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A B S T R A C T

The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness
and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved
essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for
the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions
(fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step
size 𝑛) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations
driven by fBm with Hurst parameter 𝐻 > 1∕3 and its Malliavin derivatives.

1. Introduction

In this paper we are interested in the following stochastic differential equation driven by a 𝑑-dimensional fractional Brownian
motion (fBm in the sequel) 𝑥 with Hurst parameter 1

3 < 𝐻 < 1
2 :

𝑑𝑦𝑡 = 𝑉0(𝑦𝑡)𝑑𝑡 + 𝑉 (𝑦𝑡)𝑑𝑥𝑡 , 𝑡 ∈ [0, 𝑇 ], (1.1)
𝑦0 = 𝑎 ∈ R𝑚.

Throughout the paper we assume that the collection of vector fields 𝑉0 = (𝑉 𝑖
0 , 1 ≤ 𝑖 ≤ 𝑚) ∈ 𝐶3

𝑏 (R
𝑚,R𝑚) and 𝑉 = (𝑉 𝑖

𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗
≤ 𝑑) all sit in the class 𝐶3

𝑏 (R
𝑚,(R𝑑 ,R𝑚)). Here 𝐶3

𝑏 denotes the space of functions whose derivatives up to the third order exist and
are continuous and bounded. The existence and uniqueness of path-wise solution of Eq. (1.1) is guaranteed by the theory of rough
paths; see e.g. [10]. In addition, the unique solution 𝑦 in the sense of [10] has 𝛾-Hölder continuity for all 0 < 𝛾 < 𝐻 .

The aim of this paper is to consider the numerical approximation of Eq. (1.1). It is well-known (see the introduction in [8] for
more details about this issue) that the classical Euler scheme is divergent under this setting. The simplest possible solution to this
problem is to use a second-order Euler (that is a Milstein type) scheme, which however involves iterated integrals of the fBm 𝑥 and
is not implementable directly. Several contributions are made to tackle the implementation issue [8,9,12,18]; see also [13,14].

In this paper we will focus our attention on the (implementable) Euler scheme introduced in [12,18]. Take the uniform partition
𝜋 ∶ 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 on [0, 𝑇 ], where for 𝑘 = 0,… , 𝑛 we have 𝑡𝑘 = 𝑘𝛥 with 𝛥 = 𝑇

𝑛 . The Euler scheme is recursively defined
as follows:

𝑦𝑛𝑡𝑘+1 = 𝑦𝑛𝑡𝑘 + 𝑉0(𝑦𝑛𝑡𝑘 )𝛥 + 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 +
1
2

𝑑
∑

𝑗=1
𝜕𝑉𝑗𝑉𝑗 (𝑦𝑛𝑡𝑘 )𝛥

2𝐻 (1.2)
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and 𝑦𝑛0 = 𝑦0, where we have used the notation

𝜕𝑉𝑖𝑉𝑗 =

( 𝑚
∑

𝓁=1
𝜕𝓁𝑉

𝑘
𝑖 𝑉

𝓁
𝑗 ; 𝑘 = 1,… , 𝑚

)

(1.3)

and 𝜕𝑖 stands for the partial derivative in the 𝑦(𝑖) direction: 𝜕𝑖 =
𝜕

𝜕𝑦(𝑖)
. The exact rate of convergence of 𝑦𝑛 to 𝑦 is shown to be of

rder 1∕𝑛2𝐻−1∕2 in [18].
In this paper, we are interested in proving that the approximation 𝑦𝑛 defined by (1.2) is Malliavin differentiable under sufficient

moothness assumption on the coefficients. More importantly, we will establish pathwise upper bounds estimates of the Malliavin
erivative which will be uniform in 𝑛. Our motivation for this endeavor is twofold:

i) The integrability of Malliavin derivatives for rough differential equations has been an important open problem a decade ago.
his is mostly due to the prominent role played by Malliavin calculus techniques in obtaining results about the density of random
ariables like 𝑦𝑡 in (1.1). The integrability issue for the Malliavin derivatives 𝐷𝑦𝑡 has been solved completely in [5]. Subsequent
pplications to the smoothness of densities of 𝑦𝑡 are contained in [2,4,11]. The corresponding question for numerical approximations
f 𝑦 is thus in order. We propose to start a detailed answer to this natural problem in the current paper.

ii) Upper bounds on Malliavin derivatives open the way to important results for numerical schemes. Among others, one can quote
eak convergence as well as convergence of densities. In our companion paper [17] we prove the weak convergence of 𝑦𝑛 defined
y (1.2) towards the solution to (1.1). The uniform bounds on Malliavin derivatives obtained in the current contribution are a crucial
ngredient in [17].

