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Abstract. In this paper we consider the linearized problem of recovering both
the sound speed and the thermal absorption arising in thermoacoustic and

photoacoustic tomography. We show that the problem is unstable in any scale

of Sobolev spaces.

1. Introduction. In multiwave tomography, one sends one type of wave to the
body of a patient, most often electromagnetic (thermoacoustic tomography) or op-
tical radiation (photoacoustic tomography) which interacts with the tissue, and
measures the acoustic signal on the boundary generated by this interaction. This
combines the high contrast of the incoming waves with the high resolution of the
measured ultrasound ones. The mathematical model of the emitted ultrasound
wave is the following. Let u solve the problem (∂2

t − c2∆)u = 0 in (0, T )×Rn,
u|t=0 = f,

∂tu|t=0 = 0,
(1)

where the sound speed c = c(x) > 0 and T > 0 are fixed. Assume that f and c− 1
are supported in Ω̄, where Ω ⊂ Rn is some bounded domain with a smooth convex
boundary. The measurements are modeled by the operator

Λ1f := u|[0,T ]×∂Ω. (2)

The first step in multiwave imaging is to recover f given Λ1f . The speed c is
usually assumed to be known but in practice, it is not. Then the natural question is
whether we can recover both c and f . The answer is still unknown. A discussion of
this problem, together with a partial local result stating that c can be determined
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up to a constant scaling can be found in [7]. David Finch observed a link between
this problem and the transmission eigenvalues.

The problem of recovery of f , given c has received a lot of attention in the past
years. We refer to [2, 1, 3, 4, 5, 6, 9, 10, 8, 7, 14, 15, 13, 17, 18, 21, 22, 28, 27] for
some works in this direction. If c is constant, then the inversion of Λ1 is actually
an integral geometry problem as well. For variable c, there is always uniqueness if
T � 1, and there is stability if c is non-trapping and T � 1. We refer to [21, 23]
for details.

When an inaccurate speed is used for reconstruction by time reversal, the result-
ing images are distorted, and full of “artifacts”, see for example the images in [12] or
[7]. The mathematical structure of the artifacts is easy to understand: the forward
map Λ1 is a Fourier Integral Operator (FIO) with a canonical relation given by the
graph of the map determined by the geodesics rays from the interior to the bound-
ary, see [21] for more details. The time reversal is another FIO with a canonical
relation given by the graph of the inverse of the former one. When the speed used
in the time reversal is different, we get a “recovery” operator which is an FIO with
a canonical relation not the diagonal (the graph of the identity) but the graph of
the composition of the forward one and a backward one with a different speed. In
particular, since the canonical relation of Λ1 and its reversal have two disconnected
components, one can see double images of the same singularity, well visible in the
examples in [12], for instance. An algorithm to tune in the speed by maximizing
the sharpness of the reconstructed f is proposed in [26]. This is related to the FIO
description of the artifacts but good mathematical understanding of this algorithm
is lacking.

One of the ways to recover the speed is to take additional measurements and to
recover c from travel times. This is the method proposed in [28] in thermoacoustic
tomography. The travel time problem is stable under some geometric assumptions
on c (c−2dx2 being a simple metric in the domain is enough) which are satisfied when
c is close enough to a constant, in particular, see, e.g., [19] and the references there.
Then f can be recovered stably as well. Additional data can be provided either by
placing ultrasound sources around the body, or by placing passive absorbing (tissue
imitating) objects around the body which become ultrasound sources by the thermo-
or the photo-acoustic effect. We refer to the recent paper [12] for references and
numerical and experimental implementations of that method. As can be expected,
the results are very good. Simultaneous reconstruction of f and c aside from the
above mentioned work [26], have been tried with various success in [30, 29, 31], for
example.

In this paper, we study the linearization δΛ1 and we show that the latter is
unstable. In particular, we prove the following.

Theorem 1.1. There is no stability estimate of the type

‖δf‖Hs1 (Ω) + ‖δc2‖Hs1 (K) ≤ C
∥∥δΛ1{δf, δc2}

∥∥
Hs2

,

s1 ≥ 0, s2 ≥ 0, regardless of s1, s2.

We also show that a conditional type of stability estimate cannot hold either,
see Remark 1. This suggests instability of the non-linear problem as well but does
not imply it directly. Stability of the linearization in some Sobolev norms, even if
not in the sharp ones, does imply (conditional Hölder) stability of the non-linear
problem [20]. The converse however is a much more delicate question. To prove
the instability of the linearization, we show that the latter is a smoothing operator
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for (δf, δc2) belonging to an explicitly defined infinite dimensional linear space, see
(39). We refer to section 4 for more details.

