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1 Introduction

This paper is a review of the recent progress in the study of inverse problems for the transport
equation in Rn, n ≥ 2 by the author and M. Choulli [CSt1], [CSt2], [CSt3], [CSt4] and the
author and G. Uhlmann [StU]. We are focused here on the case when the collision kernel k
introduced below depends on all of its variables x, v′, v. There are a lot of works dealing
with k’s of the form k(x, v′ ·v) that is also physically important but we will not discuss those
results here.

Define the transport operator T by

Tf = −v · ∇xf(x, v)− σa(x, v)f(x, v) +
∫

V
k(x, v′, v)f(x, v′) dv′, (1.1)

where f = f(x, v) represents the density of a particle flow at the point x ∈ X moving with
velocity v ∈ V . Here X ⊂ Rn is a bounded domain with C1–boundary, V ⊂ Rn is the
velocity space. We assume that V is an open set Sections 2 and 3, and that V = Sn−1

(and dv is replaced by dSv) in Section 4. All of our results in Sections 2 and 3 hold in the
case when V = Sn−1 with obvious modifications. In fact, the case V = Sn−1 leads to some
simplifications, for example there is no need to work locally in the open set V \ {0} in some
cases and the measure dξ̃ can be chosen to be dξ in section 3. The coefficient σa(x, v) ≥ 0
above measures the absorption of particles at the point (x, v) due to change of velocity or
absorption by the surrounding media. The collision kernel k(x, v′, v) ≥ 0 is related to the
number of particles that change their velocity from v′ to v at the point x.

We study inverse problems for both the time dependent

(∂t − T )f = 0 (1.2)

and the stationary
Tf = 0 (1.3)
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transport equations. Denote Γ± = {(x, v) ∈ ∂X×V ; ±n(x) ·v > 0}, where n(x) is the outer
normal to ∂X at x ∈ ∂X. A typical boundary value problem for (1.2) or (1.3) is associated
with boundary conditions

f |Γ− = f−, (1.4)

where f− is a given function on Γ−, that depends also on t in the first case. On the boundary
we measure the outgoing flux f+ generated by a given incoming flux f−, i.e., we assume that
we know that so called albedo operator A defined by

A : f− 7−→ f+ = f |Γ+. (1.5)

The inverse problem that we study is the following: Can we determine the functions σa,
k from the knowledge of A? In the time dependent case we study the inverse scattering
problem as well — recovery of σa, k from the knowledge of the scattering operator S. In
order to ensure uniqueness of recovery of σa, we assume that σa depends on x only since it is
easy to see that otherwise there is no uniqueness. Under this assumption and some natural
assumptions in the stationary case that guarantee the solvability of the direct problem (1.2),
we prove not only uniqueness but we in fact give explicit solution of the inverse problem.
Our approach is based on the study of the singularities of the Schwartz kernel of A and we
show that all the information about σa, k is contained in those singularities. We would like
to point out that for large σa, those singularities have very small amplitudes and are hard to
measure in real applications, so then this approach is of less interest for practical recovery
of σa, k. In section 4 we prove some stability estimates.

2 The time dependent transport equation

2.1 Main results

In this section we present inverse problems results about the time dependent transport
equation (1.2)

∂

∂t
u(x, v, t) = −v · ∇xu(x, v, t)− σa(x, v)u(x, v, t) +

∫

V
k(x, v′, v)u(x, v′, t) dv′. (2.1)

We will introduce first some terminology and notation. The production rate σp(x, v′) is
defined by

σp(x, v′) =
∫

V
k(x, v′, v) dv.

Following [RS] we say that the pair (σa, k) is admissible, if

(i) 0 ≤ σa ∈ L∞(Rn × V ),
(ii) 0 ≤ k(x, v′, ·) ∈ L1(V ) for a.e. (x, v′) ∈ Rn × V and σp ∈ L∞(Rn × V ),

Throughout this paper we assume that σa, k are extended as 0 for x 6∈ X.
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Denote T0 = −v · ∇x with its maximal domain It is well-known that T0 is a generator
of a strongly continuous group U0(t)f = f(x− tv, v) of isometries on L1(X × V ) preserving
the non-negative functions. Following the notation in [RS], let us introduce the operators

[A1f ](x, v) = −σa(x, v)f(x, v), T1 = T0 + A1, D(T1) = D(T0),
[A2f ](x, v) =

∫
V k(x, v′, v)f(x, v′) dv′, T = T0 + A1 + A2 = T1 + A2, D(T ) = D(T0)

and set A = A1 + A2. Operators A1 and A2 are bounded on L1(X × V ) and T1, T are
generators of strongly continuous groups U1(t) = etT1, U(t) = etT , respectively [RS]. For
U1(t) we have an explicit formula

[U1(t)f ](x, v) = e−
∫ t

0
σa(x−sv,v)dsf(x − tv, v), (2.2)

while for U(t) we have
‖U(t)‖ ≤ eCt, C = ‖σp‖L∞. (2.3)

We work in the Banach space L1(X × V ), so here ‖U(t)‖ is the operator norm of U(t) in
L(L1(X × V )). It should be mentioned also that U(t) preserves the cone of non-negative
functions for t ≥ 0.

One can define the wave operators associated with T , T0 by

W− = s-lim
t→∞

U(t)U0(−t), (2.4)

W̃+ = s-lim
t→∞

U0(−t)U(t). (2.5)

If W−, W̃+ exist, then one can define the scattering operator

S = W̃+W−

as a bounded operator in L1(X × V ). Scattering theory for (1.1) has been developed in [Hej],
[Si], [V1] and we refer to these papers (see also [RS]) for sufficient conditions guaranteeing
the existence of S. We would like to mention here also [P1], [U], [E], [St], [V2], [CMS]. An
abstract approach based on the Limiting Absorption Principle has been proposed in [Mo].
We show below however that S can always be defined as an operator S : L1

c(R
n ×V \{0}) →

L1
loc(R

n×V \{0}). The inverse scattering problem for (2.1) is the following: Does S determine
uniquely σa, k? The answer is affirmative if σa is independent of v.

Theorem 2.1 ([CSt1], [CSt2]) Let (σa, k), (σ̂a, k̂) be two admissible pairs such that σa,
σ̂a do not depend on v and denote by S, Ŝ the corresponding scattering operators. Then, if
S = Ŝ, we have σa = σ̂a, k = k̂.