With those motivations in mind, our main result can be informally spelled out as follows. Please refer to Theorem 4.10,
emark 4.11 and Theorem 4.15 for a more precise statement.

heorem 1.1. Let 𝑦 and 𝑦𝑛 be the solution of (1.1) and the corresponding Euler scheme (1.2), respectively. Take an integer 𝐿 ≥ 1. Let
̄𝐿𝑦𝑛𝑡 be the 𝐿th Malliavin derivative of 𝑦𝑛𝑡 in the Cameron–Martin space ̄ corresponding to the fBm 𝑥. Suppose that 𝑉 ∈ 𝐶𝐿+2

𝑏 . Then for
ach 𝑛 ∈ N there is a functional 𝑛𝐿 of the fBm 𝑥 which is almost surely finite and such that the following pathwise bound holds true:

‖𝐷̄𝐿𝑦𝑛𝑡 ‖̄⊗𝐿 ≤ 𝑛𝐿, for all 𝑡 = 𝑡𝑘 and 𝑘 = 1,… , 𝑛. (1.4)

he explicit expression of 𝑛𝐿 is given in Theorem 4.10. Furthermore, we have the uniform integrability of 𝑛𝐿 for 𝑛 ∈ N:

sup
𝑛∈N

E[|𝑛𝐿|
𝑝] < ∞.

emark 1.2. In Theorem 4.10 we will see that, roughly speaking, 𝑛𝐿 is the product of the values of a control function 𝜔 over
he sequence of intervals: [𝑠0, 𝑠1], [𝑠1, 𝑠2], . . . . Here 𝑆 ∶= {𝑠0, 𝑠1,…} ⊂ [[0, 𝑇 ]] is a discrete version of the so-called greedy sequence
ntroduced in [5] (the reader is referred to (4.36) for its precise definition). As far as the control function 𝜔 is concerned, it will
e expressed as the addition of 𝑝th moments of a (discrete-version) of the 𝑝-variation of the fBm 𝑥, plus a quadratic functional of
(see (4.35) below). While 𝑛𝐿 still depends on 𝑛 we have shown (see [17]) that the moments of 𝑛𝐿 are uniformly bounded in the

ariable 𝑛, due to the proper choice of the sequence 𝑆.

As mentioned above, Theorem 1.1 is a crucial step in the analysis of weak convergence for the Euler type scheme (1.2). In
ddition, the proof of our main estimate (1.4) relies on techniques which are interesting in their own right. Specifically, we will first
esort to rough paths type estimates (recalled in Section 2), and our Malliavin calculus setting will follow Inahama’s approach [15] for
ll computations in the Cameron–Martin space. On top of those classical ingredients, our main technical tool will be a representation
f higher order Malliavin derivatives of 𝑦𝑛 in terms of a tree expansion (see Lemmas 3.8 and 3.18 below). This kind of expression
as to be contrasted with the standard form of higher order Malliavin derivatives, based on sums over partitions of the set {1,… , 𝑛}
see [20, Proposition 5]). We note that the advantage of our directed-tree notations is that it allows us to distinguish all terms in the
hain differentiations. We will benefit from this feature while proving an identities (3.26)–(3.27) in Lemma 3.18. We also believe
hat the tree-based computations presented here can be usefully applied to other numerical schemes. We plan on developing this
ine of research in subsequent publications.

