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Abstract

We consider in two dimensions, the inverse boundary problem of reconstructing
the absorption and scattering coefficient of an inhomogeneous medium by probing
it with diffuse light. The problem is modeled as an inverse boundary problem for
the stationary linear Boltzmann equation. The information is encoded in the albedo
operator. We show that we can recover the absorption and the scattering kernel from
this information provided that the latter is small in an appropriate topology. We also
give stability estimates and propose an approximate reconstruction procedure.

Optical Tomography concerns with the determination of spatially-varying optical ab-
sorption and scattering properties of a medium by measuring the response of the medium
to transmitted near-infrared light. This has been proposed recently as a possible diagnostic
tool in medicine (see [A] for a review). A probabilistic approach to optical tomography is the
so-called diffused tomography [SGKZ]. Other areas of applications are atmospheric remote
sensing [Bi], nuclear physics (see [MC] for a review), etc. We describe in more detail the
mathematical problem below.

Let X ⊂ R2 be an open convex set with smooth boundary and consider the 2D stationary
transport equation

−v(θ) · ∇xf − σ(x, θ)f +
∫

S1
k(x, θ′, θ)f(x, θ′) dθ′ = 0, (1)

where x ∈ X, θ, θ′ ∈ S1 and throughout this paper we will use the notation

v(θ) = (cos θ, sin θ).
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Here f(x, θ) represents the density of a particle flow, σ ≥ 0 is the absorption coefficient,
while k(x, θ′, θ) ≥ 0 is the collision kernel. We assume that σ and k are in L∞. Denote
Γ± = {(x, v) ∈ ∂X × S1; ±n(x) · v > 0}, where n(x) is the outer normal to ∂X at x ∈ ∂X.
To ensure the solvability of the problem (1), (2), some additional conditions are needed, see
i.e., [CS2]. One of them is to require that k is small enough in a certain sense, for example,
that diam(X)‖k‖L∞ < 1, see (12). In this paper we work with k sufficiently small and under
this assumption (1), (2) is always uniquely solvable with f ∈ L∞(X × S1).

Let us denote by f the solution to (1) satisfying the boundary condition

f |Γ− = f−, (2)

where f− ∈ C∞
0 (Γ−). The albedo operator A mapping the incoming flux f− on Γ− to the

outgoing one on Γ+ is defined as follows

A : f− 7−→ f |Γ+ ∈ L∞(Γ+).

The inverse problem we are interested in, is the problem of recovering (σ, k) from know-
ledge of the albedo operator A. First, if k = 0, it is obvious that A does not determine
uniquely σ since in this case all we get from the knowledge of A is

∫
σ(x+ t(cos θ, sin θ), θ) dt

for any θ ∈ S1 and any x and this is not enough to recover σ. For this reason in our main
theorems we assume that σ depends on x only. In dimensions n ≥ 3 this problem is formally
overdetermined for the recovery of k and uniqueness under the assumption above is proved
in [CS1], [CS2] by studying the singularities of the distributional kernel of A (see also [Bo]).
Some of the earlier works where this problem is treated under more restrictive assumptions
are [AB], [CZ], [L1], [L2], [MC], [PV]. Stability estimates under various assumptions are
proved in [R2], [R3] (see also the references therein), [W].

In two dimensions, this inverse problem is formally determined for the recovery of k.
Uniqueness and stability are proved for small k in the case when k = k(x, cos(θ − θ′)) in
[R1], and in the case k = k(θ, θ′) uniqueness for small k is proved in [T]. Note that in
those cases the inverse problem is still formally overdetermined. The purpose of this paper
is to prove a uniqueness results for general (small) k(x, θ′, θ) relative to the absorption (see
Theorem 1), a stability estimate (see Theorem 2) and propose an approximate reconstruction
procedure (see Remark 2).

The first main result in this paper is the following.

Theorem 1 Define the class

UΣ,ε = {(σ(x), k(x, θ′, θ)) ; ‖σ‖L∞ ≤ Σ, ‖k‖L∞ ≤ ε} . (3)

Then, for any Σ > 0 there exists ε > 0 such that a pair (σ, k) ∈ UΣ,ε is uniquely determined
by its albedo operator A in the class UΣ,ε.
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Remark 1. One can easily see from the proof (see (20) and (21)) that we can choose
ε = C(d)e−2dΣ, where C(d) > 0 and d = diam(D). Therefore, the smallness assumption on
k is relative to the size of σ. As explained above, ε < 1/d guarantees that the direct problem
is solvable.