The assumption that σa, σ̂a depend on x only can be relaxed a little by assuming that
they depend on x and |v| only. In the general case however, there is no uniqueness. Assume,
for example, that k = 0. Then

Sf = e
−
∫∞
−∞ σa(x−sv,v)ds

f, (k = 0) (2.6)
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and therefore S determines
∫∞
−∞ σa(x − sv, v)ds only for any v ∈ V . It is easy to see that

those integrals do not determine σa uniquely. If σa is independent of v/|v| however, then S
determines the X-ray transform of σa and it therefore determines σa in this case.

Next we consider the albedo operator A. Assume that X is convex and has C1-smooth
boundary ∂X. Consider the measure dξ = |n(x) · v|dµ(x)dv on Γ±, where dµ(x) is the
measure on ∂X. Let us solve the problem





(∂t − T )u = 0 in R × X × V ,
u|R×Γ− = u−,

u|t�0 = 0,
(2.7)

for u(t, x, v), where u− ∈ L1
c(R; L1(Γ−, dξ)). The problem (2.7) has unique solution u ∈

C(R;L1(X × V )) and one defines the albedo operator A by

Ag = u|R×Γ+ ∈ L1
loc(R;L1(Γ+, dξ)). (2.8)

Therefore, A : L1
c(R; L1(Γ−, dξ)) → L1

loc(R;L1(Γ+, dξ)). It can be seen that Ag can be
defined more generally for g ∈ L1(R × Γ−, dt dξ) with g = 0 for t � 0. We show below
that in fact A determines S uniquely and conversely, S determines A uniquely by means of
explicit formulae in case when X is convex. This generalizes earlier results in [AE], [EP],
[P2] showing that there is a relationship between S and A. To this end, let us define the
extension operators J± and the restriction (trace) operators R± as follows. Set

Ω = {(x, v) ∈ Rn × V \{0}; ∃t ∈ R, such that x− tv ∈ X}, (2.9)

and define the functions

τ±(x, v) = min{t ∈ R; (x ± tv, v) ∈ Γ±}, (x, v) ∈ Ω. (2.10)

Given g ∈ L1(R × Γ±, dt dξ), consider the following operators of extension:

(J±g)(x, v) =

{
g(±τ±(x, v), x± τ±(x, v)v, v), (x, v) ∈ Ω,
0, otherwise.

It is easy to check that J± : L1(R × Γ±, dt dξ) → L1(X × V ) are isometric. Denote by R±
the operator of restriction

R±f = f |Γ±, f ∈ C(Rn × V ).

Although R± is not a bounded operator on L1(X × V ) (see [Ce1], [Ce2] and Theorem 3.2 be-
low), we can show that R±U0(t)f ∈ L1(R×Γ±, dt dξ) is well defined for any f ∈ L1(X × V ).
Denote by χΩ the characteristic function of Ω. We establish the following relationships be-
tween S and A.
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Theorem 2.2 ([CSt1], [CSt2]) Assume that X is convex. Then
(a) Ag = R+U0(t)SJ−g, ∀g ∈ L1

c(R × Γ−, dt dξ),
(b) Sf = J+AR−U0(t)f + (1 − χΩ)f , f ∈ L1

c(R
n × V \{0}),

(c) A extends to a bounded operator

A : L1(R × Γ−, dt dξ) → L1(R × Γ+, dt dξ)

if and only if S extends to a bounded operator on L1(X × V ).

Let us decompose L1(Rn × V ) = L1(Ω) ⊕ L1((Rn × V ) \ Ω). A similar decomposition
holds for L1

c(R
n × V \{0}). Then S leaves invariant both spaces, moreover S|L1((Rn×V )\Ω) =

Id, so S can be decomposed as a direct sum S = SΩ ⊕ Id. Denote R± = R±U0( · ) :
L1(Ω) → L1(R × Γ±, dt dξ). Then R± are isometric and invertible and R−1

± = J± with
J± : L1(R × Γ±, dt dξ) → L1(Ω), J±f := J±f |L1(Ω). Then we can rewrite Theorem 2.2 (a),
(b) in the following way

A = R+SΩJ− on L1
c(R × Γ−, dt dξ),

SΩ = J+AR− on L1
c(R

n × V \{0}).

Thus A can be obtained from SΩ by a conjugation with invertible isometric operators and
vice-versa.

An immediate consequence of Theorem 2.2 is that A determines uniquely σa, k for σa

independent of v and X convex. In short, in this case the inverse boundary value problem
is equivalent to the inverse scattering problem. However, we can prove uniqueness for the
inverse boundary value problem for not necessarily convex domains as well independently of
Theorems 2.1 and 2.2.

Theorem 2.3 ([CSt1], [CSt2]) Let (σa, k), (σ̂a, k̂) be two admissible pairs with σa, σ̂a

independent of v Then, if the albedo operators A, Â on ∂X coincide, we have σa = σ̂a,
k = k̂.

2.2 Singular decomposition of the fundamental solution and the
kernels of S and A. Proof of the main results in section 2.1

The key to proving the uniqueness results above is to study the singularities of the Schwartz
kernel of S and respectively A. To this end we will study first the kernel of the solution
operator of the problem (2.7). Given (x′, v′) ∈ Rn × V \{0}, consider the following problem

{
(∂t − T )u = 0 in R × Rn × V

u|t�0 = δ(x− x′ − tv)δ(v− v′),
(2.11)

δ being the Dirac delta function. Problem (2.1) has unique solution u#(t, x, v, x′, v′) with
u# depending continuously on t with values in D′(Rn

x × Vv × Rn
x′ × Vv′ \{0}). We have the

following singular expansion of u#.
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Theorem 2.4 ([CSt1], [CSt2]) Problem (2.11) has unique solution u# = u#
0 + u#

1 + u#
2 ,

where

u#
0 = e−

∫∞
0

σa(x−sv,v)dsδ(x− x′ − tv)δ(v − v′),

u#
1 =

∫ ∞

0
e−
∫ s

0
σa(x−τv,v)dτe−

∫∞
0

σa(x−sv−τv′ ,v′)dτk(x − sv, v′, v)δ(x− sv − (t− s)v′ − x′) ds,

u#
2 ∈ C

(
R; L∞

loc(R
n
x′ × Vv′ ; L1(Rn

x × Vv))
)
.