2. Preliminaries. Notice first that c2∆ is formally self-adjoint w.r.t. the measure
c−2dx. Given a domain U , and a function u(t, x), define the energy

EU (u, t) =

∫
U

(
|∇xu|2 + c−2|ut|2

)
dx.

In particular, we define the space HD(U) to be the completion of C∞0 (U) under the
Dirichlet norm

‖f‖2HD
=

∫
U

|Du|2 dx. (3)

It is easy to see that HD(U) ⊂ H1(U), if U is bounded with smooth boundary,
therefore, HD(U) is topologically equivalent to H1

0 (U). If U = Rn, this is true
for n ≥ 3 only. By the finite speed of propagation, the solution with compactly
supported Cauchy data always stays in H1 even when n = 2. The energy norm for
the Cauchy data [f1, f2], that we denote by ‖ · ‖H is then defined by

‖[f, f2]‖2H =

∫
U

(
|∇xf1|2 + c−2|f2|2

)
dx.

This defines the energy space

H(U) = HD(U)⊕ L2(U).

Here and below, L2(U) = L2(U ; c−2dx). Note also that

‖f‖2HD
= (−c2∆f, f)L2 . (4)

The wave equation then can be written down as the system

ut = Pu, P =

(
0 I
P 0

)
, P := c2∆, (5)

where u = [u, ut] belongs to the energy space H. The operator P then extends
naturally to a skew-selfadjoint operator on H if c ∈ L∞, and c−1 ∈ L∞. In this
paper, we will deal with either U = Rn or U = Ω. In the latter case, the definition
of HD(U) reflects Dirichlet boundary conditions.

We generalize next the results in [21] to the inverse problem with general Cauchy
data (f1, f2) in (1) with g not necessarily zero. What we really need later is Propo-
sition 2 only. Let u solve the problem (∂2

t − c2∆)u = 0 in (0, T )×Rn,
u|t=0 = f1,

∂tu|t=0 = f2,
(6)

where T > 0 is fixed. Set f = [f1, f2]. Then for f ∈ H, we have u ∈ C([0, T ]; H).
Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded

domain. Set
Λf := u|[0,T ]×∂Ω. (7)

The trace Λf is well defined in C(0)

(
[0, T ]; H1/2(∂Ω)

)
, where the subscript (0)

indicates that we take the subspace of functions h so that h = 0 for t = 0. For
a discussion of other mapping properties, we refer to [11]. When f is restricted to
functions in H, supported in a fixed compact K ⊂ Ω, then Λ is an FIO with a
canonical relation of graph type, and maps f continuously into H1

(0) ([0, T ]× ∂Ω),

see [21].
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Given h, let v solve
(∂2
t − c2∆)v = 0 in (0, T )× Ω,
v|[0,T ]×∂Ω = h,

v|t=T = φ,
∂tv|t=T = 0,

(8)

where φ solves the elliptic boundary value problem

∆φ = 0, φ|∂Ω = h(T, ·). (9)

Then we define the following pseudo-inverse

Ah := [v(0, ·), vt(0, ·)] in Ω̄. (10)

By [16],

A : H1
(0)([0, T ]× ∂Ω)→ H ∼= H1

0 (Ω)× L2(Ω)

is a continuous map. Note that the mapping properties above allow us to apply A
to Λf only when f is compactly supported in Ω but the theorem above shows that
AΛ extends continuously to the whole H.

Let T (Ω) be the length of the longest geodesic in Ω̄, when (Ω, c−2dx2) is non-
trapping.

Theorem 2.1. Let (Ω, c−2dx2) be non-trapping, and let T > T (Ω). Then AΛ =
Id−K, where K is compact in H(Ω), and ‖K‖H(Ω) < 1. In particular, Id−K is
invertible on H(Ω), and Λ has an explicit left inverse of the form

f =

∞∑
m=0

KmAh, h := Λf . (11)

