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 A B S T R A C T

Over the past decade, the importance of the 1D signature which can be seen as a functional 
defined over a path, has been pivotal in both path-wise stochastic calculus and the analysis of 
time series data. By considering an image as a two-parameter function that takes values in a 
𝑑-dimensional space, we introduce an extension of the path signature to images. We address 
numerous challenges associated with this extension and demonstrate that the 2D signature 
satisfies a version of Chen’s relation in addition to a shuffle-type product. Furthermore, we show 
that specific variations of the 2D signature can be recursively defined, thereby satisfying an 
integral-type equation. We analyze the properties of the proposed signature, such as continuity, 
invariance to stretching, translation and rotation of the underlying image. Additionally, we 
establish that the proposed 2D signature over an image satisfies a universal approximation 
property.

1. Introduction

To enhance the accuracy of representations in data analysis, it is often important to enrich the original data using nonlinearities. 
In much of the current literature on data processing, neural networks are often trained without explicit guidance on determining the 
appropriate type of nonlinearity to be added. Nevertheless, it may be more efficient to begin with a natural and easily interpretable 
notion of nonlinearity within the relevant context.

With this general understanding, the concept of a 1D signature1 defined over a curve has proven to be crucial in both path-wise 
stochastic calculus and the analysis of time series data. For a given ambient dimension 𝑑 ≥ 1 and interval [0, 𝑇 ], let us briefly recall 
the definition of the signature of a differentiable path

𝑥 =
{

𝑥𝑖𝑡 | 𝑖 = 1,… , 𝑑, 𝑡 ∈ [0, 𝑇 ]
}

.

To achieve this, let us initially define the set of words on a finite alphabet.
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Definition 1.1.  Let  = {1,… , 𝑑} be an alphabet. Denoting the collection of words with 𝑛 letters 
𝑛 ∶=

{

𝑤 = (𝑖1,… , 𝑖𝑛) | 𝑛 ≥ 0 and 𝑖𝑗 ∈  for all 𝑗 = 1,… , 𝑛
}

, (1.1)

where the case 𝑛 = 0 corresponds to the empty word 𝖾, we define the set of all words over  as  ∶= ∪𝑛≥0𝑛 ( ′ ∶=  − {𝖾}). 
The length of a word 𝑤 = (𝑖1,… , 𝑖𝑚) is denoted |𝑤| = 𝑚.

Now we can define the signature 𝑆(𝑥) as an infinite-dimensional object in ((𝛥2
0,𝑇 ))

 , where the simplex

𝛥2
0,𝑇 ∶= {(𝑠, 𝑡) | 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 },

by specifying recursively the projections ⟨𝑆(𝑥), 𝑤⟩ for every word 𝑤 ∈  . Namely, we set ⟨𝑆𝑠𝑡(𝑥), 𝖾⟩ ∶= 1 and if 𝑤 = (𝑖1,… , 𝑖𝑛) ∈  ′, 
then we define 

⟨𝑆𝑠𝑡(𝑥), 𝑤⟩ ∶= ∫

𝑡

𝑠
⟨𝑆𝑠𝑟(𝑥), (𝑖1,… , 𝑖𝑛−1)⟩ d𝑥

𝑖𝑛
𝑟 . (1.2)

The rich structure enjoyed by 𝑆(𝑥) has first been emphasized by the mathematician K. T. Chen [1] within an algebraic context. 
Subsequently, the concept of signature was imported by T. Lyons [2] to the realm of stochastic analysis, leading to the development 
of the fruitful theory of rough paths. Among the properties which have made the notion of path signature so insightful, let us 
mention the following ones:

(i) Algebraic properties like Chen’s relation as well as shuffle products. This yields a wealth of structures, such as Lie groups and 
algebras, as well as Hopf algebras, providing a convenient mathematical framework for studying the path signature 𝑆(𝑥).
(ii) Regularity properties in terms of Hölder continuity and 𝑝-variations.
(iii) Ability to expand solutions of differential equations in terms of 𝑆(𝑥), leading to pathwise analysis of noisy equations.
(iv) The fact that a generic curve can be recovered from its signature, up to tree-like equivalence.

We refer e.g. to [3–5] for more details on those properties. In any case, items (i)-(iv) above have been a sufficient motivation 
to consider signatures as proper features for classification tasks related to curves. See e.g. Refs. [6,7]. Notice the special importance 
of (iv) in this regard. In the past decade, there has been a significant increase in the importance of utilizing signature methods 
in diverse data analysis applications. This trend extends across various domains, encompassing Chinese character recognition [8], 
topological data analysis [9], and the development of signature-based machine learning models for psychiatric diagnosis [10,11].

Based on those preliminary remarks, it is rather natural to ask if appropriate generalizations of the notion of signature can shed 
new light on the analysis of images. Indeed, even if nonlinear features have been a prominent fixture of image processing in the 
recent past (see, e.g. [12]), those features are often defined in a somewhat arbitrary fashion. Moreover, one may remark that a 
precise and transparent algebraic structure, which is useful for basic analysis as well as efficient implementation of those objects, is 
also lacking in [12] and related papers. Hence, there exists a compelling need for an appropriate extension of the signature concept 
applicable to 2D-indexed R𝑑 -valued fields. Specifically, our objective is to emulate at least some of the desirable properties (i)-(iv) 
mentioned earlier, bridging the gap in the current literature and fostering a more comprehensive understanding of image analysis.

We briefly mention earlier work where the concept of 2D signature is touched on. In [13], Horozov explores a generalization 
of Chen’s iterated integrals from paths to membranes, i.e., 2D surfaces or fields in our parlance. He describes a shuffle identity that 
is similar to ours. However, we note two major differences. First, Horozov integrates first-order differentials. Second, he works in 
ambient dimension 2 which implies homotopy invariance, something that is not true in our more general setting. Lee et al. [14,15] 
pursue an abstract algebraic-geometric approach, which in the latter reference is built around a categorical generalization of 
Chen’s identity to surfaces. In contrast to these works, our proposed signature is constructed from mixed partial differentials of the 
underlying field, motivated by multiplicative noisy controls seen in the field of SPDEs. This approach creates different properties of 
the resulting signature, which will be discussed in depth in the next paragraph. In [16], a two-parameter version of the iterated-sums 
signature [17,18] is elaborated. Finally, in Ref. [19] images are considered as time-series, by going through them ‘‘line by line’’.

To extend the path signature (1.2) to surfaces or fields indexed by pairs of parameters from the square [0, 𝑇 ] × [0, 𝑇 ], an initial 
approach that naturally comes to mind is to employ concepts from rough pathwise calculus within the two-dimensional plane (as 
introduced in [20,21]). In Ref. [22], the fourth author, together with collaborators, discretized part of the two-parameter analog 
of the 1D signature considered in [20,21]. A low (that is 15-)dimensional set of features was obtained, with good classification 
performances for a standard set of textures. This preliminary result provided sufficient encouragement to go further in that particular 
direction.

In the broader context outlined, the present contribution seeks to establish a conceptually straightforward definition of the 
signature for 2D-indexed random fields. While the constructions and analysis presented here are naturally deterministic, much in 
the spirit of rough paths theory, we believe that the insight gained from this analysis has the potential to influence future analysis of 
random fields, in the same way the study of signatures has influenced the theory on stochastic processes and stochastic differential 
equations.

A remark is in order regarding item (iii) above. Our point of view is that the full power of rough calculus in the plane (as exhibited 
in [20,21]) may require a degree of generalization of the signature that could be unnecessarily complex for the specific goals of data 
analysis. Therefore, with reference to items (i)-(iv) above, we will place less emphasis on item (iii) while prioritizing items (i)-(ii) and 
(iv). We assert that this shift in emphasis is effectively achieved by considering the various 2D signatures described below. Indeed, 
we introduce three candidates for 2D signatures over a field 𝑋 = 𝑋(𝑠, 𝑡): the 2D 𝗂𝖽-signature, 𝐒𝗂𝖽(𝑋), the full 2D signature, 𝐒(𝑋), 
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and the symmetrized full 2D signature, 𝐒sym(𝑋). However, all of these constructions provide insight into the workings of iterated 
integrals of 2D fields. Our hope is that this insight can be leveraged to further investigate item (iii) in the context of pathwise 
solutions to multi-parameter stochastic differential equations.

Let us conclude the introduction with a motivation for the coming analysis through a brief overview of some of the main 
properties that we will prove to hold for the proposed full signature 𝐒(𝑋):

(i) The full 2D signature 𝐒(𝑋) over a field 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 is invariant to translation by constants, but also by 1-parameter paths! 
This shows that our proposed signature can really be seen as a complementary feature to the classical path signature, and that the 
2D signature indeed captures multi-directional relative change in the signal.
(ii) The full 2D signature of 90-degree rotations of a field 𝑋 can be expressed in the 2D signature of 𝑋 itself (up to multiplication 
by −1). So, while we cannot state that the 2D signature is rotation invariant, all necessary information related to 90-degree rotations 
is contained in the signature.
(iii) Already in the case of one-dimensional ambient space of the field, the proposed full 2D signature is non-trivial (i.e. not 
equivalent to polynomials in the increment). This is in contrast to the path signature as well as the two-parameter signatures 
presented in  [14,15].
(iv) The full 2D signature is a continuous functional.
(v) Certain terms in the full 2D signature can be used in expressing solutions to certain hyperbolic PDEs, known as Goursat equations, 
with multiplicative noise.
(vi) The full 2D signature satisfies a variant of the well-known shuffle relation, and thus the linear span of 2D signature elements 
form an algebra.
(vii) The full 2D signature is universal, in the sense that linear combinations of signature terms approximate continuous functionals 
on the space of 𝐶2 fields arbitrarily well.
(viii) The full 2D signature satisfies a Chen-type relation, where a convolution product is involved. Through certain symmetrization 
arguments in the integrand, similar to what is used in the Wiener–Itô chaos expansion, one obtains multiplicative Chen-type relations 
in the horizontal or vertical direction of an image.

While our work provides new results related to the construction of 2D signature, in addition to a detailed overview of the 
challenges involved in this extension, we also provide discussions of several open problems associated with this structure.

The paper is organized into the following Sections:
2 We recall some of the basic structures of the path signature.
3 We develop notation, discuss multiparameter integral operators, and provide an overview of calculus in the plane.
4 We propose a 2D signature over a two-parameter, R𝑑 -valued field. In fact, starting from the expansion of certain PDEs, we 

derive an object termed the 𝗂𝖽-signature. Chen’s relation is explored within this 2D framework. However, we will show that the 
𝗂𝖽 signature lacks some of the desired properties. This motivates the definition of a full 2D signature, defined over a larger word 
shuffle algebra. Computations are presented to exemplify the properties of the full 2D signature.

5 We symmetrize the integrand, and observe that this new signature-type feature satisfies Chen’s relation.
6 A proof is given, showing that the 2D signature characterizes the field.
7 We provide a few concluding remarks and discuss open problems and future progress.

2. Linear ODEs and the 1D signature

In this section, we recall how signatures for curves parametrized over an interval [0, 𝑇 ] can be motivated in terms of linear 
ordinary differential equations. We first show how the signature 𝑆(𝑥) in (1.2) emerges from R𝑒-valued differential equations. Then 
we identify the signature itself as the solution of a linear equation in an infinite dimensional space. Those notions will be generalized 
later to a multi-parametric setting.

2.1. Motivation from real-valued differential equations

Signatures of curves parametrized over [0, 𝑇 ] appear naturally in the context of linear fixed point equations (e.g., see [23] for 
this perspective in the context of Volterra equation).

Lemma 2.1.  Let 𝑥 ∶ [0, 𝑇 ] → R𝑑 be a 1 signal and let {𝐴𝑖
| 𝑖 = 1,… , 𝑑} ⊂ R𝑒×𝑒 be a collection of constant matrices with real entries. 

We consider the R𝑒-valued solution 𝑦 to the linear equation 

𝑦𝑠𝑡 ∶= 𝑦𝑡 − 𝑦𝑠 =
𝑑
∑

𝑖=1
∫

𝑡

𝑠
𝐴𝑖𝑦𝑟 d𝑥𝑖𝑟, (2.1)

for (𝑠, 𝑡) ∈ 𝛥2
0,𝑇 , with a given initial condition 𝑦𝑠 ∈ R𝑑 . Recalling (1.1), we set 

𝐴◦𝑤 ∶= 𝐴𝑖𝑛 ⋯𝐴𝑖1 , for 𝑤 = (𝑖 ,… , 𝑖 ) ∈  ′, (2.2)
1 𝑛

3 
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and 𝐴𝖾 is the 𝑒 × 𝑒 identity matrix 𝟏𝑒. Then Eq. (2.1) can be expanded as 

𝑦𝑡 =
∑

𝑤∈
𝐴◦𝑤𝑦𝑠 ⟨𝑆𝑠𝑡(𝑥), 𝑤⟩ , (2.3)

where the quantity ⟨𝑆𝑠𝑡(𝑥), 𝑤⟩ was introduced in (1.2).

Proof.  We will provide a brief outline of the proof here, establishing the foundation for the forthcoming exploration of the 
two-parameter case. Employing Einstein’s summation convention for repeated upper indices, Eq. (2.1) transforms into:

𝑦𝑠𝑡 = ∫

𝑡

𝑠
𝐴𝑖1𝑦𝑟1 d𝑥

𝑖1
𝑟1 , for (𝑠, 𝑡) ∈ 𝛥2

0,𝑇 .

Replacing 𝑦𝑟1  by 𝑦𝑠𝑟1 + 𝑦𝑠 on the righthand side yields 

𝑦𝑠𝑡 = 𝐴𝑖1𝑦𝑠 ∫

𝑡

𝑠
d𝑥𝑖1𝑟1 + 𝑅1

𝑠𝑡 , where 𝑅1
𝑠𝑡 ∶= ∫

𝑡

𝑠
𝐴𝑖1𝑦𝑠𝑟1 d𝑥

𝑖1
𝑟1 . (2.4)

Repeating this step, the increment 𝑦𝑠𝑟1  in the remainder term 𝑅1
𝑠𝑡 can be further expanded

𝑦𝑠𝑟1 = 𝐴𝑖2𝑦𝑠 ∫

𝑟1

𝑠
d𝑥𝑖2𝑟2 + ∫

𝑟1

𝑠
𝐴𝑖2𝑦𝑠𝑟2 d𝑥

𝑖2
𝑟2 .

Plugging this into (2.4), we end up with 

𝑦𝑠𝑡 = 𝐴𝑖1𝑦𝑠 ∫

𝑡

𝑠
d𝑥𝑖1𝑟1 + 𝐴𝑖1𝐴𝑖2𝑦𝑠 ∫𝑠≤𝑟2<𝑟1≤𝑡

d𝑥𝑖2𝑟2d𝑥
𝑖1
𝑟1 + 𝑅2

𝑠𝑡. (2.5)

The expression of the remainder 𝑅2
𝑠𝑡 follows the same procedure. In addition, observe that invoking our conventions (1.2) and (2.2), 

one can recast (2.5) as
𝑦𝑠𝑡 = 𝐴◦(𝑖1)𝑦𝑠 ⟨𝑆𝑠𝑡(𝑥), (𝑖1)⟩ + 𝐴◦(𝑖2 ,𝑖1)𝑦𝑠 ⟨𝑆𝑠𝑡(𝑥), (𝑖2, 𝑖1)⟩ + 𝑅2

𝑠𝑡.

Our claim (2.3) follows from iterating this procedure. □

2.2. The algebra of signatures

Following [4], we start this subsection by recalling the algebraic and geometric setting for 1D signatures indexed by a single 
parameter. This will allow us to provide a linear differential equation which governs the signature of a path. We will try to replicate 
this linear equation for images in the next sections.

We begin by recalling the definition of tensor algebra over the space R𝑑

 (R𝑑 ) ∶=
∞
⨁

𝑛=0
(R𝑑 )⊗𝑛,

with (R𝑑 )⊗0 = R𝟏. It is equipped with a product ⊗ defined for any 𝑔, ℎ ∈  (R𝑑 ) by 

[𝑔 ⊗ ℎ]𝑛 =
𝑛
∑

𝑘=0
[𝑔]𝑛−𝑘 ⊗ [ℎ]𝑘, (2.6)

where [𝑔]𝑛 ∈ (R𝑑 )⊗𝑛 designates the projection onto the 𝑛th tensor level, making  (R𝑑 ) an associative and non-commutative algebra 
with unit 𝟏 ∈ (R𝑑 )⊗0.

The space  (R𝑑 ) can be equipped with the commutative shuffle product defined inductively, i.e., 𝑤 ⧢ 𝟏 = 𝟏 ⧢ 𝑤 = 𝑤 for any 
𝑤 ∈  (R𝑑 ) and for 𝑢 ⊗ 𝑤1, 𝑣 ⊗ 𝑤2, 𝑢, 𝑣 ∈ (R𝑑 )⊗1, 𝑤1, 𝑤2 ∈  (R𝑑 ), we define 

(𝑢 ⊗ 𝑤1)⧢ (𝑣 ⊗ 𝑤2) ∶= 𝑢 ⊗ (𝑤1 ⧢ (𝑣 ⊗ 𝑤2)) + 𝑣 ⊗ ((𝑢 ⊗ 𝑤1)⧢𝑤2). (2.7)

For example, shuffling two letters, 𝑢 and 𝑣, gives 
𝑢⧢ 𝑣 = 𝑢 ⊗ 𝑣 + 𝑣 ⊗ 𝑢.

 See Notation  3.2 for an explicit formulation of shuffle product in terms of permutations. Further below (see Notation  4.27), we 
will use word notation to denote elements in  (R𝑑 ), i.e., if 𝑒1,… , 𝑒𝑑 denotes the canonical basis of R𝑑 , then we use (𝑖1,… , 𝑖𝑛) ∈ 
to denote 𝑒𝑖1 ⊗⋯⊗ 𝑒𝑖𝑛 ∈  (R𝑑 ).