The paper is organized as follows. In Section 2 we recall some basic material on rough paths and Malliavin calculus. We also
eview results on the Euler scheme which will be used throughout the paper. In Section 3 we derive a representation of Malliavin
erivatives of the Euler scheme via tree notations. Finally, in Section 4 we prove the uniform upper-bound estimate for the Euler
cheme and its Malliavin derivatives.

otation 1.3. In what follows, we take 𝑛 ∈ N and 𝛥 = 𝑇 ∕𝑛, and consider the uniform partition: 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇 on [0, 𝑇 ],
here 𝑡𝑘 = 𝑘𝛥. We denote by [[𝑠, 𝑡]] the discrete interval: [[𝑠, 𝑡]] = {𝑡𝑘 ∈ [𝑠, 𝑡] ∶ 𝑘 = 0,… , 𝑛}. For 𝑢 ∈ [𝑡𝑘, 𝑡𝑘+1), we denote 𝜂(𝑢) = 𝑡𝑘. For
n interval [𝑠, 𝑡] ⊂ [0, 𝑇 ] we define the simplex 2([𝑠, 𝑡]) = {(𝑢, 𝑣) ∶ 𝑠 ≤ 𝑢 ≤ 𝑣 ≤ 𝑡}. For a vector 𝑎 = (𝑎1,… , 𝑎𝑚) ∈ R𝑑 we define the norm
𝑎| = max𝑗=1,…,𝑚 |𝑎𝑗 |. Throughout the paper, we use 𝐶 and 𝐾 to represent constants that are independent of 𝑛 and whose values may change
2

rom line to line.
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2. Preliminary results

In this section we recall some basic notions of rough paths theory and their application to fractional Brownian motion, which
llows a proper definition of Eq. (1.1). We also give the necessary elements of Malliavin calculus in order to estimate densities of
andom variables.

.1. Elements of rough paths and fractional Brownian motion

This subsection is devoted to introduce some basic concepts of rough paths theory. We are going to restrict our analysis to a
eneric Hölder regularity of the driving path of order 1

3 < 𝛾 ≤ 1
2 , in order to keep expansions to a reasonable size. We also fix a

finite time horizon 𝑇 > 0. The following notation will prevail until the end of the paper: for a Banach space  (which can be either
finite or infinite dimensional) and two functions 𝑓 ∈ 𝐶([0, 𝑇 ],) and 𝑔 ∈ 𝐶(2([0, 𝑇 ]),) we set

𝛿𝑓𝑠𝑡 = 𝑓𝑡 − 𝑓𝑠, and 𝛿𝑔𝑠𝑢𝑡 = 𝑔𝑠𝑡 − 𝑔𝑠𝑢 − 𝑔𝑢𝑡, 0 ≤ 𝑠 ≤ 𝑢 ≤ 𝑡 ≤ 𝑇 . (2.1)

Let us introduce the analytic requirements in terms of Hölder regularity which will be used in the sequel. Namely consider two
paths 𝑥 ∈ 𝐶([0, 𝑇 ],R𝑑 ) and 𝑥2 ∈ 𝐶(2([0, 𝑇 ]), (R𝑑 )⊗2). Then we denote

‖𝑥‖[𝑠,𝑡],𝛾 ∶= sup
(𝑢,𝑣)∈2([𝑠,𝑡])∶𝑢≠𝑣

|𝛿𝑥𝑢𝑣|
|𝑣 − 𝑢|𝛾

, ‖𝑥2‖[𝑠,𝑡],2𝛾 ∶= sup
(𝑢,𝑣)∈2([𝑠,𝑡])∶𝑢≠𝑣

|𝑥2𝑢𝑣|

|𝑣 − 𝑢|2𝛾
. (2.2)

hen the semi-norms in (2.2) are finite we say that 𝑥 and 𝑥2 are respectively in 𝐶𝛾 ([𝑠, 𝑡],R𝑑 ) and 𝐶2𝛾 (2([𝑠, 𝑡]), (R𝑑 )⊗2). For
onvenience, we denote ‖𝑥‖𝛾 ∶= ‖𝑥‖[0,𝑇 ],𝛾 and ‖𝑥2‖2𝛾 ∶= ‖𝑥2‖[0,𝑇 ],2𝛾 . With this preliminary notation in hand, we can now turn
o the definition of rough path.

efinition 2.1. Let 𝑥 ∈ 𝐶([0, 𝑇 ],R𝑑 ), 𝑥2 ∈ 𝐶(2([0, 𝑇 ]), (R𝑑 )⊗2), and 1
3 < 𝛾 ≤ 1

