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ARTICLE INFO ABSTRACT
MSC: Over the past decade, the importance of the 1D signature which can be seen as a functional
primary 60L10 defined over a path, has been pivotal in both path-wise stochastic calculus and the analysis of
60L20 time series data. By considering an image as a two-parameter function that takes values in a
60]“7(; 60190 d-dimensional space, we introduce an extension of the path signature to images. We address
secondary numerous challenges associated with this extension and demonstrate that the 2D signature
Keywords: satisfies a version of Chen’s relation in addition to a shuffle-type product. Furthermore, we show
Signatures that specific variations of the 2D signature can be recursively defined, thereby satisfying an
Rough paths theory

integral-type equation. We analyze the properties of the proposed signature, such as continuity,
invariance to stretching, translation and rotation of the underlying image. Additionally, we
establish that the proposed 2D signature over an image satisfies a universal approximation

property.

Random fields
Feature extraction
Image analysis

1. Introduction

To enhance the accuracy of representations in data analysis, it is often important to enrich the original data using nonlinearities.
In much of the current literature on data processing, neural networks are often trained without explicit guidance on determining the
appropriate type of nonlinearity to be added. Nevertheless, it may be more efficient to begin with a natural and easily interpretable
notion of nonlinearity within the relevant context.

With this general understanding, the concept of a 1D signature' defined over a curve has proven to be crucial in both path-wise
stochastic calculus and the analysis of time series data. For a given ambient dimension d > 1 and interval [0, T], let us briefly recall
the definition of the signature of a differentiable path

x={xl|li=1,....d, t€[0,T]}.

To achieve this, let us initially define the set of words on a finite alphabet.
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Definition 1.1. Let A ={l,...,d} be an alphabet. Denoting the collection of words with » letters
W, :={w=(,....i,) In>0and i; € Aforall j=1,...,n}, 1.1

where the case n = 0 corresponds to the empty word e, we define the set of all words over A as W :=U,5,W, W =W — {e}).
The length of a word w = (i, ..., i,,) is denoted |w| = m.

Now we can define the signature S(x) as an infinite-dimensional object in (C(Ag T))W, where the simplex
Ay i={sD]0<s<1<T},

by specifying recursively the projections (S(x), w) for every word w € W. Namely, we set (S,,(x), e) := 1 and if w = (i, ...,i,) € W',
then we define

t .
(S5(x), w) 1=/ (S5p(x). (i, e iyoy) A 1.2)

The rich structure enjoyed by S(x) has first been emphasized by the mathematician K. T. Chen [1] within an algebraic context.
Subsequently, the concept of signature was imported by T. Lyons [2] to the realm of stochastic analysis, leading to the development
of the fruitful theory of rough paths. Among the properties which have made the notion of path signature so insightful, let us
mention the following ones:

(i) Algebraic properties like Chen’s relation as well as shuffle products. This yields a wealth of structures, such as Lie groups and
algebras, as well as Hopf algebras, providing a convenient mathematical framework for studying the path signature S(x).

(ii) Regularity properties in terms of Holder continuity and p-variations.

(iii) Ability to expand solutions of differential equations in terms of S(x), leading to pathwise analysis of noisy equations.

(iv) The fact that a generic curve can be recovered from its signature, up to tree-like equivalence.

We refer e.g. to [3-5] for more details on those properties. In any case, items (i)-(iv) above have been a sufficient motivation
to consider signatures as proper features for classification tasks related to curves. See e.g. Refs. [6,7]. Notice the special importance
of (iv) in this regard. In the past decade, there has been a significant increase in the importance of utilizing signature methods
in diverse data analysis applications. This trend extends across various domains, encompassing Chinese character recognition [8],
topological data analysis [9], and the development of signature-based machine learning models for psychiatric diagnosis [10,11].

Based on those preliminary remarks, it is rather natural to ask if appropriate generalizations of the notion of signature can shed
new light on the analysis of images. Indeed, even if nonlinear features have been a prominent fixture of image processing in the
recent past (see, e.g. [12]), those features are often defined in a somewhat arbitrary fashion. Moreover, one may remark that a
precise and transparent algebraic structure, which is useful for basic analysis as well as efficient implementation of those objects, is
also lacking in [12] and related papers. Hence, there exists a compelling need for an appropriate extension of the signature concept
applicable to 2D-indexed R¢-valued fields. Specifically, our objective is to emulate at least some of the desirable properties (i)-(iv)
mentioned earlier, bridging the gap in the current literature and fostering a more comprehensive understanding of image analysis.

We briefly mention earlier work where the concept of 2D signature is touched on. In [13], Horozov explores a generalization
of Chen’s iterated integrals from paths to membranes, i.e., 2D surfaces or fields in our parlance. He describes a shuffle identity that
is similar to ours. However, we note two major differences. First, Horozov integrates first-order differentials. Second, he works in
ambient dimension 2 which implies homotopy invariance, something that is not true in our more general setting. Lee et al. [14,15]
pursue an abstract algebraic-geometric approach, which in the latter reference is built around a categorical generalization of
Chen’s identity to surfaces. In contrast to these works, our proposed signature is constructed from mixed partial differentials of the
underlying field, motivated by multiplicative noisy controls seen in the field of SPDEs. This approach creates different properties of
the resulting signature, which will be discussed in depth in the next paragraph. In [16], a two-parameter version of the iterated-sums
signature [17,18] is elaborated. Finally, in Ref. [19] images are considered as time-series, by going through them “line by line”.

To extend the path signature (1.2) to surfaces or fields indexed by pairs of parameters from the square [0, 7] X [0, T], an initial
approach that naturally comes to mind is to employ concepts from rough pathwise calculus within the two-dimensional plane (as
introduced in [20,21]). In Ref. [22], the fourth author, together with collaborators, discretized part of the two-parameter analog
of the 1D signature considered in [20,21]. A low (that is 15-)dimensional set of features was obtained, with good classification
performances for a standard set of textures. This preliminary result provided sufficient encouragement to go further in that particular
direction.

In the broader context outlined, the present contribution seeks to establish a conceptually straightforward definition of the
signature for 2D-indexed random fields. While the constructions and analysis presented here are naturally deterministic, much in
the spirit of rough paths theory, we believe that the insight gained from this analysis has the potential to influence future analysis of
random fields, in the same way the study of signatures has influenced the theory on stochastic processes and stochastic differential
equations.

A remark is in order regarding item (iii) above. Our point of view is that the full power of rough calculus in the plane (as exhibited
in [20,21]) may require a degree of generalization of the signature that could be unnecessarily complex for the specific goals of data
analysis. Therefore, with reference to items (i)-(iv) above, we will place less emphasis on item (iii) while prioritizing items (i)-(ii) and
(iv). We assert that this shift in emphasis is effectively achieved by considering the various 2D signatures described below. Indeed,
we introduce three candidates for 2D signatures over a field X = X(s,): the 2D id-signature, S(X), the full 2D signature, S(X),
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and the symmetrized full 2D signature, S¥™(X). However, all of these constructions provide insight into the workings of iterated
integrals of 2D fields. Our hope is that this insight can be leveraged to further investigate item (iii) in the context of pathwise
solutions to multi-parameter stochastic differential equations.

Let us conclude the introduction with a motivation for the coming analysis through a brief overview of some of the main
properties that we will prove to hold for the proposed full signature S(X):

(i) The full 2D signature S(X) over a field X : [0,T]> — R? is invariant to translation by constants, but also by 1-parameter paths!
This shows that our proposed signature can really be seen as a complementary feature to the classical path signature, and that the
2D signature indeed captures multi-directional relative change in the signal.

(ii) The full 2D signature of 90-degree rotations of a field X can be expressed in the 2D signature of X itself (up to multiplication
by —1). So, while we cannot state that the 2D signature is rotation invariant, all necessary information related to 90-degree rotations
is contained in the signature.

(iii) Already in the case of one-dimensional ambient space of the field, the proposed full 2D signature is non-trivial (i.e. not
equivalent to polynomials in the increment). This is in contrast to the path signature as well as the two-parameter signatures
presented in [14,15].

(iv) The full 2D signature is a continuous functional.

(v) Certain terms in the full 2D signature can be used in expressing solutions to certain hyperbolic PDEs, known as Goursat equations,
with multiplicative noise.

(vi) The full 2D signature satisfies a variant of the well-known shuffle relation, and thus the linear span of 2D signature elements
form an algebra.

(vii) The full 2D signature is universal, in the sense that linear combinations of signature terms approximate continuous functionals
on the space of C? fields arbitrarily well.

(viii) The full 2D signature satisfies a Chen-type relation, where a convolution product is involved. Through certain symmetrization
arguments in the integrand, similar to what is used in the Wiener-Itd chaos expansion, one obtains multiplicative Chen-type relations
in the horizontal or vertical direction of an image.

While our work provides new results related to the construction of 2D signature, in addition to a detailed overview of the
challenges involved in this extension, we also provide discussions of several open problems associated with this structure.

The paper is organized into the following Sections:

2 We recall some of the basic structures of the path signature.

3 We develop notation, discuss multiparameter integral operators, and provide an overview of calculus in the plane.

4 We propose a 2D signature over a two-parameter, R¢-valued field. In fact, starting from the expansion of certain PDEs, we
derive an object termed the id-signature. Chen’s relation is explored within this 2D framework. However, we will show that the
id signature lacks some of the desired properties. This motivates the definition of a full 2D signature, defined over a larger word
shuffle algebra. Computations are presented to exemplify the properties of the full 2D signature.

5 We symmetrize the integrand, and observe that this new signature-type feature satisfies Chen’s relation.

6 A proof is given, showing that the 2D signature characterizes the field.

7 We provide a few concluding remarks and discuss open problems and future progress.

2. Linear ODEs and the 1D signature
In this section, we recall how signatures for curves parametrized over an interval [0,7] can be motivated in terms of linear
ordinary differential equations. We first show how the signature S(x) in (1.2) emerges from R°-valued differential equations. Then

we identify the signature itself as the solution of a linear equation in an infinite dimensional space. Those notions will be generalized
later to a multi-parametric setting.

