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Abstract

We study resonances near the real axis (jIm zj D O(hN ), N � 1) and the corresponding resonant states for
semiclassical long range operatorsP(h). Without a priori assumptions on the distribution or on the multiplicities of
the resonances, we show that the truncated resonant states form a family of quasimode states forP(h), stable under
small perturbations. As a consequence, they form also a family of quasimode states for any suitably defined (self-
adjoint) reference operatorP#(h), therefore, those resonances are perturbed eigenvalues ofP#(h). Next we show that
the semiclassical wave front set of the resonant states is contained in the set of trapped directionsT . We construct a
suitable reference operator fromP(h) by imposing a microlocal barrier outsideT to show that the counting function
for those resonances admits an upper bound of Weyl’s type connected with the measure ofT . We give an example of
system for which this bound is optimal and also prove similar bound in case of classical scattering by obstacle.

1 Introduction

This paper is devoted to a detailed study of the behavior of the resonances and resonant states near the real axis. We
work mainly in the semi-classical setting but most results can be easily translated into the classical one. By resonances
near the real axis we mean resonances in a “box”�(h) D [a0, b0] C i[�S(h), 0], where0 < S(h) D O(hK ), K � 1.
Such resonances may exist only for trapping geometries. We accept the convention here that resonances lie in the
lower half-plane.

For simplicity of the exposition, we consider compact perturbationP(h) of the long range Schrödinger operator
�h2� C V (x). Our results however hold for general long range perturbations of the Laplacian (see section 8), i.e.,
when the long range perturbation is in the second and first order part as well. The basic properties are established
in the abstract “black box scattering” setting introduced by Sj¨ostrand and Zworski [SjZ] (see next section). It is
well known that ifz(h) is a resonance, then there exists az(h)-outgoing resonant stateu(h) satisfying the equation
(P(h) � z(h))u(h) D 0. By [B1], [St3], if �Im z D O(h1), and ifP(h) D �h2� for largex, then

u(h) D O(h1) for R1 � jxj � R2, (1.1)

whereR0 < R1 < R2 are such that the scatterer is included in the ballB(0, R0). For simplicity, in this introduction
we will assumeS(h) D O(h1). This does not immediately imply that the same is true for the generalized “eigenfunc-
tions”, i.e., for the solutions of(P(h)�z(h))ku(h) D 0 with somek > 1. We call those generalized “eigenfunctions”
(with infinite energy) resonant states as well. Since�Im z D O(h1), one can expect that

(P(h) � z(h))u(h) D O(h1) for any resonant state. (1.2)

The estimate above has to be considered in the following sense —u is normalized inB(0, R), R � 1 and then the
r.h.s. has to beO(h1) in the same ball. If one tries to carry out some recursive procedure for proving those two
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estimates, it is quite likely to get exponentially big (with respect to1=h) terms , because for the number of stepsk

we havek D O(h�n#
), n# � n, wheren � 2 is the dimension. However obtaining such estimates even under the

assumption thatm(h) is uniformly bounded does not follow easily from known results. The third question we are
trying to answer is about the degree of linear independence of resonant states corresponding to resonances too close
to each other, for example two resonancesz1(h) andz2(h) in �(h) with zz(h) � z2(h) D O(h1). In other words,
can we control how small is the angle between two (or more) resonant statesu1(h), u2(h) corresponding to such
resonances? If we could, then we would know that a linear combination ofu1(h), u2(h) satisfying (1.1) would also
satisfy (1.1) for anyz(h) that isO(h1) close toz1(h) andz2(h). This is also related to the stability of the property of
linear independence of such resonant states and is crucial for providing link between resonances and eigenvalues of a
reference operator below.

Instead of working with single resonances, we work with clusters of resonances. We exploit the following argu-
ment: since the number of resonances in�(h) is O(h�n#

), we can always group the resonances in clusters of diameter
d(h) D O(h1) with distance between two clusters at leastchn#

d(h) with somec > 0. Then we prove (see Proposi-
tion 3.3 and the remark at the end of section 4) estimates (1.1) and (1.2) for any linear combination of resonant states
corresponding to resonances in such cluster. For technical reasons we work with the complex scaled operatorP� (h).
In Proposition 3.4 we give an affirmative answer to the third question above for resonant states associated with dif-
ferent clusters. Within a single cluster, we still cannot control the angle between resonant states corresponding to two
different resonances in this cluster, but we can simply choose an orthonormal basis and our results show that we still
get states satisfying (1.1) and (1.2). Note that in particular, even though we work with clusters, we get those estimates
for a resonant state corresponding to any single resonancez(h).

In Theorem 3.1 and the proof of Theorem 3.2 we show that existence of resonances in�(h) near the real axis
implies existence of at least the same number of real quasimodes on an interval slightly wider than the projection
of �(h) on the real axis. The corresponding quasimode states are linearly independent in a stable way under small
perturbation and this allows us to prove in Theorem 3.2 that they generate at least the same number of eigenvalues
of a suitably chosen reference operatorP #(h). This generalizes the result in [St4], where the number of quasimodes
is not estimated. In some sense, this is a result converse to that in [St1], that says that existence of asymptotically
orthogonal real quasimodes implies existence of at least the same number of resonances nearby. It is implicit in [St1]
that the asymptotic orthogonality can be replaced by the condition of linear independence stable under certain small
perturbations. By quasimodes states we mean approximate solutions with errorO(hN ), N � 1 or N D 1 supported
in a fixed compact.

In sections 4–6 we study a differential elliptic second order operatorP(h) that is a compact perturbation of the
long range Scr¨odinger operator�h2� C V (x) as before and satisfies the black box assumptions. Using (1.1) and
propagation of singularities arguments, we show that the wave front set of any linear combination of resonant states
as above is contained in the setT of trapped bicharacteristics ofP(h). In particular, this is true for any resonant state
related to a single resonancez(h), ash ! 0. The upper bound forN(�(h)) established in Theorem 3.2 in terms of
upper spectral bound for a self-adjoint reference operatorP #(h) says that the number of eigenvalues ofP #(h) in a
small neighborhood of[a0, b0] is at least the same as the number of resonancesN(�(h)) in �(h). This provides us
with effective ways to get sharp upper bounds of the counting functionN(�(h)) by using suitably chosen reference
operators. One obvious choice forP #(h) is the Dirichlet realization ofP(h) in the ballB(0, R), R > R0 but it does
not provide sharp bounds. We chooseP #(h) to beP(h) plus additionalh-‰DO with principal symbol that vanishes
near the trapped rays and increases quickly outside some small neighborhood of them. This allows us to use known
spectral asymptotics forP #(h) to get a Weyl type upper bound

N(�(h)) � (2�h)�n
�
meas

�
T \ p�1

0 [a0, b0]
�

C o(1)
�
, (1.3)

wherep0 is the principal symbol ofP(h), andS(h) D hK , K � 1 (see Theorem 5.1). In section 6 we give an
example of a semi-classical system that admits alower boundof the type (1.3). In one special case we can actually
prove an asymptotic formula forN(�(h)). Let P(h) be a second order elliptic semi-classical differential operator
with principal symbolp0 and assume that for some energyb0 > 0, the setfp0 � b0g � T �Rn has a bounded
component. Then this component consists of trapped points only. Leta0, b0 be non-critical values ofp0. The we
have a lower bound ofN(�(h)) in terms of the volume of this component restricted to the energy levels abovea0.
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If we assume also that the unbounded one is non-trapping, then the inequality above turns into asymptotics, in this
case actually,T \ p�1

0 [a0, b0] is the volume of the union of the compact components ofp�1
0 [a0, b0]. To prove the

asymptotic formula, we use the bound (1.3) and the fact that the eigenfunctions of a suitable reference operator serve
as quasimodes forP(h), therefore we get a sharp lower bound forN(�(h)) as well using the results in [St1]. We
also prove that under the assumption that the unbounded component is non-trapping, there is a resonance free strip
O(h1) D S(h) � �Im z � Mh, 8M > 0, 0 < h � h(M), a0 � Rez � b0. This is done in Theorem 6.1.

In section 7, we prove an upper bound on the number of resonances in classical scattering in a neighborhood of
the real line of the kind0 < �Im� � S(�) D O(��1), Re� � 1 in terms of the measure of the trapped set similar
to Theorem 5.1. We consider a compactly supported metric perturbation of the Laplacian in the exterior of a bounded
obstacle with Dirichlet boundary conditions.

We notice that the idea that the counting function of the resonances (not only near the real line) is essentially
bounded by the spectral counting function of certain reference operator, which isP(h), modified forjxj > R0, has
been used implicitly or explicitly [Z1], [SjZ], [V], [Sj2] in the proof of the polynomial bound of this function (see
(2.2), (2.3) in next section). Sj¨ostrand [Sj1], under certain assumptions involving analyticity and hyperbolicity of the
bicharacteristic flow, showed that the resonances in a box of heightı, C0h � ı � 1=C0 is O(ıd�"h�n), " > 0, where
d is the Minkowski codimension of the set of the trapped rays. Numerical study of this and other phenomena can
be found in [Li], [LiZ]. M. Zerzeri [Ze] obtained in the classical case an upper bound in a sector inC related to the
measure of the trapped rays but the notion of trapped rays that he uses is weaker than the common one, in particular,
��C V (x) with 0 6D V 2 C 1

0 can be trapping, also a non-trapping kidney-shaped domain is trapping according to
that definition. Lower bounds of the typech�n near the real axis can be obtained any time we have asymptotically
orthogonal quasimodes with the same density [St1]. Such bound in terms of the measure of the periodic trajectories is
proven in [PeZ] with different methods. In obstacle classical scattering under the assumption of existence of elliptic
degenerate periodic ray, one has lower boundcrn with c equal to the measure of invariant tori up to a constant factor.
One can interpret this measure as the measure of a subset of the trapped rays near the elliptic one and this well
corresponds to the classical version of (1.3).

Resonances connected to potential well for the Schrödinger operator�h2� C V (x), which is included in the
situation considered in section 6 have been studied extensively, see e.g. [HSj]. There is a full asymptotic expansion
of the resonances near the energy level equal to a non-degenerate local minimum ofV (x). If the Hamiltonian is
real analytic, quasimodes with exponentially small error have been constructed in [Po2], which makes possible to
get expansions with exponentially small error. In section 6 we consider more general second order semiclassical
differential operators and energy levels not necessarily close to the bottom of the well.

Acknowledgments. The author wants to thank V. Petkov and G. Popov for the numerous email exchanges and
discussions during the preparation of this paper. Thanks are also due to A. Martinez who attracted author’s attention
to the results in [HSj].

2 Assumptions, Black-Box Scattering and preliminaries

We work in the general framework ofblack-box scatteringproposed by Sj¨ostrand and Zworski [SjZ] (see also [Sj2],
[TZ1]). For simplicity of the exposition, we consider only compactly supported perturbations of the long range
Schrödinger operator�h2� C V (x), i.e., only the zero order term is allowed to be long range. The general long
range case is discussed in section 8. LetH be a complex Hilbert space of the form

H D HR0
˚ L2(Rn n B(0, R0)),

whereR0 > 0 is fixed andB(0, R0) is the ball centered at the origin with radiusR0. We consider a family of
self-adjoint unbounded operatorsP(h) in H with common domainD, whose projection ontoL2(Rn n B(0, R0)) is
H 2(Rn n B(0, R0)). Denote by1B(0,R0) the orthogonal projector ontoHR0

and similarly, we define1RnnB(0,R0).
Then we assume that

1B(0,R0) (P(h) C i)�1 W H ! H
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is compact. OutsideHR0
, P(h) is assumed to coincide with the semiclassical Schrödinger operator, i.e.,

1RnnB(0,R0)P(h)u D (�h2�C V (x, h))
�
ujRnnB(0,R0)

�
,

where (forjxj > R0),
jV (x, h)j � C jxj�ˇ, ˇ > 0, (2.1)

uniformly in h 2 (0, h0], h0 > 0, and V (x) extends analytically inx in the domainfr! 2 C � Cn, jr j >
R0, dist(! , Sn�1) < d0, r 2 C, arg(r) 2 (� Q�0, Q�0)g with some Q�0 > 0, d0 > 0. Finally, we assume that
P(h) > �C0, C0 > 0. Under those assumptions, one can define (the semi-classical) resonances ResP(h) of P(h)

in a conic neighborhood of the real axis by the method of complex scaling (see [SjZ], [Sj2]). An outline of the com-
plex scaling technique is given below. Resonances are also poles of the meromorphic continuation of the resolvent
(P(h) � z)�1 W Hcomp ! Hloc from Imz > 0 into a conic neighborhood of the real line. We will denote the so contin-
ued resolvent byR(z, h). In this paper we adopt the convention that resonances lie in the lower half-plane Imz < 0. In
classical scattering, we considerP as above independent ofh by formally assuming thath D 1. ThenP has classical
resonances ResP defined as the poles of the meromorphic continuation of the resolvent(P � �2)�1 W Hcomp ! Hloc

from Im� > 0 to a neighborhood of the real line. For suchP we then setP(h) D h2P and define resonancesz(h) as
above. Then the semi-classical resonances and the classical ones are related by�2 D h�2z.