2 . For (𝑠, 𝑡) ∈ 2([0, 𝑇 ]) we denote 𝑥1𝑠𝑡 = 𝛿𝑥𝑠𝑡. We call
𝐱 ∶= 𝑆2(𝑥) ∶= (𝑥1, 𝑥2) a (second-order) 𝛾-rough path if ‖𝑥1‖𝛾 < ∞ and ‖𝑥2‖2𝛾 < ∞, and if the following algebraic relation holds true:

𝛿𝑥2𝑠𝑢𝑡 = 𝑥2𝑠𝑡 − 𝑥2𝑠𝑢 − 𝑥2𝑢𝑡 = 𝑥1𝑠𝑢 ⊗ 𝑥1𝑢𝑡 𝑠 ≤ 𝑢 ≤ 𝑡, (2.3)

where we have invoked (2.1) for the definition of 𝛿𝑥2. For a 𝛾-rough path 𝑆2(𝑥), we define a 𝛾-Hölder semi-norm as follows:

‖𝑆2(𝑥)‖𝛾 ∶= ‖𝑥1‖𝛾 + ‖𝑥2‖
1
2
2𝛾 . (2.4)

An important subclass of rough paths are the so-called geometric 𝛾-Hölder rough paths. A geometric 𝛾-Hölder rough path is a 𝛾-rough
path (𝑥, 𝑥2) such that there exists a sequence of smooth R𝑑 -valued paths (𝑥𝑛, 𝑥2,𝑛) verifying:

‖𝑥 − 𝑥𝑛‖𝛾 + ‖𝑥2 − 𝑥2,𝑛‖2𝛾 → 0, as 𝑛 → ∞. (2.5)

We will mainly consider geometric rough paths in the remainder of the article.

Let 𝑥 be a rough path as given in Definition 2.1. We shall interpret equation (1.1) in a way introduced by Davie in [7], which
is conveniently compatible with numerical approximations.

Definition 2.2. Let (𝑥, 𝑥2) be a 𝛾-rough path with 𝛾 > 1∕3. We say that 𝑦 is a solution of (1.1) on [0, 𝑇 ] if 𝑦0 = 𝑎 and there exists a
constant 𝐾 > 0 and 𝜇 > 1 such that

|

|

|

𝛿𝑦𝑠𝑡 − ∫

𝑡

𝑠
𝑉0(𝑦𝑢) 𝑑𝑢 − 𝑉 (𝑦𝑠)𝑥1𝑠𝑡 −

𝑑
∑

𝑖,𝑗=1
𝜕𝑉𝑖𝑉𝑗 (𝑦𝑠)𝑥

2,𝑖𝑗
𝑠𝑡

|

|

|

≤ 𝐾|𝑡 − 𝑠|𝜇 (2.6)

for all (𝑠, 𝑡) ∈ 2([0, 𝑇 ]), where we recall that 𝛿𝑦 is defined by (2.1) and the notation 𝜕𝑉𝑖𝑉𝑗 is introduced in (1.3).

According to [7] there exists a unique RDE solution to equation (1.1), understood as in Definition 2.2.
In the following we recall a sewing map lemma with respect to discrete control functions. It is an elaboration of [18, Lemma

2.5] and proves to be useful in the analysis of the numerical scheme. Let 𝜋 ∶ 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛−1 < 𝑡𝑛 = 𝑇 be a generic
partition of the interval [0, 𝑇 ] for 𝑛 ∈ N. We denote by [[𝑠, 𝑡]] the discrete interval {𝑡𝑘 ∶ 𝑠 ≤ 𝑡𝑘 ≤ 𝑡} for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 . In this paper,

two variable function 𝜔 ∶ 2([[0, 𝑇 ]]) → [0,∞) is called a control on [[0, 𝑇 ]] if it satisfies the super-additivity condition. That is,
𝜔(𝑠, 𝑢) + 𝜔(𝑢, 𝑡) ≤ 𝜔(𝑠, 𝑡) for 𝑠, 𝑢, 𝑡 ∈ [[0, 𝑇 ]] such that 𝑠 ≤ 𝑢 ≤ 𝑡.