2.1. Motivation from real-valued differential equations

Signatures of curves parametrized over [0,7] appear naturally in the context of linear fixed point equations (e.g., see [23] for
this perspective in the context of Volterra equation).

Lemma 2.1. Let x : [0,T] = R? be a C! signal and let {A’ |i=1,...,d} c R be a collection of constant matrices with real entries.
We consider the R¢-valued solution y to the linear equation

d t
Yoo ‘=Y Y5 = Z/ A'y, dx,, 2.1
=175

for (s,t) € Agir’ with a given initial condition y; € RY. Recalling (1.1), we set

A = Al AN for w = (i, ..., €W (2.2)
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and A® is the e X e identity matrix 1,. Then Eq. (2.1) can be expanded as

Vo= ) Ay (Sy(x),w), 2.3)
wew

where the quantity (S, (x), w) was introduced in (1.2).

Proof. We will provide a brief outline of the proof here, establishing the foundation for the forthcoming exploration of the
two-parameter case. Employing Einstein’s summation convention for repeated upper indices, Eq. (2.1) transforms into:

t .
Vet = / A"lyr1 dx','] , for (s,0) € A(z)_T.
s

Replacing y, by y,,, +y, on the righthand side yields
t L .
Vg = A’lyS/ dxtrll +R!,, where R! := / Ay, dxl,ll. (2.4)
s N

Repeating this step, the increment y,, in the remainder term R! can be further expanded

. re e .
ysrl = A" ys/ dxlrzz +/ A" ysrz dxlrzz .
s s

Plugging this into (2.4), we end up with
t
) i o o )
Yy = Auys/S dx;! + A Ay, /N . dx2dx,| + R, (2.5)
SEMSr=

The expression of the remainder R?, follows the same procedure. In addition, observe that invoking our conventions (1.2) and (2.2),
one can recast (2.5) as

Yo = AWy (S,(x), (1)) + A2y (S (x), (i, 1)) + R,

Our claim (2.3) follows from iterating this procedure. []
2.2. The algebra of signatures

Following [4], we start this subsection by recalling the algebraic and geometric setting for 1D signatures indexed by a single
parameter. This will allow us to provide a linear differential equation which governs the signature of a path. We will try to replicate
this linear equation for images in the next sections.

We begin by recalling the definition of tensor algebra over the space R¢

TR := PRH®",
n=0

with (R?)® = R1. It is equipped with a product ® defined for any g, » € 7(R¢) by

[g® A" = Y [el"™* @ [hT", (2.6)

k=0
where [g]" € (R?)®" designates the projection onto the nth tensor level, making 7 (R?) an associative and non-commutative algebra
with unit 1 € (R4)®°,
The space 7 (R?) can be equipped with the commutative shuffle product defined inductively, i.e., ww1 = 1w w = w for any
w € T(RY) and for u ® wy, v ® wy, u,v € RH®, w,, w, € T(R?), we define
@WQuw)w@uw,) :=u®(w; w@ W) +v® (u® w;) ww,). (2.7)
For example, shuffling two letters, u and v, gives

uwov=u@uv+ovQu.

See Notation 3.2 for an explicit formulation of shuffle product in terms of permutations. Further below (see Notation 4.27), we
will use word notation to denote elements in 7 (R?), i.e., if e[, ..., e, denotes the canonical basis of R?, then we use (i, ...,i,) € W
to denote ¢; ® - ®¢; € T (RY).

The space of tensor series is denoted 7 ((RY)). It contains linear maps F := Dwew fwew from T (R?) to R, where

lew=e, @ ®e, w=(i.ip €W} 2.8)

such that for v € W, we define F(v) = Y, ey fuw(ew, V) = f,. The tensor product (2.6) can be extended to 7 ((R?)) making it an
unital algebra, with unit 1 (in place for the empty word).
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A continuous map @ : Ag =T ((R)) is called a multiplicative functional if
¢sr = ¢Su ® d)ut7

for s < u < 1. The signature S(x) of a path x with finite variation is a particular example of such a multiplicative functional. Indeed,
recalling (1.2) we can embed (S(x), w) by setting

Sy =1+ Y (S, (0),w)e, € T(R). (2.9)
wew’

In addition, it can be shown that S,,(x) lives in a subset G(R?) c 7 ((RY)) consisting of so-called group-like elements
GR?) = exp® (L(RY))),

where L((R?)) denotes the set of all Lie series over R¢. Hence, every element in G(RY) is the tensor-exponential of a Lie series.
Regarding the latter, recall that, denoting by £(R?) the free Lie algebra over R?, an element in 7((R)) is a Lie series if it can be
written in the form Y., p,, where each Lie polynomial p, € £(R) has support in W,.

As seen above, the notion of signature can be motivated by linear differential equations. We now state a differential/integral
equation in 7((R?)) for S,,(x) itself. It should be seen as a simple non-truncated version of [4, Prop. 7.8].

2
ab’

Proposition 2.2. For (s,1) € A% ,, the signature S,(x) defined by (2.9) solves a linear integral fixed point equation in 7 (R%)) of the form

t
S,(x) =1+ / S,,(x) ® dx, . (2.10)

3. Simplexes and integration

This section is devoted to collecting some notations as well as elementary results frequently used across the article in the context
of calculus in the plane.

3.1. Rectangles and simplexes

Throughout the text, rectangles in the square [0, 7]> c R? will play a crucial role. We first spell out our convention and notation
for those objects.

Convention: we refer to the horizontal and vertical axis in the plane as the first respectively second variable, indexed respectively
by subscripts 1 and 2. See Fig. 1.

Notation 3.1. A generic rectangle R in R? is of the form R = [s,,,] X [s5,1,], with 5, < ¢, and s, < t,. A more compact notation
follows by considering points in R?, setting s = (s;,s,) and t = (t,,1,), where s, < t; < T, s, < t, < T. We then denote by
R =[s,t] :=[s;,t;]X[sp,1,] a sub-rectangle specified by its lower left and upper right corners, inside the standard-square [0, T]>. We
shall also write T = (T, T) for any positive quantity 7.

Notation 3.2. Denote by X, the set of permutations of elements of a finite set .A. Furthermore, for n,k > 1 we consider the
following set of permutations of the set {1,...,n+k}:

Sh(n k)= {p € Z(1_ i) |pD) <p()ifl<i<j<norn+1<i<j<n+k}. 3.1

Our upcoming computations employ the concept of rectangular increment, and will heavily depend on simplexes, including a
variant that incorporates permutations.

Definition 3.3. Let a < b be elements in [0,T]. Then we define the following simplexes:
(i) The usual simplex of order » is given by

A, ={rel0,TI"la<r' < </ <b}. (3.2)
(ii) Consider a permutation ¢ € X(; _,,. Then we define the s-simplex

A o={rel0,T]"la<r® <. <r'® <b}. (3.3)

Remark 3.4. Note the use of superscripts in (3.2) and (3.3) to denote components of r € [0, T]".

It is well-known that permutations carry a shuffle property, which can be translated into a corresponding property for simplexes.
We recall this elementary result for further use. For a proof of this statement, we refer the reader to Patras [24, Prop. 2].
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AAxis 2
t = (t1,t2)
to®
S2@
s = (s1,52)
51 fi o Axis 1

Fig. 1. Typical example of rectangle [s,t] in [0,T]>.

Lemma 3.5. Consider two positive integers n,k, and let o € X, _,, and v € X, ;. For a < b we define A" s and A’; o7 like in (3.3).
Then the product A7 o x A’; ,7 can be “linearized”:

szba X A’;,b‘r = U AZ;"(J % 7)op~ !, (3.4)
pESh(n,k)

where ¢ 7 € Xy, is defined as

(o * 1)) := {G(i) isn

T(i—n)+n n+1<i.
The union is disjoint up to sets of zero Lebesgue measure.
We close this section by defining the main type of simplex which will be used in the context of integration in the plane.
Notation 3.6. Lets = (s;,s,) and t = (#;,,) be two elements of [0, T]?, where we are using Notation 3.1 on rectangles. Consider
an integer n > 2. We denote the set

A"

n
st = {(r‘,...,r")e ([O,T]z) 58 Sr{ < e Sr’l’ <tyand s, <r

< <r<n). 3.5)

3.2. Some properties of integral operators

To facilitate future computations associated with the construction and properties of signature over an image, this section will
revisit several essential properties of iterated integral operators. Commencing with a straightforward definition, we clarify the
concept of an iterated integral operator:

Definition 3.7. Let n be a positive integer, and consider a measurable set A C [0,T]". We write L(V; W) for the set of bounded
linear operators from a vector space V' to a vector space W. Then we define an integral operator / 4 as an element in L(LY([0,T]");R)
such that

/ : XELI([O,T]")>—>/X :=/~-/X(r,,...,r,,)dr1 wdr, €R. (3.6)
A A A

In the sequel, we shall compose integral operators and therefore introduce a particular notation for that purpose.

Definition 3.8. We define two types of compositions of integral operators as follows:

(i) Let AC[0,T]" and B C [0,T]" be two measurable sets. Then we define

[+[=] . 37)
A B AXB

where the right hand side of (3.7) is understood as in Definition 3.7.
(ii) For two measurable sets A, B C R", we define

[
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where the “interlacing” of A and B is defined as the set

AmB := {(r},ré,r%,r%, s 11y € R> | (r:, L) E A, (ré, ...s15) € B}.
Note that, if A, BCR, then [, % [, = [, %' [5.

The following “interchange law” is immediate.

Lemma 3.9. For A,BCcR", A'",B' c R",

L) U L) = )= U )

Example 3.10. As an illustration of the previous notation, let us consider the particular case of simplexes. Here we use Definition 3.3 and
Notation 3.6. Consider now (s,,t,) and (s,,1,) in A% _, where we recall the notation given in (3.2) for AZ b Then

0.7
A A A x4A"

s1.1 591y 51.01 7 Csputn

Jo, e, =]

n n
spot1 52512 [s.t]

and

The main reason why we have introduced the notion of integral operator is the following: we wish to highlight the fact that the
usual algebraic properties of iterated integrals can be reduced to manipulations on simplexes. Let us first rephrase Chen’s relation
in this framework.