The space of tensor series is denoted  ((R𝑑 )). It contains linear maps 𝐹 ∶=
∑

𝑤∈ 𝑓𝑤𝑒𝑤 from  (R𝑑 ) to R, where 
{

𝑒𝑤 = 𝑒𝑖1 ⊗⋯⊗ 𝑒𝑖𝑛 ; 𝑤 = (𝑖1,… , 𝑖𝑛) ∈ 
}

(2.8)

such that for 𝑣 ∈  , we define 𝐹 (𝑣) =
∑

𝑤∈ 𝑓𝑤⟨𝑒𝑤, 𝑣⟩ = 𝑓𝑣. The tensor product (2.6) can be extended to  ((R𝑑 )) making it an 
unital algebra, with unit 𝟏 (in place for the empty word).
4 
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A continuous map 𝛷 ∶ 𝛥2
𝑎,𝑏 →  ((R𝑑 )) is called a multiplicative functional if

𝛷𝑠𝑡 = 𝛷𝑠𝑢 ⊗𝛷𝑢𝑡,

for 𝑠 < 𝑢 < 𝑡. The signature 𝑆(𝑥) of a path 𝑥 with finite variation is a particular example of such a multiplicative functional. Indeed, 
recalling (1.2) we can embed ⟨𝑆(𝑥), 𝑤⟩ by setting 

𝑆𝑠𝑡(𝑥) = 𝟏 +
∑

𝑤∈ ′
⟨𝑆𝑠𝑡(𝑥), 𝑤⟩ 𝑒𝑤 ∈  ((R𝑑 )). (2.9)

In addition, it can be shown that 𝑆𝑠𝑡(𝑥) lives in a subset (R𝑑 ) ⊂  ((R𝑑 )) consisting of so-called group-like elements
(R𝑑 ) = exp⊗

(

((R𝑑 ))
)

,

where ((R𝑑 )) denotes the set of all Lie series over R𝑑 . Hence, every element in (R𝑑 ) is the tensor-exponential of a Lie series. 
Regarding the latter, recall that, denoting by (R𝑑 ) the free Lie algebra over R𝑑 , an element in  ((R𝑑 )) is a Lie series if it can be 
written in the form ∑𝑛≥1 𝑝𝑛, where each Lie polynomial 𝑝𝑛 ∈ (R𝑑 ) has support in 𝑛.

As seen above, the notion of signature can be motivated by linear differential equations. We now state a differential/integral 
equation in  ((R𝑑 )) for 𝑆𝑠𝑡(𝑥) itself. It should be seen as a simple non-truncated version of [4, Prop. 7.8].

Proposition 2.2.  For (𝑠, 𝑡) ∈ 𝛥2
𝑎,𝑏, the signature 𝑆𝑠𝑡(𝑥) defined by (2.9) solves a linear integral fixed point equation in  ((R𝑑 )) of the form 

𝑆𝑠𝑡(𝑥) = 𝟏 + ∫

𝑡

𝑠
𝑆𝑠𝑟(𝑥)⊗ d𝑥𝑟. (2.10)

3. Simplexes and integration

This section is devoted to collecting some notations as well as elementary results frequently used across the article in the context 
of calculus in the plane.

3.1. Rectangles and simplexes

Throughout the text, rectangles in the square [0, 𝑇 ]2 ⊂ R2 will play a crucial role. We first spell out our convention and notation 
for those objects.

Convention: we refer to the horizontal and vertical axis in the plane as the first respectively second variable, indexed respectively 
by subscripts 1 and 2. See Fig.  1.

Notation 3.1.  A generic rectangle 𝑅 in R2 is of the form 𝑅 = [𝑠1, 𝑡1] × [𝑠2, 𝑡2], with 𝑠1 ≤ 𝑡1 and 𝑠2 ≤ 𝑡2. A more compact notation 
follows by considering points in R2, setting 𝐬 = (𝑠1, 𝑠2) and 𝐭 = (𝑡1, 𝑡2), where 𝑠1 ≤ 𝑡1 ≤ 𝑇 , 𝑠2 ≤ 𝑡2 ≤ 𝑇 . We then denote by 
𝑅 = [𝐬, 𝐭] ∶= [𝑠1, 𝑡1] × [𝑠2, 𝑡2] a sub-rectangle specified by its lower left and upper right corners, inside the standard-square [0, 𝑇 ]2. We 
shall also write 𝐓 = (𝑇 , 𝑇 ) for any positive quantity 𝑇 .

Notation 3.2.  Denote by 𝛴 the set of permutations of elements of a finite set . Furthermore, for 𝑛, 𝑘 ≥ 1 we consider the 
following set of permutations of the set {1,… , 𝑛 + 𝑘}: 

Sh(𝑛, 𝑘) =
{

𝜌 ∈ 𝛴{1,…,𝑛+𝑘} | 𝜌(𝑖) < 𝜌(𝑗) if 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 or 𝑛 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 𝑘
}

. (3.1)

Our upcoming computations employ the concept of rectangular increment, and will heavily depend on simplexes, including a 
variant that incorporates permutations.

Definition 3.3.  Let 𝑎 ≤ 𝑏 be elements in [0, 𝑇 ]. Then we define the following simplexes:
(i) The usual simplex of order 𝑛 is given by 

𝛥𝑛
𝑎,𝑏 =

{

𝑟 ∈ [0, 𝑇 ]𝑛 | 𝑎 ≤ 𝑟1 ≤ ⋯ ≤ 𝑟𝑛 ≤ 𝑏
}

. (3.2)

(ii) Consider a permutation 𝜎 ∈ 𝛴{1,…,𝑛}. Then we define the 𝜎-simplex 

𝛥𝑛
𝑎,𝑏𝜎 =

{

𝑟 ∈ [0, 𝑇 ]𝑛 | 𝑎 ≤ 𝑟𝜎(1) ≤ ⋯ ≤ 𝑟𝜎(𝑛) ≤ 𝑏
}

. (3.3)

Remark 3.4.  Note the use of superscripts in (3.2) and (3.3) to denote components of 𝑟 ∈ [0, 𝑇 ]𝑛.

It is well-known that permutations carry a shuffle property, which can be translated into a corresponding property for simplexes. 
We recall this elementary result for further use. For a proof of this statement, we refer the reader to Patras [24, Prop. 2]. 
5 
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Fig. 1. Typical example of rectangle [𝐬, 𝐭] in [0, 𝑇 ]2.

Lemma 3.5.  Consider two positive integers 𝑛, 𝑘, and let 𝜎 ∈ 𝛴{1,…,𝑛} and 𝜏 ∈ 𝛴{1,…,𝑘}. For 𝑎 ≤ 𝑏 we define 𝛥𝑛
𝑎,𝑏𝜎 and 𝛥𝑘

𝑎,𝑏𝜏 like in (3.3). 
Then the product 𝛥𝑛

𝑎,𝑏𝜎 × 𝛥𝑘
𝑎,𝑏𝜏 can be ‘‘linearized’’: 

𝛥𝑛
𝑎,𝑏𝜎 × 𝛥𝑘

𝑎,𝑏𝜏 =
⋃

𝜌∈Sh(𝑛,𝑘)
𝛥𝑛+𝑘
𝑎,𝑏 (𝜎 ∗ 𝜏)◦𝜌−1 , (3.4)

where 𝜎 ∗ 𝜏 ∈ 𝛴{1,…,𝑛+𝑘} is defined as

(𝜎 ∗ 𝜏)(𝑖) ∶=

{

𝜎(𝑖) 𝑖 ≤ 𝑛
𝜏(𝑖 − 𝑛) + 𝑛 𝑛 + 1 ≤ 𝑖.

The union is disjoint up to sets of zero Lebesgue measure.
We close this section by defining the main type of simplex which will be used in the context of integration in the plane.

Notation 3.6.  Let 𝐬 = (𝑠1, 𝑠2) and 𝐭 = (𝑡1, 𝑡2) be two elements of [0, 𝑇 ]2, where we are using Notation  3.1 on rectangles. Consider 
an integer 𝑛 ≥ 2. We denote the set 

´𝑛
[𝐬,𝐭] ∶=

{

(𝐫1,… , 𝐫𝑛) ∈
(

[0, 𝑇 ]2
)𝑛 ; 𝑠1 ≤ 𝑟11 ≤ ⋯ ≤ 𝑟𝑛1 ≤ 𝑡1 and 𝑠2 ≤ 𝑟12 ≤ ⋯ ≤ 𝑟𝑛2 ≤ 𝑡2

}

. (3.5)

3.2. Some properties of integral operators

To facilitate future computations associated with the construction and properties of signature over an image, this section will 
revisit several essential properties of iterated integral operators. Commencing with a straightforward definition, we clarify the 
concept of an iterated integral operator:

Definition 3.7.  Let 𝑛 be a positive integer, and consider a measurable set 𝐴 ⊂ [0, 𝑇 ]𝑛. We write (𝑉 ;𝑊 ) for the set of bounded 
linear operators from a vector space 𝑉  to a vector space 𝑊 . Then we define an integral operator ∫𝐴 as an element in (𝐿1([0, 𝑇 ]𝑛);R)
such that 

∫𝐴
∶ 𝑋 ∈ 𝐿1([0, 𝑇 ]𝑛) ⟼ ∫𝐴

𝑋 ∶= ∫ ⋯∫𝐴
𝑋(𝑟1,… , 𝑟𝑛) d𝑟1 ⋯ d𝑟𝑛 ∈ R. (3.6)

In the sequel, we shall compose integral operators and therefore introduce a particular notation for that purpose.

Definition 3.8.  We define two types of compositions of integral operators as follows:
(i) Let 𝐴 ⊂ [0, 𝑇 ]𝑚 and 𝐵 ⊂ [0, 𝑇 ]𝑛 be two measurable sets. Then we define 

∫𝐴
⋆ ∫𝐵

≡ ∫𝐴×𝐵
, (3.7)

where the right hand side of (3.7) is understood as in Definition  3.7.
(ii) For two measurable sets 𝐴,𝐵 ⊂ R𝑛, we define 

⋆′ ≡ , (3.8)
∫𝐴 ∫𝐵 ∫𝐴 ⧢𝐵

6 
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where the ‘‘interlacing’’ of 𝐴 and 𝐵 is defined as the set 
𝐴 ⧢𝐵 ∶= {(𝑟11, 𝑟

1
2, 𝑟

2
1, 𝑟

2
2,… , 𝑟𝑛1, 𝑟

𝑛
2) ∈ R2𝑛 ∣ (𝑟11,… , 𝑟𝑛1) ∈ 𝐴, (𝑟12,… , 𝑟𝑛2) ∈ 𝐵}.

Note that, if 𝐴,𝐵 ⊂ R, then ∫𝐴 ⋆ ∫𝐵 = ∫𝐴 ⋆′ ∫𝐵 .

The following ‘‘interchange law’’ is immediate. 

Lemma 3.9.  For 𝐴,𝐵 ⊂ R𝑚, 𝐴′, 𝐵′ ⊂ R𝑛,
(

∫𝐴
⋆∫𝐴′

)

⋆′
(

∫𝐵
⋆∫𝐵′

)

=
(

∫𝐴
⋆′

∫𝐵

)

⋆
(

∫𝐴′
⋆′

∫𝐵′

)

.

Example 3.10.  As an illustration of the previous notation, let us consider the particular case of simplexes. Here we use Definition  3.3 and 
Notation  3.6. Consider now (𝑠1, 𝑡1) and (𝑠2, 𝑡2) in 𝛥2

0,𝑇 , where we recall the notation given in (3.2) for 𝛥𝑛
𝑎,𝑏. Then

∫𝛥𝑛𝑠1 ,𝑡1
⋆∫𝛥𝑛𝑠2 ,𝑡2

= ∫𝛥𝑛𝑠1 ,𝑡1×𝛥
𝑛
𝑠2 ,𝑡2

and

∫𝛥𝑛𝑠1 ,𝑡1
⋆′

∫𝛥𝑛𝑠2 ,𝑡2
= ∫∆𝑛

[𝐬,𝐭]

.

The main reason why we have introduced the notion of integral operator is the following: we wish to highlight the fact that the 
usual algebraic properties of iterated integrals can be reduced to manipulations on simplexes. Let us first rephrase Chen’s relation 
in this framework.

Lemma 3.11.  Let 𝑇 > 0 and consider (𝑠, 𝑢, 𝑡) ∈ 𝛥3
0,𝑇 . Recall our notation (3.6) for integral operators and relation (3.7) for compositions. 

Then we have that 

∫𝛥𝑛𝑠,𝑡
=

∑

𝑙+𝑘=𝑛
∫𝛥𝑙𝑠,𝑢

⋆∫𝛥𝑘𝑢,𝑡
. (3.9)

Proof.  The following fact about simplexes is well-known and easy to prove: 
𝛥𝑛
𝑠,𝑡 =

⋃

𝑙+𝑘=𝑛
𝛥𝑙
𝑠,𝑢 × 𝛥𝑘

𝑢,𝑡, (3.10)

where the union is disjoint, up to a set of measure zero, and where it is understood that 𝛥𝑛
𝑠,𝑢 ×𝛥0

𝑢,𝑡 = 𝛥𝑛
𝑠,𝑢 = 𝛥0

𝑢,𝑡 ×𝛥𝑛
𝑠,𝑢. Our claim (3.9) 

then follows. □

Remark 3.12.  As a particular case of Lemma  3.11, we will later use the following relation for (𝑠, 𝑢, 𝑡) ∈ 𝛥3
0,𝑇 : 

∫𝛥1𝑠,𝑢
⋆∫𝛥1𝑢,𝑡

= ∫𝛥2𝑠,𝑡
−∫𝛥2𝑠,𝑢

−∫𝛥2𝑢,𝑡
. (3.11)

Remark 3.13.  We can recast relation (3.9) in the language of algebraic integration as described in [25]. To this aim we define 
the space 𝐶 = 𝐶1 of continuous functions 𝑥 ∶ [0, 𝑇 ] → R𝑑 . We also set 𝐶2 as the space of continuous functions 𝑦 ∶ [0, 𝑇 ]2 → R𝑑

vanishing on the diagonal (i.e. 𝑦𝑠𝑠 = 0). Next we define an operation 𝛿 ∶ 𝐶𝑖 → 𝐶𝑖+1 by 

𝛿𝑡𝑥𝑠 = 𝑥𝑡 − 𝑥𝑠, and 𝛿𝑢𝑦𝑠,𝑡 = 𝑦𝑠,𝑡 − 𝑦𝑠,𝑢 − 𝑦𝑢,𝑡. (3.12)

Then Lemma  3.11 asserts that for (𝑠, 𝑢, 𝑡) ∈ 𝛥3
0,𝑇

𝛿𝑢 ∫𝛥𝑛𝑠,𝑡
≡ ∫𝛥𝑛𝑠,𝑡

−∫𝛥𝑛𝑠,𝑢
−∫𝛥𝑛𝑢,𝑡

=
∑

𝑙+𝑘=𝑛
𝑘,𝑙>0

∫𝛥𝑙𝑠,𝑢
⋆∫𝛥𝑘𝑢,𝑡

. (3.13)

As mentioned in the introduction, iterated integral operators satisfy the shuffle property. This relation is rather useful in both 
the analysis and applications of the path signature. We write it here purely in terms of the integral operator.

Proposition 3.14 (Shuffle Relation of Permuted Integral Operators). Recall the notion of permuted simplex, 𝛥𝑛
𝑠,𝑡𝜌, introduced in (3.3). For 

𝑠 ≤ 𝑡 ∈ [0, 𝑇 ] and permutations 𝜌 ∈ 𝛴{1,…,𝑛} and 𝜈 ∈ 𝛴{1,…,𝑚}, we have that 

∫𝛥𝑛𝑠,𝑡𝜌
⋆∫𝛥𝑚𝑠,𝑡𝜈

=
∑

𝜎∈Sh(𝑛,𝑚)
∫𝛥𝑛+𝑚𝑠,𝑡 (𝜌∗𝜈)◦𝜎−1

, (3.14)

where Sh(𝑛, 𝑚) is given in Notation  3.2 and the product ∗ on permutations is defined in Lemma  3.5.
7 
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Proof.  Owing to (3.7), we have

∫𝛥𝑛𝑠,𝑡𝜌
⋆∫𝛥𝑚𝑠,𝑡𝜈

= ∫𝛥𝑛𝑠,𝑡𝜌×𝛥𝑚𝑠,𝑡𝜈
.

Our claim (3.14) is then a direct consequence of Lemma  3.5. □

We conclude this section with a useful symmetrization property relating iterated integral operators to integral operators over 
hypercubes.

Lemma 3.15.  Let (𝑠, 𝑡) ∈ 𝛥2
0,𝑇 . Then

∑

𝜌∈𝛴{1,…,𝑛}
∫𝛥𝑛𝑠,𝑡𝜌

= ∫[𝑠,𝑡]𝑛
.

Proof.  This is known to result from integration by parts. In geometric terms, it follows from the fact that the hypercube [𝑠, 𝑡]𝑛
can be divided into 𝑛! different simplexes defined by all possible ways of ordering 𝑛 variables from [𝑠, 𝑡]𝑛. This is described by all 
possible permutations of the set {1,… , 𝑛}, and thus we have

⋃

𝜌∈𝛴{1,…,𝑛}

𝛥𝑛
𝑠,𝑡𝜌 = [𝑠, 𝑡]𝑛. □

3.3. Increments in the plane

In the sequel, a field 𝑋 is indexed by a pair of elements from the standard-square [0, 𝑇 ]2 (analogous to a curve 𝑥 being indexed 
by elements from [0, 𝑇 ]). We first introduce notation for the so-called rectangular increment of a field 𝑋.

