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We introduce a proper notion of two-dimensional
signature for images. This object is inspired by the
so-called rough paths theory, and it captures many
essential features of a two-dimensional object such as
an image. It thus serves as a low-dimensional feature
for pattern classification. Here, we implement a simple
procedure for texture classification. In this context, we
show that a low-dimensional set of features based on
signatures produces an excellent accuracy.

1 . Introduction
Signatures of paths are fascinating objects which have
been popularized by K-T Chen in an algebraic context
[1]. The topic has then resurfaced as an essential tool in
stochastic calculus, thanks to Lyons [2]. It has now been
the object of intense scrutiny for the past 25 years. In
this introduction, we will first put our own investigation
into context, summarizing some of the contributions
for signatures of paths indexed by a one-dimensional
parameter. This will be the content of §1a. Then in §b, we
introduce the concept of signature for paths indexed by a
two-dimensional parameter. This is a natural framework
for image processing. Eventually, we will summarize our
main results and draw some conclusions.

(a) One-dimensional signatures
Before going further, let us mention that the 1-d in one-
dimensional signatures refers to the fact that the paths
x we are considering for now are indexed by a one-
dimensional parameter t ∈ [0, σ ] for a given time horizon
σ > 0 (as opposed to the two-dimensional parameter
(s; t) ∈ [0, σ ] × [0, τ ] considered in the next sections).
Nevertheless, the path x is generally R

d-valued, that is
xt ∈ R

d for all t ∈ [0, σ ].
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Signatures of paths are prominent objects in analysis and data science due to several
remarkable properties: they show up naturally in fundamental computations, they enjoy suitable
algebraic and analytic relations, they characterize paths, and they have been successfully applied
in a data analysis context. Let us briefly review those features.

(i) Prominence of signatures in system approximations. One of the simplest situations in which
signatures pop up in a very natural way is through basic change of variables formulae.
Namely consider a regular enough C1-path (or curve) x : [0, σ ] → R

d and a smooth
function f : R

d → R. We denote by xi each component of x, so that x = (x1, . . . , xd). For
the sake of notation, we also write ∂if for the partial derivative ∂f/∂xi. Then the most
basic form of a change of variable formula asserts that for 0 ≤ s < ŝ ≤ σ , we have

f (xŝ) − f (xs) =
d∑

i1=1

∫ ŝ

s
∂i1 f (xr1 ) dxi1

r1 . (1.1)

In order to get further expansions according to relation (1.1), let us introduce the first two
elements of the signature of x. They are defined as iterated integrals of x as follows:

x1,i1
sŝ = xi1

ŝ − xi1
s =

∫
s<r1<ŝ

dxi1
r1 and x2,i1,i2

sŝ =
∫

s<r1<r2<ŝ
dxi1

r1 dxi2
r2 .

With this notation in hand and iterating formula (1.1), we get the following
approximation:

f (xŝ) − f (xs) �
∑

i1

∂i1 f (xs) x1,i1
sŝ +

∑
i1,i2

∂2
i1,i2 f (xs) x2,i1,i2

sŝ . (1.2)

As one can see from relation (1.2), the elements x1, x2 play the role of monomials in a
Taylor type expansion along the path x. They can thus be thought of as building blocks
for a faithful representation of the path x.Extrapolating on this kind of consideration, the
signature of x summarizes all the iterated integrals of x in a single object [S(x)]sŝ which
can be written as

[S(x)]sŝ = 1 +
∞∑

n=1

∫
s<r1<r2<···<rn<ŝ

dxr1 ⊗ dxr2 ⊗ · · · ⊗ dxrn . (1.3)

For a given couple s, ŝ with s < ŝ, the element [S(x)]sŝ, called the signature of x, lies
in the space T(Rd) = ⊕∞

n=0(Rd)⊗n. It should be mentioned that S(x) also appears very
naturally when computing Taylor type expansions of ordinary differential equations.
This fundamental property is the one that made signatures the central object in rough
paths analysis. Rough paths can be seen as a new point of view on stochastic differential
equations, and had a profound impact on stochastic analysis over the past two decades.
Proper generalizations of rough paths are also at the heart of the celebrated regularity
structure theory [3].