Lemma 3.11. Let T > 0 and consider (s,u,t) € AgT. Recall our notation (3.6) for integral operators and relation (3.7) for compositions.
Then we have that

/ = / * / . (3.9)
47 I+k=n A{?,u A‘u(,r

Proof. The following fact about simplexes is well-known and easy to prove:

ar = ) 4, x A (3.10)

u,t’
I4+k=n

where the union is disjoint, up to a set of measure zero, and where it is understood that 47 x Agr =4 = AS X A% . Our claim (3.9)
then follows. []

Remark 3.12. As a particular case of Lemma 3.11, we will later use the following relation for (s,u,t) € AS r

x [ =] -/ -/ . (3.11)
bl bl ke

Remark 3.13. We can recast relation (3.9) in the language of algebraic integration as described in [25]. To this aim we define
the space C = C, of continuous functions x : [0,T] — R9. We also set C, as the space of continuous functions y : [0, T? - R4
vanishing on the diagonal (i.e. y,; = 0). Next we define an operation 6§ : C; - C;, by

5txx =X; = X, and éuys,t = Vst =™ Ysu — Yur- (312)

Then Lemma 3.11 asserts that for (s,u,1) € AST

5/5/_/_/: /*/ (3.13)
Ua e, e, Ja, MZ A, I,

k>0

As mentioned in the introduction, iterated integral operators satisfy the shuffle property. This relation is rather useful in both
the analysis and applications of the path signature. We write it here purely in terms of the integral operator.

Proposition 3.14 (Shuffle Relation of Permuted Integral Operators). Recall the notion of permuted simplex, A p, introduced in (3.3). For
s <t €[0,T] and permutations p € Xy, 5 and v € X, , we have that

,,,,, m}

/ * / = ) / . (3.14)
?,rp A.’vyjr" oeSh(n,m) A?;m(p*v)(wil

where Sh(n, m) is given in Notation 3.2 and the product * on permutations is defined in Lemma 3.5.
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Proof. Owing to (3.7), we have

/ x / - / .
a0 ALy A5 )47V

Our claim (3.14) is then a direct consequence of Lemma 3.5. []

We conclude this section with a useful symmetrization property relating iterated integral operators to integral operators over
hypercubes.

Lemma 3.15. Let (s,1) € Ag - Then

Z /Af,,p B /[s,r]” '

PEZ(1, . )

Proof. This is known to result from integration by parts. In geometric terms, it follows from the fact that the hypercube [s,7]"
can be divided into n! different simplexes defined by all possible ways of ordering n variables from [s,#]". This is described by all
possible permutations of the set {1,...,n}, and thus we have

U 4ae=00m O

PEZ(1,.. )
3.3. Increments in the plane

In the sequel, a field X is indexed by a pair of elements from the standard-square [0,7]> (analogous to a curve x being indexed
by elements from [0, T]). We first introduce notation for the so-called rectangular increment of a field X.

Notation 3.16. Let X € C([0,T]*;R?) be a field. For r = (r,,r,) we set

0X, X,
aIXr = F) 3 a2)(r = P) ’
r r2

X,

—r 3.15
or 0r, ( )

and 0 X, =
For a function f : R? — R, we also use the standard notation 9; f (x) = (%(x).

Definition 3.17. Consider an R?-valued function X : [0,7]?> — R?, and a generic rectangle R = [s, t], specified by its lower left
and upper right corners, s = (s, s,) respectively t = (#;,1,) — using Notation 3.1. Then the rectangular increment of X over R is
defined to be

OuX =X, ,, - X +X

s13ty _X11;52 S1382°

Note that, still in line with Notation 3.1, we further condense notation by writing

X X

r = Arpry

for r = (r|,7,) € [0,T]>.
Recall that the 1D signature is built on the concept of increments. In particular, we observe that (S, (x),(i;)) = x,' — x!. The
rectangular increment defined above naturally extends this to the 2D setting

I:]stX = /] alZX:];s2 dsldSZ,
A
[s.t]
when X is twice continuously differentiable. With this in mind, using Notation 3.16, we define the following convention for the
mixed partial differentials.

Notation 3.18. Consider a function X € C%([0,T]?;R?). For r = (r,,r,) and i,j € {1,...,d}, we define
d'X, := 0, X drdr,, and dVX, := 0, X! 0,X]dr(dr,, (3.16)
where X| denotes the ith component of X, € R?. Note that in future computations we will write d'X, and dX! without distinction.

This subsection is closed by stating a basic change of variables formula in the plane. We employ Einstein’s summation convention.

Proposition 3.19. Let X be a field in C*([0,T]%;R¢) and consider a C?>-function f : RY — R. Recall Notation 3.6 used for 2D-simplexes.

Then for (s,t) € A[zo 1) we have

Dstf(X)=/

a,.f(X,)d"X,+/ 0, f(Xp)dU X, (3.17)
[s.t] [s.t]
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where we use convention (3.16) for the differentials d and d, and where according to notation (3.7) we set

1 1%
Lol L
[s.t] 5] S [s1.t11X[s2.12]

Remark 3.20. Formula (3.17) above can also be stated using Faa di Bruno’s formula. Namely, by considering s = (s, s,) as fixed,
the field t —» Z; = [, f(X) is such that

012 Z¢ = 0,/ (X) 01 X{ + 9,/ (X) 0, X{ 0, X, (3.19)

where we have used Notation 3.16 for the right hand side.

4. Definition of the 2D signature

In this section, we will introduce a notion of 2D signature based on a linear equation, similar to Lemma 2.1. However, we shall
see that this simple definition is not enough to grant basic algebraic properties. Therefore in the second part, we shall propose a
new and more fruitful notion of 2D signature. The main algebraic propositions are postponed to later sections.

4.1. A first notion of 2D signature: the id-signature

With the notation of Section 3.3 at hand, we now introduce our first notion of 2D signature in terms of a linear equation which
is reminiscent of (2.1). Namely for a collection of constant matrices A’ € R®*¢, i = 1,...,d, an initial condition v € R® and a smooth
field X : [0,T]* - R9, we consider the R¢-valued solution Y to the linear equation

d
Yt:v+2/ AlY,dX,, for telsT], 4.1
i=1 JIs:t]

where we recall from Notation 3.1 that s = (s;,s,) and T = (7, T). Note the double integral (3.18) as well as the differential (3.16)
present in (4.1). The next definition proposes a 2D signature over X, seen as a function defined recursively on words similarly
to (1.2). Recall A? defined in Notation 3.6.

Definition 4.1. Let X : [0,T]*> — R be a smooth field. The id-signature S’(X) is a function in (C(A%))", defined for (s,t) € A2
and every w = (iy,...,i,) € W by

(S4x), w) = /“] (89X, (s sipy)) dnX,. (4.2)
S,
We illustrate the above definition of the identity signature with the following example.

Example 4.2. Let the field X : [0,T]*> — R be given as the Hadamard product of two paths x', x* € Lip([0, T1; R?), such that X is given
by the vector

1,1_21

]
X = : .
1ld_2.d
ST

Then for any word w € W, it is readily checked that the signature inherits the multiplicative structure of the field X, in the sense that
(SEOO.w) = (S, (). w)( Sy, (%), 0).

In [26] the authors show that the signature kernel K(x',x%) := (S(x!), S(x2))7((Rd)), as used in machine learning [27], solves a Goursat

PDE, such that the signature kernel is given as the solution of the PDE

0% 1
mut = ut(xrll,xrz2 s Uy, =y o=1 (4.3)
A formal expansion of the solution to this equation as the signature kernel can then be written as

=1+ Y (S, (D, w)(S,, (D wy =1+ Y (SS(X), w). (4.4)
wew wew

Investigations of this type of equation have recently been expanded upon in the setting of Fubini’s theorem in [28], and for a general analysis
of the non-linear versions of this Goursat PDE see [29] in the case of Young fields X, and [30] for a regualrization by noise perspective.

Analogously to Lemma 2.1, the following lemma shows how the 2D signature over X defined in (4.2) permits to express the
Re¢-valued solution Y to (4.1).
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Lemma 4.3. Given a smooth field X : [0,T]*> — RY, the rectangular increment of the R¢-valued solution Y to (4.1) can be expanded as

OgY = ), A0 (SE(X),w). (4.5)

wew
Recall that the matrix A°“ corresponds to the products of matrices in reversed order of the word w, introduced in (2.2).

Proof. According to (4.1), the initial conditions for Y on the axes are

Y, =Y,

S1.l2

=Y,

sy = U
for all t = (7;,1,) € [s, T]. Therefore, for all t € [s, T] we also have
OuY =Y, - v.
Therefore, (4.1) becomes
O4Y = 2/ A'Y, diX,. (4.6)
[s,t]

We now proceed as in the proof of Lemma 2.1. Namely on the right hand side of (4.6) we write Y, = v + [, Y. Using Einstein’s
summation convention we get

[]stY=Ailv/ dX. +R), where R} =/ A (O Y) d1X,. (4.7)
[s.t] [s,t]

Iterating (4.6) and (4.7) as in the proof of Lemma 2.1 confirms a “formal expansion” (4.5). After establishing Proposition 4.25, this
formal expansion transforms into a rigorous expansion. []

Remark 4.4. The signature Sis‘: (X) can be written more explicitly as a tensor series in 7' ((R%)) with multiple integrals as coefficients.
Indeed, using (3.5) for simplexes, recursion (4.2) yields

(S, w)—/n d1 X e dn X, (4.8)
[s.t]

where we recall (3.5) for A[st

The signature S's‘i (X) solves a linear differential equation which is reminiscent of (2.10). We state this infinite-dimensional variant
of (4.1) below.

