e−z/xxkv‖2L2(Ω1\Ω;T∗X) ≤ Cz−1‖xk−3e−z/xdsv‖2L2(Ω1\Ω;Sym2scT∗X).

Now, similarly to (4.18), but going the opposite direction,

‖v(p)‖`2sc ≤ x(p)‖v(p)‖`2 ,
so

‖e−z/xxk−1v‖2L2(Ω1\Ω;scT∗X) ≤ Cz−1‖xk−3e−z/xdsv‖2L2(Ω1\Ω;Sym2scT∗X).
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Changing the volume form as well yields

‖e−z/xxk−1+(n+1)/2v‖2L2
sc(Ω1\Ω;scT∗X) ≤ Cz−1‖xk−3+(n+1)/2e−z/xdsv‖2L2

sc(Ω1\Ω;Sym2scT∗X).

With u = e−z/xv, this gives, for u ∈ C∞(Ω1 \ Ω), vanishing at ∂intΩ1, of compact support,

(4.19) ‖u‖2
H0,r−2

sc (Ω1\Ω)
≤ Cz−1‖dszu‖2H0,r

sc (Ω1\Ω)
,

r ≤ −(n − 5)/2, which then gives the same conclusion, by density and continuity considerations for u ∈
Ḣ1,r

sc (Ω1 \ Ω), the desired Poincaré estimate.
To obtain the H1 estimate, we use Lemma 4.5, which gives, even for u ∈ H̄1,r−2

sc (Ω1 \ Ω),

‖u‖2
H̄1,r−2

sc (Ω1\Ω)
≤ C(‖dszu‖2H0,r−2

sc (Ω1\Ω)
+ ‖u‖2

H0,r−2
sc (Ω1\Ω)

),

which combined with (4.19) proves

‖u‖Ḣ1,r−2
sc (Ω1\Ω) ≤ C‖dszu‖H0,r

sc (Ω1\Ω), u ∈ Ḣ1,r
sc (Ω1 \ Ω),

where recall that our notation is that membership of Ḣ1,r
sc (Ω1 \ Ω) only implies vanishing at ∂intΩ1, not at

∂intΩ.
Taking into account the above considerations, namely choosing several families of geodesics to span the

tangent space, and working with v = ez/xu, the formula (4.17) then also gives an explicit formula for the
left inverse. �

Recall now (4.13):
u = −BΩγ∂intΩQz,Ω1

e01f.

Using Lemmas 4.12-4.13, we conclude that

u = −BΩγ∂intΩPΩ1\Ωd
s
zQz,Ω1

e01f,

and as e01f vanishes on Ω1 \ Ω,

Sz,Ω1e01f |Ω1\Ω = −dszQz,Ω1e01f |Ω1\Ω,

so
u = BΩγ∂intΩPΩ1\ΩSz,Ω1e01f,

and thus
Sz,Ω − r10Sz,Ω1

e01 = −dszBΩγ∂intΩPΩ1\ΩSz,Ω1
e01.

Using (4.12) this gives

r10Sz,Ω1r21Sz,Ω2GNz = Sz,Ω + dszBΩγ∂intΩPΩ1\ΩSz,Ω1e01 + r10K2.

Using (4.12) again to express Sz,Ω1
e01 on the right hand side, we get

r10Sz,Ω1
r21Sz,Ω2

GNz

= Sz,Ω + dszBΩγ∂intΩPΩ1\Ω(Sz,Ω1r21Sz,Ω2GNz −K2) + r10K2,

which gives
(r10 − dszBΩγ∂intΩPΩ1\Ω)Sz,Ω1

r21Sz,Ω2
GNz

= Sz,Ω + (r10 − dszBΩγ∂intΩPΩ1\Ω)K2.