Proof. Let f ∈ C∞0 (Ω)× C∞0 (Ω) first. Let w solve
(∂2
t − c2∆)w = 0 in (0, T )× Ω,
w|[0,T ]×∂Ω = 0,

w|t=T = u|t=T − φ,
wt|t=T = ut|t=T ,

(12)

where u solves (6) with a given f ∈ H. Let v be the solution of (8) with h = Λf .
Then v+w solves the same initial boundary value problem in [0, T ]×Ω that u does
(with initial conditions at t = T ), therefore u = v+w. Restrict this to t = 0 to get

f = AΛf + w(0, ·).
Set

Kf = w(0, ·) = [w(0, ·), wt(0, ·)].
We will show now that K extends to a compact operator. Since T > T (Ω), all
singularities starting from Ω̄ leave Ω̄ at t = T . Therefore, u(T, ·) and ut(T, ·),
restricted to Ω̄, are C∞. Moreover, considered as linear operators of f , they are
operators with smooth Schwartz kernels. Then so is φ, see (9), by elliptic regularity.
Therefore, the map

H(Ω) 3 f 7−→ [u(T, ·)− φ, ut(T, ·)] ∈ H(Ω),

defined a priori on C∞0 (Ω)×C∞0 (Ω) functions, extends to a compact one because it is
an operator with smooth kernel on Ω̄. Since the solution operator of (12) from t = T
to t = 0 is unitary in H(Ω), we get that the map H(Ω) 3 f 7→ [w(0, ·), wt(0, ·)] ∈
HD(Ω)) is compact, too, as a composition of a compact and a bounded one.
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We know remove the smoothness restriction on f , and let it be any element in
H. In what follows, (·, ·)HD(Ω) is the inner product in HD(Ω), see (3), applied to

functions that belong to H1(Ω) but maybe not to HD(Ω) (because they may not
vanish on ∂Ω). Set uT := u(T, ·). By (4) and the fact that uT = φ on ∂Ω, we get

(uT − φ, φ)HD(Ω) = 0.

Then

‖uT − φ‖2HD(Ω) = ‖uT ‖2HD(Ω) − ‖φ‖
2
HD(Ω) ≤ ‖u

T ‖2HD(Ω).

Therefore, the energy of the initial conditions in (12) satisfies the inequality

EΩ(w, T ) = ‖uT − φ‖2HD(Ω) + ‖uTt ‖2L2(Ω) ≤ EΩ(u, T ). (13)

Since the Dirichlet boundary condition is energy preserving, we get

EΩ(w, 0) = EΩ(w, T ) ≤ EΩ(u, T ) ≤ ERn(u, T ) = EΩ(u, 0) = ‖f‖2H.

Therefore,

‖Kf‖2HD(Ω) = EΩ(w, 0) ≤ ‖f‖2HD(Ω). (14)

We show next that actually the inequality above is strict, i.e.,

‖Kf‖H(Ω) < ‖f‖H(Ω), f 6= 0. (15)

Assume the opposite. Then for some f 6= 0, all inequalities leading to (14) are
equalities. In particular, EΩ(w, T ) = ERn(u, T ). Then

u(T, x) = 0, for x 6∈ Ω.

By the finite domain of dependence then

u(t, x) = 0 when dist(x,Ω) > |T − t|. (16)

One the other hand, we also have

u(t, x) = 0 when dist(x,Ω) > |t|. (17)

Therefore,

u(t, x) = 0 when dist(x, ∂Ω) > T/2, −T/2 ≤ t ≤ 3T/2. (18)

In [21], we used the fact that u extends to an even function of t that is still a solution
of the wave equation because f2 = 0 there. Then one gets that (18) actually holds
for |t| < 3T/2. Then one concludes by Tataru’s unique continuation theorem [25]
that u = 0 on [0, T ]×Ω, therefore, f = 0. We also noted there that the time interval
[0, T ] is actually larger (twice as large) than what we need for the Neumann series
to converge, see [22, 23], where T > T (Ω)/2 only.

In the case under consideration, f2 does not necessarily vanish. We modify the
arguments as follows. From John’s theorem (equivalent to Tataru’s [21, Theorem 2]
in the Euclidean setting), we get that u = 0 on [0, T ]×Rn\Ω. Then [21, Theorem 2]
implies that u = 0 for t = T/2 and all x. By energy preservation, f = 0.

Now, one has

‖Kf‖H(Ω) ≤
√
λ1‖f‖H(Ω), f 6= 0, (19)

where λ1 is the largest eigenvalue of K∗K. Then λ1 < 1 by (15).

Denote by

B := (Id−K)−1A

the left inverse of Λ constructed in Theorem 2.1.
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Proposition 1.

B : H1
(0)([0, T ]× ∂Ω)→ H ∼= H1

0 (Ω)× L2(Ω)

is a continuous map.