(ii) Algebraic and analytic properties. The fact that S(x) belongs to the free algebra T(Rd) induces
very convenient properties for algebraic manipulations. To name just a few, one can prove
that if x 	 y denotes the concatenation of two paths x and y, then (see e.g. [4], Theorem
7.11) we have

S(x 	 y) = S(x) ⊗ S(y), (1.4)

where the product in the right-hand side of (1.4) is the polynomial type product on
T(Rd). Invariance by reparametrization also holds. More specifically, if φ : [0, σ ] → [0, σ ] is
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a non-decreasing surjection and if we set xφ = x ◦ φ, then for all 0 ≤ s < ŝ ≤ σ the following
holds true:

[S(x)]φ(s)φ(ŝ) = S(xφ)sŝ. (1.5)

On the analytic side, the essential bound on signatures asserts a factorial decay with
respect to the order of the integral. Namely, if Sn(x) denotes the n-th order integral in
(1.3), then we have the following upper bound:

||Sn(x)|| ≤ (Cτ ,x)n

n!
, (1.6)

where the constant Cτ ,x does not depend on n. Note that relation (1.6) yields crucial
bounds on differential equations driven by x, which can be then extended to stochastic
cases.

(iii) Characterization of paths. One of the most fundamental properties of signatures (especially
with data analysis in mind) is that they characterize paths. Specifically, for two Lipschitz
paths x, y, we have

S(x)01 = S(y)01 iff x ∼ y, (1.7)

where x ∼ y means that x, y only differs by a tree-like path. This result is proved in [5],
while [6] provides an algorithm allowing to reconstruct a path from its signature. Along
the same lines, any continuous map f : C1([0, σ ]) → R can be approximated by a linear
functional of the signature. This point of view leads to more quantitative versions of (1.7),
see [7].

(iv) Signatures and data analysis. Due to the algebraic, analytic and characterization properties
recalled above, signatures have been recently used as efficient features in data analysis
for paths. The literature on this topic is now abundant. Among those contributions,
let us single out the very successful Chinese character recognition algorithm [8]. Other
significant applications include finance time series [9], topological data analysis [10] and
diagonosis prediction [11]. It is fair to claim that signatures are now accepted as an
efficient set of features for classification or prediction of paths.

(b) Two-dimensional signatures
Although there are now promising steps in the analysis of signatures for fields indexed by m-
dimensional rectangles, this area of research is still in its infancy. Following the structure of §1a,
let us recall what has been done in case of fields indexed by [0, σ ] × [0, τ ].

(i) Signatures for calculus in the plane. Let us start from the equivalent of relation (1.1)
in the plane. Namely, consider a C2-field x : [0, σ ] × [0, τ ] → R

d and a smooth function
f : R

d → R
d. In order to write more compact equations below, we will use the following

conventions:

d12xi
s;t = ∂2xi

s;t

∂s∂t
dsdt and d1̂2̂xij

s;t = ∂xi
s;t

∂s

∂xj
s;t

∂t
ds dt. (1.8)

Also recall that we write ∂if for the partial derivatives of f . In addition, increments
like f (xŝ) − f (xs) in (1.1) should be replaced by rectangular increments. Specifically, for
a rectangle [s, ŝ] × [t, t̂] and a field y defined on [0, σ ] × [0, τ ], we write

�sŝ;tt̂ y = yŝ;t̂ − ys;t̂ − yŝ;t + ys;t. (1.9)
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Then the equivalent of (1.1) in rectangles gives a change of variables formula for the
rectangular increments of y = f (x). It reads