Notation 3.16.  Let 𝑋 ∈ 2([0, 𝑇 ]2;R𝑑 ) be a field. For 𝐫 = (𝑟1, 𝑟2) we set 

𝜕1𝑋𝐫 =
𝜕𝑋𝐫
𝜕𝑟1

, 𝜕2𝑋𝐫 =
𝜕𝑋𝐫
𝜕𝑟2

, and 𝜕12𝑋𝐫 =
𝜕2𝑋𝐫
𝜕𝑟1𝜕𝑟2

. (3.15)

For a function 𝑓 ∶ R𝑑 → R, we also use the standard notation 𝜕𝑖𝑓 (𝑥) = 𝜕𝑓
𝜕𝑥𝑖 (𝑥).

Definition 3.17.  Consider an R𝑑 -valued function 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 , and a generic rectangle 𝑅 = [𝐬, 𝐭], specified by its lower left 
and upper right corners, 𝐬 = (𝑠1, 𝑠2) respectively 𝐭 = (𝑡1, 𝑡2) – using Notation  3.1. Then the rectangular increment of 𝑋 over 𝑅 is 
defined to be

□𝐬𝐭𝑋 = 𝑋𝑡1;𝑡2 −𝑋𝑠1;𝑡2 −𝑋𝑡1;𝑠2 +𝑋𝑠1;𝑠2 .

Note that, still in line with Notation  3.1, we further condense notation by writing
𝑋𝐫 ∶= 𝑋𝑟1;𝑟2 ,

for 𝐫 = (𝑟1, 𝑟2) ∈ [0, 𝑇 ]2.
Recall that the 1D signature is built on the concept of increments. In particular, we observe that ⟨𝑆𝑠𝑡(𝑥), (𝑖1)⟩ = 𝑥𝑖1𝑡 − 𝑥𝑖1𝑠 . The 

rectangular increment defined above naturally extends this to the 2D setting

□𝐬𝐭𝑋 = ∫𝛥1[𝐬,𝐭]
𝜕12𝑋𝑠1;𝑠2 𝑑𝑠1𝑑𝑠2,

when 𝑋 is twice continuously differentiable. With this in mind, using Notation  3.16, we define the following convention for the 
mixed partial differentials.

Notation 3.18.  Consider a function 𝑋 ∈ 2([0, 𝑇 ]2;R𝑑 ). For 𝐫 = (𝑟1, 𝑟2) and 𝑖, 𝑗 ∈ {1,… , 𝑑}, we define 

d𝑖𝑋𝐫 ∶= 𝜕12𝑋
𝑖
𝐫 d𝑟1d𝑟2, and d̂𝑖𝑗𝑋𝐫 ∶= 𝜕1𝑋

𝑖
𝐫 𝜕2𝑋

𝑗
𝐫 d𝑟1d𝑟2 , (3.16)

where 𝑋𝑖
𝐭 denotes the 𝑖th component of 𝑋𝐭 ∈ R𝑑 . Note that in future computations we will write d𝑖𝑋𝐫 and d𝑋𝑖

𝐫 without distinction.

This subsection is closed by stating a basic change of variables formula in the plane. We employ Einstein’s summation convention.

Proposition 3.19.  Let 𝑋 be a field in 2([0, 𝑇 ]2;R𝑑 ) and consider a 2-function 𝑓 ∶ R𝑑 → R. Recall Notation  3.6 used for 2D-simplexes. 
Then for (𝐬, 𝐭) ∈ ´2

[𝟎,𝐓] we have 

□𝐬𝐭𝑓 (𝑋) = 𝜕𝑖𝑓 (𝑋𝐫 ) d𝑖𝑋𝐫 + 𝜕𝑖𝑗𝑓 (𝑋𝐫 ) d̂𝑖𝑗𝑋𝐫 , (3.17)
∫[𝐬,𝐭] ∫[𝐬,𝐭]
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where we use convention (3.16) for the differentials d and d̂, and where according to notation (3.7) we set 

∫[𝐬,𝐭]
∶= ∫

𝑡1

𝑠1
⋆ ∫

𝑡2

𝑠2
= ∫[𝑠1 ,𝑡1]×[𝑠2 ,𝑡2]

. (3.18)

Remark 3.20.  Formula (3.17) above can also be stated using Faà di Bruno’s formula. Namely, by considering 𝐬 = (𝑠1, 𝑠2) as fixed, 
the field 𝐭 ↦ 𝑍𝐭 = □𝐬𝐭𝑓 (𝑋) is such that 

𝜕12𝑍𝐭 = 𝜕𝑖𝑓 (𝑋𝐭 ) 𝜕12𝑋𝑖
𝐭 + 𝜕𝑖𝑗𝑓 (𝑋𝐭 ) 𝜕1𝑋𝑖

𝐭 𝜕2𝑋
𝑗
𝐭 , (3.19)

where we have used Notation  3.16 for the right hand side.

4. Definition of the 2D signature

In this section, we will introduce a notion of 2D signature based on a linear equation, similar to Lemma  2.1. However, we shall 
see that this simple definition is not enough to grant basic algebraic properties. Therefore in the second part, we shall propose a 
new and more fruitful notion of 2D signature. The main algebraic propositions are postponed to later sections.

4.1. A first notion of 2D signature: the 𝗂𝖽-signature

With the notation of Section 3.3 at hand, we now introduce our first notion of 2D signature in terms of a linear equation which 
is reminiscent of (2.1). Namely for a collection of constant matrices 𝐴𝑖 ∈ R𝑒×𝑒, 𝑖 = 1,… , 𝑑, an initial condition 𝑣 ∈ R𝑒 and a smooth 
field 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 , we consider the R𝑒-valued solution 𝑌  to the linear equation 

𝑌𝐭 = 𝑣 +
𝑑
∑

𝑖=1
∫[𝐬,𝐭]

𝐴𝑖𝑌𝐫 d𝑖𝑋𝐫 , for 𝐭 ∈ [𝐬,𝐓] , (4.1)

where we recall from Notation  3.1 that 𝐬 = (𝑠1, 𝑠2) and 𝐓 = (𝑇 , 𝑇 ). Note the double integral (3.18) as well as the differential (3.16) 
present in (4.1). The next definition proposes a 2D signature over 𝑋, seen as a function defined recursively on words similarly 
to (1.2). Recall ́ 2 defined in Notation  3.6.

Definition 4.1.  Let 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 be a smooth field. The 𝗂𝖽-signature 𝐒𝗂𝖽(𝑋) is a function in ((´2)) , defined for (𝐬, 𝐭) ∈ ´2

and every 𝑤 = (𝑖1,… , 𝑖𝑛) ∈  by 
⟨

𝐒𝗂𝖽𝐬𝐭 (𝑋), 𝑤
⟩

∶= ∫[𝐬,𝐭]

⟨

𝐒𝗂𝖽𝐬𝐫 (𝑋), (𝑖1,… , 𝑖𝑛−1)
⟩

d𝑖𝑛𝑋𝐫 . (4.2)

We illustrate the above definition of the identity signature with the following example. 

Example 4.2.  Let the field 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 be given as the Hadamard product of two paths 𝑥1, 𝑥2 ∈ Lip([0, 𝑇 ];R𝑑 ), such that 𝑋 is given 
by the vector

𝑋𝐭 =

⎡

⎢

⎢

⎢

⎣

𝑥1,1𝑡1 𝑥2,1𝑡2
⋮

𝑥1,𝑑𝑡1
𝑥2,𝑑𝑡2

⎤

⎥

⎥

⎥

⎦

.

Then for any word 𝑤 ∈  , it is readily checked that the signature inherits the multiplicative structure of the field 𝑋, in the sense that

⟨𝐒𝗂𝖽𝐬𝐭 (𝑋), 𝑤⟩ = ⟨𝑆𝑠1𝑡1 (𝑥
1), 𝑤⟩⟨𝑆𝑠2𝑡2 (𝑥

2), 𝑤⟩.

In [26] the authors show that the signature kernel 𝐾(𝑥1, 𝑥2) ∶= ⟨𝑆(𝑥1), 𝑆(𝑥2)⟩ ((R𝑑 )), as used in machine learning [27], solves a Goursat 
PDE, such that the signature kernel is given as the solution of the PDE 

𝜕2

𝜕𝑡1𝜕𝑡2
𝑢𝐭 = 𝑢𝐭⟨𝑥̇

1
𝑡1
, 𝑥̇2𝑡2 ⟩, 𝑢0,𝑡2 = 𝑢𝑡1 ,0 = 1. (4.3)

A formal expansion of the solution to this equation as the signature kernel can then be written as 

𝑢𝐭 = 1 +
∑

𝑤∈
⟨𝑆𝑠1𝑡1 (𝑥

1), 𝑤⟩⟨𝑆𝑠2𝑡2 (𝑥
2), 𝑤⟩ = 1 +

∑

𝑤∈
⟨𝐒𝗂𝖽𝐬𝐭 (𝑋), 𝑤⟩. (4.4)

Investigations of this type of equation have recently been expanded upon in the setting of Fubini’s theorem in [28], and for a general analysis 
of the non-linear versions of this Goursat PDE see [29] in the case of Young fields 𝑋, and [30] for a regualrization by noise perspective.

Analogously to Lemma  2.1, the following lemma shows how the 2D signature over X defined in (4.2) permits to express the 
R𝑒-valued solution 𝑌  to (4.1).
9 
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Lemma 4.3.  Given a smooth field 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 , the rectangular increment of the R𝑒-valued solution 𝑌  to (4.1) can be expanded as 
□𝐬𝐭𝑌 =

∑

𝑤∈
𝐴◦𝑤𝑣

⟨

𝐒𝗂𝖽𝐬𝐭 (𝑋), 𝑤
⟩

. (4.5)

Recall that the matrix 𝐴◦𝑤 corresponds to the products of matrices in reversed order of the word 𝑤, introduced in (2.2).

Proof.  According to (4.1), the initial conditions for 𝑌  on the axes are
𝑌𝐬 = 𝑌𝑠1 ,𝑡2 = 𝑌𝑡1 ,𝑠2 = 𝑣

for all 𝐭 = (𝑡1, 𝑡2) ∈ [𝐬,𝐓]. Therefore, for all 𝐭 ∈ [𝐬,𝐓] we also have
□𝐬𝐭𝑌 = 𝑌𝐭 − 𝑣.

Therefore, (4.1) becomes 

□𝐬𝐭𝑌 =
𝑑
∑

𝑖=1
∫[𝐬,𝐭]

𝐴𝑖𝑌𝐫 d𝑖𝑋𝐫 . (4.6)

We now proceed as in the proof of Lemma  2.1. Namely on the right hand side of (4.6) we write 𝑌𝐫 = 𝑣 + □𝐬𝐫𝑌 . Using Einstein’s 
summation convention we get 

□𝐬𝐭𝑌 = 𝐴𝑖1𝑣∫[𝐬,𝐭]
d𝑖1𝑋𝐫1 + 𝑅1

𝐬𝐭 , where 𝑅1
𝐬𝐭 = ∫[𝐬,𝐭]

𝐴𝑖1
(

□𝐬𝐫1𝑌
)

d𝑖1𝑋𝐫1 . (4.7)

Iterating (4.6) and (4.7) as in the proof of Lemma  2.1 confirms a ‘‘formal expansion’’ (4.5). After establishing Proposition  4.25, this 
formal expansion transforms into a rigorous expansion. □

Remark 4.4.  The signature 𝐒𝗂𝖽𝐬𝐭 (𝑋) can be written more explicitly as a tensor series in  ((R𝑑 )) with multiple integrals as coefficients. 
Indeed, using (3.5) for simplexes, recursion (4.2) yields 

⟨

𝐒𝗂𝖽𝐬𝐭 (𝑋), 𝑤
⟩

= ∫∆𝑛
[𝐬,𝐭]

d𝑖1𝑋𝐫1 ⋯ d𝑖𝑛𝑋𝐫𝑛 , (4.8)

where we recall (3.5) for ́ 𝑛
[𝐬,𝐭].

The signature 𝐒𝗂𝖽𝐬𝐭 (𝑋) solves a linear differential equation which is reminiscent of (2.10). We state this infinite-dimensional variant 
of (4.1) below. 

Proposition 4.5.  Let 𝑋 be a function in 2([0, 𝑇 ]2;R𝑑 ). Recall the definition of tensor series  ((R𝑑 )) spelled out in Section 2. Then as a 
 ((R𝑑 ))-valued function indexed by [0, 𝑇 ]2, the signature 𝐒𝗂𝖽(𝑋) satisfies the following equation for all (𝐬, 𝐭) ∈ ´2

[𝟎,𝐓]: 

𝐒𝗂𝖽𝐬𝐭 (𝑋) = 𝟏 + ∫[𝐬,𝐭]
𝐒𝗂𝖽𝐬𝐫 (𝑋)⊗ d𝑋𝐫 . (4.9)

Remark 4.6.  One might ask about existence and uniqueness for equations like (4.9). And indeed, Proposition  4.5 already gives 
the existence of a solution. As far as uniqueness is concerned, notice again that we consider 𝐒𝗂𝖽𝐬𝐭 (𝑋) as an object taking values in 
 ((R𝑑 )). Therefore one possibility is to interpret equation (4.9) as follows: denote 𝐒𝑁𝐬𝐭 ∶= 𝜋≤𝑁𝐒𝗂𝖽𝐬𝐭 (𝑋) the projection of 𝐒𝗂𝖽𝐬𝐭 (𝑋) onto 
⊕𝑁

𝑛=0(R
𝑑 )⊗𝑛. Moreover, equip ⊕𝑁

𝑛=0(R
𝑑 )⊗𝑛 with the proper tensor product defined by (2.6). Then (4.9) should be interpreted as a 

family of finite-dimensional differential equations indexed by 𝑁 , similarly to what is done in [4, Prop. 7.8] for one parameter: 

𝐒𝑁𝐬𝐭 = 𝟏 + ∫[𝐬,𝐭]
𝐒𝑁𝐬𝐫 ⊗ d𝑋𝐫 . (4.10)

Now for a fixed 𝑁 , finite-dimensional differential equations like (4.10) have been shown to have a unique solution e.g in [29,31] 
This also proves uniqueness of the solution for Eq.  (4.9).

Proof.  We denote by 𝜋𝑛(𝐒𝗂𝖽𝐬𝐭 (𝑋)) the projection of 𝐒𝗂𝖽𝐬𝐭 (𝑋) onto the set of level 𝑛 signature components. More specifically, using 
Definition  1.1 and our notation in (2.9) we set

𝜋𝑛(𝐒𝗂𝖽𝐬𝐭 (𝑋)) =
∑

𝑤∈𝑛

⟨𝐒𝗂𝖽𝐬𝐭 (𝑋), 𝑤⟩𝑒𝑤.

Then resorting to our explicit representation (4.8) we have 

𝜋𝑛(𝐒𝗂𝖽𝐬𝐭 (𝑋)) = ∫∆𝑛
[𝐬,𝐭]

𝑛
⨂

𝑖=1
d𝑋𝐫𝑖 , (4.11)

where d𝑋 = (d𝑋1,… , d𝑋𝑑 ). Moreover, one can recast (4.11) as

𝜋𝑛(𝐒𝗂𝖽𝐬𝐭 (𝑋)) = ∫

(

∫ 𝑛−1

𝑛−1
⨂

d𝑋𝐫𝑖

)

⊗ d𝑋𝐫𝑛 .

[𝐬,𝐭] ∆[𝐬,𝐫𝑛 ] 𝑖=1

10 
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Resorting to the explicit representation in (4.8) again, we end up with

𝜋𝑛(𝐒𝗂𝖽𝐬𝐭 (𝑋)) = ∫[𝐬,𝐭]
𝜋𝑛−1(𝐒𝗂𝖽𝐬𝐫𝑛 (𝑋))⊗ d𝑋𝐫𝑛 .

Putting together all the projections finishes the proof. □

4.2. Chen’s relation: Horizontal and vertical

Recall that Chen’s relation for curves indexed by [0, 𝑇 ] has been stated in Lemma  3.11. We now investigate proper generalizations 
to the 2D-setting. Similarly to other contributions in the field (see [14,23]) we will only get partial versions of this relation for the 
2D signature. Our restrictions will be of two types:

(i) We will only treat partial Chen-type relations in directions 1 and 2 separately. One can combine the two, but will then obtain a 
rather complicated relation.
(ii) Our results will be restricted to the signature 𝐒𝗂𝖽(𝑋) introduced in Section 4.1.

In subsequent sections, we shall give some hints about the way to overcome those difficulties, see in particular Remark  4.15. The 
following example illustrates the partial Chen’s relation in the ‘‘horizontal direction’’. 