Proposition 4.5. Let X be a function in C>([0, T]?; R?). Recall the definition of tensor series T ((R?)) spelled out in Section 2. Then as a
T (RY))-valued function indexed by [0, T, the signature S(X) satisfies the following equation for dll (s,t) € A[zo 17

S9x) =1 +/ SE.(X) ® dX,. (4.9)
[s.t]

Remark 4.6. One might ask about existence and uniqueness for equations like (4.9). And indeed, Proposition 4.5 already gives
the existence of a solution. As far as uniqueness is concerned, notice again that we consider Sisd (X) as an object taking values in
T ((RY)). Therefore one possibility is to interpret equation (4.9) as follows: denote S;‘t’ = 1 NS (X) the projection of Sis‘:(X ) onto
GB,I,V: (R%)®", Moreover, equip EB;‘L O(IR" )®" with the proper tensor product defined by (2.6). Then (4.9) should be interpreted as a
family of finite-dimensional differential equations indexed by N, similarly to what is done in [4, Prop. 7.8] for one parameter:

SN =1 +/ SN ® dx,. (4.10)
[s.t]

Now for a fixed N, finite-dimensional differential equations like (4.10) have been shown to have a unique solution e.g in [29,31]
This also proves uniqueness of the solution for Eq. (4.9).

Proof. We denote by zr,,(S (X)) the projection of S ((X) onto the set of level n signature components. More specifically, using
Definition 1.1 and our notation in (2.9) we set

,SSX) = Y (S4X),whe,,.

wew,

Then resorting to our explicit representation (4.8) we have

7,(S4(X)) = / ®dx,,, (4.11)

where dX = (dX!,...,dX?). Moreover, one can recast (4.11) as

n—1
7, (SE (X))—/ (/ 1 ®er,)®ern.
[s.t] lorn) i=1

[s.r”]

10
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Resorting to the explicit representation in (4.8) again, we end up with

7,(89(X)) = / T, 1 (89,(X)) ® dX .

[s.t]

Putting together all the projections finishes the proof. []
4.2. Chen’s relation: Horizontal and vertical

Recall that Chen’s relation for curves indexed by [0, T'] has been stated in Lemma 3.11. We now investigate proper generalizations
to the 2D-setting. Similarly to other contributions in the field (see [14,23]) we will only get partial versions of this relation for the
2D signature. Our restrictions will be of two types:

(i) We will only treat partial Chen-type relations in directions 1 and 2 separately. One can combine the two, but will then obtain a
rather complicated relation.

(ii) Our results will be restricted to the signature S9(X) introduced in Section 4.1.

In subsequent sections, we shall give some hints about the way to overcome those difficulties, see in particular Remark 4.15. The
following example illustrates the partial Chen’s relation in the “horizontal direction”.

Example 4.7. For any s, <u; <t and s, < t, we have

id _ b
<Sl(s1,s2),(t|,12)(x)’ ab) = /s,gr}grfgzl dxe, dX%

I..1 )

171 i s

$2Sry SISty
= dx® dxb ,+ dx®  dx*

sy<rl<r?<u 1.1 2.2 sy<rl<uy <2<t 1.1 2.2
1= == e e 1= s = rr rer

1.2 172 172 12 172 172
szgzgzs:z szerSrzsrz

a b
+/4]5rlsr251| X’ dX’ ,
151 rry I
1 1’2 12
sp<ri<d<

= (S X),ab dxe (s X),b
( (51v52)~(u1vt2)( ).a >+‘[qu$’2 —[1915’41 ri,q ( (u1v61)q(f1-f2)( ), b)

id
+ <S(M| Jz)-(’],l‘z)(X)’ ab>
= (s (X),ab) + 4 g (X),b) (¥ (), )
TV 1)y )Y sp<a<t, 44 (51,521, 77 () ty.12) Y7
+(S¢ (X). ab)

(u1,52),(11.12)

Different from the one-parameter case, the signature does not precisely “split”; a form of “convolution” appears in the middle term. We
visualize the respective points r',r? in the plane, according to which side of the line {u,} X [s,,1,] they lie on:

o) o(?) o7 o7

tHe tHe ¢he «he

In each of the three terms, the point r! is to the south-west of r>. Again, the middle term does not split, but is a “convolution” of the two
sides.

Let f,g : A* - R be two functions. Define for a; < b, <c¢;, 5, <1,

5]
(f *p,.1 g)((al’sz)’(clvtz)) :=/ f((apsz)»(b]»Q))g((bl,lI)a(Cpfz))d‘L
Analogously, for s; < t, a; < by < ¢y,
fl
F (100 1.62) 1= [ (051200, 0.8) (.02 01.2) .
s

For a differentiable map f : A2 — R define

(DR,1f)((51,52)a (’1,t2)) = %f((slasz)a(tlvlz))'
1

The differential in “the right slot, in the first direction” and

©pa (51,52 11:12)) 1= <0 £ (51,52, (1, 12).
2

11
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Proposition 4.8. Let w = w; --- w, € W be a word of length n. For a; < b; < ¢, s, <t, we have the following horizontal convolutional
Chen’s relation
id _ (Qid id
<S(ﬂ1 _:2),(”,12)()()’ w) = <S(ﬂ1~52),(b| Jz)(X)’ w) + <S(51’52),(C| Jz)(X)’ w)

n—1

+ Z((DRl(sid(X), wy -+ 10,)) #py g1 (S, Wiy w,,)) ((a,5,), (e,15)) .
k=1
For s, <t,, ay < b, < ¢, we have the following vertical convolutional Chen’s relation
id _ (qid id
<Sl(slva2)’(,]‘02)(x), w> - <sl(x|,a2),(t| sz)(X), w) + <SI(SI 1b2>w(’]vC2)(X), w)

n—1

+ 2 ((Dr(SH00. ) = 10)) 4, (SHO0. Wiy =+ 0,) ) (51,0, (11, €))
k=1

Proof. We prove the first statement.

id — wy wy
<S(ﬂ1s52),(61s’2)(X)’ w) = ‘/“\S’ dx {;ré er']‘;r;
<

n
_ wy w,
- z ay<rl <k <p <R < g < dX ) e dX),
=0 1= 17150 1= T, riry

ms@s---ggs‘w

wy wy
= , i, XY dX
2 < /r‘ SrySeesrysh rlod rkopk

172 172

Wit Wy
X dx edX .
b Sr‘l‘*’ls-ns»‘LSq r11(+1 ;r12(+1 r’l‘;r;

ekl ey
HSryT Sy

Here we have colored the integration boundaries in gray, to distinguish them from the integration variables. Now

) d id
dx“' .dx"F = —(S X),wy - w
/‘“\5’}5"'3’1(3/’\ r{;rl rlf;r’; drk< (ﬂl,Sz),(bN‘;)( )’ 1 k>
nerlcegk-lah - 2
w, w, id
dx° K eedXx O, = (8" X), Wiy o+ W,
<kt <o) et iy <(bl,r’2‘),(cl,12)( ) Wit n>

k< k+1
,,grz*' g---gr;g:

and the claim follows. [

Below we start by introducing some useful notation to state our main results.
4.3. Challenges with the id-signature

The signature proposed in (4.2) is rather natural and interestingly simple. However, it lacks some of the basic properties compared
to the signature of a path. Let us briefly highlight two of those shortcomings:

(i) Lack of shuffle property. A common requirement for a proper signature is stability under multiplication, i.e., iterated integrals
(4.8) should form an algebra. However, S*(X) does not fulfill this property; the d = 1 case, i.e., considering a real-valued field
X € CX([0,T1*R) suffices to see this. Indeed, due to (4.8), the increment []X = [ dX is trivially seen as a component of S(X).
Now define the product

2
Iy = </ er> = / dX, / dXv’
[s.t] [s,t] [s,t]

where we recall that dX is given by (3.16). Then some elementary computations involving integration in [s,t] X [s, t] reveal that
My =201} + 2113, with

st?

(4.12)

Ry

g = /2 dX,1,1dX 2,0 and TG = /2 dX,1,2dX,0
[s.t] [s;t]

Now referring to (4.8) again, the term 7, slt in (4.12) is easily identified with (Sis‘:(X ), (1,1)). However, Hszt is not part of the signature,
due to the permutation of r; and r% in the double integrals. This permutation phenomenon will feature prominently in our future
considerations.
(ii) Lack of change of variables formula for exponential functions. A signature should accommodate simple expansions in change of
variables formulae. Here again, it is easy to find examples for which S4(X) fails to be appropriate for this elementary task. That is,
consider the same generic real-valued field X € C2([0,T]*;R) as in item (i) above. Next, for t € [s, T] set Z; = exp((Jy X). Hence,

12
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applying a small variant of the Fad Di Bruno type formula stated in Remark 3.20 (differentiating t — f((OyX) = Z, instead of
t ~ f(X;)), we have that

0pZy = Zi 0 X + Z; 0 (Xt - th,xz) 0y <Xt - Xsl,t2> .
Therefore, a first-order approximation for the rectangular increment of Z is

O Z ~ ZsOg X + Z RX (4.13)

st’

where the term RY is defined by

RX .= /[ﬂ 9, (X, —X,]_SZ> 9, (X, —XS],,Z) dr.
S,

Now, as mentioned in (i), the increment [, X is part of $¥¢(X), i.e., [y X = (S9(X), (1)). However, the last term RX in (4.13) is not
an element of the signature SY(X). The above first-order approximation has thus to be expressed in terms of a larger object then
the id-signature, which we will call the full signature.

4.4. Definition of the full 2D signature

In Section 4.1, we have seen that the id-signature S9(X) does not possess some of the desirable properties known to hold for the
classical path signatures. As addressed in relation (4.12), the problem seems to arise from the fact that permutations of simplexes
appear. To address this issue, we will now propose another notion of 2D signature, taking such permutations into account.

Before proceeding to the definition of the 2D signature, we will introduce the new set of word-permutation tuples. Recall that
the set of words W, of length n > 0 is defined in Definition 1.1.

Definition 4.9. (i) The set of extended words is defined as W = | J;°, W,, where W, = {(e,id)} and for n > 1

W, ={w,v) [weW,, ve I, .} (4.14)
i Ifpe Xy , weset
W, 1= (iy1ys e ripgmy) - (4.15)

Note that for the concatenation of words, ww’, we set [ww'], (which should not be confused with the notation [wuw'] ; referring to
the jth letter in wuw’).