The proof of Theorem 1 follows by a careful analysis of the singularities of the distribution
kernel α(x, θ, x′, θ′) of A (see also [CS1], [CS2] for similar analysis in dimensions n ≥ 3). In
the two dimensional case we show that A admits the singular decomposition (see Lemma 1
and Proposition 1)

α =
δ(θ − θ′)δ{x′+τ+(x′,θ′)v(θ′)}(x)

n(x) · v(θ)
e−a(x′,θ′) + b(x, θ, x′, θ′), (4)

where n(x) is the exterior normal to ∂X, the function τ+(x′, θ′) is the “exit time” defined in
next section, and

a(x′, θ′) =
∫ τ+(x′,θ′)

0
σ(x′ + tv(θ′), θ′) dt, b sin(θ − θ′) ∈ L∞. (5)

In particular, knowing A, we can uniquely determine a and b. Let we have two pairs (σ, k)
and (σ̃, k̃) with albedo operators A and Ã, respectively. Set

δ1 = ‖a− ã‖H1(Γ−), δ2 = ‖(b− b̃) sin(θ − θ′)‖L∞(Γ−×Γ+). (6)

Our second result is the following stability estimate.

Theorem 2 Let

Vs
Σ,ε =

{
(σ(x), k(x, θ′, θ)) ∈ Hs(X) × C(X × S1 × S1); ‖σ‖Hs ≤ Σ, ‖k‖L∞ ≤ ε

}
. (7)

Then, for any s > 1, Σ > 0, there exists ε > 0 such that for any (σ, k) ∈ Vs
Σ,ε and (σ̃, k̃) ∈ Vs

Σ,ε

and 0 < µ < 1 − 1/s, there exists C > 0 such that

‖σ − σ̃‖L∞ ≤ Cδ
1−1/s−µ
1 ,

‖k − k̃‖L∞ ≤ C
(
δ

1−1/s−µ
1 + δ2

)
.

Remark 2. The proofs of the theorems above are useful for reconstruction purposes as
well. First, one separates the most singular term of the kernel of A (see (4)) from the
coefficient b and from the first one reconstructs σ. Next, the coefficient b(x, θ, x′, θ′) is the
restriction α1 +α2 of φ1 +φ2 for (x, v) ∈ Γ+, see Proposition 1. We cannot separate α1 from
α2 as in the case n ≥ 3, see [CS2], but for small k, we have α2 = O(k2), while α1 is linear in
k and determines directly k, see Proposition 1.
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1 The uniqueness, proof of Theorem 1

Recall that σ and k are L∞ in all variables. It is convenient to think later that σ and k are
extended as 0 for x 6∈ X. Denote the left-hand side of (1) by Tf . Denote

T1f = −v(θ) · ∇xf − σf, Kf =
∫

S1
k(x, θ′, θ)f(x, θ′)dθ′,

so that T = T1 + K. First, we reduce the boundary value problem

{
Tf = 0 in X × S1,

f |Γ− = f− ∈ C∞
0 (Γ+)

(8)

to an integral equation by a standard argument. For (x, θ) ∈ X̄ ×S1, define τ±(x, θ) ≥ 0 by
the condition (x ± τ±(x, θ)v(θ), θ) ∈ Γ±. Introduce the operator M by

Mf =
∫ ∞

0
e−
∫ t

0
σ(x−sv(θ),θ)ds(Kf)(x − tv(θ), θ) dt. (9)

If we denote the solution to T1u = f , u|Γ− = 0 by

T−1
1 f = −

∫ τ−(x,θ)

0
e−
∫ t

0
σ(x−sv(θ),θ)dsf(x − tv(θ), θ) dt,

then M = −T−1
1 K. Problem (8) can be written as (T1 +K)f = 0, f |Γ− = f−. Applying T−1

1

to the first equation, we get that f solves

(I − M)f = Jf−, (10)

where

Jf− = e−
∫ τ−(x,v)

0
σ(x−sv,v)dsf−(x − τ−(x, v)v, v).