Example 4.7.  For any 𝑠1 < 𝑢1 < 𝑡1 and 𝑠2 < 𝑡2 we have

⟨𝐒𝗂𝖽(𝑠1 ,𝑠2),(𝑡1 ,𝑡2)(𝑋), 𝑎𝑏⟩ = ∫ 𝑠1≤𝑟
1
1≤𝑟

2
1≤𝑡1

𝑠2≤𝑟
1
2≤𝑟

2
2≤𝑡2

d𝑋𝑎
𝑟11;𝑟

1
2
d𝑋𝑏

𝑟21;𝑟
2
2

= ∫ 𝑠1≤𝑟
1
1≤𝑟

2
1≤𝑢1

𝑠2≤𝑟
1
2≤𝑟

2
2≤𝑡2

d𝑋𝑎
𝑟11;𝑟

1
2
d𝑋𝑏

𝑟21;𝑟
2
2
+ ∫ 𝑠1≤𝑟

1
1≤𝑢1≤𝑟

2
1≤𝑡1

𝑠2≤𝑟
1
2≤𝑟

2
2≤𝑡2

d𝑋𝑎
𝑟11;𝑟

1
2
d𝑋𝑏

𝑟21;𝑟
2
2

+ ∫ 𝑢1≤𝑟
1
1≤𝑟

2
1≤𝑡1

𝑠2≤𝑟
1
2≤𝑟

2
2≤𝑡2

d𝑋𝑎
𝑟11;𝑟

1
2
d𝑋𝑏

𝑟21;𝑟
2
2

= ⟨𝐒𝗂𝖽(𝑠1 ,𝑠2),(𝑢1 ,𝑡2)(𝑋), 𝑎𝑏⟩ + ∫𝑠2≤𝑞≤𝑡2 ∫𝑠1≤𝑟11≤𝑢1
d𝑋𝑎

𝑟11 ,𝑞
⟨𝐒𝗂𝖽(𝑢1 ,𝑞),(𝑡1 ,𝑡2)(𝑋), 𝑏⟩

+ ⟨𝐒𝗂𝖽(𝑢1 ,𝑠2),(𝑡1 ,𝑡2)(𝑋), 𝑎𝑏⟩

= ⟨𝐒𝗂𝖽(𝑠1 ,𝑠2),(𝑢1 ,𝑡2)(𝑋), 𝑎𝑏⟩ + ∫𝑠2≤𝑞≤𝑡2

d
d𝑞

⟨𝐒𝗂𝖽(𝑠1 ,𝑠2),(𝑢1 ,𝑞)(𝑋), 𝑏⟩ ⟨𝐒𝗂𝖽(𝑢1 ,𝑞),(𝑡1 ,𝑡2)(𝑋), 𝑏⟩

+ ⟨𝐒𝗂𝖽(𝑢1 ,𝑠2),(𝑡1 ,𝑡2)(𝑋), 𝑎𝑏⟩

Different from the one-parameter case, the signature does not precisely ‘‘split’’; a form of ‘‘convolution’’ appears in the middle term. We 
visualize the respective points 𝑟1, 𝑟2 in the plane, according to which side of the line {𝑢1} × [𝑠2, 𝑡2] they lie on: 

(𝑟2)

(𝑟1)
=

(𝑟2)

(𝑟1)
+

(𝑟2)

(𝑟1)
+

(𝑟2)

(𝑟1)

 In each of the three terms, the point 𝑟1 is to the south-west of 𝑟2. Again, the middle term does not split, but is a ‘‘convolution’’ of the two 
sides.

Let 𝑓, 𝑔 ∶ ´2 → R be two functions. Define for 𝑎1 < 𝑏1 < 𝑐1, 𝑠2 < 𝑡2

(𝑓 ∗𝑏1 ,𝐻 𝑔)
(

(𝑎1, 𝑠2), (𝑐1, 𝑡2)
)

∶= ∫

𝑡2

𝑠2
𝑓
(

(𝑎1, 𝑠2), (𝑏1, 𝑞)
)

𝑔
(

(𝑏1, 𝑞), (𝑐1, 𝑡2)
)

d𝑞.

Analogously, for 𝑠1 < 𝑡1, 𝑎2 < 𝑏2 < 𝑐2,

(𝑓 ∗𝑏2 ,𝑉 𝑔)
(

(𝑠1, 𝑎2), (𝑡1, 𝑐2)
)

∶= ∫

𝑡1

𝑠1
𝑓
(

(𝑠1, 𝑎2), (𝑝, 𝑏2)
)

𝑔
(

(𝑝, 𝑏2), (𝑡1, 𝑐2)
)

d𝑝.

For a differentiable map 𝑓 ∶ ´2 → R define

(𝖣𝑅,1𝑓 )
(

(𝑠1, 𝑠2), (𝑡1, 𝑡2)
)

∶= d
d𝑡1

𝑓
(

(𝑠1, 𝑠2), (𝑡1, 𝑡2)
)

.

The differential in ‘‘the right slot, in the first direction’’ and

(𝖣𝑅,2𝑓 )
(

(𝑠1, 𝑠2), (𝑡1, 𝑡2)
)

∶= d
d𝑡

𝑓
(

(𝑠1, 𝑠2), (𝑡1, 𝑡2)
)

.

2

11 
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Proposition 4.8.  Let 𝑤 = 𝑤1 ⋯𝑤𝑛 ∈  be a word of length 𝑛. For 𝑎1 < 𝑏1 < 𝑐1, 𝑠2 < 𝑡2 we have the following horizontal convolutional 
Chen’s relation

⟨𝐒𝗂𝖽(𝑎1 ,𝑠2),(𝑐1 ,𝑡2)(𝑋), 𝑤⟩ = ⟨𝐒𝗂𝖽(𝑎1 ,𝑠2),(𝑏1 ,𝑡2)(𝑋), 𝑤⟩ + ⟨𝐒𝗂𝖽(𝑏1 ,𝑠2),(𝑐1 ,𝑡2)(𝑋), 𝑤⟩

+
𝑛−1
∑

𝑘=1

(

(

𝖣𝑅,2⟨𝐒𝗂𝖽(𝑋), 𝑤1 ⋯𝑤𝑘⟩
)

∗𝑏1 ,𝐻 ⟨𝐒𝗂𝖽(𝑋), 𝑤𝑘+1 ⋯𝑤𝑛⟩
)

(

(𝑎, 𝑠2), (𝑐, 𝑡2)
)

.

For 𝑠1 < 𝑡1, 𝑎2 < 𝑏2 < 𝑐2, we have the following vertical convolutional Chen’s relation
⟨𝐒𝗂𝖽(𝑠1 ,𝑎2),(𝑡1 ,𝑐2)(𝑋), 𝑤⟩ = ⟨𝐒𝗂𝖽(𝑠1 ,𝑎2),(𝑡1 ,𝑏2)(𝑋), 𝑤⟩ + ⟨𝐒𝗂𝖽(𝑠1 ,𝑏2),(𝑡1 ,𝑐2)(𝑋), 𝑤⟩

+
𝑛−1
∑

𝑘=1

(

(

𝖣𝑅,1⟨𝐒𝗂𝖽(𝑋), 𝑤1 ⋯𝑤𝑘⟩
)

∗𝑏2 ,𝑉 ⟨𝐒𝗂𝖽(𝑋), 𝑤𝑘+1 ⋯𝑤𝑛⟩
)

(

(𝑠1, 𝑎2), (𝑡1, 𝑐2)
)

.

Proof.  We prove the first statement. 

⟨𝐒𝗂𝖽(𝑎1 ,𝑠2),(𝑐1 ,𝑡2)(𝑋), 𝑤⟩ = ∫ 𝑎1≤𝑟
1
1≤⋯≤𝑟𝑛1≤𝑐1

𝑠2≤𝑟
1
2≤⋯≤𝑟𝑛2≤𝑡2

d𝑋𝑤1
𝑟11;𝑟

1
2
⋯ d𝑋𝑤𝑛

𝑟𝑛1;𝑟
𝑛
2

=
𝑛
∑

𝑘=0
∫ 𝑎1≤𝑟

1
1≤⋯≤𝑟𝑘1≤𝑏1≤𝑟

𝑘+1
1 ≤⋯≤𝑟𝑛1≤𝑐1

𝑠2≤𝑟
1
2≤⋯≤𝑟𝑛2≤𝑡2

d𝑋𝑤1
𝑟11;𝑟

1
2
⋯ d𝑋𝑤𝑛

𝑟𝑛1;𝑟
𝑛
2

=
𝑛
∑

𝑘=0
∫𝑠2≤𝑟𝑘2≤𝑡2 ∫

𝑎1≤𝑟
1
1≤⋯≤𝑟𝑘1≤𝑏1

𝑠2≤𝑟
1
2≤⋯≤𝑟𝑘−12 ≤𝑟𝑘2

d𝑋𝑤1
𝑟11;𝑟

1
2
⋯ d𝑋𝑤𝑘

𝑟𝑘1 ;𝑟
𝑘
2

× ∫ 𝑏1≤𝑟
𝑘+1
1 ≤⋯≤𝑟1𝑛≤𝑐1

𝑟𝑘2≤𝑟
𝑘+1
2 ≤⋯≤𝑟𝑛2≤𝑡2

d𝑋𝑤𝑘+1
𝑟𝑘+11 ;𝑟𝑘+12

⋯ d𝑋𝑤𝑛
𝑟𝑛1;𝑟

𝑛
2
.

 Here we have colored the integration boundaries in gray, to distinguish them from the integration variables. Now 

∫ 𝑎1≤𝑟
1
1≤⋯≤𝑟𝑘1≤𝑏1

𝑠2≤𝑟
1
2≤⋯≤𝑟𝑘−12 ≤𝑟𝑘2

d𝑋𝑤1
𝑟11;𝑟

1
2
⋯ d𝑋𝑤𝑘

𝑟𝑘1 ;𝑟
𝑘
2
= 𝑑

𝑑𝑟𝑘2
⟨𝐒𝗂𝖽

(𝑎1 ,𝑠2),(𝑏1 ,𝑟𝑘2 )
(𝑋), 𝑤1 ⋯𝑤𝑘⟩

∫ 𝑏1≤𝑟
𝑘+1
1 ≤⋯≤𝑟1𝑛≤𝑐1

𝑟𝑘2≤𝑟
𝑘+1
2 ≤⋯≤𝑟𝑛2≤𝑡2

d𝑋𝑤𝑘+1
𝑟𝑘+11 ;𝑟𝑘+12

⋯ d𝑋𝑤𝑛
𝑟𝑛1;𝑟

𝑛
2
= ⟨𝐒𝗂𝖽

(𝑏1 ,𝑟𝑘2 ),(𝑐1 ,𝑡2)
(𝑋), 𝑤𝑘+1 ⋯𝑤𝑛⟩,

 and the claim follows. □

Below we start by introducing some useful notation to state our main results.

4.3. Challenges with the 𝗂𝖽-signature

The signature proposed in (4.2) is rather natural and interestingly simple. However, it lacks some of the basic properties compared 
to the signature of a path. Let us briefly highlight two of those shortcomings:

(i) Lack of shuffle property. A common requirement for a proper signature is stability under multiplication, i.e., iterated integrals 
(4.8) should form an algebra. However, 𝐒𝗂𝖽(𝑋) does not fulfill this property; the 𝑑 = 1 case, i.e., considering a real-valued field 
𝑋 ∈ 2([0, 𝑇 ]2;R) suffices to see this. Indeed, due to (4.8), the increment □𝑋 = ∫ d𝑋 is trivially seen as a component of 𝐒𝗂𝖽(𝑋). 
Now define the product

𝛱𝐬𝐭 =
(

∫[𝐬,𝐭]
d𝑋𝐫

)2
= ∫[𝐬,𝐭]

d𝑋𝐫 ∫[𝐬,𝐭]
d𝑋𝐯,

where we recall that d𝑋 is given by (3.16). Then some elementary computations involving integration in [𝐬, 𝐭] × [𝐬, 𝐭] reveal that 
𝛱𝐬𝐭 = 2𝛱1

𝐬𝐭 + 2𝛱2
𝐬𝐭 , with 

𝛱1
𝐬𝐭 = ∫∆2

[𝐬,𝐭]

d𝑋𝑟11;𝑟
1
2
d𝑋𝑟21;𝑟

2
2

and 𝛱2
𝐬𝐭 = ∫∆2

[𝐬,𝐭]

d𝑋𝑟11;𝑟
2
2
d𝑋𝑟21;𝑟

1
2
. (4.12)

Now referring to (4.8) again, the term 𝛱1
𝐬𝐭 in (4.12) is easily identified with ⟨𝐒𝗂𝖽𝐬𝐭 (𝑋), (1, 1)⟩. However, 𝛱2

𝐬𝐭 is not part of the signature, 
due to the permutation of 𝑟12 and 𝑟22 in the double integrals. This permutation phenomenon will feature prominently in our future 
considerations.
(ii) Lack of change of variables formula for exponential functions. A signature should accommodate simple expansions in change of 
variables formulae. Here again, it is easy to find examples for which 𝐒𝗂𝖽(𝑋) fails to be appropriate for this elementary task. That is, 
consider the same generic real-valued field 𝑋 ∈ 2([0, 𝑇 ]2;R) as in item (i) above. Next, for 𝐭 ∈ [𝐬,𝐓] set 𝑍 = exp(□ 𝑋). Hence, 
𝐭 𝐬𝐭

12 
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applying a small variant of the Faá Di Bruno type formula stated in Remark  3.20 (differentiating 𝐭 ↦ 𝑓 (□𝐬𝐭𝑋) = 𝑍𝐭 instead of 
𝐭 ↦ 𝑓 (𝑋𝐭 )), we have that

𝜕12𝑍𝐭 = 𝑍𝐭 𝜕12𝑋 +𝑍𝐭 𝜕1
(

𝑋𝐭 −𝑋𝑡1 ,𝑠2

)

𝜕2
(

𝑋𝐭 −𝑋𝑠1 ,𝑡2

)

.

Therefore, a first-order approximation for the rectangular increment of 𝑍 is 
□𝐬𝐭𝑍 ≈ 𝑍𝐬 □𝐬𝐭𝑋 +𝑍𝐬 𝑅

𝑋
𝐬𝐭 , (4.13)

where the term 𝑅𝑋
𝐬𝐭  is defined by

𝑅𝑋
𝐬𝐭 ∶= ∫[𝐬,𝐭]

𝜕1
(

𝑋𝐫 −𝑋𝑟1 ,𝑠2

)

𝜕2
(

𝑋𝐫 −𝑋𝑠1 ,𝑟2

)

d𝐫.

Now, as mentioned in (i), the increment □𝐬𝐭𝑋 is part of 𝐒𝗂𝖽(𝑋), i.e., □𝐬𝐭𝑋 = ⟨𝐒𝗂𝖽𝐬𝐭 (𝑋), (1)⟩. However, the last term 𝑅𝑋 in (4.13) is not 
an element of the signature 𝐒𝗂𝖽(𝑋). The above first-order approximation has thus to be expressed in terms of a larger object then 
the 𝗂𝖽-signature, which we will call the full signature.

4.4. Definition of the full 2D signature

In Section 4.1, we have seen that the 𝗂𝖽-signature 𝐒𝗂𝖽(𝑋) does not possess some of the desirable properties known to hold for the 
classical path signatures. As addressed in relation (4.12), the problem seems to arise from the fact that permutations of simplexes 
appear. To address this issue, we will now propose another notion of 2D signature, taking such permutations into account.

Before proceeding to the definition of the 2D signature, we will introduce the new set of word-permutation tuples. Recall that 
the set of words 𝑛 of length 𝑛 ≥ 0 is defined in Definition  1.1.

Definition 4.9.  (i) The set of extended words is defined as ̂ =
⋃∞

𝑛=0 ̂𝑛, where ̂0 = {(𝖾, 𝗂𝖽)} and for 𝑛 ≥ 1

̂𝑛 = {(𝑤, 𝜈) |𝑤 ∈ 𝑛, 𝜈 ∈ 𝛴{1,…,𝑛}}. (4.14)

(ii) If 𝜌 ∈ 𝛴{1,…,𝑛} we set 

𝑤𝜌 ∶=
(

𝑖𝜌(1),… , 𝑖𝜌(𝑛)
)

. (4.15)

Note that for the concatenation of words, 𝑤𝑤′, we set [𝑤𝑤′]𝜏 (which should not be confused with the notation [𝑤𝑤′]𝑗 referring to 
the 𝑗th letter in 𝑤𝑤′).

Recall that ́ 2 is given in Notation  3.6. We are now ready to define the full 2D signature.

Definition 4.10.  Let 𝑋 be a function in 2([0, 𝑇 ]2;R𝑑 ). The (full) 2D signature 𝐒(𝑋) is a function in ((´2))̂ , defined for an extended 
word (𝑤, 𝜈) ∈ ̂𝑛 by setting 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ ∶= ∫∆𝑛
[𝐬,𝐭]

𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝑟𝑖1 ,𝑟
𝜈𝑖
2
. (4.16)

Remark 4.11.  According to (3.3) and (3.8), one can recast (4.16) as 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ∫𝛥𝑛𝑠1 ,𝑡1
⋆′

∫𝛥𝑛𝑠2 ,𝑡2 𝜈
−1

𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝑟𝑖1 ,𝑟
𝑖
2
. (4.17)

The representation in (4.17) will be useful to prove some of our algebraic relations.
With the definition of the full 2D signature at hand, let us illustrate its behavior concerning the 2D signature 𝐒𝗂𝖽(𝑋) proposed in 

Definition  4.1 and its relation to 2D iterated sums as proposed in [16].

Example 4.12.  Let us illustrate the 2D signature in light of the multiplicative field discussed in Example  4.2. Namely we consider a R-valued 
field 𝑋𝐭 = 𝑥1𝑡1𝑥

2
𝑡2
 for two Lipschitz paths 𝑥1 and 𝑥2. Choosing an extended word (𝑤, 𝜈) ∈ ̂𝑛 we see that 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ⟨𝑆𝑠1𝑡1 (𝑥
1), 𝑤⟩⟨𝑆𝑠2𝑡2 (𝑥

2), 𝑤𝜈−1 ⟩, (4.18)

where 𝑤𝜈−1 = (𝑤𝜈−1(1),… , 𝑤𝜈−1(𝑛)). Indeed, to see this observe that 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ⟨𝑆𝑠1𝑡1 (𝑥
1), 𝑤⟩∫𝛥𝑛𝑠2 𝑡2

𝑛
∏

𝑖=1
d𝑥2,𝑤𝑖

𝑟𝜈𝑖2
, (4.19)

and by Fubini’s theorem it follows that

∫𝛥𝑛𝑠2 𝑡2

𝑛
∏

𝑖=1
d𝑥2,𝑤𝑖

𝑟𝜈𝑖2
= ∫𝛥𝑛𝑠2 𝑡2

𝑛
∏

𝑖=1
d𝑥

2,𝑤𝜈−1𝑖
𝑟𝑖2

= ⟨𝑆𝑠2𝑡2 (𝑥
2), 𝑤𝜈−1 ⟩.

We see that when 𝜈 = 𝗂𝖽, then we recover the results of Example  4.2.
13 
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Example 4.13.  Consider 𝑖1, 𝑖2, 𝑖3 ∈ {1,… , 𝑑} and the permutation [𝟷 𝟹 𝟸] ∈ 𝛴{1,2,3}.