Recall that A? is given in Notation 3.6. We are now ready to define the full 2D signature.

Definition 4.10. Let X be a function in C2([0, T1%; R%). The (full) 2D signature S(X) is a function in (C(42))"V, defined for an extended
word (w,v) € W, by setting

(S (X), (1, v)) 1= / [Tax“ .. (4.16)
FSl] i=1 r],rz

Remark 4.11. According to (3.3) and (3.8), one can recast (4.16) as

(Sst(X),(w,v))=/ *’/ [Tax% . 4.17)
ar an vl T

S11 59,19 i=1
The representation in (4.17) will be useful to prove some of our algebraic relations.

With the definition of the full 2D signature at hand, let us illustrate its behavior concerning the 2D signature S(X) proposed in
Definition 4.1 and its relation to 2D iterated sums as proposed in [16].

Example 4.12. Let us illustrate the 2D signature in light of the multiplicative field discussed in Example 4.2. Namely we consider a R-valued
field X, = xt]1 xtz2 for two Lipschitz paths x' and x2. Choosing an extended word (w,v) € W, we see that

(S (X), (w, V) = (S 1, (1), w)( Sy, () w,-1), (4.18)
where w,-1 = (W,-1()s ... s W,-1(,)- Indeed, to see this observe that
(Su 0. w0o) = (5,0 [ o, (4.19)
A i=1 P
5212

and by Fubini’s theorem it follows that

n ) n 2w,
w; 2
I I dxrv,. = / I I dxr,. b= (S, (), w,).
1 2 A 2

n noo4
4 5oy =1

spty 1=

We see that when v = id, then we recover the results of Example 4.2.

13
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Example 4.13. Consider i, i5,i3 € {1,...,d} and the permutation [132] € X 5 3.

1<r<n

(St (X), ((iy,1p,13),[132])) = /<,{<,7 ?
2.3
2

5 <rl 5 <ry<r

i i i
dx't dx? .dx"

rhrl 23 r

172 172 172
<ty

Employing a matrix notation akin to the one used in [16]* this corresponds to the matrix

0 i, O
<Sst(X), 0 0 i > .
ii 0 0

Remark 4.14. The two issues (i)—(ii) raised after Proposition 4.5 are easily resolved by using the full 2D signature S(X). Specifically,
the term Hszt in (4.12) can be written as
2 _
Hst - ) eri .r%
[s.t]

dX 2,1 = (S (X), w.v). (4.20)

where w = (1,1) and v € X, ,, is defined by v = [21]. As for the term Rs’: in (4.13), observe that by applying the fundamental
theorem of calculus to the increments in

al (Xr rl sz>02 (X Xsl rz)’

we also get that

RG = X, 2dX 0 1 = (S0, (1, D, [21]) = 1T
%@[] ] 2 l 2

With this computation we also observe that even for fields with one ambient dimension, the full signature is not trivial (i.e. it cannot
be written in terms of monomials), in contrast to what is the case for the path signature.

Remark 4.15. It is a non-trivial task to generalize Proposition 4.8 to the 2D signature S(X) from Definition 4.10. Indeed, consider
Example 4.13, visualized as constellations of three points in the plane (as in Example 4.7):

o2) o) %) o) o7
o) = &) + o3 T o3 T o)
thHe thHe thHe thHe e

Now, the second term on the right does not split, even when allowing for a convolution of the type in Proposition 4.8. We
conjecture that an operadic structure can handle this issue, but this is beyond the scope of the current article.

We conclude this section by presenting a linear integral equation that is satisfied by the truncation of the 2D signature S(X) to
words of length n < 3.

Proposition 4.16. Let X : [0, T1? - R9 be a C? field. Consider the 2D signature S(X) given in Definition 4.10, seen as an element of
C(6%)Y. Then for n <3 and (w,v) € Wﬂ, with w = (iy, ..., i,), the coordinate (S(X), (w, v)) satisfies an equation of the form

(St (X), (@, V) = V{pme) + Lo /[ q ﬁit;(ilmi”’l'v)dXi", (4.21)
s

where the function llst Ain1¥) g given by the following expressions for various permutations v:
£st;(e,[1]) =1

£St G2 (Ssl 525015 bz(X) (@), id))

LR (g (0. (). id))
e R G R (RSN
LRI (g GO (i) id)) = (S, o (XD, (i1 12 0d) = (S, g0 1 (XD (. ). 1))
LRI 2 (S e (O, (1), [21D)

Ly 28 (X0, (1 12), [12D)
OB (g (X0, (). [21]),
and

J(iip,[312 .
LB — (g (XD, (i) [21D) —

2 Contrary to what has been done in [16], we orient the plane, and correspondingly the matrices, from bottom-left to top-right.

14
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(8105 O (1212, [21D) = (8, oy 1, (XD (i1, 1), [21D)).

Proof. The cases n = 1,2 are easily handled, similarly to Proposition 4.5. The same kind of argument also holds for n = 3 when
v(3) € {1,3}. Therefore, in the remainder of the proof, we will focus on the case n = 3 and v(3) = 2. Specifically, let us assume
w = (iy,iy,i3) for iy, iy, iz € {1,...,d} and v = [132]. The other case, v = [312], can be treated similarly. The value of the 2D
signature is defined for (s,t) € A%s,t]:

sucnwn= [, o ort o
,,

»
1”2 12 &

[s.t]

Recall that A?S { was introduced in (3.5). To set up an induction, let us write

i
dX;3

o
172

i
ax’y .

172

i
Su0 = Lo | [ g axy
2
2

1
"
sp<r

142.,2,,3
<ty sySry<r3 s <ty

Otherwise stated, one has
R (4.22)

3.2
rirs

(Su 0.0 = [, o, 020X
S1==1 172 1

sy
where for v = (v, v,) € [s,t] we have set
e i iy
QUIvUZ = / 5 dx | dX ;3 .. (4.23)
rl ,r%,ré,r‘z)EDUl o 12T

and where the domain D, c [0,T]* can be decomposed as D

- p! 2 wi
0102 ooy = Dy, X Dy, with

D} ={(p.a) €L , 51 <pSq <vp)

2 2.
Dy ={(p2, @) €4, 550 <py S0y, and v < g <1y}

Notice that we have several dummy integration variables above, so we will simplify relations (4.22)—(4.23) as

(S (X), (w, v)) = / o 0 dX L, = [ 0ydxy, (4.24)
Xliblit]
sp<vp<ty [st]
with
i i
0, = dX1dx 2.

(rl,r2)eb,

Now notice that due to relation (3.11) we have

= * = - - .
/ : / : / ! / 2 / : / 2
D}, 4., al . 40, 45, 0, Aort

This information is then inserted into the definition of Q to discover that
0, = dX1dx? - dX1dx? - dX1dx? (4.25)
2 2
[s1.011X[57.121 [s1.011X[s9.021 [s1.011X[vp.12]

= <SS] 585230112 (X), (UP i2)’ id)) - <Ssl ,89501,02 (X)), ((il 102), id)) - <Ss1 S2301.12 (X), (UD ’-2)7 id)>~

Plugging (4.25) into (4.24), we thus end up with
(Sst (X)), (w, v)) =/ (Ssy59300.0, X (1, ), id)>dX£3
[s.t]
—/ (Ssy,59300.0, (X5 (1, ), id)>dXi3— / (Ssy, 09100, (XD, ({1, 2), id)>dXi3»
[s.t] [s.t]

Summarizing this by setting

LY = (Ssy,s9501.0 (X5 (1, 12), 1)) = (S, 01,0, (X5 (1,12 1)) = (S 204, (XD (G, 1), i),

finishes the proof. []

Remark 4.17. Proposition 4.16 only gives an integral equation for the signature up to level n = 3. For n > 4, deriving such an
equation would require further insight into the algebraic structure which is beyond the scope of the current paper.

15



J. Diehl et al. Stochastic Processes and their Applications 187 (2025) 104661

Remark 4.18. Even though Eq. (4.21) gives a recursive relation for computing signature terms, a simple choice for low-level terms
would be to discretize the iterated integrals directly. That is, for the double integral (Sy(X), ((i},i,),id)) we have that

/ / 2 dX;l‘ dXLZZ ~ 2 2 D(Sl’sz;ull‘z)xll D(ul»uzzuwz)Xlz'
[s,t] JIs.r*] [uy,011€PLsy 1] (U] ,021€PLs2,12]

here P[s;,1;] is a partition of the interval [s;,;], for i = 1,2. We refer to [22] for further details on practical computational
implementation. In addition, note that there might be algebraic structures (as illustrated above) which could reduce computational
complexity further. We have not delved deeper into this problem for the sake of conciseness of the current paper. We plan to report
on such issues in subsequent articles.

4.5. Invariance properties

Among the central and elementary properties of the path signature, let us mention the following ones:

(i) Translation invariance: For a € RY and a path x : [0, 1] - R? one has S(x + a) = S(x).
(ii) Re-parameterization invariance: For a non-decreasing function ¢ : [0,1] — [0,1] with ¢(©) = 0 and ¢(1) = 1 one has
S(X°¢)o,1 = S(X)o,l-

Heuristically, translation invariance tells us that the signature “does not see” the absolute level at which the path is operating,
but only sees relative differences. Reparametrization invariance tells us that the signature does not care about different speeds at
which we might run through our path. These two features have been crucial in assessing the usefulness of the signature method in
machine learning and other areas, see e.g. [6,7].

We will now discuss these properties in the setting of the 2D signature. They rely on the choice of differential structure to work
with for the concept of a 2D signature. Consequently, we will explore and elaborate on them in relation to the differential dX as
introduced in Notation 3.18.