We now add Pz,Ω to both sides, and use that the smallness of K2 when Ω is small enough gives that
Id +(r10 − dszBΩγ∂intΩPΩ1\Ω)K2 is invertible. Here we need to be careful in the 2-tensor case: while K2 is
smoothing, including in the sense of producing additional decay, so there is no problem with applying PΩ1\Ω
regardless of the weighted space we are considering, the result will have only a weighted estimate in H1,r−2

sc ,
r ≤ −(n − 5)/2, corresponding to Lemma 4.13, so the inversion has to be done in a sufficiently negatively
weighted space, namely H0,r

sc (Ω), with r ≤ −(n− 1)/2. Thus,

(Id +(r10 − dszBΩγ∂intΩPΩ1\Ω)K2)−1

◦
(

(r10 − dszBΩγ∂intΩPΩ1\Ω)Sz,Ω1r21Sz,Ω2GNz + Pz,Ω

)
= Id,
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and so multiplying from Sz,Ω from the right yields

(4.20)
(Id +(r10 − dszBΩγ∂intΩPΩ1\Ω)K2)−1

◦ (r10 − dszBΩγ∂intΩPΩ1\Ω)Sz,Ω1
r21Sz,Ω2

GNz = Sz,Ω.
Now recall thatNz = e−z/xLIez/x, and that for f ∈ ez/xL2

sc(Ω), Pz,Ωe
−z/xf = 0 amounts to ez/xδse−z/x(e−z/xf) =

0, i.e. δs(e−2z/xf) = 0. This in particular gives an inversion formula for the geodesic X-ray transform on
e2z/x-solenoidal one-forms and symmetric 2-tensors.

In order to state the stability estimate it is convenient to consider (x, y, λ, ω) ∈ SX to actually lie in scSX
via the identification (multiplying the tangent vector by x)

(x, y, λ ∂x + ω ∂y) 7→ (x, y, (λ/x)(x2∂x) + ω (x∂y))

Here scSX = (scTX \ o)/R+ is the sphere bundle in scTX, and in the relevant open set the fiber over a

fixed point (x, y) can be identified with vectors of the form λ̃(x2∂x) + ω̃(x∂y), ω̃ ∈ Sn−2, λ̃ ∈ R. Then the

region |λ/x| < M in SX corresponds to the region |λ̃| < M ; this is now an open subset of scSX. Note

that in particular that the ‘blow-down map’ (x, y, λ̃, ω̃) 7→ (x, y, xλ̃, ω̃) is smooth, and the composite map

(x, y, λ̃, ω̃, t) 7→ γx,y,xλ̃,ω̃(t) has surjective differential. In particular, with

U = {|λ̃| < M},
the scattering Sobolev spaces are just restrictions to a domain with smooth boundary. Note that U lies
within the set of Ω-local geodesics; we choose M so that suppχ ⊂M .

This discussion, in particular (4.20), proves our main local result, for which we reintroduce the subscript
c for the size of the region Ωc:

Theorem 4.15. For one forms, let z > 0; for symmetric 2-tensors let z0 > 0 be the maximum of the two
constants, denoted there by z0, in Proposition 3.3 and Corollary 4.6.

For Ω = Ωc, c > 0 small, the geodesic X-ray transform on e2z/x-solenoidal one-forms and symmetric
2-tensors f ∈ ez/xL2

sc(Ω), i.e. ones satisfying δs(e−2z/xf) = 0, is injective, with a stability estimate and a
reconstruction formula

f = ez/x(Id +(r10 − dszBΩγ∂intΩPΩ1\Ω)K2)−1(r10 − dszBΩγ∂intΩPΩ1\Ω)

◦ Sz,Ω1
r21Sz,Ω2

Ge−z/xLIf.

Here stability is in the sense that for s ≥ 0 there exist R,R′ such that for any (sufficiently negative in the case
of 2-tensors) r the ez/xHs−1,r

sc norm of f on Ω is controlled by the ez/xHs,r+R
sc norm of If on U , provided

f is a priori in ez/xHs,r+R′

sc . In addition, replacing Ωc = {x̃ > −c} ∩M by Ωτ,c = {τ > x̃ > −c+ τ} ∩M ,
c can be taken uniform in τ for τ in a compact set on which the strict concavity assumption on level sets of
x̃ holds.