⟨𝐒𝐬𝐭 (𝑋), ((𝑖1, 𝑖2, 𝑖3), [𝟷 𝟹 𝟸])⟩ = ∫ 𝑠1<𝑟
1
1<𝑟

2
1<𝑟

3
1<𝑡1

𝑠2<𝑟
1
2<𝑟

2
2<𝑟

3
2<𝑡2

d𝑋𝑖1
𝑟11 ,𝑟

1
2
d𝑋𝑖2

𝑟21 ,𝑟
3
2
d𝑋𝑖3

𝑟31 ,𝑟
2
2
.

Employing a matrix notation akin to the one used in [16]2 this corresponds to the matrix
⟨

𝐒𝐬𝐭 (𝑋),
⎡

⎢

⎢

⎣

0 𝑖2 0
0 0 𝑖3
𝑖1 0 0

⎤

⎥

⎥

⎦

⟩

.

Remark 4.14.  The two issues (i)–(ii) raised after Proposition  4.5 are easily resolved by using the full 2D signature 𝐒(𝑋). Specifically, 
the term 𝛱2

𝐬𝐭 in (4.12) can be written as 

𝛱2
𝐬𝐭 = ∫∆2

[𝐬,𝐭]

d𝑋𝑟11 ,𝑟
2
2
d𝑋𝑟21 ,𝑟

1
2
= ⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩, (4.20)

where 𝑤 = (1, 1) and 𝜈 ∈ 𝛴{1,2} is defined by 𝜈 = [𝟸 𝟷]. As for the term 𝑅𝑋
𝐬𝐭  in (4.13), observe that by applying the fundamental 

theorem of calculus to the increments in
𝜕1

(

𝑋𝐫 −𝑋𝑟1 ,𝑠2

)

𝜕2
(

𝑋𝐫 −𝑋𝑠1 ,𝑟2

)

,

we also get that

𝑅𝑋
𝐬𝐭 = ∫∆2

[𝐬,𝐭]

d𝑋𝑟11 ,𝑟
2
2
d𝑋𝑟21 ,𝑟

1
2
= ⟨𝐒𝐬𝐭 (𝑋), ((1, 1), [𝟸 𝟷])⟩ = 𝛱2

𝐬𝐭 .

With this computation we also observe that even for fields with one ambient dimension, the full signature is not trivial (i.e. it cannot 
be written in terms of monomials), in contrast to what is the case for the path signature.

Remark 4.15.  It is a non-trivial task to generalize Proposition  4.8 to the 2D signature 𝐒(𝑋) from Definition  4.10. Indeed, consider 
Example  4.13, visualized as constellations of three points in the plane (as in Example  4.7): 

(𝑟1)

(𝑟2)

(𝑟3) =
(𝑟1)

(𝑟2)

(𝑟3) +
(𝑟1)

(𝑟2)

(𝑟3) +
(𝑟1)

(𝑟2)

(𝑟3) +
(𝑟1)

(𝑟2)

(𝑟3)

Now, the second term on the right does not split, even when allowing for a convolution of the type in Proposition  4.8. We 
conjecture that an operadic structure can handle this issue, but this is beyond the scope of the current article.

We conclude this section by presenting a linear integral equation that is satisfied by the truncation of the 2D signature 𝐒(𝑋) to 
words of length 𝑛 ≤ 3.

Proposition 4.16.  Let 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 be a 2 field. Consider the 2D signature 𝐒(𝑋) given in Definition  4.10, seen as an element of 
(´2)̂ . Then for 𝑛 ≤ 3 and (𝑤, 𝜈) ∈ ̂𝑛, with 𝑤 = (𝑖1,… , 𝑖𝑛), the coordinate ⟨𝐒(𝑋), (𝑤, 𝜈)⟩ satisfies an equation of the form 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = 𝟏{𝑤=𝖾} + 𝟏{𝑤≠𝖾} ∫[𝐬,𝐭]
𝐬𝐭;(𝑖1⋯𝑖𝑛−1 ,𝜈)
𝐯 d𝑋𝑖𝑛

𝐯 , (4.21)

where the function 𝐬𝐭;(𝑖1⋯𝑖𝑛−1 ,𝜈)
𝐯  is given by the following expressions for various permutations 𝜈:

𝐬𝐭;(𝖾,[𝟷])
𝐯 = 1

𝐬𝐭;(𝑖1 ,[𝟷 𝟸])
𝐯 = ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1), 𝗂𝖽)⟩

𝐬𝐭;(𝑖1 ,[𝟸 𝟷])
𝐯 = ⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1), 𝗂𝖽)⟩

𝐬𝐭;(𝑖1𝑖2 ,[𝟷 𝟸 𝟹])
𝐯 = ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩

𝐬𝐭;(𝑖1𝑖2 ,[𝟷 𝟹 𝟸])
𝐯 = ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ − ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ − ⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩

𝐬𝐭;(𝑖1𝑖2 ,[𝟸 𝟷 𝟹])
𝐯 = ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), [𝟸 𝟷])⟩

𝐬𝐭;(𝑖1𝑖2 ,[𝟸 𝟹 𝟷])
𝐯 = ⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), [𝟷 𝟸])⟩

𝐬𝐭;(𝑖1𝑖2 ,[𝟹 𝟸 𝟷])
𝐯 = ⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), [𝟸 𝟷])⟩,

and

𝐬𝐭;(𝑖1𝑖2 ,[𝟹 𝟷 𝟸])
𝐯 = ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), [𝟸 𝟷])⟩ −

2 Contrary to what has been done in [16], we orient the plane, and correspondingly the matrices, from bottom-left to top-right.
14 
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⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), [𝟸 𝟷])⟩ − ⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), [𝟸 𝟷])⟩.

Proof.  The cases 𝑛 = 1, 2 are easily handled, similarly to Proposition  4.5. The same kind of argument also holds for 𝑛 = 3 when 
𝜈(3) ∈ {1, 3}. Therefore, in the remainder of the proof, we will focus on the case 𝑛 = 3 and 𝜈(3) = 2. Specifically, let us assume 
𝑤 = (𝑖1, 𝑖2, 𝑖3) for 𝑖1, 𝑖2, 𝑖3 ∈ {1,… , 𝑑} and 𝜈 = [𝟷 𝟹 𝟸]. The other case, 𝜈 = [𝟹 𝟷 𝟸], can be treated similarly. The value of the 2D 
signature is defined for (𝐬, 𝐭) ∈ ´2

[𝐬,𝐭]:

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ∫∆3
[𝐬,𝐭]

d𝑋𝑖1
𝑟11 ,𝑟

1
2
d𝑋𝑖2

𝑟21 ,𝑟
3
2
d𝑋𝑖3

𝑟31 ,𝑟
2
2
.

Recall that ́ 3
[𝐬,𝐭] was introduced in (3.5). To set up an induction, let us write

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ∫ 𝑠1≤𝑟
3
1≤𝑡1

𝑠2≤𝑟
2
2≤𝑡2

⎛

⎜

⎜

⎜

⎝

∫ 𝑠1≤𝑟
1
1≤𝑟

2
1≤𝑟

3
1

𝑠2≤𝑟
1
2≤𝑟

2
2 ; 𝑟22≤𝑟

3
2≤𝑡2

d𝑋𝑖1
𝑟11 ,𝑟

1
2
d𝑋𝑖2

𝑟21 ,𝑟
3
2

⎞

⎟

⎟

⎟

⎠

d𝑋𝑖3
𝑟31 ,𝑟

2
2
.

Otherwise stated, one has 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ∫ 𝑠1≤𝑟
3
1≤𝑡1

𝑠2≤𝑟
2
2≤𝑡2

𝑄𝑟31 ,𝑟
2
2
d𝑋𝑖3

𝑟31 ,𝑟
2
2
, (4.22)

where for 𝐯 = (𝑣1, 𝑣2) ∈ [𝐬, 𝐭] we have set 

𝑄𝑣1 ,𝑣2 ∶= ∫(𝑟11 ,𝑟21 ,𝑟12 ,𝑟32)∈𝐷𝑣1 ,𝑣2

d𝑋𝑖1
𝑟11 ,𝑟

1
2
d𝑋𝑖2

𝑟21 ,𝑟
3
2
, (4.23)

and where the domain 𝐷𝑣1 ,𝑣2 ⊂ [0, 𝑇 ]4 can be decomposed as 𝐷𝑣1 ,𝑣2 = 𝐷1
𝑣1

×𝐷2
𝑣2
 with

𝐷1
𝑣1

= {(𝑝1, 𝑞1) ∈ 𝛥2
𝑠1 ,𝑡1

; 𝑠1 ≤ 𝑝1 ≤ 𝑞1 ≤ 𝑣1}

𝐷2
𝑣2

= {(𝑝2, 𝑞2) ∈ 𝛥2
𝑠2 ,𝑡2

; 𝑠2 ≤ 𝑝2 ≤ 𝑣2,  and 𝑣2 ≤ 𝑞2 ≤ 𝑡2}.

Notice that we have several dummy integration variables above, so we will simplify relations (4.22)–(4.23) as 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ∫ 𝑠1≤𝑣1≤𝑡1
𝑠2≤𝑣2≤𝑡2

𝑄𝑣1 ,𝑣2d𝑋
𝑖3
𝑣1 ,𝑣2 = ∫[𝐬,𝐭]

𝑄𝐯d𝑋
𝑖3
𝐯 , (4.24)

with

𝑄𝐯 = ∫(𝐫1 ,𝐫2)∈𝐷𝐯

d𝑋𝑖1
𝐫1
d𝑋𝑖2

𝐫2
.

Now notice that due to relation (3.11) we have

∫𝐷2
𝑣2

= ∫𝛥1𝑠2 ,𝑣2
⋆∫𝛥1𝑣2 ,𝑡2

= ∫𝛥2𝑠2 ,𝑡2
−∫𝛥2𝑠2 ,𝑣2

−∫𝛥2𝑣2 ,𝑡2
.

This information is then inserted into the definition of 𝑄 to discover that

𝑄𝐯 = ∫∆2
[𝑠1 ,𝑣1]×[𝑠2 ,𝑡2]

d𝑋𝑖1
𝐫1
d𝑋𝑖2

𝐫2
− ∫∆2

[𝑠1 ,𝑣1]×[𝑠2 ,𝑣2]

d𝑋𝑖1
𝐫1
d𝑋𝑖2

𝐫2
− ∫∆2

[𝑠1 ,𝑣1]×[𝑣2 ,𝑡2]

d𝑋𝑖1
𝐫1
d𝑋𝑖2

𝐫2
(4.25)

= ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ − ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ − ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩.

Plugging (4.25) into (4.24), we thus end up with

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩ = ∫[𝐬,𝐭]
⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩d𝑋

𝑖3
𝐯

−∫[𝐬,𝐭]
⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩d𝑋

𝑖3
𝐯 − ∫[𝐬,𝐭]

⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩d𝑋
𝑖3
𝐯 .

Summarizing this by setting

𝐬𝐭
𝐯 = ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ − ⟨𝐒𝑠1 ,𝑠2;𝑣1 ,𝑣2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ − ⟨𝐒𝑠1 ,𝑣2;𝑣1 ,𝑡2 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩,

finishes the proof. □

Remark 4.17. Proposition  4.16 only gives an integral equation for the signature up to level 𝑛 = 3. For 𝑛 ≥ 4, deriving such an 
equation would require further insight into the algebraic structure which is beyond the scope of the current paper.
15 
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Remark 4.18.  Even though Eq. (4.21) gives a recursive relation for computing signature terms, a simple choice for low-level terms 
would be to discretize the iterated integrals directly. That is, for the double integral ⟨𝐒𝐬𝐭 (𝑋), ((𝑖1, 𝑖2), 𝗂𝖽)⟩ we have that

∫[𝐬,𝐭] ∫[𝐬,𝐫2]
d𝑋𝑖1

𝐫1
d𝑋𝑖2

𝐫2
≈

∑

[𝑢1 ,𝑣1]∈[𝑠1 ,𝑡1]

∑

[𝑢1 ,𝑣2]∈[𝑠2 ,𝑡2]
□(𝑠1 ,𝑠2;𝑢1𝑢2)𝑋

𝑖1□(𝑢1 ,𝑢2;𝑣1 ,𝑣2)𝑋
𝑖2 .

here [𝑠𝑖, 𝑡𝑖] is a partition of the interval [𝑠𝑖, 𝑡𝑖], for 𝑖 = 1, 2. We refer to [22] for further details on practical computational 
implementation. In addition, note that there might be algebraic structures (as illustrated above) which could reduce computational 
complexity further. We have not delved deeper into this problem for the sake of conciseness of the current paper. We plan to report 
on such issues in subsequent articles.

4.5. Invariance properties

Among the central and elementary properties of the path signature, let us mention the following ones:

(i) Translation invariance: For 𝑎 ∈ R𝑑 and a path 𝑥 ∶ [0, 1] → R𝑑 one has 𝑆(𝑥 + 𝑎) = 𝑆(𝑥).
(ii) Re-parameterization invariance: For a non-decreasing function 𝜙 ∶ [0, 1] → [0, 1] with 𝜙(0) = 0 and 𝜙(1) = 1 one has 
𝑆(𝑋◦𝜙)0,1 = 𝑆(𝑋)0,1.

Heuristically, translation invariance tells us that the signature ‘‘does not see’’ the absolute level at which the path is operating, 
but only sees relative differences. Reparametrization invariance tells us that the signature does not care about different speeds at 
which we might run through our path. These two features have been crucial in assessing the usefulness of the signature method in 
machine learning and other areas, see e.g. [6,7].

We will now discuss these properties in the setting of the 2D signature. They rely on the choice of differential structure to work 
with for the concept of a 2D signature. Consequently, we will explore and elaborate on them in relation to the differential d𝑋 as 
introduced in Notation  3.18.

4.5.1. Translation invariance
When working with the 2D signature over a R𝑑 -valued field 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 , there are three different ways to look at translation; 

one is to shift the field with a constant vector 𝑎 ∈ R𝑑 , another is to shift the field by 1D paths, only depending on either the first 
variable or the second. More precisely, let 𝑥𝑖 ∶ [0, 𝑇 ] → R𝑑 for 𝑖 = 1, 2 be two paths, and set 𝜏𝑋𝑡1 ,𝑡2 ∶= 𝑋𝑡1 ,𝑡2 + 𝑥1𝑡1 + 𝑥2𝑡2 + 𝑎. Then, 
given that we work with the differential structure d𝑋 defined in Notation  3.18 for the 2D signature 𝑆(𝑋), we observe that for every 
𝑖 ∈ {1,… , 𝑑} we have

d𝑖(𝜏𝑋) = d𝑖𝑋,

and so it follows that
𝐒(𝜏𝑋) = 𝐒(𝑋).

Remark 4.19.  This is a rather striking property of the 2D signature and sheds light on the type of properties in a field 𝑋 captured 
by the signature. It is complementary to the classical path signature, and for feature extraction purposes, depending on the task at 
hand, it might be beneficial to also include the path signature of the paths 𝑡1 ↦ 𝑋(𝑡1, 𝑢) and 𝑡2 ↦ 𝑋(𝑢, 𝑡2) for some choices of 𝑢, as 
the 2D signature will not capture information provided from this. In contrast, the 2D signature will provide us information about 
how much ‘‘small changes in one direction are affected by small changes in the other direction’’, and then the iterated integrals 
provide us with a systematic (partially ordered) comparison of this information over a field 𝑋.

4.5.2. Invariance to stretching
While there is no direct analog of the re-parameterization invariance of the path signature in the 2D setting, the closest thing 

would be to consider invariance to stretching.

Definition 4.20.  We say that a continuously differentiable function 𝜙 ∶ [0, 𝑇 ]2 → [0, 𝑇 ]2 is a stretching if
𝜙(𝑡1, 𝑡2) = (𝜙1(𝑡1), 𝜙2(𝑡2)),

where 𝜙𝑖 ∶ [0, 𝑇 ] → [0, 𝑇 ] are monotone functions with the property that 𝜙𝑖(0) = 0 and 𝜙𝑖(𝑇 ) = 𝑇  for 𝑖 = 1, 2.

For a field 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 and a stretching 𝜙 we define now the stretched field 𝑋𝜙(𝑡1, 𝑡2) = 𝑋(𝜙(𝑡1, 𝑡2)). By the chain rule, for 
all 𝑖 ∈ {1,… , 𝑑} we have that

d𝑖(𝑋𝜙) = (d𝑖𝑋)(𝜙)𝜙′
1 𝜙

′
2.

Integrating over a rectangle [𝐬, 𝐭] and applying change of variable, it is readily checked that 
𝐭
d𝑖𝑋𝜙 =

𝜙(𝐭)
d𝑖𝑋. (4.26)
∫𝐬 ∫𝜙(𝐬)

16 
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In particular, recalling that 𝐓 stands for the tuple (𝑇 , 𝑇 ) we have ∫ 𝐓
𝟎 d𝑖𝑋𝜙 = ∫ 𝐓

𝟎 d𝑖𝑋. Iterating (4.26) over the word 𝑤 = (𝑖1,… , 𝑖𝑛)
we further deduce that

𝐒𝐬𝐭 (𝑋𝜙) = 𝐒𝜙(𝐬),𝜙(𝐭)(𝑋),

and conclude that the 2D signature over [0, 𝑇 ]2 is invariant to stretching.

4.5.3. Equivariance to rotation
We will in this section explore how rotations of the field 𝑋 affect the 2D signature. To this end, we begin with a definition of 

rotating a field.

Definition 4.21.  A counterclockwise coordinate rotation by angle 𝜃 around the origin is defined by

𝜙𝜃(𝑡1, 𝑡2) = (𝑡1 cos 𝜃 − 𝑡2 sin 𝜃, 𝑡1 sin 𝜃 + 𝑡2 cos 𝜃).