The proof of Theorem 2.4 is based on iterating twice Duhamel’s formula

U(t − r) = U1(t− r) +
∫ t

r
U(t − s)A2U1(s − r) ds

and on estimating the remainder term.
In order to build the scattering theory for the transport equation, we first show that the

wave operators W−, W̃+ (see (2.4), (2.5)) exist as operators between the spaces

W− : L1
c(R

n × V \{0}) −→ L1(X × V ),

W̃+ : L1(X × V ) −→ L1
loc(R

n × V \{0}).

Then we define the scattering operator

S = W̃+W− : L1
c(R

n × V \{0}) −→ L1
loc(R

n × V \{0}). (2.12)

It can be seen that S is well defined on the wider subset {f ; ∃t0 = t0(f), such that U0(t)f = 0
for x ∈ X, t < −t0} (the incoming space).

The distribution u#(t, x, v, x′, v′) is the Schwartz kernel of U(t)W−. Let S(x, v, x′, v′) be
the Schwartz kernel of the scattering operator S. Then

S(x, v, x′, v′) = lim
t→∞

u#(t, x + tv, v, x′, v′).

This limit exists trivially, in fact for any K ⊂⊂ Rn × V \{0}, the distribution u#(t, x +
tv, v, x′, v′)|K is independent of t for t ≥ t0(K). On the other hand, as mentioned in the
Introduction, it is not trivial to show that under some condition, S is a kernel of a bounded
operator in L1(Rn × V ). One can also prove the following integral representation of the
scattering kernel

S(x, v, x′, v′) = e
−
∫∞
−∞ σa(x−τv,v)dτ

δ(x− x′)δ(v − v′)

+
∫ ∞

−∞
e−
∫∞

s
σa(x+τv,v)dτ (A2u

#)(s, x + sv, v, x′, v′) ds. (2.13)

The formula above is an analogue of the representation of the scattering amplitude (in our
setting, that would be the second term in the r.h.s. above) for the Schrödinger equation.

Now, combining Theorem 2.4 and the representation above, we get the following for the
kernel S of the scattering operator S.
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Theorem 2.5 ([CSt1], [CSt2]) We have S = S0 + S1 + S2, where the Schwartz kernels
Sj(x, v, x′, v′) of the operators Sj, j = 0, 1, 2 satisfy

S0 = e
−
∫∞
−∞ σa(x−τv,v)dτ

δ(x − x′)δ(v − v′),

S1 =
∫ ∞

−∞
e−
∫∞

s
σa(x+τv,v)dτe−

∫∞
0

σa(x+sv−τv′ ,v′)dτk(x + sv, v′, v)δ(x− x′ + s(v − v′)) ds,

S2 ∈ L∞
loc(R

n
x′ × Vv′ \{0}; L1

loc(R
n
x × Vv\{0})).

We are ready now to complete the proof of Theorem 2.1. The idea of the proof is the
following. Suppose we are given the scattering operator S corresponding to a unknown
admissible pair (σa, k). Then we know the kernel S = S0 + S1 + S2. It follows from
Theorem 2.5 that S0 is a singular distribution supported on the hyperplane x = x′, v = v′

of dimension 2n, S1 is supported on a (3n + 1)-dimensional surface (for v 6= v′), while S2

is a function. Therefore, Sj , j = 0, 1, 2 have different degrees of singularities and given
S = S0 + S1 + S2, one can always recover S0 and S1. From S0 one can recover the X-
ray transform of σa and therefore σa itself, provided that σa is independent of v. Next,
suppose for simplicity that σa, k are continuous. Then for fixed x, v, v′ with v 6= v′, S1 is
a delta-function supported on the line x′ = x + s(v − v′), s ∈ R with density a multiple of
k(x + sv, v′, v). Therefore, one can recover that density for each s and in particular setting
s = 0, we get k(x, v′, v). Moreover, based on this, we can write explicit formulae that extract
σa and k from S by allowing S to act on a sequence of suitably chosen test functions that
concentrate on one of the singular varieties described above, see [CSt2].

We will skip the proof of Theorem 2.2. Let us recall that it proves uniqueness for the
inverse boundary value problem for convex X as a direct consequence of Theorem 2.5.

Assume now that X is not necessarily convex. We can still prove uniqueness for the
inverse boundary value problem by showing that A determines uniquely u# for x outside
X by following arguments in [SyU], and then using (2.13) and Theorem 2.5. In order to
give a constructive (in fact, explicit) reconstruction, we study next the Schwartz kernel
of the operator A in the spirit of Theorem 2.5. A priori, this kernel is a distribution in
D′(R× Γ+ ×R× Γ−). Denote by δ1 the Dirac delta function on R1 and by δy(x) the Delta
function on ∂X defined by

∫
∂X δyϕdµ(x) = ϕ(y). Set

θ(x, y) =

{
1, if px + (1 − p)y ∈ X for each p ∈ [0, 1],
0, otherwise.

Theorem 2.6 ([CSt1], [CSt2]) The Schwartz kernel of A has the form α(t−t′, x, v, x′, v′),
i.e. formally (Ag)(t, x, v) =

∫
R×Γ− α(t− t′, x, v, x′, v′)g(t′, x′, v′) dξ(x′, v′) with α = α0 + α1 +

α2, where αj(τ, x, v, x′, v′) ((x, v) ∈ Γ+, (x′, v′) ∈ Γ−) satisfy

α0 = |n(x′) · v′|−1e−
∫ τ−(x,v)

0
σa(x−sv,v)dsδ{x−τ−(x,v)v}(x

′)δ(v − v′)δ1(τ − τ−(x, v)),

α1 = |n(x′) · v′|−1
∫

e−
∫ s

0
σa(x−pv,v)dpe−

∫ τ−(x−sv,v′)
0

σa(x−sv−pv′ ,v′)dpδ1(τ − s − τ−(x − sv, v′))

×k(x− sv, v′, v)δ{x−sv−τ−(x−sv,v′)v′}(x
′)θ(x − sv, x)ds,

α2 ∈ L∞
(
Γ−; L1

loc(Rτ ; L1(Γ+, dξ))
)

.
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The proof of Theorem 2.3 now follows from the theorem above by analyzing the singu-
larities of α as above. In this case, we can also wite explicit formulae for σa, k as certain
limits of the distribution α acting on a sequence of test functions concentrating near the
singularities of α0, respectively α1, see [CSt2].