4.5.1. Translation invariance
When working with the 2D signature over a R?-valued field X : [0,T]*> — R?, there are three different ways to look at translation;
one is to shift the field with a constant vector a € R?, another is to shift the field by 1D paths, only depending on either the first

variable or the second. More precisely, let x' : [0,T] — R? for i = 1,2 be two paths, and set X4y = Xip, T x,ll + xtz2 + a. Then,

given that we work with the differential structure dX defined in Notation 3.18 for the 2D signature .S(X), we observe that for every
ie{l,...,d} we have

d'(zX)=d'X,
and so it follows that

S(rX) = S(X).

Remark 4.19. This is a rather striking property of the 2D signature and sheds light on the type of properties in a field X captured
by the signature. It is complementary to the classical path signature, and for feature extraction purposes, depending on the task at
hand, it might be beneficial to also include the path signature of the paths ¢, — X(¢,,u) and ¢, —» X(u,1,) for some choices of u, as
the 2D signature will not capture information provided from this. In contrast, the 2D signature will provide us information about
how much “small changes in one direction are affected by small changes in the other direction”, and then the iterated integrals
provide us with a systematic (partially ordered) comparison of this information over a field X.

4.5.2. Invariance to stretching
While there is no direct analog of the re-parameterization invariance of the path signature in the 2D setting, the closest thing
would be to consider invariance to stretching.
Definition 4.20. We say that a continuously differentiable function ¢ : [0,T]> = [0, T1? is a stretching if
Py, 1) = (&1 (11), h(12)),
where ¢; : [0,T] — [0,T] are monotone functions with the property that ¢;(0) =0 and ¢,(T) =T for i = 1,2.

For a field X : [0,T]*> - R? and a stretching ¢ we define now the stretched field X%(z,t,) = X(¢(t;,1,)). By the chain rule, for
alli € {1,...,d} we have that

d(X?) = (d'X)(¢) ¢ b

Integrating over a rectangle [s, t] and applying change of variable, it is readily checked that

t o)
/ d'x? = / dXx. (4.26)
s ()
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In particular, recalling that T stands for the tuple (7, T) we have fOT dix? = /OT d' X. Iterating (4.26) over the word w = (i, ...,i,)
we further deduce that

St (X?) = S0 ity (X

and conclude that the 2D signature over [0,T]? is invariant to stretching.

4.5.3. Equivariance to rotation

We will in this section explore how rotations of the field X affect the 2D signature. To this end, we begin with a definition of
rotating a field.

Definition 4.21. A counterclockwise coordinate rotation by angle 6 around the origin is defined by
Po(ty,1y) = (t; cosd —t,sinf,t; sin 6 + 1, cos F).
Given a continuous field X : [—1,1]?> - R, its clockwise rotation® by @ is defined by

X0(11,15) := X(gp(t;,12)). (4.27)

Remark 4.22. We will here consider fields defined on the standard square centered at zero, [—1, 1], since the rotation provided
above is around (0, 0). This guarantees that when § = z/2 the field is still well defined over [—1, 1]%. In principle, one could investigate
rotations of any degree, and it would be highly interesting to see how this affects the signature. However, going outside the 90 degree
cases will require more in depth analysis of the image under rotation. It also yields more complicated structures, as illustrated by
the rotation operator in Definition 4.21. For conciseness we have not investigated this further here, but hope to address this in a
more applied research project.

In the next proposition, we will show a certain equivariance of the id-signature with respect to rotations by multiples of z/2 of
an image over [—1, 1]%.

reversal permutation, i.e. where p,(i)=n—i+1 for i = 1,...,n. Then the following three identities hold:

(i) The rotation by 6 = r /2, satisfies (recall the notation for the right-action on words (4.15))
(S_(X*/?), 0, v)) = (=D"(S_1(X), (W, 15, V" 0p,)).

(ii) The rotation by 6 = =, satisfies
(S (X™), ,v)) = (S_11(X), (W14, » p; ovop,)).

(iii) The rotation by 0 = 3x /2, satisfies

(S_11 (X7, (0, v)) = (=1(S_11(X), (w1510, ov ).
Here, X is defined in (4.27).

Proof. It is readily checked from Definition 4.21 that a 90 degrees rotation is given by the coordinate change (t;,1,) = X™/2(t,,t,) =
X(—ty,1,). By elementary calculus rules, in particular repeated change of variables, and using the fact that for a < » we have
N jab g for some integrable function g, one can check that the following relation holds for a sequence of integrable functions
(g,

/A” Hg’(—r')dr’ = /A"

st i=1 —t,—s I=

n

& @ du! (4.28)
1

3 Note that the counterclockwise rotation of the parameters induces a clockwise rotation of the field.

17
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Furthermore, we use that d(X7/2)" 1) =—-dX _“[‘2 s and find the following
(S (X*/?), (0, v)) —/ / 1Hd<X”/2)(k “
S1.p 59, hv =
n
— 1\ Wy
=D / ) / ) HdX(_w "
i 7 Ay k=1 2 N
" w
—1
=(=1)" XV (k)
=D /n /An Hd (r EaCN
spty 7 Sspy k=1 "1
W, 1o
= (-1 / / ©o
?1 1 A—rz —59 k 1 uy” k+l”7 “)

~1
_( l)n (nl{+l)
n frv (n— f+l))
7/, —s9 f 1 2’1

Sph
= (—1)n<s(7;2,sl),(752,11)()()’ (wvfloﬂ", v °p,))-

Note that, the number —s, is now inserted in the spot where ¢, usually is, and similarly for the rest of the variables, reflecting the
rotation of the domain. And in particular, choosing [s,t] = [—1, 1]*> we see that

(S_i(X™), (w, ) = (=1Y(S_11(X), (W1, ,v " op,)).
This proves item (i).

Now, the items (ii) and (iii) follow from iterated application of (i) and noting that the following two relations hold

(v~ op,)top, = p; ovop,, (0, ovop,)top, = prlov!.
where we have used that p, = p;l for the second relation. []
4.5.4. On homotopy invariance

As we see in Section 4.7, there are some parallels to the iterated integrals defined in [13]. The latter are shown to be homotopy
invariant, which is not the case for the integrals defined here.

Example 4.24. Consider the map
H,(ry,ry) = (tsin(zry)ry, tsin(zr|)ry).

It is a homotopy between the zero map and the map
X,y 1= in(zryry, sin(zr)ry),

which preserves the boundary on [0, 11°. Now, the integrals of the zero map are all zero. If the signature were homotopy invariant, we would
in particular have

(Sp1(X), ((1,2),id)) = 0. (4.29)
In order to compute the left hand side of (4.29), observe from our Notation 3.18 that
1
X,

de,l’,2 = zcos(zry)dr dr,.

= z cos(zry)dr dr,

Therefore, relation (4.8) and some elementary computations show that

1 1
(Sp1(X), ((1,2),id)) = 7r/ ds; / ds, sin(zs,)s; cos(zs;)
0 0

1 1
=x </ ds; s, cos(n:sl)> </ ds, sin(;rsz))
0 0

Therefore relation (4.29) is not fulfilled, which concludes the lack of homotopy invariance.

Example 4.24 points to a fundamental difference between Horozov’s approach in [13] and ours. Indeed, the integrals of Horozov
differ from ours in particular in the form of the differentials being integrated: ours are second-order, his are first order. Even when
using first order differentials, the integrals are, in general, not homotopy invariant. That they are in [13] stems from the fact that
the ambient dimension there (our d) is equal to 2, and in this case all homotopies are thin homotopies.
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4.6. Continuity of the 2D signature

Continuity concerning the signal is an essential part of rough paths theory as well as classical analysis (see e.g. [4, Prop. 2.8]).
We derive this type of continuity property here for the 2D signature of sufficiently smooth fields.

Proposition 4.25. Let X, X be two fields in C>([0, T1*;RY). Consider the corresponding 2D signatures, S(X) and S(X), given in Definition

4.10. Let also (w, ) € W,, where W, is given as in Definition 4.9. Then the following estimate holds for any (s,t) € A[o -

(S () = Sy (). (w, )| < —— o Z(H X2 H [1Xs ||cz)||w—)2wkncz. (4.30)

Jj=k+1

In particular, the mapping X ~ Sy (X) is locally Lipschitz.

Proof. Observe that for two sequences of numbers, {a;}, and {b; Yo, we have that

Ha—Hb—Ha(a —b)+<Ha—Hb> (4.31)

Now consider a generic word (w,7) € W, and (r!,...,r") € AE’S nE Recalling Notation 3.16 for partial derivatives and invoking
relation (4.31), we have

n n

w; o W;
I I 0pX "~ I I 0 X"
i V ,r i=1 rl.r2

n n
Sw;
s Z H‘)IZX, 50 H 012X,J 70 alZXk S alZXk P ’
"1 jektd 12
This leads us to conclude that
n k-1 n
H‘)12X, 0 H012 ,'T(, X2 H Xl 2 [1X % = X ]| 2,
kP k=1 i=1 Jj=k+1

Inserting this into the signature definition, and using that
T?n

ldr! . dr" = —,
(n!)?

n
[0.T]

we obtain

(S (X) = Sy (X), (w, D) < /

[0.T]

n
v Wi 1 n
Hal?x, EC Halzxri | A dr
’ i=1 172

i=

n k-1 n
,)2 ZHIIX“" lee JT 1X“Hle2llX % = X% |2,
Jj=k+1

which is our claim (4.30). This finishes the proof. []
4.7. Products of iterated integrals — 2D shuffle

Our interpretation of the shuffle property is that a product of two elements in the signature should be expressed as a linear
combination of elements in the signature. As already mentioned in Remark 4.14, one of the main reasons for introducing the notion
of the full 2D signature is related to the shuffle property. We will now state this relation in full generality. Notice that a similar
result appears in [32, Proposition 1.3] without proof. We include a complete argument here for the sake of clarity. We note that
the two-dimensional shuffle algebra has also recently been investigated in [33], in particular in its relation to the sums signature
of [16].

Before stating our main result on shuffle products, let us rephrase the shuffle notation in (3.1) and (¢ % )op~!in (3.4) directly
in terms of the permutations o, z. This will shorten some of our notation in the computations throughout the section.