Proof. Note first, that A has the mapping properties above, by the results in [16].
Next, (Id−K)−1 is a bounded map in H by Theorem 2.1.

Let B1,2 be the components of B (that sends scalar functions to vector functions),
i.e., Bh = (B1h,B2h). Let Λ1,2 be the components of Λ (that sends vector functions
to scalar functions, i.e., Λf = Λ1f1 + Λ2f2. We can think of B as a 2x1 matrix, and
of Λ as an 1x2 matrix. Then BΛ[f1, f2] = [f1, f2], therefore,

B1Λ1 = Id, B2Λ2 = Id, B1Λ2 = 0. B2Λ1 = 0. (20)

Set ∂−1
t g =

∫ t
0
g(s) ds and let ∆D be the Dirichlet realization of ∆ in Ω. We have

the following.

Proposition 2.

Λ2c
2∆ = ∂tΛ1 on HD(Ω) ∩H2(Ω),

∂tΛ2 = Λ1, Λ2 = ∂−1
t Λ1 on HD(Ω),

∂−1
t Λ2 = Λ1(c2∆D)−1, on L2(Ω),

(21)

Proof. Let u solve (6) with f = [f1, 0] ∈ D(P), see (5). Then ∂tu solves the wave
equation, too, with Cauchy data [0, c2∆f1] ∈ H. This proves the first relation in
(21). Similarly, let u solve (6) with f = [0, f2] ∈ D(P). Then ∂tu solves the wave
equation, too, with Cauchy data [f2, 0]. This proves the second relation.

For f ∈ HD(Ω), we have ∂tΛ2f = Λ1f by what we just proved. Moreover,
Λ2f = 0 for t = 0. This proves the third relation in (21).

Finally, let f ∈ L2(Ω). Then ∂tΛ1(c2∆D)−1f = Λ2f by the first identity in (21).
Moreover, Λ1(c2∆D)−1f = 0 for t = 0. This proves the fourth identity.

Relations (21) can be used to show that Λ2 has a left inverse based on the result
in [21] only. Indeed, set B′2 := B1∂t. Then B′2Λ2 = B1∂tΛ2 = B1Λ1 = Id on
HD(Ω). Analyzing the mapping properties of B′2 and Λ2 as in [21], one gets that
the composition B1Λ1 is well defined and is a bounded operator on L2(Ω); that
therefore has to be identity.

3. Recovery of the speed c when f is known; The linearization δΛ1/δc
2

w.r.t. the speed. The non-linear problem of recovery of c when f is known, and
its linearization were studied in detail by the authors in [24]. We showed there that
if δc2 is a priori supported in a compact subset K, then the linearization δΛ1/δc

2

is Fredholm. We also gave conditions for uniqueness for both the linear and the
non-linear problem. The geometric requirement is that there exists a foliation of Ω̄
by strictly convex surfaces. If n = 2, non-trapping implies that condition. In all
dimensions, if c is close enough to a constant, that condition holds. In particular, if

x · ∂c < c in Ω̄, (22)

then the parts of the spheres |x| = R, R > 0, intersecting Ω̄ form a foliation of
surfaces convex w.r.t. the metric c−2dx2, see [23, 24]. There is an another condition
as well: we require that ∆f(x) 6= 0, ∀x ∈ K. This condition fits well into our
analysis; it is an if and only if condition for the operator QN below to be elliptic.
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4. Analysis of the linearized operator δΛ1. We derive a representation of the
difference Λ̃1f̃ − Λ1f first. If one is interested in the linearization only, the com-
putations are not really simpler — one just has to drop the tilde in most of the
formulas.

Let (c, f), (c̃, f̃) be two pairs, and let u, ũ be the corresponding solutions of (1).
Then 

(∂2
t − c2∆)(ũ− u) = (c̃2 − c2)∆ũ in (0, T )×Rn,

(ũ− u)|t=0 = f̃ − f,
∂t(ũ− u)|t=0 = 0.

(23)

Then

Λ̃1f̃ − Λ1f = (ũ− u)
∣∣
[0,T ]×∂Ω

.

We have

Λ̃1f̃ − Λ1f = Λ1(f̃ − f) + w
∣∣
[0,T ]×∂Ω

, (24)

where w solves (∂2
t − c2∆)w = (c̃2 − c2)∆ũ in (0, T )×Rn,

w|t=0 = 0,
∂tw|t=0 = 0.