As in [SjZ], [Sj2], we construct a reference selfadjoint operatorP #(h) from P(h) on H# D HR0
˚ L2(M n

B(0, R0)), whereM D (R=RZ)n for someR � R0. Then for the number of eigenvalues ofP # in a given interval
[��,�], we assume

#fz 2 SpecP #(h)I �� � z � �I g � C(�=h2)n#=2, � � 1,

with somen# � n. This implies (see [SjZ] and [Sj2]) that

#fz 2 ResP(h)I 0 < a0 � Rez � b0I 0 � �Im z � c0g � C(a0, b0, c0)h�n#
, (2.2)

#f� 2 ResP I 1 � j�j � r I 0 � �Im� � 1g � C rn#
, r > 1. (2.3)

Polynomial estimates of this type have been proved also in [Me], [Z1], [SjZ], [V], [Sj2].
In this paper we will often omit the dependence onh, i.e., we will write P instead ofP(h), z0 instead ofz0(h)

where it is clear from the context that we work withh-dependent objects. We denote byC various positive constants,
that may change from line to line.

For any resonancez(h) there is an outgoing solutionu(h) to (P(h) � z(h))u(h) D 0 and possibly “generalized
eigenvectors”v(h) satisfying(P(h) � z(h))k(h)v(h) D 0. We will call u andv resonant states. Given�(h) � C,
N(�(h)) will denote the number of resonances in�(h) counted with their multiplicities defined as the rank of the
residue of the cut-off resolvent at any resonance. Given a self-adjointreference operatorP #(h) (this notion is defined
later) with point spectrum,N #([a, b]) denotes the number of eigenvalues, counting multiplicities, ofP #(h) in the
interval [a, b]. With some abuse of notation and terminology, given� 2 C 1

0 (Rn), we will denote the operator
1B(0,R0) ˚ �jRnnB(0,R) by �. If supp

�
1RnnB(0,R0)f

�
� K, whereK � B(0, R0), we will say that suppf � K. By

H s(Rn), s D 0, 1, . . ., we denote the Sobolev space with semiclassical normkf k2
H s D

P
j˛j�s k(hD)˛f k2

We will work with pseudodifferential operators (h-‰DOs) with small parameterh. The class that we use is
equivalent to the‰DOs with large parameter� (see e.g. [G]) by settingh D 1=�. Given two open setsX , Y in Rn,
for m, k 2 R, we consider the classSm,k(X � Y ) to be the set of alla(x, y, �, h) 2 C 1(X � Y � Rn), such that for
any compactK �� X � Y , all ˛,ˇ,  2 Zn, h 2 (0, h0], h0 > 0 fixed, we have

j@˛
x@

ˇ
y@



�
aj � C˛,ˇ,,K h�k(1 C j�j)m�j j. (2.4)

If X D Y , we setSm,k(X ) D Sm,k(X � X ). Givena 2 Sm,k(X � Y ), denote by Op(a) the operator

(Op(a)u) (x, h) D
1

(2�h)n

Z Z
ei(x�y)��=ha(x, y, �, h)u(y, h) dy d�. (2.5)

The class of operators corresponding toSm,k will be denoted byLm,k . The “negligible operators” are those in
L�1,�1. We will work mostly with operators with symbols supported in a compact inT �Rn. In this case, the class
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considered here coincides withSk(m) (see e.g. [DSj]), where the “order function”m can be chosen to bem D 1. In
this case also the orderm with respect to� does not matter and we will denote the corresponding classes bySk and
Lk , respectively, and we will callk order of the corresponding class.

We refer to [G], [SjV], [DSj], [I] for more details. Below we would only like to recall the formula for the symbol
of the composition of twoh-‰DOs. Givena(x, y, �, h) 2 Sm,k(X ), one can find a symbol�(A)(x, �, h) 2 Sm,k(X ),
whereA D Op(a), depending only onx, �, h such thatA and Op(�(A)) differ by a negligible operator. In this case
we writeA D �(A)(x, hD, h). If Aj 2 Lmj ,kj (X ), j D 1, 2, thenA1A2 2 Lm1Cm2,k1Ck2(X ) and

�(A1A2) � �(A1) ı �(A2) WD
X

j˛j�0

1

˛!
hj˛j@˛

� �(A1)D˛
x�(A2).

3 Basic estimates

In this section we obtain estimates on the resonant states in the semiclassical case corresponding to resonancesz(h) in
a box�(h) D [a(h), b(h)] C i[�c(h), 0], where0 < b(h) � a(h) D O(hN ), 0 < c(h) D O(hN ), N � 1. Our goal is
to prove that the resonant states are essentially supported near the scatterer and solve(P � z0)f D O(hN1) with z0 2
[a(h), b(h)], whereN1 � N depends onN . As explained in the Introduction, instead of studying single resonances,
we study clusters of them close to each other and the resonances in domains of the type�(h) will be considered later
as such clusters. We prove those estimates for each linear combination of resonant states corresponding to resonances
in �(h). In particular, this allows us to choose orthogonal system of such linear combinations that form quasimode
states forP(h) with quasimodez0(h) of multiplicity equal to the total multiplicity of ResP(h) \ �(h). Next, we
study wider domains wherea(h) D a0, b(h) D b0 are independent ofh by grouping them in clusters contained in
“small” domains�k(h) as above. We show that resonant states, cut-off for largex, are still asymptotic solutions
to the equation(P � z0)u D 0. We also prove an estimate in Proposition 3.4 that allows us to control the angle
between two resonant states corresponding to different clusters. This allows us in Theorem 3.2 to estimate the number
N(�(h)) of resonances in�(h) by the number of eigenvalues of some reference operators in an interval a bit larger
that[a(h), b(h)].

3.1 Brief review of Complex Scaling

We follow here [SjZ] and [Sj2]. FixA < B, such that

R0 C 1 < A < B � 1.

Note that in Proposition 3.1 we impose the condition thatB � B0 for someB0 depending onV and throughout this
paper we assume that this is fulfilled. We will perform complex scaling forr WD jxj > B. Choose a real-valued
increasingC 1- function�(r), r � 0, with the properties:

(i) �(r) D 0 for 0 � r � B,
(ii) �(r) D 1 for r � B C 1=2,
(iii) 0 � �(r) � 1,
(iv) �(r) D e�1=(r�B)2

for B � r � B C �0 with some�0 � 1.
We would like to note that another choice of�(r) in (iv) nearr D B might influence the exponential term in Proposi-
tion 3.1 below. Set� D �(r) WD �0�(r), where0 < �0 < Q�0 will be chosen later. Definef� (r) WD rei�(r). We chose
�0 � 1 so thatdf�=dr 6D 0. As in [SjZ], [Sj2], we perform the analytic dilation by considering the map

Rn 3 x D r! 7�! f� (r)! 2 Cn, ! 2 Sn�1. (3.1)

Under the action of the map (3.1), the operatorP is transformed into an operatorP� onHR0
˚ L2(�� n B(0, R0)),

where�� is the image of (3.1). We refer to the above mentioned papers for details. We will identify�� with Rn

(in other words, we parameterize�� by r and!). Then inside the ballB(0, B) WD fxI jxj < Bg the operatorP�

coincides withP , while outside that ball in polar coordinates we have

P� D P(f� (r), (f 0
� (r))�1Dr , D!), (3.2)
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whereP(r, Dr , D!) is the semiclassical symbol ofP in polar coordinates. SinceP D �h2�C V (x) for jxj > R0,
equation (3.2) implies that

P� jr>R0
D

�
1

f 0
�

hDr

�2

� h
n � 1

f�f
0

�

ihDr C
1

f 2
�

(hD!)2 C V (rei� ). (3.3)

The operatorP� is elliptic, closed inHR0
˚ L2(�� n B(0, R0)) which we identify withH with domainD� that is

actually the same as the domain ofP after that identification. It is known that for a fixedh > 0 andz 6D 0 with
arg(z) 6D �2�0, the operatorP� � z is Fredholm with index 0. Moreover, forz 6D 0 with � arg(z) < 2�0, we have
thatz is a resonance ofP if and only if z is an eigenvalue ofP� and the multiplicities coincide. Since we are going to
work with resonances with Imz D o(1), for h small enough those resonances will be always eigenvalues ofP� .

3.2 An absorption estimate, after N. Burq [B2]

Next proposition is a refinement of [B2, Prop. 6.1]. Let�(r) be a smooth function equal to 1 forr < A � 1=2 and
equal tor (n�1)=2 for r > A. Set QP WD �P��1. Then QP is self-adjoint for the measured� WD ��2rn�1drd! and we
denote by QH D �H the corresponding Hilbert space. Furthermore,

QP jr>A D h2

�
� @2

r �
�!

r2
C

(n � 1)(n � 3)

4r2
C V (rei�! , h)

�
, d�jr>A D drd! .

Let QP� be the operator obtained fromQP by analytic dilation forr � B and denote byQD its domain. In fact, QP� D
�(f� )P��

�1(f� ). Here, forn even, the branch off 1=2

�
is chosen in an obvious way. Fixa0 > 0. Note that in the

proposition above we require thatB � B0, whereB0 has to be large enough. It is not difficult to see that theB0 that
we choose guarantees that the Hamiltonian�2 C V (x) is non-trapping forjxj > B0 for energy levels abovea0.

Proposition 3.1 There existsB0 > 0, such that ifB � B0, for h > 0 and�0 > 0 small enough,Rez � a0, Im z � 0,
and for anyu 2 QD� we have

C

Z �
(� C r� 0)jh@r uj2 C �(jhr�1r!uj2 C juj2)

�
drd! (3.4)

� �Im
�
ei� ( QP� � z)u, u

�
QH

C
�
�Im z C e�h�1=3

�
kuk2

QH,

whereC D min(a0, 1)=2 and the inner product and the norm are taken inQH.

Remark. It follows from the proof thate�h�1=3kuk2
QH can be replaced bye�h�1=3 R

B�r�BCch1=6 juj2drd! and that

e�h�1=3
can be replaced bye�h�2=3C�

, � > 0, by choosing�(r) nearr D B in a different way.

Proof. As mentioned earlier, we follow the proof of [B2, Prop. 6.1]. Write

�Im
�
ei� ( QP� � z)u, u

�
QH

D �Im
�
ei� ( QP� � Rez)u, u

�
QH

� (�Im z)(cos�u, u) QH

� �Im
�
ei� ( QP� � Rez)u, u

�
QH

� (�Im z)kuk2
QH. (3.5)

Therefore, it is enough to prove the proposition forz real. So, letz � a0. Note next that one can assume thatu is
supported inr > A, where in particular,d� D drd!. Indeed, choose a smooth cut-off function0 � � � 1 such that
�(x) D 0 for jxj < A and�(x) D 1 for jxj > A C 1=2. Sinceei� ( QP� � z) is symmetric on supp(1 � �), writing
u D �u C (1 � �)u we can see as in [B2] that(1 � �)u contributes nothing to Im(ei� ( QP� � z)u, u) QH, so we may
replaceu by �u there.
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Forei� QP� we have

ei� QP� D �
1

1 C ir� 0 h@r

e�i�

1 C ir� 0 h@r � e�i� h2�!

r2
C ei� h2 (n � 1)(n � 3)

4r2
C ei� V (r i� r! , h). (3.6)

Integrating by parts we get

�Im
�
ei� ( QP� � z)u, u

�
QH

D
Z �

Im

�
�

e�i�

(1 C ir� 0)2

�
jh@r uj2 C sin� jhr�1r!uj2

�
drd! (3.7)

C
Z

Im

�
ei� z � e�i� h2 (n � 1)(n � 3)

4r2
� ei� V (r i� r! , h)

�
juj2drd!

� hIm (g(r)h@r u, u) (3.8)

D I1 C I2 C I3

with

g(r) D
d

dr

�
1

1 C ir� 0

�
e�i�

1 C ir� 0 D
�i(r� 00 C � 0)e�i�

(1 C ir� 0)3
. (3.9)

It is easy to see that if�0 > 0 is small enough we have

I1 �
3

4

Z �
(� C 2r� 0)jh@r uj2 C � jhr�1r!uj2

�
drd! . (3.10)

To estimateI2, we use the fact that (see [B2])

V (rei� ) D V (r) C r
�
ei� � 1

�
@r V (z), z 2 (r, rei� ), (3.11)

as a consequence of the fact that the derivatives ofV admit a symbol-like estimates because of the analyticity assump-
tion, and thatjr@r V (z)j D O(r�ˇ), asr ! 1. Therefore, forr � B, B � 1,

jIm
�
ei� V (r i� r! , h)

�
j � � jV (r)j C C� r�ˇ � C� r�ˇ �

a0

8
�(r).