3 The stationary transport equation

We turn our attention now to the boundary value problem (1.3), (1.4) for the stationary
transport equation

{
−v · ∇xf(x, v)− σa(x, v)f(x, v) +

∫
V k(x, v′, v)f(x, v′) dv′ = 0 in X × V ,

f |Γ− = f−.
(3.1)

Here X does not need to be convex. We impose some conditions in order to ensure the unique
solvability of the direct problem (3.1). Recall the definition (2.10) of τ±. Set τ = τ− + τ+.
We will consider two cases. First we assume that

‖τσa‖L∞ < ∞, ‖τσp‖L∞ < 1. (3.2)

This condition in particular guarantees that the dynamics U(t) corresponding to the time-
dependent transport equation (∂t−T )u = 0 is subcritical [RS], i.e. the L1-norm of the solution
is uniformly bounded for t > 0, compare with (2.3). Note that (3.2) holds if in particular
‖|v|−1σa‖L∞ < ∞, diam(X)‖|v|−1σp‖L∞ < 1. The second situation we will consider is when
[DL]

0 ≤ ν ≤ σa(x, v)− σp(x, v) for a.e. (x, v) ∈ X × V (3.3)

with some ν > 0. This condition means that the absorption rate is greater than the produc-
tion rate. This also implies that the corresponding dynamics is subcritical.

The main result in this section is the following.

Theorem 3.1 ([CSt3], [CSt4]) Assume that (σa, k), (σ̂a, k̂) are two admissible pairs with
σa = σa(x, |v|), σ̂a = σ̂a(x, |v|) and assume that they satisfy either (3.2) or (3.3). Assume
that the corresponding albedo operators A and Â coincide. Then

(a) if n ≥ 3, then σa = σ̂a, k = k̂;
(b) if n = 2, then σa = σ̂a.

Note that in the stationary case we have less data than in the time dependent one studied
in section 2 because the time variable is not present. The inverse boundary value problem
is overdetermined in dimension n ≥ 3 because the kernel of A depends on 4n − 2 variables
while k is a function of 3n variables, σa(x, v/|v|) is a function of 2n − 1 variables. In the
2D case however, the inverse problem for recovery of k is formally determined (but still
overdetermined for the recovery of σa) and the theorem above does not provide uniqueness
in this case. In section 4 we formulate a uniqueness result in the 2D case for small k.
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To prove Theorem 3.1, we again study the Schwartz kernel of the albedo operator A.
Note that in the stationary case, A acts on functions on Γ− and maps them to functions on
Γ+ (see next subsection for details). It turns out that, similarly to the time dependent case,
the kernel of A has a singular decomposition α = α0 + α1 + α2, where α0 and α1 are delta
functions for n ≥ 3 supported on varieties of different dimensions with densities that identify
respectively σa and k. The third term α2 is a locally L1 function and can be distinguished
form α0 and α1. If n = 2, α0 is still a delta function, but α1 is a locally L1 function and
cannot be distinguished from α2 and this explains why this method does not work then. The
2D case is considered separately in next section.

3.1 Some estimates in the stationary case

Similarly to the measure defined in section 2.1, we define the following measure on Γ±:

dξ̃ = min{τ (x, v), λ}|n(x) · v|dµ(x)dv,

where λ > 0 is an arbitrary constant. Using the trace Theorem 3.2 below, we can show
that A : L1(Γ−, dξ) → L1(Γ+, dξ) is a bounded operator if (3.2) holds and A : L1(Γ−, dξ̃) →
L1(Γ+, dξ̃) is bounded if (3.3) holds (see also [DL]). Note that if a neighborhood of the origin
is not included in V or in particular, if V = Sn−1, then we can choose dξ̃ = τdξ.

We need the following trace theorem.

Theorem 3.2
(a) [CSt3] ∥∥∥f |Γ±

∥∥∥
L1(Γ±,dξ)

≤ ‖T0f‖ + ‖τ−1f‖.

(b) [Ce1], [Ce2] ∥∥∥f |Γ±

∥∥∥
L1(Γ±,dξ̃)

≤ λ‖T0f‖ + ‖f‖.

Note that (b) follows from (a) by setting f = min{λ, τ}g.
Let us set introduce the spaces W, W̃ via the norms

‖f‖W = ‖T0f‖ + ‖τ−1f‖, ‖f‖W̃ = ‖T0f‖ + ‖f‖.

Then Theorem 3.2 says that taking the trace f 7→ f |Γ± is a continuous operator from W
into L1(Γ±, dξ) and similarly from W̃ into L1(Γ±, dξ̃).

Given f− ∈ L1(Γ−, dξ), define Jf− as the following prolongation of f− inside X × V :

Jf− = e−
∫ τ−(x,v)

0
σa(x−sv,v)dsf−(x − τ−(x, v)v, v), (x, v) ∈ X × V .

Note that Jf− is defined so that T1Jf− = 0, Jf−|Γ− = f−, therefore J is the solution operator
of the problem T1f = 0, f |Γ− = f−.
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Proposition 3.1
(a) Assume that ‖τσa‖L∞ < ∞. Then

‖Jf−‖W ≤ C‖f−‖L1(Γ−,dξ),

with C = 1 + ‖τσa‖L∞. If σa = 0, then we have equality above (and C = 1).
(b) Assume (3.3). For any f− ∈ L1(Γ−, dξ̃)

‖Jf−‖W̃ ≤ C‖f−‖L1(Γ−,dξ̃),

where C = (1 + ‖σa‖L∞)max{1, (νλ)−1}.

We reduce the boundary value problem (3.1) to an integral equation using standard
arguments to get

(I + K)f = Jf−, (3.4)

where I stands for the identity and K is the following integral operator

Kf = −
∫ τ−(x,v)

0
e−
∫ t

0
σa(x−sv,v)ds(A2f)(x − tv, v) dt. (3.5)

Notice that formally K = T−1
1 A2 and for T−1

1 we have

T−1
1 f = −

∫ τ−(x,v)

0
e−
∫ t

0
σa(x−sv,v)dsf(x − tv, v) dt.

Proposition 3.2 Assume (3.2). Then
(a) τ−1T−1

1 , τ−1T−1 and A2τ are bounded operators in L1(X × V ) and therefore K =
T−1

1 A2 is a bounded operator in L1(X × V ; τ−1dxdv). Moreover, the operator norm of K is
not greater than ‖τσp‖L∞ < 1 and therefore (I + K)−1 exists in this space.