Notation 4.26. Recall Notation 3.2 about permutations. Then consider

cE X, and 7€ Xy ik (4.32)

seenshl}?
We call Sh(s, 7) the following set of permutations of {1,...,n+ k}

Sh(o,7) :={p € Z|;__n+k) | p does not change the order of z and o}.

Note that this can equivalently be defined as

Sh(s, 1) := {(c * T)op~" | p € Sh(n, k)},
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where we have used that any p € Sh(s, 7) can be written as p = (¢ * 7)oj~! for a given element 5 € Sh(n, k).

Notation 4.27. Consider two words w = (iy,...,i,) and w’' = (j,...,j,y) in W, where W was defined in Definition 1.1. The
concatenation of w and w' is denoted by ww' € W and [ww'] ; refers to the jth letter in ww'.

Remark 4.28. Thanks to Notation 4.26 one can rephrase Proposition 3.14 in a slightly more compact way. That is, for c € X;
and r € X, s, we have

/*,=Z/,, (4.33)
?.r“ A?,l ¢eSh(o.7) A’;:nd)

We are now ready to state the shuffle property for the full signature S.

Proposition 4.29 (Shuffle Relation). Let X be a field in C2([0,T1%;R?) and S(X) be its 2D signature (Definition 4.10). We consider two

words, (w,v) € W and (w',V') € Wn/ (Definition 4.9). Then for (s,t) € A[O - we have

(S 0, (10, V) (Syg (X), (0! V))) = Z Z (St (X)), ([ww'],, Ao7)), (4.34)
7€Sh(id,,.id, /) A€Sh(v,v/)

where we recall Notation 4.27 for the concatenation ww' of words. In (4.34), we also recall that for a word w with |w| = n and a
permutation T € Xy ) We Set W, = (W, - s Wr(y))-

Proof. For two generic words (w,v) € W, and (w’,v') € W,, let us denote by G, the quantity of interest, i.e.
= (St (X), (w, VNSt (X), (W', V).

Owing to relation (4.17) one can write

n i’l’ ’
' ' w; “i
Cgt = * * * HdX ! HdX s
S n n -1 n' -1 r rJ
51401 59,00 Y 51401 59,00 Y i=1 Jj=1

which, by Lemma 3.9, is equal to

el o e i

s1.1 S1.01 $9.p

We now apply relation (4.33) separately for the 1ntegrals over [s;,#;] and [s,,,]. This yields
Cu= Y oa (4.35)

st
p€Sh(id,.id,r) seSh(v=1,v/-1)
where we define

n+n'
o = / ax (4.36)

st An+7’ pXAnJrr:’ P H

S 5202

and we have set id, = id;; and = ww'. To express every element in (4.35) as an element of the 2D signature like (4.17), we
now replace the snnplexes A”+ P by A" in the definition (4.36) of Q" . To this aim, we simply declare that r = r * and perform

Nt
the corresponding change in the multi-index . Namely, we define a new word w” by setting

W -1 =(w”1_l’m’ ;ln)
This simple change of variables enables us to write

n+n' n+n'

- ax = axrto, 4.37
gSt Am—n’ s & H oot /A”‘*”" war+’ H '] '2 ( )

5101 7 Fs0.1p 0 i=1 r'],rz' 5101 7 5. r2/’°‘7 i=1

And so we can rewrite (4.37) resorting to the representation in (4.17), in order to obtain

9% = (S(X). (01,07 0p™")). (4.38)
Gathering (4.35) and (4.38), we have thus obtained
Gu= X T (S (X)W, 0 op ™).

p€Sh(id,,.id,r) seSh(v—1,v/-1)

Next, notice that ¢ € Sh(v~!,v/~!) if and only if 6~! € Sh(v,'). Setting 4 = ¢! and similarly = = p~! above we end up with

Gu= Y, Y (Su(X), (i, Aor)),
7€Sh(id,, id,) 2€Sh(v,v")

which is exactly the relation in (4.34), and so concludes our proof. []
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As an application of the shuffle relation in Proposition 4.29, we will now derive a formula for products of rectangular increments.
The proposition below should be seen as an integration by parts formula for 2D-increments.

Proposition 4.30. Under the same conditions and using the same notation as in Proposition 4.29, recall that the rectangular increments

[JX are given in Definition 3.17. Then for w = (i, ...,i,) € W, and (s,t) € A2 TP we have

[[Owx= Y (8400, w,.V)). (4.39)
k=1

Proof. The relation is obvious for n = 1. We now proceed by induction. Namely, assume relation (4.39) holds true for any »n > 1.
We consider a word w = (i, i,,;) in W,,,, where 0 = (i, ...,i,) € W, and i, € {1,...,d}. Denote by U;“ the quantity of interest
for the induction procedure, that is, US"t+1 = szi (g X'*. Then we trivially have that

n
Ul = <H [:lstX[k> g X 1.

k=1

Owing to our induction assumption and the fact that [Jy X'* is an element of the signature, this yields

UGt = Y (S (X, @y, VINSG(X), (i) (4.40)

Observe that instead of using (4.34) to express every term in (4.40), it is slightly more convenient to invoke (4.35). We get
n+1

de‘k

CHOSRTMBNCHE SNURRLDESED)
peSh(v=1,id)) ceSh(v/=1id;) ¥ 451 P45, 1,7

Plugging this identity into (4.40) we obtain

n+l
n+l _ ik
Ut = / Z z | Z et Herk' (4.41)
v.V'€Z(y ) peSh(v=1,id)) ceSh(v/~Liid;)  “sy.1y PRA5 1,0 k=
In addition, it is easily seen that
U Sh(v'~!.id) = 21, _a)-
VIEZ( m)
Therefore, one can recast (4.41) as
n+l
urtl = dX . 4.42
st 2 2 . Z An+l ><An+1 TH ( )
VEZ(1,...m) peSh(v=L,id)) TEZ (1. a1} * Dy X450y T k=

We now proceed as in the proof of Proposition 4.29. Namely, we want to replace the integral over A"*t p by an integral over AZT}]
To this end, we perform the same change of variable, r = r , which leads to a corresponding permutation y of the word (i, i,.,).

We let the reader then check that (4.42) can then be read as

n+1 n+1

Ut = Z / L HdX Ctento _ Z /M L HdX A

n+1
HVEZ (L nt1) Asl a1 sy Y VVEZ L nt) Dty " sain Y

This proves the induction step for (4.39), which allows us to conclude. []
5. The symmetrized signature

Up to now, we have introduced two types of 2D signatures for a C>-field X, namely S(X) and S(X). The 2D signature SY(X)
satisfies a Chen-type relation but fails to satisfy the shuffle relation. For S(X) the situation is the opposite. In the current section, we
introduce another notion of 2D signature which enjoys both Chen and shuffle relations, at the price of integrating over the whole
rectangle [s,,1,] in the second variable (in contrast to the simplex A§Q,r7)' Let us start by defining this new type of 2D signature.

Recall that for n > 0 we defined the set W, of words of length n in 1.1 and the set W), of extended words in Definition 4.9.
Furthermore, the 2D signature S(X) is introduced in Definition 4.10.

Definition 5.1. Let X be a field in C2([0,T]%;R?). For w € W, and (s,t) € A?O p We set

(SGm0,w) =P (Sg(X), (w, ). G.1)
VEZ( )
Remark 5.2. Notice that for (s,t) € A2 one can also see Ssym(X ) as an element of 7 ((R?)). This kind of representation follows

[0.772
closely the lines of Section 2.2.
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Remark 5.3. Combining (5.1) with the representation (4.17) of S(X) and Lemma 3.15, we find for (s,t) € A[O -

n

S ; ;

(83" (X), w) = / / . | |dx“ / *’/ ) | |dx:‘,.’. (5.2)
veX . 5100 spip V= S [s2.12]" 5=

This formula will be useful for future computations.
5.1. Chen’s relation

As mentioned above, the symmetrized 2D signature enjoys important algebraic properties. We now prove partial versions of
Chen’s relation in this context.

Notation 5.4. For functions or increments defined on [0, T']> we will denote by 6! the delta operator 6 introduced in Remark 3.13,
restricted to act on the 1-variable only, e.g.
1 _
514] f(sl.,.rz>,(n»lz) = f(S1~Sz>~<Y1Jz) - f(Sl,Szl(“lJz) - f(Mlez),('Nz)'

Similarly, we denote by 5% the & operator restricted to the 2-variable.

Remark 5.5. It is readily checked that we can compose the two delta functions as 5'042, and that the composition is commutative.
Furthermore, it is clear that, with the definition from (3.12) in mind, for every field X in C%([0,T]?) we have

51 62 Xy = g X

non

Proposition 5.6. Let X € C%([0,T1*;R?) and consider SSY™(X) defined by (5.1). In addition, pick a word w € W, together with
(s,t) € A[201]2 and s; < u; <t,. Then we have

(8}, 84" (X0 w) = Z<SS”“ (X, 0y -+ w S 0. (Wi -+ 10,). 63

s(uy.tp) (up.s9)t

Proof. Start from relation (5.2) and apply the §' operation from Notation 5.4 on both sides of the identity. Thanks to (3.13), we
get

n

(31,8300, w) = (/ -/ > [ T
ank [s2.21" 3=1

sl g Uyt

Now we decompose [sz,tz]" =[5, 1,]% X [55,1,]""¥ and apply Fubini’s theorem. We get

n
Sym , ’ wj
(5! $9™(x), w) = / / * / * / IIdXi
uy Vst [s2.02 1% AZI_-I;I [s2.121"7F /i i

n—1

= Z<SSY"‘ Q0. @y = WIS (X0, Wy -10,))
k=1

’] Wl

s(uy.ty)

where the last identity is a simple consequence of (5.1). The proof of (5.3) is now complete. []
5.2. Shuffle relations for the symmetrized 2D signature

We have seen in Proposition 4.29 that the 2D signature S(X) satisfies a shuffle-type relation. The same is true for the symmetrized
2D signature.

Proposition 5.7. Under the same conditions as in Proposition 5.6, let w € W, and w' € W,y for n,n’ > 1. Then for dll (s,t) € A?