(25)

Set

P := c2∆, h = c−2(c̃2 − c2).

and let PD be the Dirichlet realization of P in Ω. Recall the notation ∂−1
t g =∫ t

0
g(s) ds. Denote by Ru with u = [u1, u2] the restriction of u1 to [0, T ]× ∂Ω. We

have

w
∣∣
[0,T ]×∂Ω

= R

∫ t

0

U(s)[0, hP ũ(t− s, ·)] ds.

Take the t derivative to get

wt
∣∣
[0,T ]×∂Ω

= Λ2hP f̃ +W, W := R

∫ t

0

U(s)[0, hP ũt(t− s, ·)] ds. (26)

Differentiate W to get

∂

∂t
W = R

∫ t

0

U(s)[0, h∂2
t Pũ(t− s, ·)] ds, (27)

where we used the fact that ∂tũ = 0 for t = 0, therefore ∂t∆ũ = 0 for t = 0.
Differentiate one more time to get

∂2

∂t2
W = Λ2hP

2f̃ +R

∫ t

0

U(s)[0, h∂3
t Pũ(t− s, ·)] ds, (28)

Relations (26) and (27) show that W = O(t2) at t = 0. Therefore,

W = ∂−2
t Λ2hP

2f̃ + ∂−2
t R

∫ t

0

U(s)[0, h∂3
t Pũ(t− s, ·)] ds := I1 + I2. (29)

By Proposition 2, for the first term on the right we get

I1 = Λ2P
−1
D

(
hP 2f̃

)
.

The second term on the r.h.s. of (29) can be written in the form

I2 := ∂−2
t R

∫ t

0

U(t− s)[0, hP 2ũt(s, ·)] ds.
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We claim that I2 = I ′2, where

I ′2 = R

∫ t

0

U(t− s)[0, P−1
D hP 2ũt(s, ·)] ds.

Indeed, I ′2 = 0 for t = 0, and direct differentiation shows that

∂tI
′
2 = R

∫ t

0

U(t− s)[P−1
D hP 2ũt(s, ·), 0] ds.

because RP−1
D = 0. Therefore, ∂tI

′
2 = 0 for t = 0 as well. Differentiate one more

time to get I2 = I ′2. Therefore,

W = Λ2P
−1
D hP 2f̃ +R

∫ t

0

U(s)[0, P−1
D hP 2ũt(t− s, ·)] ds.

Compare with (26) and repeat these arguments to get for any N = 1, 2, . . .

W =

N−1∑
k=1

Λ2P
−k
D hP k+1f̃ +R

∫ t

0

U(s)[0, P−N+1
D hPN ũt(t− s, ·)] ds.

We want to emphasize that in all those formulas, h is considered as an operator of
multiplication, i.e., Λ2P

−k
D hP k+1f̃ = Λ2(P−kD (hP k+1f̃)), etc. Combine this with

(24), (26), to get the following.

∂t

(
Λ̃1f̃ − Λ1f

)
= Λ2P (f̃ − f) +

N−1∑
k=0

Λ2P
−k
D hP k+1f̃

+R

∫ t

0

U(s)[0, P−N+1
D hPN ũt(t− s, ·)] ds.

(30)

Since Λ̃1f̃ − Λ1f = 0 for t = 0, integrating w.r.t. t, and applying Proposition 2,
we get

Λ̃1f̃ − Λ1f = Λ1(f̃ − f) +

N∑
k=1

Λ1P
−k
D hP kf̃

+ ∂−1
t R

∫ t

0

U(s)[0, P−ND hPN+1ũt(t− s, ·)] ds.

(31)

Finally, using the arguments above, we write the last term on the right as

R

∫ t

0

U(s)[P−N−1
D hPN+1ũt(t− s, ·), 0] ds.

We therefore proved the following.