(b) The integral equation (3.4) and therefore the boundary value problem (3.1) are uniquely
solvable for any f− ∈ L1(Γ−, dξ) and then f ∈ W.

(c) The albedo operator A is a bounded map A : L1(Γ−, dξ) → L1(Γ+, dξ).

Proposition 3.3 Assume (3.3). Then
(a) K, T−1

1 and T−1 are bounded operators in L1(X × V ) and K = T−1
1 A2. Further,

I + K is invertible and (I + K)−1 = I − T−1A2.
(b) The integral equation (3.4) and therefore the boundary value problem (3.1) are uniquely

solvable for any f− ∈ L1(Γ−, dξ̃) and then f ∈ W̃ .
(c) A is a bounded map A : L1(Γ−, dξ̃) → L1(Γ+, dξ̃).
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3.2 The fundamental solution of the stationary transport equation

We solve (3.1) with f− = φ−, where

φ− =
1

|n(x′) · v′|δ{x′}(x)δ(v − v′),

where (x′, v′) ∈ Γ− are regarded as parameters, n(x′) is the outer normal, and δ{x′} is a
distribution on ∂X defined by (δ{x′}, ϕ) =

∫
δ{x′}(x)ϕ(x)dµ(x) = ϕ(x′). On the other hand,

we will denote by δ the ordinary Dirac delta function in Rn. The integral above is to be
considered in distribution sense. Let us denote by φ(x, v, x′, v′) the solution (in distribution
sense) of {

Tφ = 0 in X × V ,
φ|Γ− = φ−.

(3.6)

To solve (3.6), we write

ϕ = Jϕ− − KJϕ− + (I + K)−1K2Jϕ−

and analyze each term. To treat the third one above, we observe that (I + K)−1K2Jϕ− =
T−1A2KJϕ−. This leads us to the following.

Theorem 3.3 Assume that (σa, k) is admissible and either (3.2) or (3.3) holds. Then for
the solution φ(x, v, x′, v′) of (3.6) we have φ = φ0 + φ1 + φ2, where

φ0 =
∫ τ+(x′,v′)

0
e−
∫ τ−(x,v)

0
σa(x−pv,v)dpδ(x− x′ − tv)δ(v− v′) dt

φ1 =
∫ τ−(x,v)

0

∫ τ+(x′,v′)

0
e−
∫ s

0
σa(x−pv,v)dpe−

∫ τ−(x−sv,v′)
0

σa(x−sv−pv′ ,v′)dp

× k(x− sv, v′, v)δ(x− x′ − sv − tv′) dt ds

φ2 ∈ L∞(Γ−; W), if (3.2) holds,

(min{τ, λ})−1φ2 ∈ L∞(Γ−; W̃), if (3.3) holds.

The so constructed solution φ(x, v, x′, v′) is the distribution kernel of the solution operator
f− 7→ f of (3.1). In order to find the distribution kernel α(x, v, x′, v′) ((x, v) ∈ Γ+, (x′, v′) ∈
Γ−) of the albedo operator A, it is enough to set

α(x, v, x′, v′) := φ(x, v, x′, v′)|(x,v)∈Γ+, (x′, v′) ∈ Γ−.

Then, in distribution sense,

(Af−)(x, v) =
∫

Γ−
α(x, θ, x′, θ′)f−(x′, θ′) dξ(x′, θ′), ∀f− ∈ C∞

0 (Γ+).

Theorem 3.3 yields the following.
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Theorem 3.4 Assume that (σa, k) is an admissible pair and that either (3.2) or (3.3) holds.
Then the distribution kernel α(x, v, x′, v′) of A satisfies α = α0 + α1 + α2 with

α0 =
1

n(x) · ve−
∫ τ−(x,v)

0
σa(x−pv,v)dpδ{x′+τ+(x′,v′)v′}(x)δ(v − v′),

α1 =
1

n(x) · v

∫ τ+(x′,v′)

0
e−
∫ τ+(x′+tv′,v)

0
σa(x−pv,v)dpe−

∫ t

0
σa(x+pv′,v′)dp

× k(x + tv′, v′, v)δ{x′+tv′+τ+(x′+tv′,v)}(x) dt.

α2 ∈ L∞(Γ−; L1(Γ+, dξ)), if (3.2) holds and

min{τ (x′, v′), λ}−1α2 ∈ L∞(Γ−; L1(Γ+, dξ̃)), if (3.3) holds.

Theorem 3.4 implies the following way for proving Theorem 3.1. Assume that we are
given the albedo operator A, corresponding to some admissible pair (σa, k), satisfying either
(3.2) or (3.3). Then we also know the distribution α(x, v, x′, v′). By Theorem 3.4, α =
α0+α1+α2. Here α0 is a delta-type distribution supported on a (2n−1)–dimensional variety
in Γ+ × Γ−. Next, α1 is also a delta-type distribution (provided that n ≥ 3) supported on
a 3n-dimensional variety in Γ+ × Γ−, while α2 is a (locally L1) function on the (4n − 2)-
dimensional Γ+ ×Γ−. Notice that if n = 2, then α1 is a function as well. Therefore, if n ≥ 3,
one can distinguish between α0+α1 and α2. Moreover, since α0 and α1 have different degrees
of singularities, one can recover α0 and α1. Now, if σa = σa(x, |v|), then α0 determines the
X-ray transform

∫
σa(x+sω, |v|)ds of σa for all x, |v| and ω in an open subset of Sn−1 (for all

ω ∈ Sn−1 if V is spherically symmetric). This determines uniquely σa (see e.g. [H]). Next,
once we know σa, from α1 we can recover k. If n = 2, then we can recover α0 and therefore
σa, but we cannot (at least using those arguments) distinguish between α1 and α2 which
are both functions and therefore this approach does not work for reconstructing k in two
dimensions. Based on those arguments, we can write explicit formulas for recovering the
X-ray transform of σa and for recovering k as limits of the action of α on certain sequences
of test functions with supports shrinking to the singularities of α0 and α1, respectively, see
[CSt4].

4 The 2D stationary transport equation

In this section we study the inverse problem for the stationary transport equation (1.3) in
the 2D case. As explained in Section 2, the inverse problem of recovering k from the albedo
operator A is formally determined in this case. We prove below that there exists unique
solution provided that k is small enough in the L∞ norm and we also derive a stability
estimate. The results of this section are based on a joint work by the author and G. Uhlmann
[StU].