Note that Jf− solves the problem T1Jf− = 0, Jf−|Γ− = f−. Then f is given by

f = (I − M)−1Jf−, (11)

provided that I − M is invertible in a suitable space. The definition (9) of M implies
immediately that

‖Mf‖L∞(X×S1) ≤ C‖f‖L∞(X×S1), (12)

where C = diam(X)‖k‖L∞ . Therefore, if (σ, k) ∈ UΣ,ε and ε < 1/diam(X), then I − M is
invertible in L∞(X×S1), and then the solution f to (8) is given by (11). By using Neumann
series, it is not hard to see that the trace (I − M)−1f |Γ+ is well defined in L∞(Γ+) for any
f ∈ L∞(X × S1). This proves in particular that A maps C∞

0 (Γ−) into L∞(Γ+) under the
smallness assumption on k above. The same arguments also show that Af− can be defined
for any f− ∈ L∞(Γ−) as well but we will not need this since we work with the distribution
kernel of A. The mapping properties of A in L1 spaces are discussed in [CS2].
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We proceed with the study of the distribution kernel of A. Define first the fundamental
solution φ(x, θ, x′, θ′) of the boundary value problem (8) as follows. For (x′, v′) ∈ Γ−, let
φ(x, v, x′, v′) solve {

Tφ = 0 in X × S1,
φ|Γ− = |n(x′) · v(θ′)|−1δx′(x)δ(θ − θ′),

(13)

where δx′(x) ∈ D′(∂X) is defined by
∫
∂X δx′(x)ϕ(x) dµ(x) = ϕ(x′), with dµ(x) the in-

duced measure on ∂X. Then the albedo operator A has distribution kernel α(x, θ, x′, θ′) =
φ(x, θ, x′, θ′)|(x,θ)∈Γ+, (x′, θ′) ∈ Γ−, (x, θ) ∈ Γ+, i.e.,

(Af−)(x, v) =
∫

Γ−
α(x, θ, x′, θ′)f−(x′, θ′) dξ(x′, θ′), ∀f− ∈ C∞

0 (Γ+),

where dξ(x′, θ′) = |n(x′) · v(θ′)|dξ(x′, θ′) dµ(x′) dθ′ and n(x) is the unit exterior normal to
∂X.

As in [CS2], we construct a singular expansion of φ as follows. Note that for any f− ∈
C∞

0 (Γ−), the outgoing flux Af− is given by

Af− = Jf−|Γ+ + MJf−|Γ+ + (I − M)−1M2Jf−|Γ+ .

Let
E(x, θ, t) = e∓

∫ t

0
σ(x+sv(θ),θ)ds, ±t ≥ 0

be the total absorption along the path [x, x + tv(θ)]. Then

φ = φ0 + φ1 + φ2,

where
φ0 = Jφ−, φ1 = MJφ−, φ2 = (I − M)−1M2Jφ−, (14)

and φ− = |n(x′) · v(θ′)|−1δx′(x)δ(θ − θ′) as in (13). As in [CS2],

φ0 = E(x, θ,−∞)δ(θ− θ′)
∫ τ+(x′,v(θ′))

0
δ(x− x′ − tv(θ′))dt.

Next,

φ1 = χE(y, θ′,−∞)
k(y, θ′, θ)

| sin(θ − θ′)|E(y, θ,∞), (15)

where y = y(x′, θ′, x, v) is the point of intersection of the rays (0,∞) 3 s 7→ x′ + sv(θ′) and
(−∞, 0) 3 t 7→ x + tv(θ) and χ = χ(x, θ, x′, θ′) equals 1, if those two rays intersect in X̄,
otherwise χ = 0. Recall that X is convex.

To estimate φ2 we need the following.

Lemma 1 Let (σ, k) and (σ, k̃) be in L∞. Let K, M and K̃, M̃ be related to k and k̃ (not
necessarily non-negative), respectively. Then there exists C > 0 depending on diam(X) only
such that

|(M̃Mφ0)(x, θ, x′, θ′)| ≤ C‖k̃‖L∞‖k‖L∞

(
1 + log

1

sin |θ − θ′|

)

almost everywhere on X × S1 × Γ−, and also almost everywhere on Γ+ × Γ−.
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Proof. Note first that for any f ,

|Mf | ≤
∫ ∞

0

∫

S1
|k(x − tv(θ), θ′, θ)f(x − tv(θ), θ′)| dθ′ dt,

therefore

|(K̃Mf)(x, θ)| ≤
∫

S1

∫ ∞

0

∫

S1
|k̃(x, θ′′, θ)k(x− tv(θ′′), θ′θ′′)f(x − tv(θ′′), θ′)| dθ′ dt dθ′′

=
∫ ∫

S1

|k̃(x, arg(x − y), θ)k(y, θ′, arg(x− y))|
|x − y|

|f(y, θ′)| dθ′ dy.