Remark 4.16. Notice that the proof below gives in particular, by composing L and I, LI : ez/xHs,r
sc (X)→

ez/xHs,r−1−s
sc (X), s ≥ 0, even though Proposition 3.1 implies the mapping property LI : ez/xHs,r

sc (X) →
ez/xHs+1,r

sc (X) (with values in scattering one-forms or 2-tensors). The loss in the derivatives by one order
and of the decay by order ≥ 1 is due to the non-sharp treatment of the scattering Fourier integral operators
L, I below.

Proof. Given (4.20), we just need to show that for s ≥ 0 there exist R1, R2 such that for k ∈ R, L is bounded

ez/xHs,k+R1
sc (U)→ ez/xHs,k

sc (X),

while I is bounded

ez/xHs,k+R2
sc (X)→ ez/xHs,k

sc (U),

with the function spaces on X with values in either one forms or 2-tensors. To see these boundedness
statements, one proceeds as in [29, Section 3], prior to Proposition 3.3, though we change our point of view
slightly, as we are using the ‘blown-up space’ scSX rather than SX for the geodesic parameterization.
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Concretely, L can be written as the composition of a multiplication operator M , by xχ(λ̃), resp. x3χ(λ̃),
for the one-form, resp. 2-tensor, case, times x−1 times a sc-one-form or x−2 times a sc-2-tensor factor, with
a −1 in the power of x in the definition of L being absorbed into the λ̃ integral, and a push-forward in which
the λ̃, ω̃ variables are integrated out. The pushforward maps L2(U) = x−(2n−1+1)/2L2

sc(U) to L2(X) =
x−(n+1)/2L2

sc(X) (L2 spaces without subscripts being relative to smooth non-degenerate densities) with the
weights arising from the scattering volume forms being x−2n, resp. x−n−1, times a smooth volume form.

Further, it commutes with multiplication by functions of x, so it maps ez/xH0,k
sc (X) to ez/xH

0,k+(n−1)/2
sc (X),

and (local) lifts of scattering vector fields x2Dx, xDyj are still scattering vector fields so it also maps

ez/xHs,k
sc (U) to ez/xH

s,k+(n−1)/2
sc (X) for s ≥ 0 integer, and then by interpolation for s ≥ 0. Also, taking into

account the smoothness of χ(λ̃), we see that multiplication by xpχ(λ̃) maps ez/xHs,k
sc (U)→ ez/xHs,k+p

sc (U)
for all s ≥ 0, so in the one form case

L : ez/xHs,k
sc (U)→ ez/xHs,k+(n−1)/2

sc (X),

while in the 2-tensor case

L : ez/xHs,k
sc (U)→ ez/xHs,k+1+(n−1)/2

sc (X).

On the other hand, I can be written as a pull-back to the subset U × R of scSX × R from X, after
contraction with γ′

x,y,xλ̃,ω̃
(t), via the map γ : (x, y, λ̃, ω̃, t) 7→ γx,y,xλ̃,ω̃(t), which has surjective differential,

followed by integration over (a uniformly controlled compact subset of) the R factor. The integration (push-

forward) maps ez/xHs,k
sc (U × R)→ ez/xH

s,k+1/2
sc (U), where the 1/2 shift is due to the density defining the

scattering space, as above; by the same argument as above. On the other hand, the vector γ′
x,y,xλ̃,ω̃

(t) is x−1

times a scattering tangent vector, as discussed in Proposition 3.1. Thus, the boundedness of the pull-back
as a map

xL2(X; scT ∗X)→ L2(U × R), i.e. x−(n−1)/2L2
sc(X)→ x−(2n+1)/2L2

sc(U × R),

in the one-form case, resp.