Let X ⊂ R2 be an open convex set with smooth boundary and let us write the 2D
stationary transport equation (1.3) in the form

−v(θ) · ∇xf − σa(x, θ)f +
∫

S1
k(x, θ′, θ)f(x, θ′) dθ′ = 0, (4.1)
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where x ∈ X, θ, θ′ ∈ S1 and
v(θ) = (cos θ, sin θ).

We assume that σa and k are in L∞. For simplicity, we consider the case V = S1 here.
In this paper we work with k sufficiently small and under this assumption the direct

problem (3.1) is always uniquely solvable with f− ∈ L∞(X × S1) and Af− ∈ L∞(Γ+).
For the purpose of the inverse problem however, it is enough to think of A as an operator
mapping C∞

0 (Γ−) to L∞(Γ+).
Uniqueness and stability in the 2D case are proved for small k in the case when k =

k(x, cos(θ − θ′)) in [R1], and in the case k = k(θ, θ′) uniqueness for small k is proved in
[T]. Note that in those cases the inverse problem is still formally overdetermined. In this
section we prove a uniqueness results for general (but still small) k(x, θ′, θ). Our first result
addresses the uniqueness of this inverse problem.

Theorem 4.1 ([StU]) Define the class

UΣ,ε = {(σa(x), k(x, θ′, θ)) ; ‖σa‖L∞ ≤ Σ, ‖k‖L∞ ≤ ε} . (4.2)

Then, for any Σ > 0 there exists ε > 0 such that a pair (σa, k) ∈ UΣ,ε is uniquely determined
by its albedo operator A in the class UΣ,ε.

To prove Theorem 4.1, we study again singularities of the distribution kernel α(x, θ, x′, θ′)
of A as in Section 3. In the two dimensional case however α = α0 + α1 + α2 with α0, α1,
α2 as in Theorem 3.4, but α1 is not a delta type distribution anymore, instead it is an L1

function and cannot be distinguished from α2 as in Section 3. We denote b = α1 + α2.
The term α1 does have a singularity (integrable) at θ = ±θ′ and it is L∞

loc outside this set.
Similarly, α2 has a weaker, logarithmic singularity, as shown below. We will prove below
that sin(θ − θ′)b ∈ L∞. We can therefore write

α =
δ(θ − θ′)δ{x′+τ+(x′,θ′)v(θ′)}(x)

n(x) · v(θ)
e−a(x′,θ′) + b(x, θ, x′, θ′), (4.3)

where

a(x′, θ′) =
∫ τ+(x′,θ′)

0
σa(x

′ + tv(θ′), θ′) dt, sin(θ − θ′)b ∈ L∞. (4.4)

In particular, knowing A, we can uniquely determine a and b. Let we have two pairs (σa, k)
and (σ̃a, k̃) with albedo operators A and Ã, respectively. Set

δ1 = ‖a− ã‖H1(Γ−), δ2 = ‖(b− b̃) sin(θ − θ′)‖L∞(Γ−×Γ+). (4.5)

Our second result is the following stability estimate.

Theorem 4.2 ([StU]) Let

Vs
Σ,ε =

{
(σa(x), k(x, θ′, θ)) ∈ Hs(X) × C(X × S1 × S1); ‖σa‖Hs ≤ Σ, ‖k‖L∞ ≤ ε

}
. (4.6)
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Then, for any s > 1, Σ > 0, there exists ε > 0 such that for any (σa, k) ∈ Vs
Σ,ε and

(σ̃a, k̃) ∈ Vs
Σ,ε and 0 < µ < 1 − 1/s, there exists C > 0 such that

‖σa − σ̃a‖L∞ ≤ Cδ
1−1/s−µ
1 ,

‖k − k̃‖L∞ ≤ C
(
δ

1−1/s−µ
1 + δ2

)
.

Remark. It follows from (4.15) and (4.16) below, that we can choose ε = C(d)e−2dΣ, where
d = diam(D).

4.1 Idea of the proof of Theorem 4.1

Recall that σa and k are L∞ in all variables. It is convenient to think later that σa and k
are extended as 0 for x 6∈ X.

First, we reduce the boundary value problem
{

Tf = 0 in X × S1,
f |Γ− = f− ∈ C∞

0 (Γ+)
(4.7)

to the integral equation (3.4). Then f is given by

f = (I + K)−1Jf−, (4.8)

provided that I + K is invertible in a suitable space. The definition (3.5) of K implies
immediately that

‖Kf‖L∞(X×S1) ≤ C‖f‖L∞(X×S1),

where C = diam(X)‖k‖L∞ . Therefore, if (σa, k) ∈ UΣ,ε and ε < 1/diam(X), then I + K
is invertible in L∞(X × S1), and then the solution f to (4.7) is given by (4.8). By using
Neumann series, it is not hard to see that the trace (I +K)−1f |Γ+ is well defined in L∞(Γ+)
for any f ∈ L∞(X × S1). This proves in particular that A maps C∞

0 (Γ−) into L∞(Γ+)
under the smallness assumption on k above. The same arguments also show that Af− can
be defined for any f− ∈ L∞(Γ−) as well but we will not need this since we work with the
distribution kernel of A.

Define the fundamental solution φ(x, θ, x′, θ′) of the boundary value problem (4.7) as in
Section 3. For (x′, v′) ∈ Γ−, let φ(x, v, x′, v′) solve

{
Tφ = 0 in X × S1,

φ|Γ− = |n(x′) · v(θ′)|−1δx′(x)δ(θ − θ′).
(4.9)

As before, the albedo operator A has distribution kernel α(x, θ, x′, θ′) = φ(x, θ, x′, θ′)|(x,θ)∈Γ+,
(x′, θ′) ∈ Γ−, (x, θ) ∈ Γ+.