Here arg(z) is the polar angle of z ∈ R2. Setting f = φ0, we get

|(K̃Mφ0)(x, θ, x′, θ′)| ≤
∫

y∈l(x′,θ′)

|k̃(x, arg(x − y), θ)k(y, θ′, arg(x− y))|
|x − y| dl(y),

where l(x′, θ′) is the line through x′ parallel to θ′ and dl is the Euclidean measure on it. The
following estimate ∫ A

−A

ds√
ν2 + s2

≤ 2
(
1 + log

A

ν

)
, 0 < ν ≤ A.

is easy to prove since the integral actually equals log
(
A/ν +

√
1 + A2/ν2

)
. Therefore,

|(K̃Mφ0)(x, θ, x′, θ′)| ≤ 2‖k̃‖L∞‖k‖L∞

(
1 + log

d

dist{x, l(x′, θ′)}

)
, (16)

where d = diam(X). Applying T−1
1 , we get

|(M̃Mφ0)(x, θ, x′, θ′)| ≤ 2‖k̃‖L∞‖k‖L∞

∫ d

0

(
1 + log

d

dist{x − tv(θ), l(x′, θ′)}

)
dt

≤ C‖k̃‖L∞‖k‖L∞

(
1 + log

1

| sin(θ − θ′)|

)
,

with C = C(d). This proves the lemma. 2

For φ2 we have therefore φ2 = (I − M)−1φ#
2 with φ#

2 = M2φ0 and by Lemma 1,

0 ≤ φ#
2 (x′, θ′, x, θ) ≤ C‖k‖2

L∞

(
1 + log

1

| sin(θ − θ′)|

)
. (17)

To estimate φ2, write φ2 = φ#
2 +(I −M)−1Mφ#

2 . Since the singularity in the r.h.s. of (17) is
integrable, we get that Kφ#

2 ∈ L∞, same for Mφ#
2 , therefore ‖φ2 − φ#

2 ‖L∞ ≤ C‖k‖3
L∞, with

some constant C > 0, and in particular, φ2 − φ#
2 ∈ L∞. From now on, we will denote by C

different positive constants. Therefore, φ2 also satisfies (17). Observe that 0 ≤ φ2 because
(I − M)−1 preserves the non-negative functions.

We have therefore proved the following.
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Proposition 1 For ε > 0 small enough, the fundamental solution φ of (8) defined by (13)
admits the representation φ = φ0 + φ1 + φ2 with

φ0 = E(x, θ,−∞)δ(θ − θ′)
∫ τ+(x′,v(θ′))

0
δ(x − x′ − tv(θ′))dt.

φ1 = χE(y, θ′,−∞)
k(y, θ′, θ)

| sin(θ − θ′)|E(y, θ,∞),

0 ≤ φ2 ≤ C‖k‖2
L∞

(
1 + log

1

| sin(θ − θ′)|

)
,

where y, χ are as in (15) and C = C(diam(X)).

Fix Σ > 0 and assume that we have two pairs (σ, k), (σ̃, k̃) in UΣ,ε with the same albedo
operator and σ, σ̃ depending on x only. Denote by φj and φ̃j, j = 0, 1, 2, the corresponding
components of the fundamental solutions φ and φ̃. Then

φ0 + φ1 + φ2 = φ̃0 + φ̃1 + φ̃2 for (x, θ) ∈ Γ+. (18)

As in [CS1], the most singular terms must agree, therefore,

φ0(x
′, θ′, x, θ) = φ̃0(x

′, θ′, x, θ) for (x′, θ′) ∈ Γ−, (x, θ) ∈ Γ+. (19)

Thus the X-ray transform of σ(x) and σ̃(x) coincide, therefore,

σ(x) = σ̃(x).