Therefore, forI2 we get forh small enough,

I2 �
Z �

z sin� �
a0

8
�

�
juj2drd! � C h2

Z
� juj2drd! �

3

4
a0

Z
� juj2drd! , (3.12)

provided that�0 � 1. ForI3 we obtain

I3 D �
h

i
((Reg)h@r u, u) QH �

h2

2i
(Reg0u, u) QH C

h2

2
(Im g0u, u) QH. (3.13)

SinceI3 is real, we have

I3 D �Im h((Reg)h@r u, u) QH C
h2

2
(Im g0u, u) QH D I

(1)
3 C I

(2)
3 . (3.14)

The functiong admits the following estimates

jRegj � C(j� 0j C j� 00j)(j� j C j� 0j) � C j� j, (3.15)

jg0j � C(j� 0j C j� 00j C j� 000j), (3.16)

The second estimate (3.16) and the first part of (3.15) follow directly from (3.9). The second part of (3.15) holds
trivially for A < r < B, where� D 0 and forB C �0 < r , wherej�j > 1=C , and is also true forB < r < B C "0,
where� D �0e�1=(r�B). Now (3.15) implies thatI (1)

3 in (3.13) can be estimated by

jI (1)
3 j � C h

Z
�(jh@r uj2 C juj2)drd! (3.17)



P. Stefanov/Sharp upper bounds 8

and forh � 1 this can be absorbed by the r.h.s. of (3.10) and (3.12). Next, to estimateI
(2)
3 , we will show that for

h � 1

jg0j � e�h�1=3

C h�3=2� , for B � r . (3.18)

Set t D r � B � 0. Then, since� D �0e�1=t2

for 0 � t � 1, (3.16) implies that for0 � t2 � h1=3=2 we
havejg0j � C t�9e�1=t2 � e�1=(2t2) � e�h�1=3

for h � 1. On the other hand, forh1=3=2 � t2 � �2
0 we have

jg0j � C t�9e�1=t2 � C h�3=2� . Since (3.18) is trivially true forr > B C "0, this proves it for allr � B. Therefore,

jI (2)
3 j � e�h�1=3

kuk2
QH C h1=2

Z
� juj2drd! (3.19)

and the integral above can be absorbed by the r.h.s. of (3.12). Combining (3.7) with (3.10), (3.12), (3.13), (3.17) and
(3.19), we complete the proof. 2

Remark. Estimate (3.4) remains true for Imz > 0 if we replace�Im z there by� cos�0Im z (see (3.5)). In partic-
ular, this implies that for�0 � 1 and anyu 2 QD

1

2

�
Im z � e�h�1=3

�
kuk2

QH � �Im
�
ei� ( QP� � z)u, u

�
QH

� k( QP� � z)uk QHkuk QH

and after replacingu by �u, we get

k(P� � z)�1k �
2

Im z � e�h�1=3
, Im z > e�h�1=3

. (3.20)

3.3 Estimates on the resonant states

Fix 0 < a0 < b0. Choose somea(h), b(h) andc(h) such that

0 < a0 � a(h) � b(h) � b0, b(h) � a(h) D o(1), 2e�h�1=3

� c(h) � o(1)h(5n#C1)=2. (3.21)

and let
�(h) WD [a(h), b(h)] C i[�c(h), 0]. (3.22)

Let z1(h), . . . , zp(h) be all distinct resonances in�(h) with multiplicitiesm1(h), . . . , mp(h). Setm(h) WD m1 C . . .C
mp D N(�(h)). Assume that there are no resonances on@�. Consider the spectral projector associated with the
eigenvalues ofP� in �

…� WD
1

2� i

I

@�

(z � P� )�1dz,

where@� is assumed to be positively oriented. DenoteH� WD Ran…�. Then it is well known (see e.g. [K]) thatP�

acts invariantly onH� that is the span of all eigenvectors and generalized eigenvectors ofP� with eigenvalues in�.
Generalized eigenvectors corresponding to distinct eigenvaluesz1, z2, . . . zp in� are linearly independent because for
the corresponding spectral projectors we have…zi

…zj
D ıij…zi

. The dimensionm(h) of H� is finite, bounded by

C h�n#
, and equal to the sum of the multiplicities ofzj 2 �. SetP� WD P� jH�

. ThenP� is a finite rank operator
(matrix) and we denote byk � kH�

the operator norm inH�. The spectrum ofP� consists offz1, . . . , zpg with the
same multiplicities. The following estimate is due to Zworski [Z2] (in this generality, see the proof of Lemma 1 in
[TZ1])

k(z � P� )�1k � CeCh�n#
log(1=g) for z 2 �0, dist(z, ResP(h)) � g(h), g(h) � 1,

where�0 is any simply connected precompact subset of�� < � argz < 2�0 (independent ofh). In our analysis
we always work in domains included in the box�0 WD [a0=2, 2b0] C i[�c0, c0] with fixed 0 < a0 < b0 and fixed
0 < c0 � 1, therefore the constantC above will be uniform. As a consequence, the resolvent ofP� satisfies the
following estimate

k(z � P�)�1kH�
� CeCh�n#

log(1=g) for z 2 �0, dist(z, ResP(h)) � g(h), g(h) � 1. (3.23)
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This allows us to apply the “semiclassical maximum principle” ([TZ1], [TZ2]) as in [St3, Lemma 2] to get the follow-
ing.

Proposition 3.2 Assume thatc(h) � S(h) � h(5n#C1)=2w(h), w(h) D o(1), ash ! 0, wherea(h), b(h) andc(h)

are as in (3.21). Then

k(z � P�)�1kH�
�

C

S(h)
on@ Q�,

where Q� WD [a(h) �w(h), b(h) C w(h)] C [�h�n#
S(h), S(h)]

Proof: We follow closely the proof of [St3, Lemma 2]. Let

Qzj(h) WD Nzj (h) C 2iS(h), j D 1 . . . p,

where the bar denotes complex conjugate. Thenzj and Qzj are symmetric about the line Imz D S(h) and on that line
we havek(z � P�)�1kH�

� 4=S(h) by (3.21) and (3.20) . Set

G(z, h) WD
(z � z1)m1 . . . (z � zp)mp

(z � Qz1)m1 . . . (z � Qzp)mp
.

We observe first that
jG(z, h)j � 1 for Im z � S(h). (3.24)

The functionF WD G(z �P�)�1 is holomorphic below the line Imz D S(h), and in particular in�(h). Our goal is to
apply the “semiclassical maximum principle” [TZ1] in the form presented in [St3, Lemma 1] to the functionF in the
domain�1 WD [a(h)�5w(h), b(h)C5w(h)]Ci[�S(h)h�2n#�1, S(h)]. To this end, we need to modifyw(h) andS(h)

to be sure thatF satisfies an exponential estimate in this region with a constant independent of the region. The only
obstacle to that would be existence of resonances too close to the boundary. To this end we extend�1 by shifting the
sides, staying in the fixedh-independent neighborhood�0 of �(h), such that the closest resonance stays at distance
at leastg(h) D hn#C1. This is possible in view of (2.2). Then we apply (3.23) with log(1=g) D (n# C 1) log(1=h) and
using (3.24), we see thatkFk D O(exp(C h�n logh�1)) on the boundary of the extended domain. By the maximum
principle, this is true inside it, and in particular in�1. Now we are in position to apply [St3, Lemma 1]. Since by
(3.20),kFk � 4=S(h) on the upper part of�1, we deduce that forh small enough

kG(z)(z � P�)�1kH�
� 2e3=S(h), 8z 2 Q�(h). (3.25)

Next step is to show that
1=C � jG(z, h)j on@ Q�(h). (3.26)

It is enough to estimate(z � Qzj )=(z � zj ) on@ Q�(h). Observe first thatjzj � Qzj j � 4S(h), 8j . Next, the distance from
eachzj from the three sides Imz D �S(h)h�n#

, Rez D a �w, Rez D b Cw of Q� is bounded below byS(h)h�n#
=2

for h � 1. Therefore,
ˇ̌
ˇ̌z � Qzj

z � zj

� 1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌zj � Qzj

z � zj

ˇ̌
ˇ̌ �

4S(h)

S(h)h�n#
=2

D 8hn#
, 8z 2 @ Q�(h) n fIm z D S(h)g.

This yields ˇ̌
ˇ̌z � Qzj

z � zj

ˇ̌
ˇ̌
mj

� (1 C 8hn#
)mj , 8z 2 @ Q�(h) n fIm z D S(h)g. (3.27)

On the fourth side Imz D S(h) of @ Q� we havej(z � Qzj)=(z � zj )j D 1, thus (3.27) is trivially true there. Since
(1 C x)1=x < e, 0 < x < 1, we get

j1=G(z, h)j � (1 C 8hn#
)m1C...Cmp D (1 C 8hn#

)m � (1 C 8hn#
)Ch�n#

� e8C .
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This proves (3.26). Estimates (3.25) and (3.26) together imply the proof of the proposition. 2

This proposition allows us to estimatekP� � z0kH�
for z0 2 [a(h), b(h)]. We have

z0 � P� D
1

2� i

I

@ Q�
(z0 � P�)(z � P�)�1dz D

1

2� i

I

@ Q�
(z0 � z)(z � P�)�1dz,

therefore,

kz0 � P�kH�
�

j@ Q�j
2�

jz0 � zjk(z � P�)�1kH�
� C

b � a Cw

2�
(b � a C w)

1

S
D C

(b � a Cw)2

S
. (3.28)

Choosingw(h) D h�(5n#C1)=2S(h), estimate (3.28) implies the following

k(P� � z0)f k � C

�
(b(h) � a(h))2

S(h)
C h�5n#�1S(h)

�
kf k, 8f 2 Ran…�. (3.29)

If c(h)h�(5n#C1)=2 � b(h) � a(h) D o(1), then we chooseS(h) D h(5n#C1)=2(b(h) � a(h)) (thenS(h) � c(h) as
required). Ifb(h) � a(h) � c(h)h�(5n#C1)=2, then we setS(h) D c(h). This choice ofS(h) implies the following.

Proposition 3.3 Let� and…� be as above. Then forz0 2 [a(h), b(h)] we have

k(P� � z0)f k � C h�(5n#C1)=2 max
n
b(h) � a(h), h�(5n#C1)=2c(h)

o
kf k, 8f 2 Ran…�. (3.30)

In particular, we get the following.

Corollary 3.1 Let z0(h) be a resonance with0 < a0 � Rez0(h) � b0 < 1, �Im z0(h) D o(1)h(5n#C1)=2, and let
f D f (h) be any generalized eigenfunction ofP� (h) corresponding to the eigenvaluez0(h) (a function such that
(P� � z0)kf D 0 for somek � 0). Then

k(P� (h) � z0(h))f k � C h�5n#�1 maxf�Im z0(h), e�h�1=3

gkf k.

Note that the r.h.s. in (3.30), measuring the “error”, is “small” only if the width of�(h) does not exceedhN ,
N � (5n# C 1)=2. This does not allow us to control the linear independence of the generalized eigenfunctions
under small perturbation by integration by parts as in Proposition 3.5 below in wider domains, for example, ifa(h)

and b(h) are independent ofh. Next proposition plays a crucial role in proving that resonances in “wide” boxes
generate at least as many eigenvalues of the reference operator nearby. It states that the spectral projectors…� related
to suitably chosen clusters of resonances contained in those boxes are polynomially bounded when restricted to the
generalized eigenfunctions corresponding to eigenvalues in the “wide” box, see (3.34) below. Under the additional
assumption of “well separated” resonances [TZ2] or, more generally, if we assume the existence of a resonance-free
strip c(h) � �Im z � h�2n#�1c(h) below�(h) [St3], then the spectral projectors…� are polynomially bounded on
the whole spaceH. In general, however, we do not know whether this is true, but fortunately, the proposition below is
all we need for our purposes later.

3.4 Decomposition into clusters

Let
a0 � a(h) < b(h) � b0, 2e�h�1=3

� c(h) � o(1)h(7n#C1)=2 (3.31)

(without the requirement thatb(h) � a(h) D O(hN ), N � 1). Let �(h) be as in (3.22). Assume that there are
no resonances on@�(h). A direct consequence of (2.2) is that one can group the resonances in�(h) into clusters
contained in the interiors of the boxes

�k(h) D [ak(h), bk(h)] C i[�c(h), 0], k D 1, . . . , K(h), K D O(h�n#
), (3.32)
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where�k(h) do not intersect, moreover, fork 6D m,

distf�k ,�mg � 4w(h), width(�k) D bk � ak � C h�n#
w(h), (3.33)

where0 < w(h) D o(1)hn#
is fixed in advance. There are no resonances in� outside�k ’s. Denote as before by…�k

the spectral projectors related to the eigenvalues ofP� in �k and letP�, H� be as before.
We know that the subspaces Ran�k(h) are linearly independent. The following proposition basically gives us

control over the lower bound of the angles between them.