�sŝ;tt̂f (y) =
d∑

i,j=1

∫
s<s1<ŝ

∫
t<t1<t̂

∂2
ij f (xs1;t1 ) d1̂2̂xij

ŝ1;t̂1

+
d∑

i=1

∫
s<s1<ŝ

∫
t<t1<t̂

∂if (xs1;t1 ) d12xi
ŝ1;t̂1

. (1.10)

With respect to (1.1), the appearance of the term d1̂2̂x in (1.10) is obviously a major
difference. As a result when one tries to push forward Taylor type expansions up to order
2 like in (1.2), the number of terms explodes (much faster than in the already factorial
regime observed in the one-dimensional parameter case). A description of those terms is
given in [12,13] for second-order calculations, but we are not even aware of extensions up
to an arbitrary order. Therefore, obtaining an expression for a two-dimensional signature
S(x) similar to (1.3) is still a challenging open problem. Let us also mention that the
stochastic calculus for plane-indexed processes does not fit into the general regularity
structure framework [3], due to some boundary type singularities.

(ii) Algebraic and analytic properties. Since the very definition of S(x) for paths indexed by
(s, t) is still open, the literature on its algebra is obviously scarce. The recent preprint
[14] gives an account on the algebraic structure generated by increments which can be
roughly described as

∫
s<s1<···<sn<ŝ

∫
t<t1<···<tn<t̂

d1̂2̂xs1;t1 ⊗ · · · ⊗ d1̂2̂xsn;tn , (1.11)

together with some correcting terms involving Jacobians, and where the domain of
integration is in fact based on permutations of the simplex displayed in (1.11). Some
potential generalizations of (1.4)–(1.6) are also provided in [14]. In particular, the
invariance property (1.5) is restricted to coordinate-wise changes of variables of the form

φ(s, t) = φ1(s)φ2(t), (1.12)

with two non-decreasing surjections φ1 and φ2.
(iii) Characterization of paths. Here again, only partial information for two-dimensional

signatures is available. However, ([14], Theorem 6) is encouraging. Indeed this theorem
claims that signatures generated by (1.11) do characterize paths, albeit in a topological
weak sense.

(iv) Signature and data analysis. An RGB image can be fairly well represented by a field x :
[0, σ ] × [0, τ ] → R

3, where each xs;t = (x1
s;t, x2

s;t, x3
s;t) represents a pixel and every coordinate

stands for a fundamental colour (say 1 = red, 2 = green, 3 = blue). Nevertheless, to
the best of our knowledge, two-dimensional signatures have not been used as features
in image processing or other multiparametric data analysis problems. The need for
nonlinear functionals of the field x in texture classification was acknowledged in the
influential paper [15], leading to a wide variety of generalizations. One can also mention
the recent contribution [16], where regularity structures-based features are used for
prediction purposes. However, the fact that two-dimensional signatures are natural
objects to consider for image processing is not mentioned in those two references.

(c) Outline
With the above preliminaries in mind, our objective can be summarized as follows: we wish
to show empirically that two-dimensional signatures are natural and efficient low-dimensional
features for image processing. We propose to achieve this by considering a simple texture
identification problem. We will see that considering a 12-dimensional feature and applying
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standard classification methods, one can achieve an excellent accuracy. This certainly calls for
further developments, which will be highlighted in our concluding remarks.

Our paper is structured as follows: in §2, we give a mathematical description of the signatures
we are using for classification purposes, together with their discretized versions. Section 3 focuses
on the numerical experiment, as well as the outcome in terms of accuracy for our classification
task. We finish the paper with some concluding remarks in §4.

2. Description of the two-dimensional signatures
This section is devoted to introduce the features we advocate for in this paper. In §2a, we define
those objects in the (continuous) plane, while §2b focuses on the corresponding discrete objects.