Next,

χE(y, θ′,−∞)
k(y, θ′, θ) − k̃(y, θ′, θ)

| sin(θ − θ′)| E(y, θ,∞) = φ̃2 − φ2 on Γ− × Γ+,

where y, χ are as in (15). This, together with (18), (19), leads to the inequality

χ|k(y, θ′, θ)−k̃(y, θ′, θ)| ≤ C| sin(θ−θ′)||φ̃1−φ1| = C| sin(θ−θ′)||φ̃2−φ2| on Γ− × Γ+, (20)

where C = e2dΣ, d = diam(D). Our goal is to show that

ess sup
Γ−×Γ+

| sin(θ − θ′)||φ̃2 − φ2| ≤ Cε‖k − k̃‖L∞(X×S1×S1) (21)

with C > 0 depending on diam(D) only. Then by (20), (21),

‖k − k̃‖L∞(X×S1×S1) ≤ Cε‖k − k̃‖L∞(X×S1×S1),

and for ε > 0 small enough this implies k = k̃.
It remains to prove (21). By (14),

φ2 − φ̃2 = (I − M)−1φ#
2 − (I − M̃)−1φ̃#

2

= (I − M)−1(M2φ0 − M̃2φ0) + (I − M̃)−1(M − M̃)(I −M)−1φ̃#
2

= I1 + I2. (22)
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Writing M2−M̃2 = M(M−M̃)+(M−M̃ )M̃ , the first term I1 can be estimated by Lemma 1
and the paragraph after (17), thus

|I1| ≤ Cε‖k − k̃‖L∞

(
1 + log

1

| sin(θ − θ′)|

)
. (23)

To estimate I2, write

|I2| ≤ C‖k − k̃‖L∞

∫

S1
‖(I − M)−1φ̃2‖L∞(X) dθ ≤ Cε2‖k − k̃‖L∞. (24)

By (22), (23), (24),

|φ2 − φ̃2| ≤ Cε‖k − k̃‖L∞

(
1 + log

1

| sin(θ − θ′)|

)
.

for a.e. (x, θ, x′, θ′) ∈ X × S1 × Γ− and for a.e. (x, θ, x′, θ′) ∈ Γ+ × Γ−. The last statement
follows from the fact that M = T−1

1 K and from the smoothing properties of T−1
1 . Since

sin |θ − θ′| log(1/ sin |θ − θ′|) is bounded, this proves (21).
This completes the proof of Theorem 1. 2

2 The stability estimate, proof of Theorem 2

According to Proposition 1, for the distribution kernel α(x, θ, x′, θ′) of A we have the rep-
resentation (4), where a is as in (5), while b = (φ1 + φ2)|(x,θ)∈Γ+ =: α1 + α2. Then b is a
function and an elementary calculation show that b ∈ L∞(Γ+, L1(Γ−)). Proposition 1 shows
that b sin(θ − θ′) ∈ L∞. Assume that we have two pairs of continuous functions (σ, k) and
(σ̃, k̃) in Vs

Σ,ε with albedo operators A and Ã, respectively. In what follows we will denote
the quantities a, b, α, etc., related to the second pair by putting a tilde sign over it. Also, we
will use the notation ∆A to denote the difference ∆A = A− Ã, and similarly ∆a = a − ã,
etc. In this paper, ∆ never stands for the Laplacian.

Let δ1 and δ2 be as in (6). According to Proposition 1, δ2 < ∞. Our goal is to estimate
∆σ and ∆k in terms of δ1 and δ2. Observe that, as in the uniqueness proof, ∆e−a and
∆(α1 + α2) can be recovered from ∆α by separating the most singular part of ∆α from the
rest. Therefore, δ1 measures the magnitude of the singular part of ∆α, while δ2 measures
the magnitude of the regular part.