Proposition 3.4 Under the assumptions above, ifw(h) D h�(5n#C1)=2c(h), then there exists a constantA D A(a0, b0),
such that

k…�k
kH�

� Ah�(7n#C1)=2, k D 1, . . . , K. (3.34)

For anyfk 2 Ran�k(h), k D 1, . . . , K, and for anyk0 we have

kfk0
k � Ah�(7n#C1)=2kf1 C . . . C fK k,

Proof. Following the proof of Proposition 3.2, we get that

k(z � P�)�1kH�
�

C

c(h)
on@ Q�k(h), 8k, (3.35)

where Q�k(h) WD [ak(h) � w(h), bk(h) C w(h)] C i[�h�n#
c(h), c(h)]. Note that Q�k(h) have the same properties

(3.33) as�k(h) concerning the distance between two such domains and their widths, withw(h) replaced byw(h)=2.
To justify (3.35), it is enough to note that in the proof of Proposition 3.2 we used the fact that there are no poles of
(z � P�)�1 below�Im z D c(h) only, and the fact that there might be poles to the left or right of�k does not play
any role as far as those poles are separated by distanceCw(h) (see also [St3]). Notice also that the constantC in
(3.35) is independent ofk. Since there are no eigenvalues ofP� in Q�k n�k , one can define…�k

jH�
as integrals of

(z � P�)�1 over@ Q�k . A direct estimation of that integral, using (3.35), yields the proof of the first part.
To prove the second part, write

fk0
D …�k0

(f1 C . . . C fK )

and use the estimate on…�k0
. 2

3.5 From resonances to quasimodes

We are ready now to formulate and prove some consequences of the estimates proven so far. The first one, roughly
speaking, says that ifP hasm resonances in�, thenP hasm real quasimodesqj in [a(h), b(h)] with compactly
supported asymptotically orthogonal quasimode states. Note that this theorem is in some sense converse to [St1,
Theorem 1] that states that locally existence of quasimodes implies existence of resonances nearby.

Define the smooth cut-off function0 � �B(x) � 1 as follows:

�B(x) D 1 for jxj � B C 3=4, �B(x) D 0 for jxj > B C 1. (3.36)

Theorem 3.1 Let

0 < a0 � a(h) < b(h) � b0, b(h) � a(h) D o(1)h(5n#C1)=2, 2e�h�1=3

� c(h) D o(1)h(5n#C1)=2.

and set
�(h) D [a(h), b(h)] C i[�c(h), 0].

Suppose thatP(h) hasm(h) D N(�(h)) resonances (counting multiplicities) in�(h). Fix z0(h) 2 [a(h), b(h)]. Then
z0 is a quasimode of multiplicitym(h) for P(h), in the following sense: The space�BRan…� has dimensionm(h)

and for any 2 �BRan…� with k k D 1 we have
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(a) supp � B(0, B C 1),
(b) k(P(h) � z0(h)) k � C�(h),

where�(h) D h�(5n#C1)=4 max
n
(b(h) � a(h))1=2, h�(5n#C1)=4c1=2(h)

o
.

Moreover, if D �Bf with f 2 �BRan…�, andk k D 1, then

k � f kH 1 � C�(h). (3.37)

Remark. It follows from the propagation of singularities arguments in section 4 and from the theorem above, that
one can cut offf for B0 < jxj < B, beforethe complex scaling is performed, if�(h) D O(hN ), N > (5n# C 1)=2

or N D 1, see the remark at the end of section 4. In other words, one can replacef above bynon-scaledresonant
states. Our approach however allows us to do this only after we prove the theorem above for the scaled resonant states,
not directly.

Proof of Theorem 3.1. Without loss of generality we can assume that there are no resonances on@�. Givenf 2
Ran…�, set

 D �Bf. (3.38)

Then is supported inB(0, B C1). Let �(h) be as above (compare with (3.30)). First, observe that by Proposition 3.1
and Proposition 3.3,

Z
�

�
jhrf j2 C jf j2

�
dx � C

�
�2(h) C e�h�1=3

�
kf k2 � C�2(h)kf k2, 8f 2 Ran…� (3.39)

with C > 0 independent off (andh). Since forjxj > B C 1=2 we have� D �0, we get

k � f kH 1 � C�(h)kf k. (3.40)

Normalize so thatk k D 1. Our assumptions guarantee that�(h) ! 0, ash ! 0, sokf k D 1Co(1). In particular,
this proves (3.37).

Next,(P� � z0) D [P� ,�B ]f C �B(P� � z0)f and by (3.39),

k[P� ,�B ]f k � C

� Z

BC3=4�jxj�BC1

�
jhrf j2 C jf j2

�
dx

�1=2

� C(�2(h)=�0)1=2.

Sincek(P� � z0)f k � �2(h), we therefore have

k(P� � z0) k � C�(h). (3.41)

To pass fromP� to P , it is enough to estimatek(P� � P) k. As in Proposition 3.1, we will work withQ D � 

and the corresponding operatorsQP� D �P��
�1, QP D �P��1. Note that on supp� we have� D r (n�1)=2. Observe

that the coefficients ofP� � P are bounded byC(� C � 0 C j� 00j). More precisely, by (3.6) and (3.11),

k( QP� � QP) Q k QH � C

�
k(� C � 0)h2@2

r
Q k QH C k(� C � 0 C j� 00j)h@r

Q k QH C k�
h2�!

r2
Q k QH C k� Q k QH

�

D I1 C I2 C I3 C I4. (3.42)

Here we used the fact that0 � � � C� 0. We want to estimate eachIj in terms of� using Proposition 3.1 and (3.39).
Since� � �

1=2
0 �1=2, we get immediately by (3.39),

I4 � C�. (3.43)

In the same way we can treatk(� C � 0)h@r
Q k QH. To estimateI2, we need to boundk� 00h@r

Q k QH. Using the explicit
form of �(r) nearr D B, we get easily thatj� 00j � C�1=2. Therefore,

I2 � C� C C k� 00h@r
Q k QH � C� C C k�1=2@r

Q k QH � C�. (3.44)



P. Stefanov/Sharp upper bounds 13

To estimateI1, introduce the smooth function�(r) as follows. Let�(r) D 0 for r < B and�000 D �1=2. Then
�C �0 C �00 � C�1=2(r) for B � r � B C 1, and the integrands inIj are supported there. Also,� C � 0 C j� 00j � C�.
Therefore,

I1 � C k(� C � 0)h2@2
r

Q k QH � C k�h2@2
r

Q k QH � C
�
kh2@2

r (� Q )k QH C hk�0h@r
Q k QH C h2k�00 Q k QH

�

� C
�
kh2@2

r (� Q )k QH C hk�1=2h@r
Q k QH C h2k�1=2 Q k QH

�

� C
�
kh2@2

r (� Q )k QH C �
�

(3.45)

To estimatehkh@r (� Q )k QH, we use elliptic estimates (note that actuallyh2@2
r (� Q ) is compactly supported) to get

kh2@2
r (� Q )k QH � C

�
k( QP� � z0)(� Q )k QH C k� Q k QH

�
� C

�
k[ QP� , �] Q k QH C �

�

� C
�
h2k�00 Q k QH C hk�0h@r

Q k QH C �
�

� C
�
h2k�1=2 Q k QH C hk�1=2h@r

Q k QH C �
�

� C�. (3.46)

In the same way we treatI3. Combining this with (3.42), (3.43), (3.44), (3.45) and (3.46), we get

k( QP� � QP) Q k QH � C�.

This, together with (3.41), implies that
k(P� � z0) k � C�.

It remains to prove that�BRan…� has the same dimensionm(h) as Ran…�. To show that, it is enough to prove
that for any0 6D f 2 Ran…�,  D �Bf 6D 0. Assume that�Bf D 0. Thenf is real analytic forjxj > A andf D 0

for jxj � B C 1=2. Therefore,f D 0. 2

Theorem 3.1 implies immediately the following fact. LetP #(h) be equal toP(h) in HR0
˚L2(B(0, R)nB(0, R0))

with Dirichlet boundary conditions on@B(O, R), R > B. ThenP #(h) has at leastm(h) D N(�(h)) eigenvalues
(counting multiplicities) in the interval[a(h) � ı(h), a(h) C ı(h)], with ı(h) � C h�n#

�(h), C � 1, if �(h)h�n# � 1

(see [La, Proposition 32.4]). This is useful, only if the widthb(h)�a(h) of�(h) isO(hN ), N � 1. We will generalize
this in two directions. First, we will consider more generalreference operatorsthan the Dirichlet realization ofP(h)

in a large ball, and secondly, we will prove this property for larger domains of width that can be independent ofh, for
example.

Let�(h) and�k(h) be as in Proposition 3.4. Apply Theorem 3.1 to each�k . In view of the upper bound (3.33)
of bk(h) � ak(h) that we have, we see that we can replace�(h) with the function

�(h) D C h�(3n#C1=2)c1=2(h), (3.47)

whereC depends only on the constantC(a0, b0, c0) in (2.2). This gives us a family of linear spaces�BRan…�k
,

k D 1, . . . , K(h), such that for eachk, (a), (b), (c) of Theorem 3.1 are satisfied withz0(h) there replaced byzk(h) 2
[ak(h), bk(h)] and�(h) as above.

Definition 3.1 Let H# be a Hilbert space that can be expressed asH# D HR0
˚ L2(B(0, R) n B(0, R0)) ˚ Hext,

R > B C 1, with Hext another Hilbert space, and assume thatP #(h) is a selfadjoint operator inH# with discrete
spectrum in ah-independent neighborhood of the interval[a(h), b(h)], wherea0 � a(h) < b(h) � b0. We callP #(h)

a reference operator forP(h) in �(h) with discrepancyı(h), if for some decomposition of�(h) as above such that
ResP \� D ResP \ ([k�k) one hask(P #(h) � zk(h)) k(h)k � ı(h) ! 0, ash ! 0 for any k 2 �BRan…�k

,
k kk D 1, wherezk(h) 2 �k(h) \ R.

The notion reference operator depends on the choice of the discrepancy functionı(h). The Dirichlet realization of
P(h) in a large ball, considered above, is an example of a reference operator with discrepancy functionı(h) D �(h).
Clearly, we have a lot of freedom to choose the reference operatorP #, for example one can impose other type of
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selfadjoint boundary conditions on@B(0, R), or to extendP(h) on a perturbed torus as in [SjZ]. The more complicated
definition of reference operator that we give is justified by our desire later to obtainP # from P not only by modifying
it for largex but also by modifying it outside the wave front set of the resonant states.

Next theorem is a “global” version of Theorem 3.1, i.e., it applies to resonances in wider domains�(h).

Theorem 3.2 Let
0 < a0 � a(h) < b(h) � b0, 2e�h�1=3

� c(h) � C h15n#C3.

and set
�(h) D [a(h), b(h)] C i[�c(h), 0].

Let P #(h) be a reference operator in�(h) with discrepancyı(h) � h9n#=2C1. Then
(a)

N(�(h)) � N #f[a(h) � ı1(h), b(h) C ı1(h)]g for h � 1,

whereı1(h) D h�9n#=2�1ı(h).
(b) If ı1(h) � h�9n#=2�1ı(h), then eachf 2 Ran…� with kf k D 1 is a linear combination of eigenfunctions of

P # with eigenvalues in[a(h) � ı1(h), b(h) C ı1(h)] up to an error that in any compact does not exceed

C h�(9n#C1)=2
�
h�(3n#C1=2)c1=2(h) C ı(h)=ı1(h)

�

for 0 < h � h0, with C andh0 uniform with respect to the choice off .

Proof. The basic argument in the proof is that the property that the resonant states corresponding to resonances in
different clusters in�(h) are linearly independent is stable under small perturbations as guaranteed by Proposition 3.4.

Let  k be as in Definition 3.1. Then k D �Bf , fk 2 Ran…�k
as in (3.38). By (3.37),kfk �  kk � �(h) D

C h�(3n#C1=2)h(15n#C3)=2 � h9n#=2C1 for h � 1 (see (3.47)). Let…#(h)f[a, b]g be the spectral projector ofP #(h)

corresponding to the interval[a, b]. Set

vk(h) D …#(h)
˚
[ak(h) � ı1(h), bk(h) C ı1(h)]

	
 k(h), k D 1, . . . , K(h). (3.48)

Note that k D 0 outsideB(0, B C 1), therefore they can be considered as functions inH# as well and the projection
above is well-defined. We claim thatvk(h) are linearly independent which would imply part (a) of the theorem because
each k can be chosen freely in the space�BRan…�k

and therefore, we would get that spanfvk I  k 2 �BRan…�k
g

has dimension
P

k Rank…�k
D Rank…�. Assume the opposite. Then

˛1v1 C . . . C ˛KvK D 0 (3.49)

with at least one coefficient non-zero. Recall that k are normalized andk(P #(h) � ak(h)) kk � ı(h). We have
as abovekfk �  kk � �(h). Sincek(P #(h) � ak(h)) kk � ı(h), using the spectral theorem, we get thatk k �
vkkH# � ı(h)=ı1(h) D h9n#=2C1 as in [St1, sec. 3]. Let0 � � � 1 be a smooth cut-off function equal to 1 in
B(0, B C 3=4) and vanishing outsideB(0, R). Setv0

k
D �vk . Then we have alsok k � v0

k
k � h9n#=2C1 Therefore,

kfk � v0
k
k � 2h9n#=2C1.