emma 2.3. Suppose that 𝜔 is a control on [[0, 𝑇 ]]. Consider a Banach space  and an increment 𝑅 ∶ 2([[0, 𝑇 ]]) → . Suppose that
𝑅𝑡𝑘𝑡𝑘+1 | ≤ 𝜔(𝑡𝑘, 𝑡𝑘+1)𝜇 for all 𝑡𝑘 ∈ [[0, 𝑇 ]] and that |𝛿𝑅𝑠𝑢𝑡| ≤ 𝜔(𝑠, 𝑡)𝜇 with an exponent 𝜇 > 1, where recall that 𝛿𝑅𝑠𝑢𝑡 = 𝑅𝑠𝑡 − 𝑅𝑠𝑢 − 𝑅𝑢𝑡.
hen the following relation holds:

|𝑅𝑠𝑡| ≤ 𝐾𝜇𝜔(𝑠, 𝑡)𝜇 , where 𝐾𝜇 = 2𝜇
∞
∑

𝑙−𝜇 . (2.7)
3

𝑙=1
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We now specialize our setting to a path 𝑥 = (𝑥1,… , 𝑥𝑑 ) defined as a standard 𝑚-dimensional fBm on [0, 𝑇 ] with Hurst parameter
𝐻 ∈ ( 13 ,

1
2 ). This fBm is defined on a complete probability space (𝛺, ,P), and we assume that the 𝜎-algebra  is generated by 𝑥. In

this situation, recall that the covariance function of each coordinate of 𝑥 is defined on 2([0, 𝑇 ]) by:

𝑅(𝑠, 𝑡) = 1
2
[

|𝑠|2𝐻 + |𝑡|2𝐻 − |𝑡 − 𝑠|2𝐻
]

. (2.8)

t is established in [10, Chapter 15] that the geometric rough path 𝑆2(𝑥) of 𝑥 via the piecewise linear approximation is well defined
or 1

3 < 𝛾 < 𝐻 in the sense of Definition 2.1.

2.2. Malliavin calculus for 𝐱

In this subsection we recall some concepts of Malliavin calculus which will be used later in the paper. Recall that 𝑅 is the
ovariance function of the fBm 𝑥 defined in (2.8). Denote by  the set of step functions on the interval [0, 𝑇 ]. We define the Hilbert

space  as the closure of  with respect to the scalar product

⟨𝟏[𝑢,𝑣], 𝟏[𝑠,𝑡]⟩ = 𝑅([𝑢, 𝑣], [𝑠, 𝑡]) ≡ 𝑅(𝑣, 𝑡) − 𝑅(𝑣, 𝑠) − 𝑅(𝑢, 𝑡) + 𝑅(𝑢, 𝑠). (2.9)

The space  is very useful in order to define Wiener integrals with respect to 𝑥. However, in the current paper we also need to
introduce the Cameron–Martin space ̄ related to our driving process. The latter space is the one allowing to identify pathwise
derivatives with respect to 𝑥 and Malliavin derivatives. In order to construct ̄, let first  be the linear operator on  such that

(𝟏[0,𝑡]) = 𝑅(𝑡, ⋅) , (2.10)

and we also set ̄ = (). Then we can define the Cameron–Martin space ̄ as the closure of ̄ with respect to the inner product

⟨(𝟏[0,𝑡]),(𝟏[0,𝑠])⟩̄ = ⟨𝟏[0,𝑠], 𝟏[0,𝑡]⟩ .

It is clear that  is an isometry between the two Hilbert spaces  and ̄. Note that according to (2.10) we have

(ℎ)(𝑡) = ⟨ℎ, 𝟏[0,𝑡]⟩ (2.11)

for ℎ ∈  . By the isometry property of  we see that (2.11) holds for all ℎ ∈ . We refer to [1,20] for more details about the spaces
, ̄.

For the sake of conciseness, we refer to [19] for a proper definition of Malliavin derivatives in the Hilbert space  and related
Sobolev spaces in Gaussian analysis. Let us just mention that for a functional 𝐹 of 𝑥 we will denote its Malliavin derivative by 𝐷𝐹 ,
the Sobolev spaces by D𝑘,𝑝 and the corresponding norms by ‖𝐹‖𝑘,𝑝.