x2L2(X; Sym2scT ∗X)→ L2(U × R), i.e. x−(n−3)/2L2
sc(X)→ x−(2n+1)/2L2

sc(U × R),

in the 2-tensor case, follows from the surjectivity of the differential of γ. (Concretely here this means that

as for fixed λ̃, ω̃, t, (x, y) 7→ γx,y,λ̃,ω̃(t) = (x′, y′) is a diffeomorphism, one can rewrite the integral expressing

the squared L2-norm of the pull-back in terms of the squared L2-norm of the original function using Fubini’s
theorem.) Further, the x coordinate along γx,y,λ,ω, denoted by x′ in Proposition 3.1, satisfies x′ ≥ x−CM2x2

(as |λ/x| ≤ M on U) due to [29, Equation (3.1)], which means that e−z/xx−kez/x
′
(x′)k is bounded on the

curves as −z/x+z/x′ − k log(x/x′) is bounded above (with the boundedness for x′ ≤ x, holding thanks to
the lower bound for x′, being the important point; for x′ ≥ x, −z/x − k log x being monotone for small x
can be used). Thus, the mapping property

ez/xH0,k
sc (X)→ ez/xH0,k−n/2−1

sc (U × R),

resp.

ez/xH0,k
sc (X)→ ez/xH0,k−n/2−2

sc (U × R),

follows by the same argument as the L2 boundedness. Finally, by the chain rule, using just the smoothness
of γ, we obtain that any derivative of the pull-back with respect to the standard vector fields V ∈ V(U) can
be expressed in terms of linear combinations with smooth coefficients of standard derivatives (with respect
to V ′ ∈ V(X)) of the original function, so in particular for P ∈ Diffs(U ×R) and one-forms, Pf is controlled

in ez/xH
0,k−n/2−1
sc (U×R) in terms of derivatives of order ≤ s of f in ez/xH0,k

sc (X), with a similar statement
for 2-tensors. Now, (with the above notation) x′ ≥ cx for some c > 0 (so x/x′ is bounded), so that x factors
of derivatives like x2∂x, x∂yj , x∂λ̃, x∂ω̃j being applied to the pull-back can be turned into factors of x′, so we

see that if P ∈ Diffssc(X), then Pf is controlled in ez/xH
0,k−n/2−1
sc (U × R) in terms of derivatives of order

≤ s of f with respect to the vector fields x′∂x′ x
′∂y′ in ez/xH0,k

sc (X). Note here the presence of x′∂x′ rather
than (x′)2∂x′ , due to the fact that when one writes the pull-back as f(Xx,y,xλ̃,ω̃(t),Yx,y,xλ̃,ω̃(t)), a derivative

like x∂y hitting it is controllable by (x′∂x′f)(∂yX) and (x′∂y′f)(∂yX), with the first of these lacking an extra
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factor of x′. This means that we need to have an extra decay by order s to get a bounded map between the
scattering spaces (since x′∂x′ = (x′)−1((x′)2∂x′)), so for s ≥ 0 integer the mapping property

ez/xHs,k
sc (X)→ ez/xHs,k−s−n/2−1

sc (U × R),

resp.

ez/xHs,k
sc (X)→ ez/xHs,k−s−n/2−2

sc (U × R),

follows, and then interpolation gives this for all s ≥ 0. Thus, in the one-form case

I : ez/xHs,k
sc (X)→ ez/xHs,k−s−n/2−1/2

sc (U × R),

in the 2-tensor case

I : ez/xHs,k
sc (X)→ ez/xHs,k−s−n/2−3/2

sc (U × R),

completing the proof. �

If f ∈ xrez/xL2
sc(Ω) then the map f → If factors through

Sz,Ωe−z/xf = e−z/xf − Pz,Ωe
−z/xf

since

Iez/xPz,Ωe
−z/xf = Idsez/x∆−1

z,s,Ωe
z/xδse−2z/xf = 0.