Denote byv00
k

the orthogonal projections ofv0
k

onto the space Ran…�. Multiplying (3.49) by� and projecting
(3.49) onto the latter space, we get

˛1v
00
1 C . . . C ˛Kv

00
K D 0 (3.50)

and as before,kfk � v00
k
k � 2h9n#=2C1 sincefk already belongs to Ran…�. In particular,kv00

k
k D 1 C o(h). We may

assume that the largest coefficient in (3.50) by absolute value is˛1. Dividing by it, we get

v00
1 D ˇ2v

00
2 C . . . C ˇKv

00
K , j ǰ j � 1. (3.51)
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Let us apply the projector…�1
to both sides of (3.51). Applying Proposition 3.4, we get

kf1k � C h9n#=2C1h�(7n#C1)=2 � k…�1
v00

1 k � C h�n#
max
k�2

k…�1
v00

kk

� C h�n#
max
k�2

k…�1
(v00

k � fk)k

� C h�n#
h�(7n#C1)=22h9n#=2C1 D C h1=2.

This contradicts the fact thatkfkk D 1 C o(1), ash ! 0.
(b) Choosef 2 Ran…�, with kf k D 1. Thenf D

P
fk , wherefk 2 Ran…�k

andkfkk � C h�(7n#C1)=2

by Proposition 3.4. The proof of (a) implies thatkfk � v0
k
k � �(h) C ı(h)=ı1(h)k kk with �(h) as in (3.47). Here

v0
k

D �vk are cut-off linear combinations of eigenfunctions of the reference operator with eigenvalues in the desired
interval. Definev0 D

P
v0

k
. Then

kf � v0k �
X

kfk � v0
kk � C h�n#

(�(h) C ı(h)=ı1(h)) maxkv0
kk � C h�(9n#C1)=2 (�(h) C ı(h)=ı1(h)) .

This completes the proof of (b). 2

3.6 Asymptotic orthogonality of resonant/quasimode states

Theorem 3.1 shows that one can choosem(h) orthogonal quasimodes,m(h) D N(�(h)) being the total multiplicity
of resonances in�, provided that the size of� is “small”. However, those quasimode states are not necessarily cut-off
single resonant states, in fact they are cut-off linear combinations of such resonant states. This result is non-trivial, as
explained in the Introduction, since we do not know how to control the angles between resonant states corresponding
to resonances too close to each other (jz1 � z2j � minf�Im z1, �Im z2g).

As mentioned in the Introduction, we do not know whether one can construct “almost orthogonal” quasimodes
corresponding to�(h) with larger size (for exampleb(h) � a(h) D O(1)) by keeping their number the same as the
total multiplicity of resonances in�. A simple argument based on integration by parts however, shows that resonant
states or quasimode states, respectively, corresponding to�1(h) and�2(h) with distf�1,�2g � diam�1,2 are
“almost orthogonal”. We are not going to use the proposition below in our analysis, its purpose is actually to stress
on the fact that for domains�1(h), �2(h) too close to each other, integration by parts argument does not provide
asymptotic orthogonality. Note that the control (3.33) that we have on the lower bound of distf�k ,�mg for the
domains (3.32) is not enough to guarantee asymptotic orthogonality.

Proposition 3.5 Let�1(h) and�2(h) be two domains as in Theorem 3.1 and�1(h), �2(h) be related to�1, �2 as
in Theorem 3.1. Let k 2 �BRan…�k

, k D 1, 2 be two quasimode states as in Theorem 3.1 corresponding to�k(h),
k D 1, 2. Then forh � 1,

j( 1, 2)j � 2
�1(h) C �2(h)

distf�1(h),�2(h)g

Proof. We have(P � z0k) k D gk with kgkk � �k(h), k D 1, 2. Therefore,

z01( 1, 2) D (P 1 � g1, 2) D ( 1, P 2) � (g1, 2) D z02( 1, 2) C ( 1, g2) � (g1, 2).

2

4 Trapped geodesics and wave front set of the resonant states

In this section we will show that in some important situations the wave front set of the resonant states is contained
in the union of the trapped rays (see also [CdV] for quasimodes related to eigenfunctions on compact Riemannian
manifolds).
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We consider self-adjoint differential operators of the form

P(h) D
nX

i,jD1

hDxi
aij (x)hDxj

C
nX

jD1

bj (x)hDxj
C V (x) C P1(h) (4.1)

with smooth real-valued coefficientsaij , bj , V , such thatfaij(x)g is a symmetric positively definite matrix for any
x 2 Rn andaij � ıij D bj D 0 for jxj > R0 with someR0 > 0 while V (x) is a long range potential satisfying
(2.1) and the analyticity condition after it forjxj > R0. HereP1(h) D

P Qbj (x, h)hDxj
C QV (x, h) is assumed to be a

differential operator of first order with coefficients supported inB(0, R0), such thatP1(h) 2 L1,�1 considered as an
h-‰DO (note thatP(h) 2 L2,0). The operatorP(h) is self-adjoint inL2(Rn) and satisfies the black-box assumptions.
Resonances ofP(h) are the poles of the meromorphic extension of(P(h) � z)�1 W L2

comp ! L2
loc form Imz > 0 to

C, if n is odd, and to the logarithmic plane, ifn is even. We are interested in the resonances near the real axis only.
We will use propagation of singularities results to get microlocal estimates of…�f=k…�f k away from the trap-

ping trajectories.
One can define the semi-classical wave front WFs(u) and WF(u) of a temperedu as in [G] (see also [SjV], [I]).

The wave front set lives in the spaceT �Rn [ S�Rn, whereS�Rn is associated with the “infinite points”. We note
that here we will work with finite points of the semiclassical wave front set only, because we study operators with
characteristic variety bounded in the� variable. Consider the bicharacteristics ofP(h) related to its semi-classical
principal symbolp0(x, �) D

P
aij (x)�i�j C

P
j bj�j C V (x). They are the integral curves of the Hamiltonian vector

field Hp0
D (@�p0)@x � (@xp0)@� . We call a bicharacteristict 7!  (t) non-trapped, if for any R > 0, there exists�

(positive or negative), such that (�) lies outsideT �B(0, R). We call all other bicharacteristicstrapped. Denote byT
the trapped subset ofT �Rn, i.e, (x, �) 2 T if and only if the bicharacteristic passing through(x, �) is trapped.

Theorem 4.1 Let

0 < a0 � a(h) < b(h) � b0, b(h) � a(h) � hM , M > (5n C 1)=2,

and set
�(h) D [a(h), b(h)] C i[�hN , 0], N � M C (5n C 1)=2.

LetP(h) be the operator defined above and letf D f (h) 2 Ran…�, andkf k D 1. Then fors D M=2 � (5n C 1)=4,
WFs(f ) is supported in the set of trapped bicharacteristics ofP(h) on energy levels inp�1

0 [a0, b0] uniformly with
respect to the choice off . More precisely, for any zeroth order symbolq(x, �) with support disjoint fromT \
p�1

0 [a0, b0] there existsC > 0 such thatkq(x, hD)f k � C hs for anyf (h) as above.
If �(h) is as above with0 < a0 � a(h) < b(h) � b0, N > (7n C 1)=2 but without smallness assumptions on

b(h) � a(h), then the statement of the theorem is true withs D N=2 � (15n C 2)=2.

The proof of Theorem 4.1 is based on a propagation of singularities argument. The following lemma follows
directly from [I], if the energy levelz0(h) is independent ofh.

Lemma 4.1 (propagation of singularities) Let (P(h) � z0(h))u(h) D g(h) in B(0, R) with 0 < a0 � z0(h) �
b0 < 1, R0 < R, and ku(h)kL2(B(0,R)) � C . Let (x0, �0) 2 T �B(0, R). Assume that(x1, �1) 2 T �B(0, R)

can be connected with(x0, �0) by a bicharacteristic (of finite length) lying inT �B(0, R) n WFsC1(g). Then, if
(x0, �0) 62 WFs(u), we also have(x1, �1) 62 WFs(u) (and therefore, if(x0, �0) 2 WFs(u), then(x1, �1) 2 WFs(u)).
The estimates that those inclusions imply are uniform with respect to the choice ofu(h).

Proof. Let [0, T ] 3 t 7!  (t) � T �B(0, R) n WFsC1(g) be the bicharacteristic such that (0) D (x0, �0) and
 (T ) D (x1, �1). Denote byˆt the bicharacteristic flow. Letq0(x, hD) be such thatq0(x, hD)u(h) D O(hs),
q0(x, �) D 1 near(x0, �0), and suppq0 � T �B(0, R). We will construct a symbolqt (x, �) such thatqt D q0 for
t D 0, for eacht 2 [0, T ], the principal symbol ofqt (x, �) is equal to 1 near̂ t (x0, �0) andqt has support contained
in a small neighborhood of̂ t (x, �), such that suppqt � T �B(0, R) n WFsC1(g).
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Set
˛(t) D kqt (x, hD)uk.

We know that̨ (0) D O(hs). Our goal is to constructqt such that̨ (t) D O(hs), 8t 2 [0, T ]. We have

d

dt

˛2(t)

2
D Re

�
d

dt
qt (x, hD)u, qt (x, hD)u

�
.

SetQt D qt(x, hD). We will chooseqt so that

ih
d

dt
Qt D [P, Qt ] C Rt , Qt jtD0 D Q0, (4.2)

with Rt is of order�s � 1. Suppose that we haveQt with those properties. Then

d

dt

˛2(t)

2
D h�1Im (([P � z0, Qt ] C Rt )u, Qtu)

D �h�1Im (Qt (P � z0)u, Qt u) C h�1Im (Rtu, Qt u)

D �h�1Im (Qt g, Qt u) C h�1Im (Rtu, Qt u).

Since suppqt is disjoint from WFsC1(g), we get

˛(t)
d

dt
˛(t) � C hs˛(t) C C h�1kRt uk˛(t) H)

d

dt
˛(t) � C hs C C h�1kRt uk.

SincekRt k D O(hsC1),
d

dt
˛(t) � C hs H) ˛(t) � C hs for 0 � t � T .

It remains to solve (4.2). Notice thatQt is a finite expansion of the exact solutione�itP=hQ0eitP=h of (4.2) with
Rt D 0, see e.g., [DSj, Ch. 11]. We look forqt(x, �) of the formqt D q

(0)
t C hq

(1)
t C . . . C hs�1q

(s�1)
t . The principal

symbolq(0)
t of Qt must solve the equation

�
@t C Hp0

�
q

(0)
t D 0, q

(0)
t jtD0 D q0.

Therefore, we defineq(0)
t (x, �) D q0(ˆ�t(x, �)), which is also confirmed by Egorov’s theorem. This implies that

ih
d

dt
Q

(0)
t D [P, Q

(0)
t ] C R

(0)
t , Q

(0)
t jtD0 D Q0,

whereR
(0)
t is of order�2. Note that the symbol ofR(0)

t is included in the set� D [0�t�Tˆ
t(suppq0). We next

solve

ih
d

dt
Q

(1)
t D [P, Q

(1)
t ] � h�1R

(0)
t , Q

(0)
t jtD0 D 0 (4.3)

on principal symbol level, which gives us the equation

�
@t C Hp0

�
q

(1)
t D ir

(0)
t , q

(1)
t jtD0 D 0,

whereh2r
(0)
t is the principal symbol ofR(0)

t . This is an ODE along the bicharacteristics ofp0 and the solution is
again supported in� . ThenQ

(1)
t D hq

(1)
t (x, hD) solves (4.3) up to a remainderR

(1)
t of order�3. We complete the

construction of the solution to (4.2) by induction. 2
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Proof of Theorem 4.1. Let be related tof as in (3.38). By Theorem 3.1, solves(P(h) � a(h)) (h) D O(hs)

with s D M=2� (5nC1)=4, and D 0 for jxj > B C1. We haves > 0 becauseM > 5n=2C3. We get immediately
that WFs( ) is contained inp�1

0 [a0, b0] becauseP(h) � a(h) is elliptic outside any neighborhood of this set.
Fix (x, �) 2 p�1

0 [a0, b0] n T . Then� 6D 0 and let (t) be the bicharacteristic passing through(x, �) for t D 0.
Then for somet (positive or negative), thex-projection of (t) lies outsideB(0, B C1), where D 0. By Lemma 4.1,
(x, �) 62 WFs( ). This shows that WFs( ) � T . By (3.37) (and the ellipticity ofP(h)), those statements remain true
if we replace by f . This proves the first part of the theorem.