As in Section 3, we construct a singular expansion φ = φ0 + φ1 + φ2 as follows. Let

E(x, θ, t) = e∓
∫ t

0
σa(x+sv(θ),θ)ds, ±t ≥ 0
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be the total absorption along the path [x, x + tv(θ)]. Then

φ0 = Jφ−, φ1 = KJφ−, φ2 = (I + K)−1K2Jφ−, (4.10)

and φ− = |n(x′) · v(θ′)|−1δx′(x)δ(θ − θ′) as in (4.9). Next,

φ0 = E(x, θ,−∞)δ(θ− θ′)
∫ τ+(x′,v(θ′))

0
δ(x− x′ − tv(θ′))dt,

and

φ1 = χE(y, θ′,−∞)
k(y, θ′, θ)

| sin(θ − θ′)|
E(y, θ,∞), (4.11)

where y = y(x′, θ′, x, v) is the point of intersection of the rays (0,∞) 3 s 7→ x′ + sv(θ′) and
(−∞, 0) 3 t 7→ x + tv(θ) and χ = χ(x, θ, x′, θ′) equals 1, if those two rays intersect in X̄,
otherwise χ = 0. Recall that X is convex.

To estimate φ2, we need the following.

Lemma 4.1 Let (σa, k) and (σa, k̃) be in L∞. Let A2, K and Ã2, K̃ be related to k and k̃
(not necessarily non-negative), respectively. Then there exists C > 0 depending on diam(X)
only such that

|(K̃Kφ0)(x, θ, x′, θ′)| ≤ C‖k̃‖L∞‖k‖L∞

(
1 + log

1

sin |θ − θ′|

)

almost everywhere on X × S1 × Γ−, and also almost everywhere on Γ+ × Γ−.

The proof of this lemma is based on the estimate

|(Ã2Kφ0)(x, θ, x′, θ′)| ≤
∫

y∈l(x′,θ′)

|k̃(x, arg(x − y), θ)k(y, θ′, arg(x− y))|
|x − y| dl(y),

where l(x′, θ′) is the line through x′ parallel to θ′ and dl is the Euclidean measure on it.
Using the following elementary estimate

∫ A

−A

ds√
ν2 + s2

≤ 2
(
1 + log

A

ν

)
, 0 < ν ≤ A,

we easily complete the proof of the lemma.
For φ2 we have therefore φ2 = (I + K)−1φ#

2 with φ#
2 = K2φ0 and by Lemma 4.1,

0 ≤ φ#
2 (x′, θ′, x, θ) ≤ C‖k‖2

L∞

(
1 + log

1

| sin(θ − θ′)|

)
. (4.12)

This implies a similar estimate for φ2, because φ2 = φ#
2 + (I − K)−1Kφ#

2 . We summarize
those estimates in the following.
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Proposition 4.1 For ε > 0 small enough, the fundamental solution φ of (4.7) defined by
(4.9) admits the representation φ = φ0 + φ1 + φ2 with

φ0 = E(x, θ,−∞)δ(θ − θ′)
∫ τ+(x′,v(θ′))

0
δ(x − x′ − tv(θ′))dt.

φ1 = χE(y, θ′,−∞)
k(y, θ′, θ)

| sin(θ − θ′)|E(y, θ,∞),

0 ≤ φ2 ≤ C‖k‖2
L∞

(
1 + log

1

| sin(θ − θ′)|

)
,

where y, χ are as in (4.11) and C = C(diam(X)).

Note that φ1 is not a delta function but it is still singular with singularity at v(θ) = v(θ′)
(forward scattering) and v(θ) = −v(θ′) (back-scattering). This singularity is integrable
however, in fact it is easy to see that

∫
Γ+

φ1dξ ≤
∫

σp(x
′ + tv(θ′))dt. The term φ2 is also

singular at v(θ) = ±v(θ′) with a weaker, logarithmic singularity. Therefore, we can still
distinguish between the singularities of the three terms as in the case n ≥ 3. This analysis
however can give us information about k only near forward and backward directions. It
is interesting to see whether by studying subsequent lower order terms we can recover all
derivatives of k(x, θ′, θ) at θ = θ′ and θ = θ′+π. If so, this would allow us to recover collision
kernels analytic in θ, θ′ (actually, analytic in θ − θ′ would be enough) and to approximate k
near θ = θ′ and θ = θ′ + π for smooth k. This would not require smallness assumptions on
k but we still have to be sure that the direct problem is solvable.

We are ready now to sketch the proof of Theorem 4.1. Fix Σ > 0 and assume that we
have two pairs (σa, k), (σ̃a, k̃) in UΣ,ε with the same albedo operator and σa, σ̃a depending on
x only. Denote by φj and φ̃j , j = 0, 1, 2, the corresponding components of the fundamental
solutions φ and φ̃ as in Proposition 4.1. Then

φ0 + φ1 + φ2 = φ̃0 + φ̃1 + φ̃2 for (x, θ) ∈ Γ+. (4.13)

As in section 3, the most singular terms must agree, therefore,

φ0(x
′, θ′, x, θ) = φ̃0(x

′, θ′, x, θ) for (x′, θ′) ∈ Γ−, (x, θ) ∈ Γ+. (4.14)

Thus the X-ray transform of σa(x) and σ̃a(x) coincide, therefore,

σa(x) = σ̃a(x).

Next,

χE(y, θ′,−∞)
k(y, θ′, θ) − k̃(y, θ′, θ)

| sin(θ − θ′)| E(y, θ,∞) = φ̃2 − φ2 on Γ− × Γ+,

where y, χ are as in (4.11). This, together with (4.13), (4.14), leads to the inequality

χ|k(y, θ′, θ) − k̃(y, θ′, θ)| ≤ C| sin(θ − θ′)||φ̃1 − φ1| = C| sin(θ − θ′)||φ̃2 − φ2| on Γ− × Γ+,
(4.15)
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where C = e2dΣ, d = diam(D). The rest of the proof is based on the estimate

ess sup
Γ−×Γ+

| sin(θ − θ′)||φ̃2 − φ2| ≤ Cε‖k − k̃‖L∞(X×S1×S1) (4.16)

with C > 0 depending on diam(D) only. An essential role in its proof is played by Lemma 4.1.
Observe that in particular, the factor sin(θ − θ′) cancels the weaker logarithmic singularity
of φ2 and φ̃2. Then by (4.15), (4.16),

‖k − k̃‖L∞(X×S1×S1) ≤ Cε‖k − k̃‖L∞(X×S1×S1),

and for ε > 0 small enough this implies k = k̃.