0,112
we have

(30, wiSIT X0, Wy =Y, (SO0, [ww'],) = (S0, w L'y, G4
oeSh(n,n’)

where w LLIw' is inductively defined in (2.7).

Proof. For generic words w € W, and w' € W,,, we use (5.2) in order to write

(8300, w><s5ym<x>,w'>=(/ * / HdXL?f) / , ¥ /
an [l 3 " v sy

i= i=1
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By Lemma 3.9

(SS™X), wy(SI™(X), w'y = ( / . /

5101 S1

n+n’

* /
> [sp.ta1+" ,11

a

[wuw'];

dx (5.5)

ri
Now apply Proposition 3.14 to get the claimed result.
6. The signature determines the field

In this section we show that the 2D signature of a (time-enhanced) field determines the field. Our proof is based on the Stone-
Weierstrass theorem, and relies upon lifting the path to an extended path where the two ‘time’ variables are included. A similar
trick is typically used in the classical universal approximation theorem for path signatures. We note that after establishing the
“point-separating” property of the signature, together with the shuffle relation derived in Proposition 4.29, one can deduce that
the linear functionals on the signature are dense in an appropriate space of continuous functionals on fields (see for example [14,
Section 10]). For notational sake, the analysis in this section will be restricted to fields defined on [0, 1]%. the trivial extension to
[0, T? is left to the reader.

We begin this section with a technical lemma that will be central in subsequent proofs.

Lemma 6.1. Given § € (0,1),e > 0 there exists a univariate polynomial ¥ such that
Y(y) € [0,1], foryelo,1],
[P <e, for y €10,5/2],
[P —1] <e, for y € [6,1].

Proof. The proof idea is from [34]. We recall Bernoulli’s inequality,
A+x)">1+nx, forx>-1,neN.

Pick k € N, such that the following relation holds
1<ké<2.

Given m € N, define the function
@,,(») 1= (1 -y

Then we see that
&, (y)€[0,1], forall ye[0,1].

Furthermore, for any y € [0, é], using Bernoulli’s inequality we see that

)m :

We observe that since k§/2 < 1, this tends to 1 (independent of y € [0, g]) as m — co. Now for the case y € [4, 1], it is readily checked

that

ké

@, ) 2 1= k" > 1= (3

1

— KM
D,(y) = kmym(l—y'”) kmym
o
< kmym(l—y'”) (L+K"y™)
< 1=y < <1

Here we used Bernoulli’s inequality for the second inequality. We observe that since k§ > 1, this tends to 0 (uniformly in y € [§, 1])
as m — oo. Combining the two cases, we see that we can choose m large enough such that @ := @,, satisfies,

@(y) € [0,1] for y € [0, 1] (6.1)
d() €[l —e 1] for y € [0, g] 6.2)
@) € [0,€] for y € [6,1]. (6.3)

Then ¥ := 1 — @ satisfies the required bounds. []

The next step is to consider a family of functions that is dense in the space of continuous functions on [0, 1]> with zero boundary.
To this end, let 7 denote the R-algebra spanned by the functions,

m,n > 0. (6.4)

2 m+n 2n+m
(51, 87) = h 55,
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With this definition at hand, we prove another technical lemma that will allow us to prove that F is a dense subset of C([0,7]%;R)
with zero boundary.

Lemma 6.2. For every b > 0 small enough, there exists a b’ € (0, b) such that for all a > 0 there is a function g, , € F such that

llgll <1, (6.5)
|g(sy, 80| < a, for s, €10,b'] or s, €[0,0'], (6.6)
|g(s1,89) — 1] < a, for si,s, €[b,1], (6.7)

where ||g|| stands for the sup norm in [0, 1]°.

Proof. Consider the function
P(sy,s,) i=515) EF.
Then P(s,,s,) € [0, 1] for s,,s, € [0, 1]. For the given b, let § be the number defined by

6 := inf  P(sq,S,),
s1,52€[b,1] (l 2)

and observe that 6 = b?>. Now pick »’ < b such that the following relation holds

sup P(sy,87) <6/2.
51,52 €(10,11X[0,6' DU([0,6'1X[0,1])

Next we consider a polynomial @ satisfying the requirements of Lemma 6.1, for e = a. We let g := @®oP. It is readily checked from
the definition of the space proposed in (6.4) that g € F. Therefore, relations (6.1)-(6.3) translate into

lg(s1, 5l €10,11, V(sy,55) €[0,11

lgCs1, s <@, V(sp,50) € (0,11 [0, U (10,51 % [0,1])

I1-g(s sl <a, V(s.5,) €10,11

Otherwise stated, our claims (6.5)-(6.7) are proved. []

Lemma 6.3. Let F be the vector space defined by (6.4). Then F is dense in the subspace
V= {f € C(0,1%,R) | £(0,59) = f(5;.0) = 0,51, 5, €[0, 1]},

of continuous functions vanishing at the “left-bottom” boundaries.

Proof. The strategy for the proof is a subtle variation on classical Stone-Weierstrass type arguments. Namely on every sub-
rectangle [V, 1], Stone-Weierstrass theorem will give the desired conclusion. Then close to the axes we shall resort to a polynomial
interpolation given by Lemma 6.2.
First let us prove that 7 separates points in (0, 1)>. Indeed, if
sisy=qiaq.  S18 =4q,45,
and s;,55,4;,¢, € (0,1) then
51 q% S?

===
a5 4
hence

S1 =41, S2 =4

Furthermore, the constant function is contained in 7 and it is closed under multiplication. Hence, by the Stone-Weierstrass theorem,
the functions are dense in C([e, 112, R), for every e > 0.
We now start our interpolation argument close to the axes. That is consider f € ¥ and ¢ > 0 given. Choose § > 0 such that

|f(s1.50)| <&, fors, €[0,6] or s, € [0,5]. (6.8)

Let b’ < b be given as in Lemma 6.2, for b := 6. Denote F,, the restriction of F to [#’, 1]%. By the classical Stone-Weierstrass theorem,
there exists f;br € Fyy such that

Wf = Fewlloqrapr) <& 6.9)
Fix an extension f, ,; € F of f, to [0, 1]%. Define
M= sup |fep(si,so)l+ 1.
51,8,€[0,6']

Consider g,/ 5 € F as in Lemma 6.2. Then, h := f, 5 - g./m » € F satisfies the following three properties:
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(i) For s; €[0,4'] or s, € [0,6']:

[ACs1, ) = | fes(s15 52 - 18/ My (515 52
<M-e/M=¢.

Since f verifies (6.8) for s; € [0,'] or s, € [0,5], we get that |h(s|, s5) — f(s1, 5)| < 2e.
(ii) For s, € [V/,bl,s, € [/, 1] or 5, € [/, bl, 5, € [V, 1]

[ACsy, sl = [fes(s1552)] - |gg/M,b/,b(Sl,S2)|
<2 lge/mp plleo < 2e.
(iii) For s,,s, € [6,1]
|h(51’52) - f(51,52)|
< |(fg,5(5|a52) = f(s1,82)) - gg/M,b',b| + |f(S]7S2)(g5/M,b/,b -]
<e+llflle/M.
Now & was arbitrary (and M > 1), and so it follows that F is dense in V. []

We now turn to the main result of the section, which states that an extended version of the signature characterizes a smooth
field up to an equivalent class.

Theorem 6.4. Consider the following equivalence relation on C([0,T]*;R?):
X~Y & 0,X =0p,Y. (6.10)
For X € C%([0,1]%;RY) consider the “lift” to X € C2([0, 1]%;R**9)

(2 2
XSM2 = (slsz,slsz,XS]’S2

).
Then, for X,Y € C*([0, 1]*;RY) we have X ~ Y if and only if

So.1(X) = Sp1(¥).

Proof. It suffices to show the case d =1, i.e.

£y = RO XD XO )= (s2sy,5,55. X

Sp.S) T 51,827 51,80 T sy,

o) ER
It is clear that
(SOS()?), 1) = s%sz, and (SOS(X), 2) = slsg.
Then, by the shuffle relation it follows that
(SOS(X)’ 1wm 2|.un> — S% m+nsgn+m‘
Hence, by Lemma 6.3, for every f € F, € > 0 there exists ¢, € T(R?) such that with
¢£(s1 ’ SZ) = <SOS(X)s ¢E>’

we have ||f — @,|| < . Note that
1 1
(Sor(X), (14 W 2+m)3) = /0 ds /0 dsy 57 "SR X -

If S, (X) = Sp;(Y) then, for every f € F we have

1 1 | 1
/ dsl/ dsy f(s1,5)02 X s, =/ dsl/ dsy f(s1,52)012Y5 s,
0 0 0 0

By the usual approximation of the Dirac delta we hence get
012X (s1,8,) = 01,Y(s,58,), for s;,s, € (0,1].

By continuity of 0,,X,0,,Y, we hence get
015X =0,,Y.

We have thus proved that whenever Sy;(X) = So;(Y) we have X ~ Y according to (6.10). The other implication being trivial, this
finishes the proof. [
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7. Concluding remarks and open problems

We have proposed several 2D extensions of the path signature arising in the theory of rough paths [5]. In contrast to the
multiparameter extensions proposed by [14,15], the 2D-signatures we consider here are constructed over fields X : [0,7]> — R,
using the mixed partial derivative ——— X of the field as the driving signal. As such we have invariance to path perturbations
(Section 4.5.1), and thus the 2D-signétlfres may serve as a complement to the classical path signature when working with image
data. We show that our (full) signature satisfies shuffle relations (Proposition 4.29), and the id-signature satisfies a type of Chen
relation based on convolutional products (Proposition 4.8). While the current paper only deals with sufficiently smooth, i.e., twice
continuously differentiable fields X, we envision that this signature construction will in time see great potential for application in
stochastic analysis for random fields, in the spirit signatures for paths has been influential for stochastic process theory. However, we
have not considered rough path-type questions yet, such as an extension theorem for the signature, or investigations of probabilistic
aspects of the 2D signature constructed from random fields, but see this as highly interesting ongoing and future work.
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