By Theorem 4.15, ez/xSz,Ωe−z/xf 7→ Iez/xSz,Ωe−z/xf is injective, with a stability estimate. Since

ez/xPz,Ωe
−z/xf = dsez/x∆−1

z,s,Ωe
z/xδse−2z/xf,

this means that we have recovered f up to a potential term, i.e. in a gauge-free manner we have:

Corollary 4.17. Let z > 0. With Ω = Ωc as in Theorem 4.15, r sufficiently negative, c > 0 small, if
f ∈ ez/xxrL2

sc(Ω) is a one-form then f = u + dsv, where v ∈ ez/xxrḢ1,0
sc (Ω), while u ∈ ez/xxrL2

sc(Ω) can
be stably determined from If .

Again, replacing Ωc = {x̃ > −c} ∩M by Ωτ,c = {τ > x̃ > −c+ τ} ∩M , c can be taken uniform in τ for
τ in a compact set on which the strict concavity assumption on level sets of x̃ holds.

Corollary 4.18. Let z,z0 be as in Theorem 4.15. With Ω = Ωc as in Theorem 4.15, r sufficiently negative,
c > 0 small, if f ∈ xrez/xL2

sc(Ω) is a symmetric 2-tensor then f = u+ dsv, where v ∈ ez/xḢ1,r−2
sc (Ω), while

u ∈ ez/xxr−2L2
sc(Ω) can be stably determined from If .

Again, replacing Ωc = {x̃ > −c} ∩M by Ωτ,c = {τ > x̃ > −c+ τ} ∩M , c can be taken uniform in τ for
τ in a compact set on which the strict concavity assumption on level sets of x̃ holds.

This theorem has an easy global consequence. To state this, assume that x̃ is a globally defined function
with level sets Σt which are strictly concave from the super-level set for t ∈ (−T, 0], with x̃ ≤ 0 on the
manifold with boundary M . Then we have:

Theorem 4.19. Suppose M is compact. The geodesic X-ray transform is injective and stable modulo poten-
tials on the restriction of one-forms and symmetric 2-tensors f to x̃−1((−T, 0]) in the following sense. For

all τ > −T there is v ∈ Ḣ1
loc(x̃−1((τ, 0])) such that f − dsv ∈ L2

loc(x̃−1((τ, 0])) can be stably recovered from
If . Here for stability we assume that s ≥ 0, f is in an Hs-space, the norm on If is an Hs-norm, while the
norm for v is an Hs−1-norm.

Proof. For the sake of contradiction, suppose there is no v as stated on x̃−1((τ0, 0]) for some 0 > τ0 > −T ,
If = 0, and let

τ = inf{t ≤ 0 : ∃vt ∈ Ḣ1
loc({x̃ > t}) s.t. f = dsvt on {x̃ > t}} ≥ τ0.

Thus, for any τ ′ > τ , such as τ ′ < τ + c/3, c as in the uniform part of Corollaries 4.17-4.18 on the levels

[τ, 0], there is v ∈ Ḣ1
loc({x̃ > τ ′}) such that f = dsv on {x̃ > τ ′}. Choosing φ ∈ C∞(M) identically 1

near x̃ ≥ τ + 2c/3, supported in x̃ > τ + c/3, f − ds(φv) is supported in x̃ ≤ τ + 2c/3. But then by

the uniform statement of Corollaries 4.17-4.18, there exists v′ ∈ Ḣ1
loc({τ − c/3 < x̃ ≤ τ + 2c/3}) such that

f−ds(φv) = dsv′ in τ−c/3 < x̃ < τ+2c/3. Extending v′ as 0, the resulting function ṽ′ ∈ Ḣ1
loc({τ−c/3 < x̃})
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and dsṽ′ is the extension of dsv′ by 0. Thus, f = ds(φv+ ṽ′), and this contradicts the choice of τ , completing
the proof.

The stability of the recovery follows from a similar argument: by the uniform property one can recover
f modulo potentials in a finite number of steps: if c works uniformly on [τ, 0], at most |τ |/c + 1 steps are
necessary. �
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