Theorem 4.1. Let (c, f) and (c̃, f̃) be two pairs in C2N (Ω̄)×H2N+2(Ω) ∩H1
0 (Ω)

with c > 0, c̃ > 0 in Ω̄. Then

Λ̃1f̃ − Λ1f

= Λ1(f̃ − f) + Λ1

N∑
k=1

(
c2∆D

)−k (
c−2(c̃2 − c2)

(
c2∆

)k
f̃
)

+R

∫ t

0

U(s)
[(
c2∆D

)−N−1
(
c−2(c̃2 − c2)

(
c2∆

)N+1
ũt(t− s, ·)

)
, 0
]

ds. (32)

We define the linearization δΛ1{δf, δc2} at (c, f) as the derivative at ε = 0 of Λ1

with speed c2ε = c+ εδc and source fε = f + εδf .
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Corollary 1. For any N = 1, 2, . . . , the linearized operator δΛ1{δf, δc2} at (c, f)
has the form

δΛ1{δf, δc2} = Λ1

(
δf +QNc

−2δc2
)

+RNc
−2δc2, (33)

where

QNh =

N∑
k=1

(
c2∆D

)−k (
h
(
c2∆

)k
f
)
, (34)

and

RNh = R

∫ t

0

U(s)
[(
c2∆D

)−N−1
(
h
(
c2∆

)N+1
ut(t− s, ·)

)
, 0
]

ds. (35)

Proof of Theorem 1.1. Note that for (c, f) ∈ C∞, the operator RN is smoothing
2N + 2 degrees, i.e.,

RN : Hs
0(K)→ Hs+2N+2([0, T ]× ∂Ω), (36)

and QN is a ΨDO (in the interior of Ω) with principal symbol ∆f(x)|ξ|−2. So for
δc2 supported in a compact set in Ω, we can write

δΛ1{δf, δc2} = Λ1

(
δf +

(
c−2∆f |D|−2 + l.o.t.

)
δc2
)

+R∞δc
2, (37)

where R∞ is smoothing, and l.o.t. stands for “lower order terms”, i.e., for a pseudo-
differential operator of order −3, which we can always assume to have a proper
support.

This result is not surprising. All singularities of the kernel of δΛ1 are of conormal
type, at dist(x, y) = t, where dist is the distance in the metric c−2dx2. This can be
seen from the representation

δΛ1{δc2, δf} = Λ1δf +R

∫ t

0

U(s)[0,∆u(t− s, ·)δc2] ds. (38)

The operator QN can be explained by those singularities. Next, RN depends on
the smooth part of the kernel, and in particular, the behavior of the kernel inside
that geodesic ball.

An important observation is that if the expression in the parentheses in (33)
vanishes (and this is an explicit condition on δf and δc2), then the linearization
is very smooth. If for a moment we ignore R∞, we get a kernel of infinite dimen-
sion. Indeed, given δc2, compactly supported in Ω, we can always find δf so that
δf +

(
c−2∆f |D|−2 + l.o.t.

)
δc2 = 0. If we are given a compactly supported (in Ω)

function δf , and if ∆f 6= 0 on supp δf , we can find δc2 at least away from a finitely
dimensional space, so that the expression above vanishes as well. The effect of R∞
will be the following. Even though we still do not know whether we can determine
both δf and δc2, we can claim that even of we could, the problem would be unstable.

More precisely, given N > 1, let VN be the linear space

VN =
{

(δf, h) ∈ HD(Ω)× L2(K); δf +QNh = 0
}
. (39)

Then for the linearization δΛ1{δf, δc2} we have

VN 3 (δf, c−2δc2) 7−→ δΛ1{δf, δc2} ∈ H2N+2
(0) ([0, T ]× ∂Ω). (40)

This can easily be generalized to (δh, f) belonging to negative Sobolev spaces. We
then complete the proof of Theorem 1.1 by a well known argument, see, e.g., [20]
or the remark below.
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Remark 1. It is easy to see also that δΛ1 does not satisfy the following conditional
stability estimate either:

‖δf‖Hs1 (Ω) + ‖δc2‖Hs1 (K) ≤ C
∥∥δΛ1{δf, δc2}

∥∥µ
Hs2

, 0 < µ < 1, (41)

under the condition
‖δf‖Hs3 (Ω) + ‖δc2‖Hs3 (K) ≤ A (42)

regardless of how we choose s1, s2, s3 and A > 0. Indeed, fix φ ∈ C∞0 , supported
in the interior of K. Set

hλ = λ−s3eiλω·xφ,

where λ > 0, s3 > 0 and ω ∈ Sn−1 are fixed. Let δfλ be such that (δfλ, hλ) ∈ VN ,
N � 1. Then (42) is satisfied. On the other hand, with c2λ = (1 + hλ)c2,∥∥δΛ1{δfλ, δc2λ}

∥∥
Hs2

= ‖RNhλ‖Hs2 ≤ CNλs2−s3−2N−2,

see (36), while

‖δc2λ‖Hs1 ≥ λs1−s3/C.
Therefore we get a contradiction with (41) for N � 1.
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