Given a continuous field 𝑋 ∶ [−1, 1]2 → R𝑑 , its clockwise rotation3 by 𝜃 is defined by 

𝑋𝜃(𝑡1, 𝑡2) ∶= 𝑋(𝜙𝜃(𝑡1, 𝑡2)). (4.27)

Remark 4.22.  We will here consider fields defined on the standard square centered at zero, [−1, 1]2, since the rotation provided 
above is around (0, 0). This guarantees that when 𝜃 = 𝜋∕2 the field is still well defined over [−1, 1]2. In principle, one could investigate 
rotations of any degree, and it would be highly interesting to see how this affects the signature. However, going outside the 90 degree 
cases will require more in depth analysis of the image under rotation. It also yields more complicated structures, as illustrated by 
the rotation operator in Definition  4.21. For conciseness we have not investigated this further here, but hope to address this in a 
more applied research project.

In the next proposition, we will show a certain equivariance of the 𝗂𝖽-signature with respect to rotations by multiples of 𝜋∕2 of 
an image over [−1, 1]2.

Proposition 4.23.  Let 𝑋 be a field in 2([−1, 1]2;R𝑑 ) and let (𝑤, 𝜈) be a word in ̂𝑛 for 𝜈 ∈ 𝛴{1,…,𝑛}. Let 𝜌𝑛 ∈ 𝛴{1,…,𝑛} denote the 
reversal permutation, i.e. where 𝜌𝑛(𝑖) = 𝑛 − 𝑖 + 1 for 𝑖 = 1,… , 𝑛. Then the following three identities hold:
(i) The rotation by 𝜃 = 𝜋∕2, satisfies (recall the notation for the right-action on words (4.15))

⟨𝐒−𝟏𝟏(𝑋𝜋∕2), (𝑤, 𝜈)⟩ = (−1)𝑛⟨𝐒−𝟏𝟏(𝑋), (𝑤𝜈−1◦𝜌𝑛 , 𝜈
−1◦𝜌𝑛)⟩.

(ii) The rotation by 𝜃 = 𝜋, satisfies

⟨𝐒−𝟏𝟏(𝑋𝜋 ), (𝑤, 𝜈)⟩ = ⟨𝐒−𝟏𝟏(𝑋), (𝑤𝜌−1𝑛 ◦𝜈◦𝜌𝑛
, 𝜌−1𝑛 ◦𝜈◦𝜌𝑛)⟩.

(iii) The rotation by 𝜃 = 3𝜋∕2, satisfies

⟨𝐒−𝟏𝟏(𝑋3𝜋∕2), (𝑤, 𝜈)⟩ = (−1)𝑛⟨𝐒−𝟏𝟏(𝑋), (𝑤𝜌−1𝑛 ◦𝜈−1 , 𝜌
−1
𝑛 ◦𝜈−1)⟩.

Here, 𝑋𝜃 is defined in (4.27).

Proof.  It is readily checked from Definition  4.21 that a 90 degrees rotation is given by the coordinate change (𝑡1, 𝑡2) ↦ 𝑋𝜋∕2(𝑡1, 𝑡2) =
𝑋(−𝑡2, 𝑡1). By elementary calculus rules, in particular repeated change of variables, and using the fact that for 𝑎 < 𝑏 we have 
∫ 𝑎
𝑏 𝑔 = − ∫ 𝑏

𝑎 𝑔 for some integrable function 𝑔, one can check that the following relation holds for a sequence of integrable functions 
{𝑔𝑖}𝑛𝑖=1

∫𝛥𝑛𝑠,𝑡

𝑛
∏

𝑖=1
𝑔𝑖(−𝑟𝑖)d𝑟𝑖 = ∫𝛥𝑛−𝑡,−𝑠

𝑛
∏

𝑖=1
𝑔𝑖(𝑢𝑛−𝑖+1)d𝑢𝑖 (4.28)

3 Note that the counterclockwise rotation of the parameters induces a clockwise rotation of the field.
17 
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Furthermore, we use that d(𝑋𝜋∕2)𝑤𝑘
(𝑟1 ,𝑟2)

= −d𝑋𝑤𝑘
−𝑟2 ,𝑟1 , and find the following

⟨𝐒𝐬𝐭 (𝑋𝜋∕2), (𝑤, 𝜈)⟩ = ∫𝛥𝑛𝑠1 ,𝑡1
∫𝛥𝑛𝑠2 ,𝑡2 𝜈

−1

𝑛
∏

𝑘=1
d(𝑋𝜋∕2)𝑤𝑘

(𝑟𝑘1 ,𝑟
𝑘
2 )

= (−1)𝑛 ∫𝛥𝑛𝑠1 ,𝑡1
∫𝛥𝑛𝑠2 ,𝑡2

𝑛
∏

𝑘=1
d𝑋𝑤𝑘

(−𝑟𝜈(𝑘)2 ,𝑟𝑘1 )

= (−1)𝑛 ∫𝛥𝑛𝑠1 ,𝑡1
∫𝛥𝑛𝑠2 ,𝑡2

𝑛
∏

𝑘=1
d𝑋

𝑤𝜈−1(𝑘)

(−𝑟𝑘2 ,𝑟
𝜈−1(𝑘)
1 )

= (−1)𝑛 ∫𝛥𝑛𝑠1 ,𝑡1
∫𝛥𝑛−𝑡2 ,−𝑠2

𝑛
∏

𝑘=1
d𝑋

𝑤𝜈−1(𝑘)

(𝑢𝑛−𝑘+12 ,𝑟𝜈
−1(𝑘)

1 )

= (−1)𝑛 ∫𝛥𝑛𝑠1 ,𝑡1
∫𝛥𝑛−𝑡2 ,−𝑠2

𝑛
∏

𝓁=1
d𝑋

𝑤𝜈−1(𝑛−𝓁+1)

(𝑢𝓁2 ,𝑟
𝜈−1(𝑛−𝓁+1)
1 )

= (−1)𝑛⟨𝐒(−𝑡2 ,𝑠1),(−𝑠2 ,𝑡1)(𝑋), (𝑤𝜈−1◦𝜌𝑛 , 𝜈
−1◦𝜌𝑛)⟩.

Note that, the number −𝑠2 is now inserted in the spot where 𝑡1 usually is, and similarly for the rest of the variables, reflecting the 
rotation of the domain. And in particular, choosing [𝐬, 𝐭] = [−1, 1]2 we see that

⟨𝐒−𝟏𝟏(𝑋𝜋∕2), (𝑤, 𝜈)⟩ = (−1)𝑛⟨𝐒−𝟏𝟏(𝑋), (𝑤𝜈−1◦𝜌𝑛 , 𝜈
−1◦𝜌𝑛)⟩.

This proves item (i).
Now, the items (ii) and (iii) follow from iterated application of (i) and noting that the following two relations hold

(𝜈−1◦𝜌𝑛)−1◦𝜌𝑛 = 𝜌−1𝑛 ◦𝜈◦𝜌𝑛, (𝜌−1𝑛 ◦𝜈◦𝜌𝑛)−1◦𝜌𝑛 = 𝜌−1𝑛 ◦𝜈−1.

where we have used that 𝜌𝑛 = 𝜌−1𝑛  for the second relation. □

4.5.4. On homotopy invariance
As we see in Section 4.7, there are some parallels to the iterated integrals defined in [13]. The latter are shown to be homotopy 

invariant, which is not the case for the integrals defined here. 

Example 4.24.  Consider the map
𝐻𝑡(𝑟1, 𝑟2) = (𝑡 sin(𝜋𝑟2)𝑟1, 𝑡 sin(𝜋𝑟1)𝑟2).

It is a homotopy between the zero map and the map
𝑋𝑟1 ,𝑟2 ∶= (sin(𝜋𝑟2)𝑟1, sin(𝜋𝑟1)𝑟2),

which preserves the boundary on [0, 1]2. Now, the integrals of the zero map are all zero. If the signature were homotopy invariant, we would 
in particular have 

⟨𝐒𝟎𝟏(𝑋), ((1, 2), 𝗂𝖽)⟩ = 0. (4.29)

In order to compute the left hand side of (4.29), observe from our Notation  3.18 that
d1𝑋𝑟1 ,𝑟2 = 𝜋 cos(𝜋𝑟2)d𝑟1d𝑟2
d2𝑋𝑟1 ,𝑟2 = 𝜋 cos(𝜋𝑟1)d𝑟1d𝑟2.

Therefore, relation (4.8) and some elementary computations show that

⟨𝐒𝟎𝟏(𝑋), ((1, 2), 𝗂𝖽)⟩ = 𝜋 ∫

1

0
𝑑𝑠1 ∫

1

0
𝑑𝑠2 sin(𝜋𝑠2)𝑠1 cos(𝜋𝑠1)

= 𝜋

(

∫

1

0
𝑑𝑠1 𝑠1 cos(𝜋𝑠1)

)(

∫

1

0
𝑑𝑠2 sin(𝜋𝑠2)

)

= 𝜋
(

− 2
𝜋2

)

( 2
𝜋

)

= − 4
𝜋2

≠ 0.

Therefore relation (4.29) is not fulfilled, which concludes the lack of homotopy invariance.
Example  4.24 points to a fundamental difference between Horozov’s approach in [13] and ours. Indeed, the integrals of Horozov 

differ from ours in particular in the form of the differentials being integrated: ours are second-order, his are first order. Even when 
using first order differentials, the integrals are, in general, not homotopy invariant. That they are in [13] stems from the fact that 
the ambient dimension there (our 𝑑) is equal to 2, and in this case all homotopies are thin homotopies.
18 
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4.6. Continuity of the 2D signature

Continuity concerning the signal is an essential part of rough paths theory as well as classical analysis (see e.g. [4, Prop. 2.8]). 
We derive this type of continuity property here for the 2D signature of sufficiently smooth fields.

Proposition 4.25.  Let 𝑋, 𝑋̃ be two fields in 2([0, 𝑇 ]2;R𝑑 ). Consider the corresponding 2D signatures, 𝐒(𝑋) and 𝐒(𝑋̃), given in Definition 
4.10. Let also (𝑤, 𝜏) ∈ ̂𝑛, where ̂𝑛 is given as in Definition  4.9. Then the following estimate holds for any (𝐬, 𝐭) ∈ ´2

[0,𝑇 ]2
: 

|⟨𝐒𝐬𝐭 (𝑋) − 𝐒𝐬𝐭 (𝑋̃), (𝑤, 𝜏)⟩| ≤ 𝑇 2𝑛

(𝑛!)2

𝑛
∑

𝑘=1

(𝑘−1
∏

𝑖=1
‖𝑋𝑤𝑖

‖2

𝑛
∏

𝑗=𝑘+1
‖𝑋̃𝑤𝑗

‖2

)

‖𝑋𝑤𝑘 − 𝑋̃𝑤𝑘
‖2 . (4.30)

In particular, the mapping 𝑋 ↦ 𝐒𝐬𝐭 (𝑋) is locally Lipschitz.

Proof.  Observe that for two sequences of numbers, {𝑎𝑖}𝑛𝑖=1 and {𝑏𝑖}𝑛𝑖=1, we have that 
𝑛
∏

𝑖=1
𝑎𝑖 −

𝑛
∏

𝑖=1
𝑏𝑖 =

𝑛−1
∏

𝑖=1
𝑎𝑖(𝑎𝑛 − 𝑏𝑛) +

(𝑛−1
∏

𝑖=1
𝑎𝑖 −

𝑛−1
∏

𝑖=1
𝑏𝑖

)

𝑏𝑛. (4.31)

Now consider a generic word (𝑤, 𝜏) ∈ ̂𝑛 and (𝐫1,… , 𝐫𝑛) ∈ ´𝑛
[𝐬,𝐭]. Recalling Notation  3.16 for partial derivatives and invoking 

relation (4.31), we have
|

|

|

|

|

𝑛
∏

𝑖=1
𝜕12𝑋

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

−
𝑛
∏

𝑖=1
𝜕12𝑋̃

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

|

|

|

|

|

≤
𝑛
∑

𝑘=1

|

|

|

|

|

|

𝑘−1
∏

𝑖=1
𝜕12𝑋

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

𝑛
∏

𝑗=𝑘+1
𝜕12𝑋̃

𝑤𝑗

𝑟𝑗1 ,𝑟
𝜏(𝑗)
2

|

|

|

|

|

|

|

|

|

|

|

𝜕12𝑋
𝑤𝑘

𝑟𝑘1 ,𝑟
𝜏(𝑘)
2

− 𝜕12𝑋̃
𝑤𝑘

𝑟𝑘1 ,𝑟
𝜏(𝑘)
2

|

|

|

|

|

.

This leads us to conclude that
|

|

|

|

|

𝑛
∏

𝑖=1
𝜕12𝑋

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

−
𝑛
∏

𝑖=1
𝜕12𝑋̃

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

|

|

|

|

|

≤
𝑛
∑

𝑘=1

𝑘−1
∏

𝑖=1
‖𝑋𝑤𝑖

‖2

𝑛
∏

𝑗=𝑘+1
‖𝑋̃𝑤𝑖

‖2‖𝑋
𝑤𝑘 − 𝑋̃𝑤𝑘

‖2 ,

Inserting this into the signature definition, and using that

∫∆𝑛
[𝟎,𝐓]

1d𝐫1 ⋯ d𝐫𝑛 = 𝑇 2𝑛
(𝑛!)2

,

we obtain

|⟨𝐒𝐬𝐭 (𝑋) − 𝐒𝐬𝐭 (𝑋̃), (𝑤, 𝜏)⟩| ≤∫∆𝑛
[𝟎,𝐓]

|

|

|

|

|

𝑛
∏

𝑖=1
𝜕12𝑋

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

−
𝑛
∏

𝑖=1
𝜕12𝑋̃

𝑤𝑖

𝑟𝑖1 ,𝑟
𝜏(𝑖)
2

|

|

|

|

|

d𝐫1 ⋯ d𝐫𝑛

≤ 𝑇 2𝑛

(𝑛!)2

𝑛
∑

𝑘=1

𝑘−1
∏

𝑖=1
‖𝑋𝑤𝑖

‖2

𝑛
∏

𝑗=𝑘+1
‖𝑋̃𝑤𝑗

‖2‖𝑋
𝑤𝑘 − 𝑋̃𝑤𝑘

‖2 ,

which is our claim (4.30). This finishes the proof. □

4.7. Products of iterated integrals – 2D shuffle

Our interpretation of the shuffle property is that a product of two elements in the signature should be expressed as a linear 
combination of elements in the signature. As already mentioned in Remark  4.14, one of the main reasons for introducing the notion 
of the full 2D signature is related to the shuffle property. We will now state this relation in full generality. Notice that a similar 
result appears in [32, Proposition 1.3] without proof. We include a complete argument here for the sake of clarity. We note that 
the two-dimensional shuffle algebra has also recently been investigated in [33], in particular in its relation to the sums signature 
of [16].

Before stating our main result on shuffle products, let us rephrase the shuffle notation in (3.1) and (𝜎 ⋆ 𝜏)◦𝜌−1 in (3.4) directly 
in terms of the permutations 𝜎, 𝜏. This will shorten some of our notation in the computations throughout the section.

Notation 4.26.  Recall Notation  3.2 about permutations. Then consider 
𝜎 ∈ 𝛴{1,…,𝑛}, and 𝜏 ∈ 𝛴{𝑛+1,…,𝑛+𝑘} (4.32)

We call Sh(𝜎, 𝜏) the following set of permutations of {1,… , 𝑛 + 𝑘}

Sh(𝜎, 𝜏) ∶= {𝜌 ∈ 𝛴{1,…,𝑛+𝑘} ∣ 𝜌 does not change the order of 𝜏 and 𝜎}.
Note that this can equivalently be defined as

Sh(𝜎, 𝜏) ∶= {(𝜎 ∗ 𝜏)◦𝜌−1 ∣ 𝜌 ∈ Sh(𝑛, 𝑘)},
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where we have used that any 𝜌 ∈ Sh(𝜎, 𝜏) can be written as 𝜌 = (𝜎 ∗ 𝜏)◦𝜌̂−1 for a given element 𝜌̂ ∈ Sh(𝑛, 𝑘).

Notation 4.27.  Consider two words 𝑤 = (𝑖1,… , 𝑖𝑛) and 𝑤′ = (𝑗1,… , 𝑗𝑛′ ) in  , where  was defined in Definition  1.1. The 
concatenation of 𝑤 and 𝑤′ is denoted by 𝑤𝑤′ ∈  and [𝑤𝑤′]𝑗 refers to the 𝑗th letter in 𝑤𝑤′.

Remark 4.28.  Thanks to Notation  4.26 one can rephrase Proposition  3.14 in a slightly more compact way. That is, for 𝜎 ∈ 𝛴{1,…,𝑛}
and 𝜏 ∈ 𝛴{1,…,𝑛′} we have 

∫𝛥𝑛𝑠,𝑡𝜎
⋆∫𝛥𝑛′𝑠,𝑡

=
∑

𝜙∈Sh(𝜎,𝜏)
∫𝛥𝑛+𝑛′𝑠,𝑡 𝜙

. (4.33)

We are now ready to state the shuffle property for the full signature 𝐒.

Proposition 4.29 (Shuffle Relation). Let 𝑋 be a field in 2([0, 𝑇 ]2;R𝑑 ) and 𝐒(𝑋) be its 2D signature (Definition  4.10). We consider two 
words, (𝑤, 𝜈) ∈ ̂𝑛 and (𝑤′, 𝜈′) ∈ ̂𝑛′  (Definition  4.9). Then for (𝐬, 𝐭) ∈ ´2

[0,𝑇 ]2
 we have 

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩⟨𝐒𝐬𝐭 (𝑋), (𝑤′, 𝜈′)⟩ =
∑

𝜏∈Sh(𝗂𝖽𝑛 ,𝗂𝖽𝑛′ )

∑

𝜆∈Sh(𝜈,𝜈′)
⟨𝐒𝐬𝐭 (𝑋), ([𝑤𝑤′]𝜏 , 𝜆◦𝜏)⟩, (4.34)

where we recall Notation  4.27 for the concatenation 𝑤𝑤′ of words. In (4.34), we also recall that for a word 𝑤 with |𝑤| = 𝑛 and a 
permutation 𝜏 ∈ 𝛴{1,…,𝑛} we set 𝑤𝜏 = (𝑤𝜏(1),… , 𝑤𝜏(𝑛)).