As mentioned above, in this paper we will mainly focus on a more pathwise Malliavin derivative taking values in ̄. Namely we
define the Malliavin derivative in the Cameron–Martin ̄ space via the isometry . Precisely, we define 𝐷̄ such that 𝐷̄𝐹 = (𝐷𝐹 ).
In other words, for ℎ ∈  and a functional 𝐹 of 𝑥 we have

𝐷̄(ℎ)𝐹 ∶= ⟨𝐷̄𝐹 ,(ℎ)⟩̄ = ⟨𝐷𝐹 , ℎ⟩ =∶ 𝐷ℎ𝐹 .

his Malliavin derivative can be expressed easily for cylindrical functionals of 𝑥. Namely suppose that 𝐹 = 𝑓 (𝑥𝑡1 ,… , 𝑥𝑡𝓁 ) for
𝑓 ∈ 𝐶1

𝑝 (R
𝓁). According to the definition of 𝐷̄, for ℎ ∈  we have

⟨𝐷̄𝐹 ,(ℎ)⟩̄ = ⟨𝐷𝐹 , ℎ⟩ =
𝓁
∑

𝑖=1
𝜕𝑖𝑓 (𝑥𝑡1 ,… , 𝑥𝑡𝓁 )⟨𝟏[0,𝑡𝑖], ℎ⟩

=
𝓁
∑

𝑖=1
𝜕𝑖𝑓 (𝑥𝑡1 ,… , 𝑥𝑡𝓁 )(ℎ)(𝑡𝑖). (2.12)

Notice that the computation in (2.12) shows that ⟨𝐷̄𝐹 ,(ℎ)⟩̄ can be interpreted as an extension in the Fréchet derivative of 𝐹 of
the (ℎ) direction. Indeed, for the quantity in the right-hand side of (2.12) we have

𝑑
𝑑𝜀

𝑓 (𝑥𝑡1 + 𝜀(ℎ)(𝑡1),… , 𝑥𝑡𝓁 + 𝜀(ℎ)(𝑡𝓁))
|

|

|𝜀=0
=

𝓁
∑

𝑖=1
𝜕𝑖𝑓 (𝑥𝑡1 ,… , 𝑥𝑡𝓁 )(ℎ)(𝑡𝑖). (2.13)

This pathwise interpretation of Malliavin derivatives is also the one adopted in [10].
In this paper, we denote by 𝐷̄𝑘𝐹 the 𝑘th iteration of the Malliavin derivative 𝐷̄ applied on 𝐹 . Also notice that we are considering

a 𝑑-dimensional fBm 𝑥 = (𝑥1,… , 𝑥𝑑 ). Therefore, we shall consider partial Malliavin derivatives with respect to each coordinate 𝑥𝑖

in the sequel. Those partial derivatives will be denoted by 𝐷̄(𝑖). Then for ℎ̄ = (ℎ̄1,… , ℎ̄𝑑 ) ∈ ̄𝑑 we write 𝐷̄ℎ̄𝐹 =
∑𝑑

𝑖=1⟨𝐷̄
(𝑖)𝐹 , ℎ̄𝑖⟩̄ .

For 𝐿 ≥ 2 we denote by 𝐷̄𝐿
ℎ̄

the iterated versions of 𝐷̄ℎ̄. Namely we set

𝐷̄𝐿
ℎ̄
𝐹 = 𝐷̄ℎ̄◦⋯◦𝐷̄ℎ̄𝐹 . (2.14)

The Sobolev spaces related to the Malliavin derivatives in the Cameron–Martin space are denoted by D̄𝑘,𝑝 and the corresponding
norms are written ‖ ⋅ ‖ .
4
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Let us now review some results on the Malliavin differentiability of Eq. (1.1). In the following we assume that the vector fields
0,… , 𝑉𝑑 are at least in 𝐶3

𝑏 (R
𝑚) (bounded together with their derivatives up to order 3), although later on we will have to introduce

urther smoothness conditions in order to estimate higher order Malliavin derivatives. We shall express the first order Malliavin
erivative of 𝑦𝑡 in terms of the Jacobian 𝛷 of the equation, which is defined by the relation 𝛷𝑖𝑗