We start with estimating ∆σ. By a result of Mukhometov [M],

‖∆σ‖L2 ≤ Cδ1. (25)

Next we estimate ∆k in terms of δ1 and δ2. Set E1(y, θ, θ′) = E(y, θ′,−∞)E(y, θ,∞). Then
by (15), sin |θ− θ′|α1(x, θ, x′, θ′) = χ(E1k)(y, θ′, θ) with y, χ as in (15). Our starting point is
the relation ∆(E1k) = k∆E1 + Ẽ1∆k. By the inequality |e−s1 − e−s2 | ≤ |s1 − s2| for 0 ≤ si,
i = 1, 2, we get that |∆E1| ≤ 2d|∆σ| ≤ 2dδ′1, where

δ′1 = ‖∆σ‖L∞.
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Hence, on supp χ,

Ẽ1|∆k|(y, θ, θ′) ≤ |∆(E1k)| + k|∆E1|
≤ |∆(α1 + α2) sin |θ − θ′| − ∆α2 sin |θ − θ′|| + Cδ′1
≤ δ2 + |∆α2| sin |θ − θ′| + Cδ′1. (26)

Therefore,
‖∆k‖L∞ ≤ C (δ′1 + δ2 + ‖∆α2 sin |θ − θ′|‖L∞) (27)

We want to prove an estimate similar to (21) on the last term in the r.h.s. above. Recall that
in (21), we have σ = σ̃, while here we only know how to estimate the difference ∆σ = σ− σ̃.
Nevertheless, we can proceed along similar lines. Denote by γ the trace on Γ+. Clearly,
γ : C(X̄ × S1) → C(Γ+) is bounded with norm 1. Note also that since we assume here that
σ and k are continuous, (I − M)−1 exists in C(X × S1) for ε � 1. Similarly to (21),

∆α2 = γ(I − M)−1φ#
2 − γ(I − M̃)−1φ̃#

2

= γ(I − M)−1(M2φ0 − M̃2φ̃0) + γ(I − M̃)−1(M − M̃ )(I − M)−1φ̃#
2

= I1 + I2. (28)

To estimate I1, we write M2φ0 − M̃2φ̃0 = (M2 − M̃2)φ0 + M̃2∆φ0. In view of (22), (23),
the contribution to I1 of the first term in the r.h.s above can be estimated similarly to (23)
with ‖∆k‖L∞ there replaced by ‖∆k‖L∞ + ‖∆σ‖L∞. Next, to estimate the contribution of
M̃2∆φ0 to I1, notice first that ∆φ0 is given by the first formula in Proposition 1, with the
factor E(x, θ,−∞) there replaced by ∆E(x, θ,−∞) and the latter is O(δ′1). As in Lemma 1,
this easily implies that |M̃2∆φ0| = O(δ′1)/(1− log sin |θ− θ′|), hence |γ(I −M)−1M̃2∆φ0| =
O(δ′1)/(1 − log sin |θ − θ′|). This shows that we have the following analogue of (23)

|I1| ≤ Cε (‖∆k‖L∞ + δ′1)

(
1 + log

1

| sin(θ − θ′)|

)
. (29)

In a similar way, we obtain the version of (24) in this case

|I2| ≤ Cε2 (‖∆k‖L∞ + δ′1) , (30)

Combining (28), (29) and (30), we get, similarly to (21),

|∆α2 sin |θ − θ′|‖L∞ ≤ Cε (‖∆k‖L∞ + δ′1) (31)

Therefore, for ε > 0 small enough, (27) implies the estimate

‖∆k‖L∞ ≤ C (δ′1 + δ2) . (32)

Estimate (32) is the base of our stability estimate. We are going now to use the interpo-
lation inequality

‖f‖β1s1+β2s2 ≤ ‖f‖β1
s1
‖f‖β2

s2
, β1 + β2 = 1, βj ≥ 0,
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where, in our case, ‖ · ‖s will be the norm in the Sobolev space Hs(X). Let σ and σ̃ belong
to Vs

Σ,ε. Then

‖∆σ‖1+sµ ≤ C(Σ)‖∆σ‖1−1/s−µ
L2

for any fixed 0 ≤ µ ≤ 1 − 1/s. By a standard Sobolev embedding theorem and (25),

δ′1 = ‖∆σ‖L∞ ≤ C(Σ)‖∆σ‖1−1/s−µ
L2 ≤ C ′(Σ)δ

1−1/s−µ
1 . (33)

Therefore, (32) yields

‖∆k‖L∞ ≤ C
(
δ

1−1/s−µ
1 + δ2

)
. (34)

Estimates (33) and (34) complete the proof of Theorem 2. 2
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Ann. Inst. H. Poincaré Phys. Théor. 70(1999), no. 5, 473–495.

11