4.2 Sketch of the proof of Theorem 4.2

According to Proposition 4.1, for the distribution kernel α(x, θ, x′, θ′) of A we have the
representation (4.3), where a is as in (4.4), while b = (φ1 + φ2)|(x,θ)∈Γ+. Then b is a function
and an elementary calculation show that b ∈ L∞(Γ+, L1(Γ−)). Proposition 4.1 shows that
b sin(θ−θ′) ∈ L∞. Assume that we have two pairs of continuous functions (σa, k) and (σ̃a, k̃)
in Vs

Σ,ε with albedo operators A and Ã, respectively. In what follows we will denote the
quantities a, b, α, etc., related to the second pair by putting a tilde sign over it. Also, we
will use the notation ∆A to denote the difference ∆A = A− Ã, and similarly ∆a = a − ã,
etc. In this paper, ∆ never stands for the Laplacian.

Let δ1 and δ2 be as in (4.5). According to Proposition 4.1, δ2 < ∞. Our goal is to
estimate ∆σa and ∆k in terms of δ1 and δ2. Observe that, as in the uniqueness proof, ∆e−a

and ∆(α1 + α2) can be recovered from ∆α by separating the most singular part of ∆α from
the rest. Therefore, δ1 measures the magnitude of the singular part of ∆α, while δ2 measures
the magnitude of the regular part.

We start with estimating ∆σa. By a result of Mukhometov [Mu],

‖∆σa‖L2 ≤ Cδ1. (4.17)

Next we estimate ∆k in terms of δ1 and δ2. Set E1(y, θ, θ′) = E(y, θ′,−∞)E(y, θ,∞). Then
by (4.11), sin |θ − θ′|α1(x, θ, x′, θ′) = χ(E1k)(y, θ′, θ) with y, χ as in (4.11). Our starting
point is the relation ∆(E1k) = k∆E1 + Ẽ1∆k. Note first that |∆E1| ≤ 2d|∆σa| ≤ 2dδ′1,
where

δ′1 = ‖∆σa‖L∞.

Hence, on supp χ,

Ẽ1|∆k|(y, θ, θ′) ≤ |∆(E1k)| + k|∆E1|
≤ |∆(α1 + α2) sin |θ − θ′| − ∆α2 sin |θ − θ′|| + Cδ′1
≤ δ2 + |∆α2| sin |θ − θ′| + Cδ′1. (4.18)

Therefore,
‖∆k‖L∞ ≤ C (δ′1 + δ2 + ‖∆α2 sin |θ − θ′|‖L∞) (4.19)
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Next step is to prove an estimate similar to (4.16) on the last term in the r.h.s. above. Recall
that in (4.16), we have σa = σ̃a, while here we only know how to estimate the difference
∆σa = σa − σ̃a. Nevertheless, we can proceed along similar lines in order to get

|∆α2 sin |θ − θ′|‖L∞ ≤ Cε (‖∆k‖L∞ + δ′1) (4.20)

Therefore, for ε > 0 small enough, (4.19) implies the stability estimate

‖∆k‖L∞ ≤ C (δ′1 + δ2) . (4.21)

Estimate (4.21) is the base of our stability estimate. Using an interpolation inequality,
we get for σa and σ̃a inVs

Σ,ε

‖∆σa‖1+sµ ≤ C(Σ)‖∆σa‖1−1/s−µ
L2

for any fixed 0 ≤ µ ≤ 1 − 1/s. By a standard Sobolev embedding theorem and (4.17),

δ′1 = ‖∆σa‖L∞ ≤ C(Σ)‖∆σa‖1/s+µ
L2 ≤ C ′(Σ)δ

1−1/s−µ
1 . (4.22)

Therefore, (4.21) yields

‖∆k‖L∞ ≤ C
(
δ

1−1/s−µ
1 + δ2

)
. (4.23)

Estimates (4.22) and (4.23) complete the proof of Theorem 4.2.
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5 Open Problems

In this section we will pose some open problems. The choice of them is quite subjective and
is based mainly on author’s taste.

Uniqueness for σa depending on both x and v. As we have demonstrated in the
previous sections, if k = 0, then σa(x, v) cannot be recovered from A (or from the scattering
operator) because the line integrals

∫
σa(x + tv, v)dt do not recover σa. Suppose however

that σp = σa. Then the absorption is due only to the fact that particles may change velocity
and each such event is interpreted as a particle instantly moving from the point (x, v′) of the
phase space (therefore absorption at (x, v′)) to the point (x, v). Then the counter example
above does not work. Can we recover σa(x, v) in this case? If yes, then recovery of k goes
along the same lines as above. More generally, one can assume that σa(x, v) = σp(x, v)+a(x).
Even more generally, the counter example above cannot be generalized in an obvious way if
k > 0 in X. Is this condition alone enough for uniqueness?

Relaxing the smallness condition in the 2D case. It would be interesting to prove
uniqueness in the 2D case without smallness assumption on k. Note that some conditions
on σa, k are needed even for the direct problem, see e.g., (3.1) and (3.3) and the first one
does require k to be small (but with an explicit bound in general much larger than the one
needed for the inverse problem) while the second one does not. As mentioned in section 4,
one can try to recover k(x, v′, v) near v = ±v′ at infinite order by studying the singularities
of the kernel of A which solves the problem for k analytic in v, v′. It is interesting also to
see whether one could recover singularities of k from boundary measurements, at least if we
assume that they are of jump type across some curve.

Stability for n ≥ 3. Stability estimates in dimensions n ≥ 3 have been proven by Ro-
manov, see e.g. [R1], [R2], [R3], and Wang [W], under additional assumptions that k depend
on less number of variables. In the general situation studied in section 3, there are no sta-
bility estimates known to the author even for small k as in Theorem 4.2 (where n = 2). We
believe that such an estimate should be possible to derive following the proof of Theorem 3.1.
This is done in [W] under the additional assumption that k = k(v′, v).

Alternative recovery method for large σa, k. We do not impose smallness assumptions
on the coefficients in dimensions n ≥ 3, and our method gives in fact an explicit solution
of the inverse problem which in particular implies a reconstruction method based on taking
certain limits near the singularity of α. However, for large σa, the amplitude of the most
singular part α0 is exponentially small for large σa. For all practical purposes, measuring the
leading singularity is hard or impossible in this case. Therefore, it would be important to
develop a method for relatively large σa, k that does not rely on measuring the singularities
of α. One possible way is to study the diffusion limit (replace σa, k by λσa and λk and take
λ → ∞) and an associated inverse problem.
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