(a) Features in continuous space
The integrals considered below are based on a notion of simplex in the plane. The first of these
objects is simply a rectangle of the form [s, ŝ] × [t, t̂]. It is denoted below as

S1(s, ŝ; t, t̂) = {(s1, t1) ∈ R
2, s < s1 < ŝ, t < t1 < t̂}. (2.1)

Notation (2.1) can then be easily extended in order to describe the simplex used for second-order
integrals. Specifically, we integrate over domains of the form

S2(s, ŝ; t, t̂) = {(s1, s2, t1, t2) ∈ R
4; s < s1 < s2 < ŝ, t < t1 < t2 < t̂}. (2.2)

With the above notation (2.1) in hand, the first-order increments used as features can be written
as

x(1,2);i1
sŝ;tt̂

=
∫
S1(s,ŝ;t,t̂)

d12xi1
s1;t1

and x(1̂,2̂);i1
sŝ;tt̂

=
∫
S1(s,ŝ;t,t̂)

d1̂2̂xi1
s1;t1

. (2.3)

Note that x(1,2);i1
sŝ;tt̂

above is simply the rectangular increment �sŝ;tt̂ x introduced in (1.9). Taking
into account the fact that the colour index i1 lies in {1, 2, 3}, we get six features of order 1 defined
by (2.3).

Let us now turn to the definition of second-order increments. Recalling notation (2.2), we now
have several possibilities combing spatial differentials and colour indices. We get

x(11,22);i1,i2
sŝ;tt̂

=
∫
S2(s,ŝ;t,t̂)

d12xi1
s1;t1

d12xi2
s2;t2

and x(1̂1̂,2̂2̂);i1,i2
sŝ;tt̂

=
∫
S2(s,ŝ;t,t̂)

d1̂2̂xi1
s1;t1

d1̂2̂xi2
s2;t2

. (2.4)

Remark 2.1. A wider variety of second-order increments is available, when one mixes the d12
and d1̂2̂ differentials defined by (1.8). One can also decide to integrate in one direction only for
some of the integrals. See ([13], p. 5 and p. 18) for an exhaustive first of necessary increments for
a rough integration in the plane. From this long list of possible increments, we will also appeal to

x11̂;22̂ and x1̂1;2̂2, respectively, defined by

x(11̂,22̂);i1i2
sŝ;tt̂

=
∫

S2(s,ŝ;t,t̂)
d12xi1

s1;t1
d1̂2̂xi2

s2;t2
and x(1̂1,2̂2);i1i2

sŝ;tt̂
=

∫
S2(s,ŝ;t,t̂)

d1̂2̂xi1
s1;t1

d12xi2
s2;t2

. (2.5)

Remark 2.2. In this article, we focus on low-dimensional features. We will thus only consider
the increments in (2.4) for i1 = i2. Specifically, the collection of first- and second-order increments
used below will be

{x(1,2);i, x(1̂,2̂);i, x(11,22);i,i, x(1̂1̂,2̂2̂);i,i, x(11̂,22̂);i,i, x(1̂1,2̂2);i,i; i = 1, 2, 3}. (2.6)

We thus end up with an 18-dimensional feature space.

Remark 2.3. As mentioned in the introduction, the collection (2.6) of iterated integrals enjoys
some complex algebraic properties. We refer to [12, Section 5.1] for an account on these relations.
See also the aforementioned article [14].
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Remark 2.4. Analytic properties are part of the appeal of signatures as features. Since our
considerations in the current article are restricted to second-order increments, the factorial decay
exhibited in relation (1.6) does not really make sense. However, assuming that x is a C2-signal, it
is readily checked that for all 0 ≤ s < ŝ ≤ σ and 0 ≤ t < t̂ ≤ τ , we have

|x(1,2),i
sŝ;tt̂

| + |x(1̂,2̂),i
sŝ;tt̂

| ≤ Cx|ŝ − s||t̂ − t| (2.7)

and

|x(11,22),ii
sŝ;tt̂

| + |x(1̂1̂,2̂2̂),ii
sŝ;tt̂

| + |x(11̂,22̂),ii
sŝ;tt̂

| + |x(1̂1,2̂2),ii
sŝ;tt̂

| ≤ Cx|ŝ − s|2|t̂ − t|2. (2.8)