Proof.  For two generic words (𝑤, 𝜈) ∈ ̂𝑛 and (𝑤′, 𝜈′) ∈ ̂𝑛′ , let us denote by 𝐬𝐭 the quantity of interest, i.e.
𝐬𝐭 ∶= ⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩⟨𝐒𝐬𝐭 (𝑋), (𝑤′, 𝜈′)⟩.

Owing to relation (4.17) one can write

𝐬𝐭 =

(

∫𝛥𝑛𝑠1 ,𝑡1
⋆′

∫𝛥𝑛𝑠2 ,𝑡2 𝜈
−1

)

⋆

(

∫𝛥𝑛′𝑠1 ,𝑡1
⋆′

∫𝛥𝑛′𝑠2 ,𝑡2 𝜈
′−1

) 𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝐫

𝑛′
∏

𝑗=1
d𝑋

𝑤′
𝑗

𝐫𝑗 ,

which, by Lemma  3.9, is equal to

𝐬𝐭 =

(

∫𝛥𝑛𝑠1 ,𝑡1
⋆∫𝛥𝑛′𝑠1 ,𝑡1

)

⋆′

(

∫𝛥𝑛𝑠2 ,𝑡2 𝜈
−1

⋆∫𝛥𝑛′𝑠2 ,𝑡2 𝜈
′−1

) 𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝐫

𝑛′
∏

𝑗=1
d𝑋

𝑤′
𝑗

𝐫𝑗

We now apply relation (4.33) separately for the integrals over [𝑠1, 𝑡1] and [𝑠2, 𝑡2]. This yields 
𝐬𝐭 =

∑

𝜌∈Sh(𝗂𝖽𝑛 ,𝗂𝖽𝑛′ )

∑

𝜎∈Sh(𝜈−1 ,𝜈′−1)
𝜌,𝜎𝐬𝐭 , (4.35)

where we define 

𝜌,𝜎𝐬𝐭 = ∫𝛥𝑛+𝑛′𝑠1 ,𝑡1
𝜌×𝛥𝑛+𝑛′𝑠2 ,𝑡2

𝜎

𝑛+𝑛′
∏

𝑖=1
d𝑋𝑤̂𝑖

𝐫𝑖 , (4.36)

and we have set 𝗂𝖽𝑛 = 𝗂𝖽{1,…,𝑛} and 𝑤̂ = 𝑤𝑤′. To express every element in (4.35) as an element of the 2D signature like (4.17), we 
now replace the simplexes 𝛥𝑛+𝑛′

𝑠1 ,𝑡1
𝜌 by 𝛥𝑛+𝑛′

𝑠1 ,𝑡1
 in the definition (4.36) of 𝜌,𝜎𝐬𝐭 . To this aim, we simply declare that 𝑟𝑘1 = 𝑟𝜌𝑘1  and perform 

the corresponding change in the multi-index 𝑤̂. Namely, we define a new word 𝑤𝜌 by setting
𝑤̂𝜌−1 = (𝑤̂𝜌−11

,… , 𝑤̂𝜌−1
𝑛+𝑛′

).

This simple change of variables enables us to write 

𝜌,𝜎𝐬𝐭 = ∫𝛥𝑛+𝑛′𝑠1 ,𝑡1
×𝛥𝑛+𝑛′𝑠2 ,𝑡2

𝜎

𝑛+𝑛′
∏

𝑖=1
d𝑋𝑤̂𝑖

𝑟𝑖1 ,𝑟
𝜌−1𝑖
2

= ∫𝛥𝑛+𝑛′𝑠1 ,𝑡1
×𝛥𝑛+𝑛′𝑠2 ,𝑡2

𝜌◦𝜎

𝑛+𝑛′
∏

𝑖=1
d𝑋

𝑤̂𝜌−1(𝑖)

𝑟𝑖1 ,𝑟
𝑖
2

. (4.37)

And so we can rewrite (4.37) resorting to the representation in (4.17), in order to obtain 
𝜌,𝜎𝐬𝐭 = ⟨𝐒𝐬𝐭 (𝑋), (𝑤̂𝜌−1 , 𝜎

−1◦𝜌−1)⟩. (4.38)

Gathering (4.35) and (4.38), we have thus obtained
𝐬𝐭 =

∑

𝜌∈Sh(𝗂𝖽𝑛 ,𝗂𝖽𝑛′ )

∑

𝜎∈Sh(𝜈−1 ,𝜈′−1)
⟨𝐒𝐬𝐭 (𝑋), (𝑤̂𝜌−1 , 𝜎

−1◦𝜌−1)⟩.

Next, notice that 𝜎 ∈ Sh(𝜈−1, 𝜈′−1) if and only if 𝜎−1 ∈ Sh(𝜈, 𝜈′). Setting 𝜆 = 𝜎−1 and similarly 𝜏 = 𝜌−1 above we end up with
𝐬𝐭 =

∑

𝜏∈Sh(𝗂𝖽𝑛 ,𝗂𝖽𝑛′ )

∑

𝜆∈Sh(𝜈,𝜈′)
⟨𝐒𝐬𝐭 (𝑋), (𝑤̂𝜏 , 𝜆◦𝜏)⟩,

which is exactly the relation in (4.34), and so concludes our proof. □
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As an application of the shuffle relation in Proposition  4.29, we will now derive a formula for products of rectangular increments. 
The proposition below should be seen as an integration by parts formula for 2D-increments.

Proposition 4.30.  Under the same conditions and using the same notation as in Proposition  4.29, recall that the rectangular increments 
□𝑋 are given in Definition  3.17. Then for 𝑤 = (𝑖1,… , 𝑖𝑛) ∈ 𝑛 and (𝐬, 𝐭) ∈ ´2

[0,𝑇 ]2
 we have 

𝑛
∏

𝑘=1
□𝐬𝐭𝑋

𝑤𝑘 =
∑

𝜈,𝜈′∈𝛴{1,…,𝑛}

⟨𝐒𝐬𝐭 (𝑋), (𝑤𝜈 , 𝜈
′)⟩. (4.39)

Proof.  The relation is obvious for 𝑛 = 1. We now proceed by induction. Namely, assume relation (4.39) holds true for any 𝑛 ≥ 1. 
We consider a word 𝑤 = (𝑤̂, 𝑖𝑛+1) in 𝑛+1, where 𝑤̂ = (𝑖1,… , 𝑖𝑛) ∈ 𝑛 and 𝑖𝑛+1 ∈ {1,… , 𝑑}. Denote by 𝑈𝑛+1

𝐬𝐭  the quantity of interest 
for the induction procedure, that is, 𝑈𝑛+1

𝐬𝐭 =
∏𝑛+1

𝑘=1 □𝐬𝐭𝑋𝑖𝑘 . Then we trivially have that

𝑈𝑛+1
𝐬𝐭 =

( 𝑛
∏

𝑘=1
□𝐬𝐭𝑋

𝑖𝑘

)

□𝐬𝐭𝑋
𝑖𝑛+1 .

Owing to our induction assumption and the fact that □𝐬𝐭𝑋𝑖𝑘  is an element of the signature, this yields 
𝑈𝑛+1
𝐬𝐭 =

∑

𝜈,𝜈′∈𝛴{1,…,𝑛}

⟨𝐒𝐬𝐭 (𝑋), (𝑤̂𝜈 , 𝜈
′)⟩⟨𝐒𝐬𝐭 (𝑋), (𝑖𝑛+1, 𝗂𝖽1)⟩. (4.40)

Observe that instead of using (4.34) to express every term in (4.40), it is slightly more convenient to invoke (4.35). We get

⟨𝐒𝐬𝐭 (𝑋), (𝑤̂𝜈 , 𝜈
′)⟩⟨𝐒𝐬𝐭 (𝑋), (𝑖𝑛+1, 𝗂𝖽1)⟩ =

∑

𝜌∈Sh(𝜈−1 ,𝗂𝖽1)

∑

𝜎∈Sh(𝜈′−1 ,𝗂𝖽1)
∫𝛥𝑛+1𝑠1 ,𝑡1

𝜌×𝛥𝑛+1𝑠2 ,𝑡2
𝜎

𝑛+1
∏

𝑘=1
d𝑋𝑖𝑘

𝐫𝑘
.

Plugging this identity into (4.40) we obtain 

𝑈𝑛+1
𝐬𝐭 =

∑

𝜈,𝜈′∈𝛴{1,…,𝑛}

∑

𝜌∈Sh(𝜈−1 ,𝗂𝖽1)

∑

𝜎∈Sh(𝜈′−1 ,𝗂𝖽1)
∫𝛥𝑛+1𝑠1 ,𝑡1

𝜌×𝛥𝑛+1𝑠2 ,𝑡2
𝜎

𝑛+1
∏

𝑘=1
d𝑋𝑖𝑘

𝐫𝑘
. (4.41)

In addition, it is easily seen that
⋃

𝜈′∈𝛴{1,…,𝑛}

Sh(𝜈′−1, 𝗂𝖽1) = 𝛴{1,…,𝑛+1}.

Therefore, one can recast (4.41) as 

𝑈𝑛+1
𝐬𝐭 =

∑

𝜈∈𝛴{1,…,𝑛}

∑

𝜌∈Sh(𝜈−1 ,𝗂𝖽1)

∑

𝜏∈𝛴{1,…,𝑛+1}
∫𝛥𝑛+1𝑠1 ,𝑡1

𝜌×𝛥𝑛+1𝑠2 ,𝑡2
𝜏

𝑛+1
∏

𝑘=1
d𝑋𝑖𝑘

𝐫𝑘
. (4.42)

We now proceed as in the proof of Proposition  4.29. Namely, we want to replace the integral over 𝛥𝑛+1
𝑠1 ,𝑡1

𝜌 by an integral over 𝛥𝑛+1
𝑠1 ,𝑡1

. 
To this end, we perform the same change of variable, 𝑟𝑘1 = 𝑟𝜌𝑘1 , which leads to a corresponding permutation 𝜇 of the word (𝑤̂, 𝑖𝑛+1). 
We let the reader then check that (4.42) can then be read as

𝑈𝑛+1
𝐬𝐭 =

∑

𝜇,𝜈∈𝛴{1,…,𝑛+1}
∫𝛥𝑛+1𝑠1 ,𝑡1

×𝛥𝑛+1𝑠2 ,𝑡2
𝜈

𝑛+1
∏

𝑘=1
d𝑋

𝑤(𝜇−1◦𝜈)(𝑘)
𝐫𝑘

=
∑

𝜈,𝜈′∈𝛴{1,…,𝑛+1}
∫𝛥𝑛+1𝑠1 ,𝑡1

×𝛥𝑛+1𝑠2 ,𝑡2
𝜈′

𝑛+1
∏

𝑘=1
d𝑋

𝑤𝜈(𝑘)
𝐫𝑘

.

This proves the induction step for (4.39), which allows us to conclude. □

5. The symmetrized signature

Up to now, we have introduced two types of 2D signatures for a 2-field 𝑋, namely 𝐒𝗂𝖽(𝑋) and 𝐒(𝑋). The 2D signature 𝐒𝗂𝖽(𝑋)
satisfies a Chen-type relation but fails to satisfy the shuffle relation. For 𝐒(𝑋) the situation is the opposite. In the current section, we 
introduce another notion of 2D signature which enjoys both Chen and shuffle relations, at the price of integrating over the whole 
rectangle [𝑠2, 𝑡2]𝑘 in the second variable (in contrast to the simplex 𝛥𝑘

𝑠2 ,𝑡2
). Let us start by defining this new type of 2D signature.

Recall that for 𝑛 ≥ 0 we defined the set 𝑛 of words of length 𝑛 in 1.1 and the set ̂𝑛 of extended words in Definition  4.9. 
Furthermore, the 2D signature 𝐒(𝑋) is introduced in Definition  4.10.

Definition 5.1.  Let 𝑋 be a field in 2([0, 𝑇 ]2;R𝑑 ). For 𝑤 ∈ 𝑛 and (𝐬, 𝐭) ∈ ´2
[0,𝑇 ]2

 we set 

⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤⟩ ∶=
∑

𝜈∈𝛴{1,…,𝑛}

⟨𝐒𝐬𝐭 (𝑋), (𝑤, 𝜈)⟩. (5.1)

Remark 5.2.  Notice that for (𝐬, 𝐭) ∈ ´2
[0,𝑇 ]2

 one can also see 𝐒Sym𝐬𝐭 (𝑋) as an element of  ((R𝑑 )). This kind of representation follows 
closely the lines of Section 2.2.
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Remark 5.3.  Combining (5.1) with the representation (4.17) of 𝐒(𝑋) and Lemma  3.15, we find for (𝐬, 𝐭) ∈ ´2
[0,𝑇 ]2

⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤⟩ =
∑

𝜈∈𝛴{1,…,𝑛}
∫𝛥𝑛𝑠1 ,𝑡1

⋆′
∫𝛥𝑛𝑠2 ,𝑡2 𝜈

−1

𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝐫𝑖 = ∫𝛥𝑛𝑠1 ,𝑡1
⋆′

∫[𝑠2 ,𝑡2]𝑛

𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝐫𝑖 . (5.2)

This formula will be useful for future computations.

5.1. Chen’s relation

As mentioned above, the symmetrized 2D signature enjoys important algebraic properties. We now prove partial versions of 
Chen’s relation in this context.

Notation 5.4.  For functions or increments defined on [0, 𝑇 ]2 we will denote by 𝛿1 the delta operator 𝛿 introduced in Remark  3.13, 
restricted to act on the 1-variable only, e.g.

𝛿1𝑢1𝑓(𝑠1 ,𝑠2),(𝑡1 ,𝑡2) = 𝑓(𝑠1 ,𝑠2),(𝑡1 ,𝑡2) − 𝑓(𝑠1 ,𝑠2),(𝑢1 ,𝑡2) − 𝑓(𝑢1 ,𝑠2),(𝑡1 ,𝑡2).

Similarly, we denote by 𝛿2 the 𝛿 operator restricted to the 2-variable.

Remark 5.5.  It is readily checked that we can compose the two delta functions as 𝛿1◦𝛿2, and that the composition is commutative. 
Furthermore, it is clear that, with the definition from (3.12) in mind, for every field 𝑋 in 2([0, 𝑇 ]2) we have

𝛿1𝑡1𝛿
2
𝑡2
𝑋𝐬 = □𝐬𝐭𝑋.

Proposition 5.6.  Let 𝑋 ∈ 2([0, 𝑇 ]2;R𝑑 ) and consider 𝐒Sym(𝑋) defined by (5.1). In addition, pick a word 𝑤 ∈ 𝑛 together with 
(𝐬, 𝐭) ∈ ´2

[0,𝑡]2
 and 𝑠1 ≤ 𝑢1 ≤ 𝑡1. Then we have 

⟨𝛿1𝑢1𝐒
Sym
𝐬𝐭 (𝑋), 𝑤⟩ =

𝑛−1
∑

𝑘=1
⟨𝐒Sym𝐬(𝑢1 ,𝑡2)

(𝑋), (𝑤1 ⋯𝑤𝑘)⟩⟨𝐒
Sym
(𝑢1 ,𝑠2)𝐭

(𝑋), (𝑤𝑘+1 ⋯𝑤𝑛)⟩. (5.3)

Proof.  Start from relation (5.2) and apply the 𝛿1 operation from Notation  5.4 on both sides of the identity. Thanks to (3.13), we 
get

⟨𝛿1𝑢1𝐒
Sym
𝐬𝐭 (𝑋), 𝑤⟩ =

𝑛−1
∑

𝑘=1

(

∫𝛥𝑘𝑠1 ,𝑢1
⋆∫𝛥𝑛−𝑘𝑢1 ,𝑡1

)

⋆′
∫[𝑠2 ,𝑡2]𝑛

𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝐫𝑖 .

Now we decompose [𝑠2, 𝑡2]𝑛 = [𝑠2, 𝑡2]𝑘 × [𝑠2, 𝑡2]𝑛−𝑘 and apply Fubini’s theorem. We get

⟨𝛿1𝑢1𝐒
Sym
𝐬𝐭 (𝑋), 𝑤⟩ =

𝑛−1
∑

𝑘=1

(

∫𝛥𝑘𝑠1 ,𝑢1
⋆′

∫[𝑠2 ,𝑡2]𝑘

)

⋆

(

∫𝛥𝑛−𝑘𝑢1 ,𝑡1

⋆′
∫[𝑠2 ,𝑡2]𝑛−𝑘

) 𝑛
∏

𝑖=1
d𝑋𝑤𝑖

𝐫𝑖

=
𝑛−1
∑

𝑘=1
⟨𝐒Sym𝐬(𝑢1 ,𝑡2)

(𝑋), (𝑤1 ⋯𝑤𝑘)⟩⟨𝐒
Sym
(𝑢1 ,𝑠2)𝐭

(𝑋), (𝑤𝑘+1...𝑤𝑛)⟩ ,

where the last identity is a simple consequence of (5.1). The proof of (5.3) is now complete. □

5.2. Shuffle relations for the symmetrized 2D signature

We have seen in Proposition  4.29 that the 2D signature 𝐒(𝑋) satisfies a shuffle-type relation. The same is true for the symmetrized 
2D signature. 

Proposition 5.7.  Under the same conditions as in Proposition  5.6, let 𝑤 ∈ 𝑛 and 𝑤′ ∈ 𝑛′  for 𝑛, 𝑛′ ≥ 1. Then for all (𝐬, 𝐭) ∈ ´2
[0,𝑇 ]2

we have 
⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤⟩⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤′

⟩ =
∑

𝜎∈Sh(𝑛,𝑛′)
⟨𝐒Sym𝐬𝐭 (𝑋), [𝑤𝑤′]𝜎⟩ = ⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤 ⊔⊔𝑤′

⟩ , (5.4)

where 𝑤 ⊔⊔𝑤′ is inductively defined in (2.7).