To prove the second part, let us group all resonances in� in subdomains�k(h) of width O(hM ), whereM D
N � (7n C 1)=2 as in (3.32). Then we have the conclusion of the theorem for each normalizedfk 2 Ran…�k

. Let
f 2 Ran…�. Thenf D f1 C . . . C fK , K D O(h�n). Therefore, forq(x, hD) as in the theorem, we have by
Proposition 3.4,

kq(x, hD)f k � C
X

kq(x, hD)fj k � C hsh�n maxkfj k � C hs�(9nC1)=2kf k

with s D M=2 � (5n C 1)=4 D N=2 � 3n � 1=2. 2

Remark. Lemma 4.1 allows us to estimate the resonant statesf 2 Ran…�k
in the abstract black box setting

considered in section 3beforethe complex scaling but outside the ball where the Hamiltonian might be trapping.
More precisely, letf ,  and�(h) be as in Theorem 3.1 (note that there� is a “small” domain, so we apply this
theorem to�k actually). LetB0 be as in Proposition 3.1 and letB > B0. Estimate (3.37) implies thatf D O(�(h))

for jxj > B C 1, where�(r) D �0. We also have(P � z0) D O(�(h)) and D 0 for jxj > B C 1. Pick a point
(x, �) 2 p�1

0 [a0, b0] with B0 < jxj < B. Then (see the remark right before Proposition 3.1),(x, �) can be connected
with some(x0, �0) with jx0j > B C1 with a bicharacteristic of this Hamiltonian whichx–projection does not intersect
the black box. Then Lemma 4.1, localized near this geodesics, implies that D O(�(h)) microlocally near(x0, �0), if
c(h) D O(hN ), N > (5n# C 1)=2. By a compactness argument, we have this estimate in anyH s norm in the annulus
B0 C � � jxj � B, 0 < � � 1. Therefore, we can cutf off in the annulus abovebeforethe complex scaling is
performed ifc(h) D O(hN ). This shows that thenon-scaledresonant states are “small” for largejxj even in the black
box setting, and that in Theorem 3.1, one can work with cut off non-scaled resonant states instead with scaled ones.
This argument works ifc(h) D O(hN ), N > (5n# C 1)=2, or N D 1 but is not sensible enough to express the decay
of the non-scaled resonant states if�(h) D O(1)e�Ch��

, for example, then it just givesO(h1). Another argument
based on application of Green’s formula for black boxes then can treat the latter case but we will not go into details.

5 Upper bounds on the number of resonances close to the real axis

Let P(h) be the operator (4.1). In this section we are going to establish an upper bound of the resonances ofP(h)

in a box of width independent ofh and heighthN , N � 1 in terms of the measure of the trapped setT , where the
measure is considered inT �Rn. To this end we choose a suitable reference operatorP #(h) that imposes a barrier
outside a small neighborhood of the trapped setT by modifying P(h) there. Since the resonant states are “small”
there, the resonant states will be quasimodes for the new operator. An application of Theorem 3.2 then will imply an
upper bound and the well-known asymptotics for the eigenvalues of selfadjointh-‰DOs will relate this bound with
meas(T ).

Fix 0 < a0 < b0, N � 15n C 3 and let

�(h) D [a0, b0] C i[�hN , 0].

The resonances in�(h) are contained in[K(h)

kD1
�k(h), where�k(h) are as in (3.32) with!(h) as in Proposition 3.4.

Then by (3.33),bk � ak � hN �(7nC1)=2, distf�k1
,�k2

g � 4hN �(5nC1)=2. Each�k satisfies the assumptions of
Theorem 3.1. The corresponding discrepancy function (see (3.47)) is given by

�(h) D C hN =2�(3nC1=2).
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Denote
T � D T \ p�1

0 [a0 � �, b0 C �], T �
� D f� 2 T �RnI distf�, T �g < �g, (5.1)

where� > 0, � > 0 are small parameters. Fix� > 0. Clearly,T � is a closed set. Assume that it is non-empty (but
it may have zero measure). On the other hand,T �

� is an open set of positive measure. We claim that Vol(T �
� ) !

meas(T �), as� ! 0. Indeed,8" > 0, there exists an open setU" � T � , such that Vol(U") � meas(T �) C ". Then
T �Rn n U" is at positive distance fromT � and therefore for� D �(") � 1 we haveT � � T �

� � U" which implies
that meas(T �) � Vol(T �

� ) � meas(T �) C ". This proves our claim.
Denote�C0 D minp0(x, �) and letq�(x, �) be a smooth function such thatq� D 0 on T �

� , q� D 2b0 C C0

outsideT �
2�, and0 � q� � 2b0 C C0. Set

P #
�(h) D P(h) C qw

� (x, hD).

The principal symbol ofP #
�(h) is p�(x, �) D p0(x, �) C q�(x, �). The self-adjoint operatorP #

�(h) has discrete
spectrum in(�1, 2b0), becausefp�(x, �) � Mg is compact for anyM < 2b0. Moreover, we have the following
estimate for the numberN #

�[a0, b0] of eigenvalues ofP #
�(h) (see [DSj])

1

(2�h)n

�
V #

�([a0, b0]) C o(1)
�

� N #
�[a0, b0] �

1

(2�h)n

�
V #

C([a0, b0]) C o(1)
�

, (5.2)

where

V #
˙([a0, b0]) D lim

˙�&0

Z

p�(x,�)2[a0��,b0C�]

dxd�. (5.3)

If a0 andb0 are not critical values forp�(x, �), thenV #
�([a0, b0]) D V #

C([a0, b0]) and the remainder is actuallyO(h).
In particular,

N #
�([a0 � �=2, b0 C �=2]) �

1

(2�h)n

�
Vol

�
p�1

� [a0 � �, b0 C �]
�

C o(1)
�

, ash ! 0. (5.4)

SinceT � � p�1
� [a0 � �, b0 C �] � T �

2�, we obtain that Vol(p�1
� [a0 � �, b0 C �]) ! meas(T �), as� ! 0.

We claim thatP #
�(h) is a reference operator in�(h) with discrepancy�(h). Indeed, fixk and a normalized

fk 2 Ran�k(h). Let  k(h) be the corresponding cut-off resonant state given by (3.38). Then by Theorem 3.1,
(P(h) � ak(h)) k D O(�(h)) and by Theorem 4.1, WFs( k) � T 0, wheres D N=2 � 3n � 1=2. The latter
implies that replacingP(h) by P #

�(h) would keep the estimatek(P #
�(h) � ak(h)) kk � C�(h) D C hs with different

constantC . This constant depends on� and� but is independent ofk and on the choice of k . Therefore,P #
�(h)

is a reference operator with discrepancyC�,��(h). We can therefore apply Theorem 3.2, ifs � 9n=2 C 1, which is
fulfilled in our case, to conclude that the number of eigenvalues ofP #

�(h) in the interval[a0 �ı1(h), b0 Cı1(h)], where
ı1(h) D hN =2�15n=2�3=2, is at least equal to the number of resonances in�. In particular,

N(�(h)) � N #
�([a0 � �=2, b0 C �=2]) for 0 < h � h0(�, �). (5.5)

Relations (5.4) and (5.5) imply

N(�(h)) �
1

(2�h)n

�
Vol

�
p�1

� [a0 � �, b0 C �]
�

C o(1)
�

for 0 < h � h0(�, �). (5.6)

Therefore, lim suph!0(2�h)nN(�(h)) � Vol
�
p�1

� [a0 � �, b0 C �]
�

and taking the limit� ! 0, � > 0 fixed, we get
by the remark after (5.4) that lim suph!0(2�h)nN(�(h)) � meas(T �). Taking the limit� ! 0, we get that the latter
converges to meas

˚
T \ p�1

0 [a0 � 0, b0 C 0]
	
, wherep�1

0 [a0 � 0, b0 C 0] WD \�>0p�1
0 [a0 � �, b0 C �]. Sincep0 is a

quadratic form of� for eachx, the limit is actually meas
˚
T \ p�1

0 [a0, b0]
	
. We have therefore proved the following.

Theorem 5.1 Let 0 < E1 < E2 be fixed andN � 15n C 3. LetP(h) be as in (4.1) and set

�(h) D [E1, E2] C i[�hN , 0].
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Then

N(�(h)) �
1

(2�h)n

�
meas

˚
T \ p�1

0 [E1, E2]
	

C o(1)
�
, ash ! 0,

whereT is the trapped set related toP(h).

In the formulation of this theorem we passed to the commonly used notationE for the energy levels.

6 Example of sharp lower bounds, generalized potential well

In this section we study again the resonances of the operator (4.1) under the assumption that for some non-critical
energy levelE2, the setp�1

0 [�1, E2] has at least one compact connected component. Then we get lower bound
in terms of the volume of the compact component. If in addition we assume that the unbounded component is non-
trapping, we also get an asymptotic formula for the resonances near the real line and a resonance free zone. This
situation can be considered as a generalized potential well. Similar situation was studied by Shu Nakamura in [N],
where he obtains asymptotic for the spectral shift function. His results, combined with existence of a resonance free
zone (see the theorem below) and the techniques developed by V. Petkov and M. Zworski [PeZ] provide different
approach to proving the asymptotic in the theorem below.

Fix two energy levels0 < E1 < E2 < maxfp0(x, �)g. Assume thatE1 andE2 are non-critical values ofp0.
Assume also thatp�1

0 (�1, E2] is not connected, i.e., it has a non-empty compact component (this component then
must have non-empty interior becauseE2 is non-critical value ofp0). Then

p�1
0 [E1, E2] D Wint [ Wext,

is a unbounded closed set with smooth boundary, where we denote byWext the unbounded connected component and
the union of the bounded ones, that is non-empty according to our assumptions, is denoted byWint. ThenWint is a
compact with smooth boundary and consists of trapped points only. The setWext contains non-trapped points and may
contain trapped ones as well.

Theorem 6.1
(a) For some function0 � S(h) D O(h1) we have ash ! 0

1

(2�h)n
(Vol(Wint) � O(h)) � N([E1, E2] C i[�S(h), 0])

� N([E1, E2] C i[�h15nC3, 0])

�
1

(2�h)n
(Vol (Wint) C measfT \ Wextg C o(1)) .

(b) If Wext is non-trapping, i.e., ifWext \ T D ;, then there exists a function0 < S0(h) D O(h1) such that for
anyS(h) such thatS0(h) � S(h) D O(h1),

N([E1, E2] C i[�S(h), 0]) D
1

(2�h)n
(Vol(Wint) C O(h)) , ash ! 0.

Moreover, ifP(h) D �h2� for jxj > R0 with someR0 > 0, then8M > 0 the functionS(h) above can be chosen so
that for someh0 D h0(M) > 0, there are no resonances in

[E1, E2] C i[�Mh, �S(h)] for 0 < h < h0.

Proof. We will show first that thex-projections ofWint andWext do not intersect. This will allow us to use cut-off
functions depending onx only.
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Sincep0(x, �) is a quadratic form with respect to�, we get

p0(x, �) D
ˇ̌
ˇ̌A(x)1=2� C

1

2
A�1=2(x)b(x)

ˇ̌
ˇ̌
2

C QV (x), QV (x) WD V (x) �
1

4
A(x)�1b(x) � b(x) (6.1)

whereA(x) WD faij(x)g, b(x) D fbj (x)g. We claim that our assumption thatp�1
0 (�1, E2] � T �Rn is not connected

implies the same forf QV (x) � E2g � Rn. Assume the opposite. Then for anyx0, x1 from this set, there exists a
continuous pathx D x(t), 0 � t � 1 such thatx(0) D x0, x(1) D x1 and QV (x(t)) � E2, 0 � t � 1. Fix
(x0, �0) and (x1, �1) in p�1

0 (�1, E2]. We will show that we can connect those two points by a path lying on or

under the energy levelE2. Let O�0 be the value of� that minimizesp(x0, �), i.e., O�0 D �A�1(x0)b(x0)=2, and
let �0(t) D �0 C t( O�0 � �0) be the line segment that connects�0 and O�0. We thus connect(x0, �0) and(x0, O�0) by
[0, 1] 3 t 7! (x0, �(t)). It is easy to see thatp0(x0, �0(t)) decreases ast increases fromt D 0 to t D 1 and therefore,
it stays on or under the energy levelE2. We next connect(x0, O�0) and (x1, O�1), where O�1 WD �A�1(x1)b(x1)=2

by the path[0, 1] 3 t 7! (x(t), �A�1(x(t))b(x(t))=2. On this path, the quadratic part in (6.1) vanishes, therefore
p0 D QV (x(t)) � E2 there. And finally, we connect(x1, O�1) with (x1, �1) as in the first step such thatp0 increases
on this path with maximum value at(x1, �1) still not exceedingE2 by assumption. This shows thatp�1

0 (�1, E2] is
connected, contrary to our assumption.