(b) Discretization procedure
An image is a collection of pixels. For notational sake, we will consider that it can be represented
as a field indexed by N

2 and we denote by x̃ the discrete quantities. Otherwise stated, we have

x̃ = {xi
k;l; k ∈ {1, . . . , K}, l ∈ {1, . . . , L}, i ∈ {1, 2, 3}}, (2.9)

for two constants K, L ≥ 1. In this context, the discrete first-order increments are deduced from
their continuous counterparts (2.3) as

x̃(1,2);i1
kk̂;ll̂

=
k̂−1∑
k1=k

l̂−1∑
l1=l

�k1,k1+1;l1,l1+1 xi1 (2.10)

and

x̃(1̂,2̂);i1
kk̂;ll̂

=
k̂−1∑
k1=k

l̂−1∑
l1=l

(xi1
k1+1;l1

− xi1
k1;l1

)(xi1
k1;l1+1 − xi1

k1;l1
). (2.11)

As far as the equivalents of (2.4) are concerned, the discrete form of x(11,22) is

x̃(11,22);i1i2
kk̂;ll̂

=
k̂−1∑
k2=k

l̂−1∑
l2=l

⎛
⎝k2−1∑

k1=k

l2−1∑
l1=l

�k1,k1+1;l1,l1+1 xi1

⎞
⎠ �k2,k2+1;l2,l2+1 xi2 . (2.12)

For the sake of conciseness, the discrete expressions for the other increments in (2.6) are left to the
patient reader. Let us just mention that central difference approximations will be applied when
considering the first-order derivatives in d1̂2̂x (see expression (1.8)).

3. Numerical experiment
In this section, we illustrate the use of two-dimensional signatures as features for image texture
classification. There are two ways to look at the set of features we are considering in this
experiment:

(i) One uses classic principal component analysis (PCA) on the image pixels, then this data
is enriched with the second-order increments in (2.6).

(ii) One directly uses all the increments in (2.6), and performs PCA on the first-order
increments x(1,2);i defined by (2.3).

Since the value of each pixel can be deduced from the boundary terms {xi
0;t, xi

s;0; s ∈ [0, σ ], t ∈
[0, τ ]} and the increments x(1,2);i, it is readily checked that the two approaches (i) and (ii) are
equivalent.

PCA is one of the classic methods in image classification problems, successfully implemented
for applications such as face classification. The technique using PCA for face classification was
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named eigenfaces [17], whose basis set for all images is formed by principal components. In
particular, the original training images may be represented by their projections on the principal
components. Dimensionality reduction and feature extraction are achieved by keeping just the
first few principal components, which have higher signal-to-noise ratio. Here, we extend this
method to texture classification, enriching our data with the natural nonlinear features given by
second-order signatures. We also use simple PCA features as a baseline. Let us highlight again
the fact that principal components can be embedded in our signature analysis, when including
both first- and second-order signatures in our set of features.

(a) Training and testing data
The 42 textures used for this experiment are depicted in figure 1. They are from a standard dataset
called CuRRET: Columbia-Utrecht Reflectance and Texture Database [18]. We randomly sample
(100 × 100)-sized images from each texture. Ten samples from every texture are used for training.
As an illustration, the training data from the texture ‘21-lettuce leaf’ are shown in figure 2. Now,
we have 10 × 42 = 420 different images belonging to 42 different texture categories in the training
data. Since the data are easy to generate, we use a larger size of testing data to more accurately
evaluate the predictive performance of the machine learning model. Specifically, one hundred
images from every texture are sampled for testing. In total, this yields 100 × 42 = 4200 testing
data.

(b) Feature construction with symmetry
Feature construction is the process of extracting useful information from raw data. If properly
designed, the extracted features are of low dimension while preserving most of the important
information in the data. This process can improve the performance of machine learning
algorithms. As mentioned above, a traditional way of image feature construction is PCA, which
projects the data onto the first few principal components. Those components are encoded in the
first-order features (2.3).