Proof.  For generic words 𝑤 ∈ 𝑛 and 𝑤′ ∈ 𝑛′ , we use (5.2) in order to write

⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤⟩⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤′
⟩ =

(

∫𝛥𝑛
⋆′

∫[𝑠 ,𝑡 ]𝑛

𝑛
∏

d𝑋𝑤𝑖
𝐫𝑖

)

⎛

⎜

⎜∫𝛥𝑛′
⋆′

∫[𝑠 ,𝑡 ]𝑛′

𝑛′
∏

d𝑋
𝑤′
𝑖

𝐫𝑖

⎞

⎟

⎟

.

𝑠1 ,𝑡1 2 2 𝑖=1

⎝
𝑠1 ,𝑡1 2 2 𝑖=1

⎠
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By Lemma  3.9

⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤⟩⟨𝐒Sym𝐬𝐭 (𝑋), 𝑤′
⟩ =

⎛

⎜

⎜

⎝

(

∫𝛥𝑛𝑠1 ,𝑡1
⋆∫𝛥𝑛′𝑠1 ,𝑡1

)

⋆′
∫[𝑠2 ,𝑡2]𝑛+𝑛′

𝑛+𝑛′
∏

𝑖=1
d𝑋[𝑤𝑤′]𝑖

𝐫𝑖

⎞

⎟

⎟

⎠

(5.5)

Now apply Proposition  3.14 to get the claimed result. □

6. The signature determines the field

In this section we show that the 2D signature of a (time-enhanced) field determines the field. Our proof is based on the Stone–
Weierstrass theorem, and relies upon lifting the path to an extended path where the two ‘time’ variables are included. A similar 
trick is typically used in the classical universal approximation theorem for path signatures. We note that after establishing the 
‘‘point-separating’’ property of the signature, together with the shuffle relation derived in Proposition  4.29, one can deduce that 
the linear functionals on the signature are dense in an appropriate space of continuous functionals on fields (see for example [14, 
Section 10]). For notational sake, the analysis in this section will be restricted to fields defined on [0, 1]2. the trivial extension to 
[0, 𝑇 ]2 is left to the reader.

We begin this section with a technical lemma that will be central in subsequent proofs. 

Lemma 6.1.  Given 𝛿 ∈ (0, 1), 𝜀 > 0 there exists a univariate polynomial 𝛹 such that
𝛹 (𝑦) ∈ [0, 1], for 𝑦 ∈ [0, 1],

|𝛹 (𝑦)| < 𝜀, for 𝑦 ∈ [0, 𝛿∕2],

|𝛹 (𝑦) − 1| < 𝜀, for 𝑦 ∈ [𝛿, 1].

Proof.  The proof idea is from [34]. We recall Bernoulli’s inequality,
(1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥, for 𝑥 ≥ −1, 𝑛 ∈ N.

Pick 𝑘 ∈ N≥1 such that the following relation holds
1 < 𝑘𝛿 < 2.

Given 𝑚 ∈ N≥1 define the function
𝛷𝑚(𝑦) ∶= (1 − 𝑦𝑚)𝑘

𝑚
.

Then we see that
𝛷𝑚(𝑦) ∈ [0, 1], for all 𝑦 ∈ [0, 1].

Furthermore, for any 𝑦 ∈ [0, 𝛿2 ], using Bernoulli’s inequality we see that

𝛷𝑚(𝑦) ≥ 1 − 𝑘𝑚𝑦𝑚 > 1 −
(𝑘𝛿

2

)𝑚
.

We observe that since 𝑘𝛿∕2 < 1, this tends to 1 (independent of 𝑦 ∈ [0, 𝛿2 ]) as 𝑚 → ∞. Now for the case 𝑦 ∈ [𝛿, 1], it is readily checked 
that

𝛷𝑚(𝑦) =
1

𝑘𝑚𝑦𝑚
(1 − 𝑦𝑚)𝑘

𝑚
𝑘𝑚𝑦𝑚

≤ 1
𝑘𝑚𝑦𝑚

(1 − 𝑦𝑚)𝑘
𝑚
(1 + 𝑘𝑚𝑦𝑚)

≤ 1
𝑘𝑚𝑦𝑚

(1 − 𝑦2𝑚)𝑘
𝑚 ≤ 1

𝑘𝑚𝑦𝑚
≤ 1

(𝑘𝛿)𝑚
.

Here we used Bernoulli’s inequality for the second inequality. We observe that since 𝑘𝛿 > 1, this tends to 0 (uniformly in 𝑦 ∈ [𝛿, 1]) 
as 𝑚 → ∞. Combining the two cases, we see that we can choose 𝑚 large enough such that 𝛷 ∶= 𝛷𝑚 satisfies,

𝛷(𝑦) ∈ [0, 1] for 𝑦 ∈ [0, 1] (6.1)

𝛷(𝑦) ∈ [1 − 𝜖, 1] for 𝑦 ∈ [0, 𝛿
2
] (6.2)

𝛷(𝑦) ∈ [0, 𝜖] for 𝑦 ∈ [𝛿, 1]. (6.3)

Then 𝛹 ∶= 1 −𝛷 satisfies the required bounds. □

The next step is to consider a family of functions that is dense in the space of continuous functions on [0, 1]2 with zero boundary. 
To this end, let  denote the R-algebra spanned by the functions, 

(𝑠 , 𝑠 ) ↦ 𝑠2 𝑚+𝑛𝑠2𝑛+𝑚, 𝑚, 𝑛 ≥ 0. (6.4)
1 2 1 2
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With this definition at hand, we prove another technical lemma that will allow us to prove that  is a dense subset of 𝐶([0, 𝑇 ]2;R)
with zero boundary.

Lemma 6.2.  For every 𝑏 > 0 small enough, there exists a 𝑏′ ∈ (0, 𝑏) such that for all 𝑎 > 0 there is a function 𝑔𝑎,𝑏′ ,𝑏 ∈  such that

‖𝑔‖ ≤ 1, (6.5)

|𝑔(𝑠1, 𝑠2)| < 𝑎, for 𝑠1 ∈ [0, 𝑏′] or 𝑠2 ∈ [0, 𝑏′], (6.6)

|𝑔(𝑠1, 𝑠2) − 1| < 𝑎, for 𝑠1, 𝑠2 ∈ [𝑏, 1], (6.7)

where ‖𝑔‖ stands for the sup norm in [0, 1]2.

Proof.  Consider the function
𝑃 (𝑠1, 𝑠2) ∶= 𝑠1𝑠2 ∈  .

Then 𝑃 (𝑠1, 𝑠2) ∈ [0, 1] for 𝑠1, 𝑠2 ∈ [0, 1]. For the given 𝑏, let 𝛿 be the number defined by
𝛿 ∶= inf

𝑠1 ,𝑠2∈[𝑏,1]
𝑃 (𝑠1, 𝑠2),

and observe that 𝛿 = 𝑏2. Now pick 𝑏′ < 𝑏 such that the following relation holds
sup

𝑠1 ,𝑠2∈([0,1]×[0,𝑏′])∪([0,𝑏′]×[0,1])
𝑃 (𝑠1, 𝑠2) < 𝛿∕2.

Next we consider a polynomial 𝛷 satisfying the requirements of Lemma  6.1, for 𝜀 = 𝑎. We let 𝑔 ∶= 𝛷◦𝑃 . It is readily checked from 
the definition of the space proposed in (6.4) that 𝑔 ∈  . Therefore, relations (6.1)–(6.3) translate into

|𝑔(𝑠1, 𝑠2)| ∈ [0, 1], ∀ (𝑠1, 𝑠2) ∈ [0, 1]2

|𝑔(𝑠1, 𝑠2)| ≤ 𝑎, ∀ (𝑠1, 𝑠2) ∈ ([0, 1] × [0, 𝑏′]) ∪ ([0, 𝑏′] × [0, 1])

|1 − 𝑔(𝑠1, 𝑠2)| ≤ 𝑎, ∀ (𝑠1, 𝑠2) ∈ [0, 1]2

Otherwise stated, our claims (6.5)–(6.7) are proved. □

Lemma 6.3.  Let  be the vector space defined by (6.4). Then  is dense in the subspace
𝑉 ∶= {𝑓 ∈ 𝐶([0, 1]2,R) ∣ 𝑓 (0, 𝑠2) = 𝑓 (𝑠1, 0) = 0, 𝑠1, 𝑠2 ∈ [0, 1]},

of continuous functions vanishing at the ‘‘left-bottom’’ boundaries.

Proof.  The strategy for the proof is a subtle variation on classical Stone–Weierstrass type arguments. Namely on every sub-
rectangle [𝑏′, 1], Stone–Weierstrass theorem will give the desired conclusion. Then close to the axes we shall resort to a polynomial 
interpolation given by Lemma  6.2.

First let us prove that  separates points in (0, 1]2. Indeed, if
𝑠21𝑠2 = 𝑞21𝑞2, 𝑠1𝑠

2
2 = 𝑞1𝑞

2
2 ,

and 𝑠1, 𝑠2, 𝑞1, 𝑞2 ∈ (0, 1) then
𝑠1
𝑞1

=
𝑞22
𝑠22

=
𝑠41
𝑞41

,

hence

𝑠1 = 𝑞1, 𝑠2 = 𝑞2.

Furthermore, the constant function is contained in  and it is closed under multiplication. Hence, by the Stone–Weierstrass theorem, 
the functions are dense in 𝐶([𝜖, 1]2,R), for every 𝜖 > 0.

We now start our interpolation argument close to the axes. That is consider 𝑓 ∈ 𝑉  and 𝜀 > 0 given. Choose 𝛿 > 0 such that 
|𝑓 (𝑠1, 𝑠2)| < 𝜀, for 𝑠1 ∈ [0, 𝛿] or 𝑠2 ∈ [0, 𝛿]. (6.8)

Let 𝑏′ < 𝑏 be given as in Lemma  6.2, for 𝑏 ∶= 𝛿. Denote 𝑏′  the restriction of  to [𝑏′, 1]2. By the classical Stone–Weierstrass theorem, 
there exists 𝑓𝜀,𝑏′ ∈ 𝑏′  such that 

‖𝑓 − 𝑓𝜀,𝑏′‖𝐶([𝑏′ ,1]2 ,R) < 𝜀. (6.9)

Fix an extension 𝑓𝜀,𝑏′ ∈  of 𝑓𝜀,𝑏′  to [0, 1]2. Define
𝑀 ∶= sup

𝑠1 ,𝑠2∈[0,𝑏′]
|𝑓𝜀,𝑏′ (𝑠1, 𝑠2)| + 1.

Consider 𝑔 ∈  as in Lemma  6.2. Then, ℎ ∶= 𝑓 ⋅ 𝑔 ∈  satisfies the following three properties:
𝜀∕𝑀,𝑏′ ,𝑏 𝜀,𝛿 𝜀∕𝑀,𝑏′ ,𝑏
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(i) For 𝑠1 ∈ [0, 𝑏′] or 𝑠2 ∈ [0, 𝑏′]:

|ℎ(𝑠1, 𝑠2)| = |𝑓𝜀,𝛿(𝑠1, 𝑠2)| ⋅ |𝑔𝜀∕𝑀,𝑏′ ,𝑏(𝑠1, 𝑠2)|

≤ 𝑀 ⋅ 𝜀∕𝑀 = 𝜀.

Since 𝑓 verifies (6.8) for 𝑠1 ∈ [0, 𝑏′] or 𝑠2 ∈ [0, 𝑏′], we get that |ℎ(𝑠1, 𝑠2) − 𝑓 (𝑠1, 𝑠2)| ≤ 2𝜖.
(ii) For 𝑠1 ∈ [𝑏′, 𝑏], 𝑠2 ∈ [𝑏′, 1] or 𝑠2 ∈ [𝑏′, 𝑏], 𝑠1 ∈ [𝑏′, 1]

|ℎ(𝑠1, 𝑠2)| = |𝑓𝜀,𝛿(𝑠1, 𝑠2)| ⋅ |𝑔𝜀∕𝑀,𝑏′ ,𝑏(𝑠1, 𝑠2)|

≤ 2𝜀 ⋅ ‖𝑔𝜀∕𝑀,𝑏′ ,𝑏‖∞ ≤ 2𝜀.

(iii) For 𝑠1, 𝑠2 ∈ [𝛿, 1]

|ℎ(𝑠1, 𝑠2) − 𝑓 (𝑠1, 𝑠2)|

≤ |(𝑓𝜀,𝛿(𝑠1, 𝑠2) − 𝑓 (𝑠1, 𝑠2)) ⋅ 𝑔𝜀∕𝑀,𝑏′ ,𝑏| + |𝑓 (𝑠1, 𝑠2)(𝑔𝜀∕𝑀,𝑏′ ,𝑏 − 1)|

≤ 𝜀 + ‖𝑓‖𝜀∕𝑀.

Now 𝜀 was arbitrary (and 𝑀 ≥ 1), and so it follows that  is dense in 𝑉 . □

We now turn to the main result of the section, which states that an extended version of the signature characterizes a smooth 
field up to an equivalent class.

Theorem 6.4.  Consider the following equivalence relation on 𝐶2([0, 𝑇 ]2;R𝑑 ): 
𝑋 ∼ 𝑌 ⟺ 𝜕12𝑋 = 𝜕12𝑌 . (6.10)

For 𝑋 ∈ 𝐶2([0, 1]2;R𝑑 ) consider the ‘‘lift’’ to 𝑋̂ ∈ 𝐶2([0, 1]2;R2+𝑑 )

𝑋̂𝑠1 ,𝑠2 ∶= (𝑠21𝑠2, 𝑠1𝑠
2
2, 𝑋𝑠1 ,𝑠2 ).

Then, for 𝑋, 𝑌 ∈ 𝐶2([0, 1]2;R𝑑 ) we have 𝑋 ∼ 𝑌  if and only if
𝐒𝟎,𝟏(𝑋̂) = 𝐒𝟎,𝟏(𝑌 ).

Proof.  It suffices to show the case 𝑑 = 1, i.e.
𝑋̂𝑠1 ,𝑠2 = (𝑋̂(1)

𝑠1 ,𝑠2
, 𝑋̂(2)

𝑠1 ,𝑠2
, 𝑋̂(3)

𝑠1 ,𝑠2
) = (𝑠21𝑠2, 𝑠1𝑠

2
2, 𝑋𝑠1 ,𝑠2 ) ∈ R3.

It is clear that
⟨𝐒𝟎𝐬(𝑋̂), 1⟩ = 𝑠21𝑠2, and ⟨𝐒𝟎𝐬(𝑋̂), 2⟩ = 𝑠1𝑠

2
2.

Then, by the shuffle relation it follows that 
⟨𝐒𝟎𝐬(𝑋̂), 1⧢𝑚 ⧢ 2⧢𝑛

⟩ = 𝑠2 𝑚+𝑛
1 𝑠2𝑛+𝑚2 .

 Hence, by Lemma  6.3, for every 𝑓 ∈  , 𝜀 > 0 there exists 𝜙𝜀 ∈ 𝑇 (R𝑑 ) such that with
𝛷𝜀(𝑠1, 𝑠2) ∶= ⟨𝐒𝟎𝐬(𝑋̂), 𝜙𝜀⟩,

we have ‖𝑓 −𝛷𝜀‖ < 𝜀. Note that 

⟨𝐒𝟎𝟏(𝑋̂), (1⧢𝑚 ⧢ 2⧢𝑛)3⟩ = ∫

1

0
𝑑𝑠1 ∫

1

0
𝑑𝑠2 𝑠2 𝑚+𝑛

1 𝑠2𝑛+𝑚2 𝜕12𝑋𝑠1 ,𝑠2 .

 If 𝐒𝟎𝟏(𝑋̂) = 𝐒𝟎𝟏(𝑌 ) then, for every 𝑓 ∈  we have

∫

1

0
𝑑𝑠1 ∫

1

0
𝑑𝑠2 𝑓 (𝑠1, 𝑠2)𝜕12𝑋𝑠1 ,𝑠2 = ∫

1

0
𝑑𝑠1 ∫

1

0
𝑑𝑠2 𝑓 (𝑠1, 𝑠2)𝜕12𝑌𝑠1 ,𝑠2 .

By the usual approximation of the Dirac delta we hence get
𝜕12𝑋(𝑠1, 𝑠2) = 𝜕12𝑌 (𝑠1, 𝑠2), for 𝑠1, 𝑠2 ∈ (0, 1].

By continuity of 𝜕12𝑋, 𝜕12𝑌 , we hence get
𝜕12𝑋 = 𝜕12𝑌 .

We have thus proved that whenever 𝐒𝟎𝟏(𝑋̃) = 𝐒𝟎𝟏(𝑌 ) we have 𝑋̃ ∼ 𝑌  according to (6.10). The other implication being trivial, this 
finishes the proof. □
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7. Concluding remarks and open problems

We have proposed several 2D extensions of the path signature arising in the theory of rough paths [5]. In contrast to the 
multiparameter extensions proposed by [14,15], the 2D-signatures we consider here are constructed over fields 𝑋 ∶ [0, 𝑇 ]2 → R𝑑 , 
using the mixed partial derivative 𝜕2

𝜕𝑡1𝜕𝑡2
𝑋 of the field as the driving signal. As such we have invariance to path perturbations 

(Section 4.5.1), and thus the 2D-signatures may serve as a complement to the classical path signature when working with image 
data. We show that our (full) signature satisfies shuffle relations (Proposition  4.29), and the 𝗂𝖽-signature satisfies a type of Chen 
relation based on convolutional products (Proposition  4.8). While the current paper only deals with sufficiently smooth, i.e., twice 
continuously differentiable fields 𝑋, we envision that this signature construction will in time see great potential for application in 
stochastic analysis for random fields, in the spirit signatures for paths has been influential for stochastic process theory. However, we 
have not considered rough path-type questions yet, such as an extension theorem for the signature, or investigations of probabilistic 
aspects of the 2D signature constructed from random fields, but see this as highly interesting ongoing and future work.
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