Denote byXext the (unique) unbounded component off QV (x) � E2g and letXint be the union of the connected
ones. The distance betweenXint andXext is positive. Let�int C �ext D 1 be a partition of unity associated with those
two closed sets, i.e.,�int D 1 in a neighborhood ofXint, and�ext D 1 in a neighborhood ofXext. Define

Pint(h) D P(h) C Vint(x), Vint(x) WD ˛�ext(x),

Pext(h) D P(h) C Vext(x), Vext(x) WD ˛�int(x),

where˛ > E2 � inf QV . ThenE1 andE2 are not critical values for neither symbolpi D p0(x, �) C Vi(x), i D int, ext,
andp�1

int [E1, E2] D Wint, p�1
ext [E1, E2] D Wext. Moreover,Pint(h) andPext(h) are selfadjoint,Pint(h) has discrete

spectrum in[E1, E2], while Pext(h) is non-trapping for energy levels in[E1, E2].
To prove (a), note that the upper bound there follows from Theorem 5.1. It remains to prove the lower bound. To

this end, we will use the eigenfunctions ofPint(h) as quasimodes ofP(h). Letvj (h), j D 1, . . . , m(h) be a full system
of orthonormal eigenfunctions ofPint(h) corresponding to all eigenvaluesej (h) of Pint(h) in [E1 C ı(h), E2 � ı(h)],
where0 < ı D O(hK ), K � 1, will be chosen later. For smallh, we have an asymptotics form(h) as in (b) because
in intervals of lengthı(h) near a non-critical energy, there are onlyO(h1�n) resonances. Next,Pint is elliptic outside
Wint and in particular, forx outsideXint. Therefore,vj D O(h1) outside a neighborhood ofXint in eachH s norm
uniformly in j . Therefore, if�int is as above, thenwj WD �intvj form quasimodes forP(h), i.e.,(P(h) � ej(h))wj D
O(h1), (wi ,wj ) D ıij C O(h1), and suppwj � B(0, R) for anyj with someR > 0. By [St1, Theorem 1], for
0 < h � 1, P(h) has at leastm(h) resonances in�ı(h) WD [E1 � ı(h) C hK , E2 C ı(h) C hK ] C i[�S(h), 0] with
some positiveS(h) D O(h1) andK � 1. Choose nowı(h) so thatı(h) D hK , then we have

N(�(h)) �
1

(2�h)n
(Vol(Wint) C O(h)) , �(h) WD [E1, E2] C i[�S(h), 0]. (6.2)

This proves (a).
To prove the first part of (b), fix�(h) as in (6.2) with some0 < S(h) D O(h1). We will first prove an upper

bound forN(�) with remainderO(h). Observe thatPint(h) is a reference operator forP(h) with discrepancyO(h1).
Indeed, let�k(h) be as in (3.32). Sincec(h) D O(h1) in our case, we get that the error in Theorem 3.1, applied
to each�k , is �(h) D O(h1). Givenfk(h) 2 Ran…�k

with kfkk D 1, we have WF(fk) � Wint (uniformly in k)
by Theorem 4.1, thus(Pint(h) � zk(h))fk D O(h1), wherezk(h) 2 �k(h) \ R. According to Definition 3.1, this
means thatPint(h) is a reference operator in�(h) with ı(h) D O(h1). By Theorem 3.2, forh � 1, N(�(h)) �
N #([E1 �ı1(h), E2 Cı1(h)]) � N #([E1, E2])CO(h1�n), with ı1(h) D ı1=2(h) D O(h1), whereN # is the counting
function of the eigenvalues ofPint(h). Here we used the fact that the number of eigenvalues ofPint(h) in an interval
of lengthO(h) is O(h1�n) [DSj]. Using (5.2) and the remark after it, we get

N(�(h)) �
1

(2�h)n
(Vol(Wint) C O(h)) , (6.3)
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where the functionS(h) that defines�(h) is any function with the propertyS(h) D O(h1). If we denote byS0(h) the
functionS(h) for which (6.2) holds, then both (6.2) and (6.3) are true for anyS(h) with 0 < S0(h) � S(h) D O(h1).

To prove the second part of (b), fixM > 0 and assume thatz(h) is a resonance in the domain[E1, E2]Ci[�Mh, 0].
Then there exists an outgoingu(h) belonging locally to the domain ofP(h) such that(P(h) � z(h))u(h) D 0. Let us
normalizeu(h) by requiring thatkukL2(B(0,R)) D 1 with a fixedR > R0. Notice thatP(h) � z(h) is elliptic for x 62
Xint [ Xext. This yields WF(ujB(0,R0)) � T �(Xint [ Xext). To prove the latter, choose a cut-off function0 � �(x) � 1

equal to 1 in a neighborhood ofB(0, R0) and having support inB(0, R). Then(P(h) � z(h))�u(h) D w(h), where
w(h) D [P(h),�]u(h) is supported inB(0, R) n B(0, R0) andk�u(h)k � 1. Now, (P(h) � z(h))�u(h) D 0 in a
neighborhood ofRn n (Xint \ Xext) � B(0, R0), moreoverP(h) � z(h) is elliptic in Rn n (Xint \ Xext), and therefore
for the wave front set of the compactly supported�u(h) we get WF(�u) � T �(Xint [ Xext). This implies the same for
WF(ujB(0,R0)).

Choose the smooth cut-off function�0
ext so that�ext D 1 on supp�0

ext and�0
ext D 1 in a neighborhood ofXext. Then

(P(h) � z(h))�0
extu(h) D v(h), wherev D [P(h),�0

ext]u(h) D O(h1) is supported inB(0, R) and WF(�0
extu) �

T �Xext. Then(P(h) � z(h))�0
extu(h) D (Pext(h) � z(h))�0

extu(h) D v(h). Since�0
extu(h) D u(h) for largejxj, we get

that�0
extu(h) is z(h)-outgoing. Therefore,�0

extu(h) D Rext(z(h), h)v(h), whereRext(z, h) is the outgoing resolvent of
Pext(h). SincePext is non-trapping for energy levels betweenE1 andE2, by [B3, Theorem 2],k�0

extu(h)kL2(B(0,R)) �
(C=h)kv(h)k D O(h1). By the ellipticity of P(h) we have similar estimate for theH 2 norm ofu(h) near@B(0, R)

and by the trace theorem, theH 1 norm ofu(h) on@B(0, R) is O(h1) as well. An application of the Green’s formula
in the ballB(0, R) then yields�Im z D O(h1). This proves part (b) of the theorem. 2

An example of operator satisfying the assumptions above is the Schrödinger operatorP(h) D �h2�CV (x), where
V (x) has strong local minimum, or more generally, iffxI V (x) � E2g is not connected. In this case, the construction
of the quasimodes above yields exponentially small error of the kinde�d=h, for anyd less than the Agmon distance
betweenXint and Xext. Therefore, there are resonances with exponentially small imaginary part with asymptotic
number as in (a). Our proof does not exclude the existence of other resonances in the strip[E1, E2]Ci[�S(h), �e�d=h]

with someS(h) D O(h1) but their number does not exceedO(h1�n). This case has been studied in much more detail
in [HSj] under some analyticity assumptions onV where other precise results are obtained. In particular, it is shown in
[HSj] that the resonances exponentially close to the real line are exponentially small perturbations of the eigenvalues
of certain self-adjoint operator.

We would like to note also that the condition thatP(h) is a compact perturbation of the Laplacian is imposed in
order to ensure the estimatek�R(z, h)�k � CM=h for any such non-trappingP(h) for energy levels betweenE1

andE2, and forz 2 [E1, E2] C i[�Mh, 0], 8M > 0. As M. Zworski pointed out, such estimate for the long-range
Schrödinger operatorP(h) D �h2�CV (x) is implicit in a recent work [Ma] by A. Martinez and then this assumption
can be removed in this case.

The existence of the resonance free zone in (b) together with the results in [St3] makes it possible to get polynomial
estimates on the spectral projectors…�k

as in Proposition 3.4 acting on the whole spaceH rather than on a space
spanned by resonant states. This implies a resonance expansion of the solution of the corresponding wave equation
as in [TZ2] and [St3]. Moreover, the wave front set of the spectral projectors are included in the trapped set and that
gives us good control over the terms in that expansion.

7 Sharp upper bounds in the classical case

In this section we prove a result similar to Theorem 6.1 in the classical case. LetX � Rn be a domain with smooth
boundary and compact complementO. Let

P D
nX

i,jD1

Dxi
aij(x)Dxj

C
nX

jD1

bj (x)Dxj
C V (x) (7.1)

be a formally symmetric elliptic differential operator withC 1( NX ) coefficients having the same properties as those of
P(h) in (4.1). For simplicity, assume thatP D �� for jxj > R0. We study the resonances� of P near the real line.
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Denote byP again the selfadjoint realization ofP in L2(X ) with Dirichlet boundary conditions on@X . We study the
resonances� of P near the real axis.

Define thegeneralized bicharacteristic flowof P as in [MeSj1], [MeSj2] (see also [H]). Recall that in the inte-
rior T �X the generalized bicharacteristics are the integral curves of the Hamiltonianp0(x, �) D

P
ij aij�i�j . We

assume that the bicharacteristics ofP cannot be tangent to the boundary of infinite order. Under this assumption,
any generalized bicharacteristics is uniquely determined by any of its points. Define the trapped subsetT of T �X

as the complement of the set of all� 2 T �X , for which any generalized bicharacteristic passing through� leaves
B(0, R0) � Rn for eithert > 0 or t < 0. Fix a decreasing function0 < S(r) D O(r�1), asr ! 1. Set

�(r) WD f� 2 CI 1 � Re� � r, 0 < �Im� < S(Re�)g. (7.2)

The main result in this section is the following.

Theorem 7.1 Let P be the operator (7.1) and�(r) be as in (7.2). Then

N(�(r)) �
rn

(2�)n
(meas(T \ B�X ) C o(1)), asr ! 1,

whereB�X D f(x, �) 2 T �X I p0(x, �) � 1g.

Before proceeding with the proof of Theorem 7.1, we would like to give an example of a system with trapped set
of positive measure. LetP D �� in the exterior of a bounded obstacle with smooth boundary and assume that there
exists an elliptic periodic ray satisfying some mild degeneracy conditions (see [Po1]). Then it is known that for some
S(r) D O(r�1), N(�(r)) admits a lower bound of the kindcrn(1 C o(1)). The constantc there is positive and is
proportional to the measure of the invariant tori around the elliptic ray, which existence is guaranteed by the KAM
theory. This constant can also be chosen to bec D (2�)�nmeas(T0 \ B�X ), whereT0 � T is a Cantor set of trapped
rays near the periodic elliptic ray. There is no hope that meas(T0 \ B�X ) D meas(T \ B�X ) becauseT0 is (a part of)
the trapped rays that are close enough to a single periodic ray, whileT is the set of all trapped rays. Nevertheless, this
gives us a two-side estimate with different constants in the principal terms that have the same nature.

We start with a propagation of singularities result in the spirit of that in [MeSj1], [MeSj2]. We apply arguments
similar to those in [Le] in order to derive the semiclassical version from the classical one. Since we are interested
in operators having trapped set of positive measure, the behavior in a small neighborhood of the boundary is not
important for our analysis. In the next proposition the wave front set of a temperedf is considered in the open setX ,
and we do not need to work with the more general WFb(f ). Here it is more convenient to work with‰DOs with large
parameter�. Those operators are the same as the semiclassical‰DOs withh D 1=�.

Let
† WD f(x, �) 2 T �X I p0(x, �) D 1g

be the characteristic variety ofP � �2. Givenf D f (x,�j ), where0 < �j ! 1 we will denotef D f (x,�) WD fj

for � 2 ƒ D f�jg.

Proposition 7.1 Letfj 2 D(P), j D 1, 2, . . . be supported inB(0, R), R > R0, and let0 < �j ! 1, asj ! 1.
Let (P � �2

j )fj D O(��1
j ) asj ! 1, andkfj k D 1. ThenWF(f ) � T \†.

Proof. Fix (x0, �0) 2 T �X n (T \†). Let�1 2 C 1
0 (Rn) be such that�1(x) D 1 nearx0 and supp�1 � X and let

�2 2 C 1
0 (Rn) be such that�2(�) D 0 for j�j � ı=4, �2(�) D 1 for j�j � ı=2, where0 < ı D minfj�jI (x, �) 2 †g.

Chooseq0(x, �) homogeneous of order 0 with respect to� such thatq D 1 in a small conic neighborhood of(x0, �0)

and suppq0 \ T D ;. Set
q(x, y, �) D �1(x)q0(x, �)�2(�)�1(y)

and letQ D q(x, y, D) be the classical‰DO with amplitudeq(x, y, �). We would like to expressQ as a�-‰DO. In
order to avoid the problem with the singularity ofq0 at � D 0, for � > 2 write

q(x, y, �) D �1(x)q0(x, �)�2(�)
�
1 � �2(�=�)

�
�1(y) C �1(x)q0(x, �)�2(�=�)�1(y) WD q1 C q2.
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The classical‰DO Q1 WD q1(x, y, D), depending on�, can be expressd as a composition of the bounded operator
Q11 D �1(x)q0(x, D)�2(D), independent of� and the�-‰DO Q12 with amplitude (as an�-‰DO) equal to(1 �
�2(�))�1(x). We haveQ12f D O(��1), because WF(f ) � †, and therefore,Q1f D O(��1). Next, the classical
‰DO Q2 with amplitudeq2 can be expressed as a�-‰DO with amplitude�1q0(x, �)�2(�)�1(y). Our goal is to prove
thatQ2f D O(��1).

Assume that the estimate above is not true. Then there existN > 0 and a subsequenceƒ0 such that

k�N Qf k ! 1, asƒ0 3 � ! 1. (7.3)

Without loss of generality we may assume that2�j < �jC1 for any 2 consecutive numbers inƒ0. Set

u(t, x) D
X

�2ƒ0

e�i�t��1f (x,�).