For our experiment, we use the two-dimensional signatures described in §2b to construct more
features for image classification. For each image, we can calculate the discretized signatures using
the above formulae (2.10)–(2.12). Since textures should be symmetric, i.e. independent of the
orientation of the images, we design the features as the average of the signatures under eight
different orientations, the isometric group generated by rotation of 90◦ and reflection. As an image
has three channels (red, green and blue) and we are using four second-order signatures, we have
in total 12 features constructed by second-order signatures for every image. We are also adding
the first N1 ∈ [0, 40] principal components related to the first-order increments x̃(1,2);i1

kk̂;ll̂
in (2.10).

In the end, we are thus resorting to N2 ∈ [12, 52] features in our study. In an image processing
context, this should be thought of as a low-dimensional set of features.

(c) Training
We now assume that the training data of §3a (including the images and their corresponding
class labels), as well as the features constructed in §3b, are given. We then train a random forest
classifier using the joint features to reconstruct the corresponding class labels of the training data.
The classifier will then output a class label for any new input image. A good classifier should
obviously be able to distinguish properly between different classes.

(d) Testing
For each testing image, we calculate its features using the same formula as the training data.
Then, the features are fed into the trained classifier to predict the class label. Next, we compare
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01-felt 02-polyester 03-terrycloth 04-rough_plastic 05-leather 06-sandpaper

07-velvet 08-pebbles 09-frosted_glass 10-plaster 11-tree _bark 12-artificial_grass

13-roofing_shingle 14-aluminum_foil 15-cork 16-rough_tile 17-rug 18-styrofoam

19-sponge 20-lamb_wool 21-lettuce_leaf 22-rabbit_fur 23-quarry_tile 24-loofa

31-brick 32-corduroy 33-salt_crystals 34-linen 35-cotton 36-aquarium_stones

37-concrete 38-corn_husk 39-bread 40-soleirolia_plant 41-wood 42-cracker

25-insulation 26-crumpled_paper 27-slate 28-painted_spheres 29-limestone 30-straw

Figure 1. Forty-two different textures are used in this experiment. (Online version in colour.)

Figure 2. Ten samples from the texture ‘21-lettuce leaf’ in figure 1. (Online version in colour.)
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Figure 3. The percentage of explained variance of the first 40 principal components. Most of the variance is explained by the
first three components. Principal component analysis is performed on the training data, where an image is reshaped into a
vector. (Online version in colour.)

the predicted class labels with the true labels across all images in the testing data, and calculate
the overall accuracy of the classification algorithm in identifying the true labels.

(e) Results
Our aforementioned image classification pipeline uses features generated by principal
components as well as features constructed by signatures. The percentage of explained variance
of the first 40 principal components is shown in figure 3. As one can see, most of the variance
is explained by the first three components. Next, in order to visualize the testing data in
the high-dimensional feature space, we use a nonlinear dimension reduction technique called
t-distributed stochastic neighbour embedding (t-SNE) [19]. T-SNE embeds high-dimensional data
into two-dimensional space, while trying to preserve local structures and relative distances of
the data. See figure 4. The 15-dimensional feature vectors, generated by the first three principal
components and 12 second-order signatures, are embedded into a two-dimensional space. Each
point represents an image. The points of the same colour represent the images of the same class.
As one can see in the figure, the images are well differentiated by this 15-dimensional set of
features, even before the features are plugged into the classification algorithm.

The classification accuracy of the trained random forest classifiers on testing data is
demonstrated in figure 5. We include accuracy under different feature sets. To be specific, we
compare the accuracy with different numbers of principal components, as well as with and
without features constructed by second-order signatures. We also contrast the classification task
with or without symmetry in the construction of the signature features. Eventually, we compare
the results under different sizes of training data, while keeping testing data the same. As one
might expect, using more training data can improve the classification accuracy.

The numerical results suggest that when we use symmetric signatures and the first three
principal components as features, best performance is attained. The 15-dimensional feature set
yields close to 100% classification accuracy when there are just 10 training data in every class.
As nonlinear features complementary to the linear features provided by PCA, second-order
signatures can enhance the classification of textures. In fact, as the decay of performance when
adding too many principal components suggests, not very useful features can negatively impact
the machine learning classifier. On top of that, the procedure to average over eight orientations
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Figure 4. Two-dimensional t-distributed stochastic neighbour embedding of the 15-dimensional feature vectors of testing
data. The features are generated by the first three principal components and 12 second-order signatures. Each point represents
an image. The points of the same colour represent the images of the same class. The images are well differentiated by this
15-dimensional set of features, even before the features are plugged into the classification algorithm. (Online version in colour.)

when constructing features from signatures is helpful in improving the classification accuracy,
and this is consistent under different sizes of training data.

(f) Discussions
The numerical experiment demonstrates that signatures are useful features for texture
classification. The 15-dimensional feature vector constructed by first- and second-order signatures
contains most of the texture information of an image (of 100 × 100 × 3 = 30 000 dimensions).
PCA and random forest classifier are used here, but signatures as features can also be plugged
into other machine learning pipelines such as neural networks. A complete comparison with
benchmarks (including filter banks among others), as well as the strengths and weaknesses of
signatures, is a research line to explore in the future.

All results in this paper take a total of a few minutes to run, coded in Python and using one core
of Intel i7-6700HQ CPU. Time complexity and memory complexity of the signature calculation
step are linear to the number of data (images), while the classification step might scale differently
depending on what machine learning pipeline is used.

4. Conclusion
We have produced a low-dimensional set of features, based on first- and second-order signatures
of two-dimensional indexed fields. Those objects stem naturally from elementary calculus in the
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Figure 5. Classification accuracy of the random forest classifiers. When there is no signature or principal component, the
accuracy is fixed at 1/42 since there is no feature and we are predicting 1 out of 42 classes. (Online version in colour.)

plane considerations. Therefore, they provide a very convenient set of parameters, expressed as
nonlinear functionals of a field indexed by R

2. In addition, we have shown that two-dimensional
signatures yield excellent performances for texture classification in a concrete example.

In view of the above observations, two-dimensional and more generally higher dimensional
signatures certainly deserve further investigation. Below is a non-exhaustive list of research lines
we wish to explore:

(i) Increase the number of experiments, progressively asserting the validity of two-
dimensional signatures as a meaningful set of characteristics for different categories of
fields. Specific domains of application should include material science as well as civil
engineering, where texture type features play a prominent role. We should also look at
inserting our signature-based features into broader neural network procedures.

(ii) Preprocessing of signals often enhances the performance of classifiers. Natural
explorations in this direction would be additions of lags or of components yielding
parameterization invariance [20]. The introduction of kernels [21] could also lead to
improvements.

(iii) Get a better grasp on the underlying algebraic structures related to two-dimensional
signatures. This study should go beyond the investigation lead in [14] (restricted to the
d1̂2̂x differentials introduced in (1.8)), and will probably involve advanced structures such
as Hopf algebras. One of the main objectives in this direction is to construct all signatures
(up to a given order) in a systematic way. Invariances of signatures might also be encoded
by group actions such as the ones exhibited in [14].

(iv) Generalizations of rough paths notions to fields indexed by R
d have recently given

rise to breakthroughs in the definition of singular PDEs. Those advances have been
achieved either in the landmark of regularity structures [3,22] or paracontrolled calculus
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[23], and they all rely on convolution type iterated integrals. Since PDEs are known to
be related to various fundamental problems in image processing (see [24]), it is likely
that those iterated convolution integrals are also meaningful for image classification
purposes. In particular, the paracontrolled approach hinges on Fourier modes, which
could complement the direct modes feature introduced in (2.6).

As the reader can see, the signature method for image processing is a promising research
direction, which deserves further investigations and improvements. Those questions will be
addressed in subsequent publications.
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