Note that the series above is absolutely convergent. We have(@2
t C P)u 2 C 1(R � NX ). Sinceu D 0 for largejxj,

by the classical propagation of singularities results for boundary value problems [MeSj1], [MeSj2], we get that the
classical wave front set ofu in (the interior of)T �(R � X ) is contained inf(t, x, �, �)I �2 D p0(x, �), (x, �) 2 T g.
Choose� 2 C 1

0 (R). Then�(t)Qu 2 C 1
0 (R � Rn) and

�(t)(Qu)(t, x) D
X

�2ƒ0

ei�t�(t)��1Qf (x,�) D F�
�!t

X

�2ƒ0

O�(�� �)��1Qf (x,�)

We get therefore that
P

�2ƒ0 O�(�� �)��1Qf (x,�) is in the Schwartz class with respect to(�, x) and in particular

k
X

�2ƒ0

O�(�� �)��1Qf (x,�)k D O(��1), as� ! 1.

We will split the sum above into two sums: one forj���j � �=2 and another forj���j > �=2. In the second case,
j O�(�� �)j D O(��1) there. Thus,

k
X

�2ƒ0,j���j>�=2

O�(�� �)��1Qf (x,�)k D O(��1), as� ! 1.

When summing up forj�� �j � �=2, we therefore get

k
X

�2ƒ0,j���j��=2

O�(�� �)��1Qf (x,�)k D O(��1), as� ! 1.

Forj D 1, 2, . . ., choose�j D �j . The condition2�j < �jC1, j D 1, 2, . . . implies that in the intervalj�j ��j � �j=2

there is only one number inƒ0 and that is�j . Therefore,k O�(0)��1
j Qf (x,�j )k D O(��1

j ). One can always assume

that O�(0) D 1, thusQf D O(��1), � 2 ƒ0, contrary to (7.3). This implies thatQf D O(��1), � 2 ƒ, and
therefore,Q2f D O(��1) for � 2 ƒ, and this completes the proof of the proposition. 2

Givenr � 1, seth D 1=r and defineP(h) D h2P . With some abuse of notation, in this sectionP will denote the
h-independent operator (7.1), whileP(h) will be the operator we just defined. Any semi-classical resonancez(h) is
related to a classical one� with Im � < 0 by the formula

�2 D h�2z(h) D r2z(h). (7.4)

Fix a small paramera 2 (0, 1]. First, we are going to estimate the number of resonances� in

�a(r) D f� 2 CI ar � Re� � r, 0 < �Im� < S(Re�)g.
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The image of�a(r) under the map (7.4) is a curved “box” with verticesa2, 1, a2 � h2aS2(ah�1) � 2ihaS(ah�1),
and1 � h2S2(h�1) � 2ihS(h�1). It is included in

�(h) D [a2=2, 1] C i[� QS(h), 0], QS(h) WD 2hS(ah�1) D O(h1).

We are going to prove first that

N(�(h)) �
1

(2�h)n

�
measfp�1

0 (�1, 1] \ T g C o(1)
�
, ash ! 0. (7.5)

Herep�1
0 (�1, 1] D B�X . Note that without loss of generality we may assume thatQS(h) � 2e�h�1=3

, so that (3.31)
is satisfied.

Given� > 0, denote

X C
� D fx 2 RnI dist(x, X ) < �g, X �

� D fx 2 X I dist(x, @X ) > �g.

ThenX �
� � X � X C

� . For0 < � � 1, @X ˙
� is smooth. Let us extend the coefficients ofP in a smooth way outsideX

by keepingP self-adjoint and elliptic such that for the extensionQP(h) we have QP(h)jRnnX C
�0

D �h2�. Here�0 > 0

is fixed and in what follows we assume that0 < � � �0. This extension can be constructed as follows. First we extend
the coefficients ofP in a smooth way nearX and we choose�0 > 0 so small that inX C

�0
our operator is still elliptic.

Next, we choose a smooth partition of unity�2
1 C �2

2 D 1 such that�1(x) D 1 in X C
�0=2 and�1(x) D 0 outsideX C

�0
,

and set QP(h) D �1P(h)�1 C �2(�h2�)�2. Then the so extendedQP(h) is elliptic self-adjoint operator inRn with
principal symbol Qp0 D

P
Qaij�i�j , where Qaij are theaij extended outsideX . Clearly, every energy levelE > 0 is

non-critical for Qp0. Our goal next is to construct a reference operatorP #(h) in the whole space that would give us a
sharp bound. Similarly to (5.1), define

T � D T �X �
� \ T \ Qp�1

0 [a2=2, 1], T �
� D f� 2 T �RnI distf�, T �g < �g.

We will defineq�(x, �) in a way similar to that in section 5 by taking extra care of the behavior near the boundary.
For0 < � � 1, chooseq� 2 C 1(T �Rn) so that0 � q� � 2, and

q�(x, �) D
�

0 for (x, �) 2 T �
� ,

2 for (x, �) 62 T �
2�.

We may also assume thatq� is homogeneous in� of order 2 fora2=2 �� < j�j < 1 C�, which would guarantee that
anyE 2 [a2, 1] is a non-critical value for the principal symbolp� defined below. Let0 � V0 2 C 1

0 (Rn) be such that
V0 D 0 in B(0, R) andV0(x) D jxj2 for jxj large enough. Set

P #
�(h) D QP(h) C qw

� (x, hD) C V0(x).

The operatorP #
� is self-adjoint inL2(Rn) and its principal symbolp� is p� D Qp0 C q� C V . The spectrum of

P #
�(h) is discrete. HereV is added for convenience in the considerations below and is not really necessary, without

it the spectrum ofP #
�(h) would be discrete in(�1, 2) and that would be enough. Notice thatP #

� is not a reference
operator in the sense of Definition 3.1 because applyingP #

�(h) to the resonant states ofP(h) would produce delta
functions on the boundary@X . We can go around this problem if we consider the quadratic form(P #

�(h) , ), where
 D  (h) is related tof D f (h) 2 Ran…�(h) as in (3.38) and is extended as 0 outsideX . Then we consider
(P #

�(h) , )L2(Rn) as a quadratic form with domain larger than the domain ofP #
�(h). In particular, the functions 

do not belong to the domain ofP #
�(h) because the normal derivative of jumps at@X but they belong to the domain

of the quadratic.
According to Proposition 7.1,(qw

� (x, hD) C V0(x)) (h) D O(h1) for any normalized 2 �BRan…�k
, where

the subdomains�k(h) are as in (3.32). As in the proof of Theorem 4.1, this implies the same for any 2 �BRan…�(h)

with k k D 1.
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We will show that

(P #
�(h) , )L2(Rn) D (P(h) , )L2(X ) C O(h1), 8 2 �BRan…�(h), k k D 1, (7.6)

where the l.h.s. is understood in the sense of quadratic forms. To prove (7.6), write

(P(h) , )L2(X ) D
Z

X

� X

ij

aij (hDxi
 )(hDxj

N ) C
X

j

bj(hDxj
 ) N C V (x)j j2

�
dx

D
Z

Rn

� X

ij

Qaij (hDxi
 )(hDxj

N ) C
X

j

Qbj (hDxj
 ) N C QV (x)j j2

�
dx

D (P #
�(h) , )L2(Rn) � (qw

� (x, hD) , )L2(Rn) � (V0 , )L2(Rn)

D (P #
�(h) , )L2(Rn) C O(h1),

where , as explained above, is extended as 0 outsideX .
We claim that

(P(h) , )L2(X ) � 1 C O(h1), 8 2 �BRan…�(h), k k D 1. (7.7)

To prove (7.7), we use Theorem 3.2(b). By choosingı1(h) D O(h1) in a suitable way, we get that for anyf as above,
the corresponding can be written as D

P
jk vjk C 1, wherevjk are eigenfunctions of the self-adjoint reference

operatorP #
0(h) WD P(h) C V0(x) in L2(X ) with eigenvalueszjk 2 [a2=2 � O(h1), 1 C O(h1)]. For 1 we have

k 1k D O(h1) and repeating the argument in the proof of Theorem 3.2(b) based on the spectral theorem, wee see
also thatkP #

0(h) 1k D O(h1). If amongvjk ’s there are eigenfunctions corresponding to the same eigenvalue, we
combine them as a single eigenfunction, so we may assume thatvjk are orthogonal to each other. Therefore,

(P(h) , )L2(X ) D (P #
0 (h) , ) D

�
P #

0 (h)
X

vjk ,
X

vjk

�
C O(h1)

D
X

zjkkvjkk2 C O(h1) � (1 C O(h1))k k2 C O(h1) D 1 C O(h1).

This proves (7.7).
By (7.6) and (7.7) we get that

(P #
�(h) , )L2(X ) � 1 C ˛(h), ˛(h) D O(h1) (7.8)

in the sense of quadratic forms, for any 2 �BRan…�. The latter subspace is of dimension equal toN(�(h)) by
Theorem 3.1. Thus we get that (7.8) holds for any normalized belonging to a subspaceW of dimensionN(�(h))

included in the domain of the quadratic form in (7.8). We will show that this implies that

N(�(h)) � N #((�1, 1 C ˛(h)]) C O(h1�n). (7.9)

To prove (7.9), consider all eigenvalues ofP #
� not exceeding1 C ˛(h), counted according to their multiplicities. If

1 C ˛(h) happens to be an eigenvalue itself, we include it according to its multiplicity, which isO(h1�n). So the
numberm(h) of all those eigenvalues admits an estimate like the r.h.s. of (7.9). Denote byW0 the subspace ofW
that is orthogonal to the space spanned by the eigenfunctions corresponding to them(h) eigenvalues above. Assume
that dimW D N(�(h)) > m(h). ThenW0 is non-trivial and therefore, there existsf 2 W0 with kf k D 1. By
expandingf in terms of the normalized eigenfunctionsvj of the reference operator, we getf D

P
zj >m(h) fjvj ,

where
P

zj jfj j2 < 1 (only finite number ofzj ’s can be negative), becausef belongs to the domain of the quadratic
form related toP #

�. We therefore get that(P #
�f, f )L2(X ) � zm(h)C1

P
jfj j2 > 1 C ˛(h) and this contradicts (7.8).

This shows that dimW D N(�(h)) � m(h), and this proves (7.9).
Next, using the fact thatE D 1 is non-critical forp�, as in section 5, we get that

N #((�1, 1 C ˛(h)]) �
1

(2�h)n

�
Vol(p�1

� (�1, 1]) C o(h)
�

, ash ! 0.
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Again as in section 5, after taking the limit� ! 0, we deduct that from this that

lim sup
h&0

(2�h)nN #((�1, 1 C ˛(h)]) �
�
meas(T � \ p�1

0 (�1, 1]) C o(1)
�
, ash ! 0.

Now we can take the limit� & 0, and combining this with (7.9), we complete the proof of (7.5).
Using (7.5), we get that

N(�a(r)) �
rn

(2�)n
(meas(T \ B�X ) C o(1)) , asr ! 1. (7.10)

With some abuse of notation, we denote byN(�) both the number of semiclassical and classical resonances for
� D �(h) and� D �(r), respectively. It is easy to see that

N(�0
a(r)) � C(1 C ar)n, where �0

a(r) WD f� 2 CI 1 � Re� < ar, 0 < �Im� < S(Re�)g (7.11)

with C > 0 independent ofa > 0. This follows for example from the estimate of the number of resonances in a
ball of radiusr of the type (2.3) by observing thatN(�0

a(r)) above depends onr throughar only for r � 1. Then
�(r) D �0

a(r) [�a(r) (see (7.2)). Combining (7.10) and (7.11) together, we get that

N(�(r)) �
rn

(2�)n
(A C o(1)), asr ! 1

for anyA > meas(T \ B�X ). By studying lim supr�nN(�(r)), we complete the proof of the theorem. 2

8 Generalizations for general long range operators

As explained in the Introduction, we allow only the zeroth order termV (x) of P(h) to be long range only to simplify
the exposition. One can study general long rangeP(h) in the black box setting by requiring the coefficients ofP(h)

outside the black box to satisfy analyticity assumptions and estimates of the type (2.1), see e.g. [B2]. Then resonances
are well defined in a sector near the real axis and in particular in and near�(h) as shown in [Sj2]. The necessary
modifications in the proofs are as follows. To prove Proposition 3.1, one needs to pass to global geodesics coordinates
as done in [B2]. The absorption estimate in Proposition 3.1 then holds and the proof is the same as in Proposition 3.1,
where the new terms that appear are estimated as in [B2, Proposition 7.1]. The choice of the constantB0 then depends
on the rate of decay of all coefficients outside the black box, not only onV . In estimate (3.42) those extra terms do not
create additional difficulties. All results in sections 3, 4, 5 remain the same. Except for the second part of Theorem 6.1
(see also the remark at the end of section 6),P(h) can be general long range operator in section 6 as well. The results
in section 7 hold for long range operators as well.
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[DSj] M. D IMASSI AND J. SJÖSTRAND, Spectral Asymptotics in the Semi-Classical Limit, London Math. Society Lecture
Notes Series, No. 268, Cambridge Univ. Press, 1999.



P. Stefanov/Sharp upper bounds 28
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H.Poincaré,1(2000), 223–248 and 249–279.

[PoV] G. POPOV AND G. VODEV, Resonances near the real axis for transparent obstacles, Comm. Math. Phys.207(1999),
411–438.
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