𝑡 = 𝜕𝑎𝑗 𝑦
(𝑖)
𝑡 . Setting 𝜕𝑉𝑗 for the

Jacobian of 𝑉𝑗 seen as a function from R𝑛 to R𝑛, let us recall that 𝛷 is the unique solution to the linear equation

𝛷𝑡 = Id𝑛 + ∫

𝑡

0
𝜕𝑉0(𝑦𝑠)𝛷𝑠 𝑑𝑠 +

𝑑
∑

𝑗=1
∫

𝑡

0
𝜕𝑉𝑗 (𝑦𝑠)𝛷𝑠 𝑑𝑥

𝑗
𝑠, (2.15)

The following result (for which we refer to [3]) holds true:

Proposition 2.4. Let 𝑦 be the solution to Eq. (1.1). Then for every 𝑖 = 1,… , 𝑚, 𝑡 > 0, and 𝑎 ∈ R𝑚, we have 𝑦(𝑖)𝑡 ∈ D() and

𝐷𝑠𝑦𝑡 =
(

𝛷𝑠,𝑡𝑉𝑗 (𝑦𝑠), 𝑗 = 1,… , 𝑑
)

, 0 ≤ 𝑠 ≤ 𝑡,

where 𝛷𝑡 = 𝜕𝑎𝑦𝑡 solves Eq. (2.15) and 𝛷𝑠,𝑡 = 𝛷𝑡𝛷−1
𝑠 .

Let us now quote the result [5], which gives a useful estimate for moments of the Jacobian of rough differential equations driven
by Gaussian processes. Note that this result is expressed in terms of 𝑝-variations, for which we refer to [10].

Proposition 2.5. Consider a fractional Brownian motion 𝑥 with Hurst parameter 𝐻 ∈ (1∕4, 1∕2] and 𝑝 > 1∕𝐻 . Then for any 𝜂 ≥ 1, there
exists a finite constant 𝑐𝜂 such that the Jacobian 𝛷 defined by (2.15) satisfies:

E
[

‖𝛷‖

𝜂
𝑝-var;[0,1]

]

= 𝑐𝜂 . (2.16)

3. Malliavin derivatives of the Euler scheme

The estimates for the derivatives of the Euler scheme approximation 𝑦𝑛 require a substantial amount of algebraic and analytic
efforts. In this section we focus on the algebraic aspect of the problem. Precisely, we apply a tree argument to derive a representation
for Malliavin derivatives of 𝑦𝑛. This will be useful for our main bound of the derivatives of 𝑦𝑛 in the next section (see Theorem 4.10).

3.1. A directed rooted tree

The higher order Malliavin derivatives of the Euler scheme 𝑦𝑛 are better understood thanks to a tree type encoding. We introduce
the necessary notation in this section. Let us start with the definition of rooted trees which will be used in the sequel.

Definition 3.1. In the remainder of the paper we consider rooted trees 𝑁 of height 𝑁 defined recursively as follows:

(i) 1 contains one branch with length 1 and with root labeled 1. Namely, 1 = {(1)}.

(ii) For each 𝑁 ∈ N we define 𝑁+1 such that its first 𝑁 generations coincides with 𝑁 . Its (𝑁 + 1)th generation is defined as
ollows: Take a branch 𝑖 in 𝑁 . We call 𝓁𝑖

1 the number of 1’s in 𝑖 and we also set 𝛼𝑖 = 𝓁𝑖
1 + 1. Then 𝑁+1 is constructed by adding

the branches (𝑖, 1), . . . , (𝑖, 𝛼𝑖) to 𝑁 . Specifically, one can also define 𝑁+1 recursively as
{

(𝑖, 𝑟) ∶ 𝑖 ∈ 𝑁 , 𝑟 = 1,… , 𝛼𝑖
}

.

Example 3.2. As an example of what Definition 3.1 can produce, we draw the 4 tree in the figure below:
1

1

1

1 2 3 4

2

1 2 3

3

1 2 3

2

1

1 2 3

2

1 2

In the following we introduce some additional notation about the trees  which will be useful for our future computations.
5
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N

Notation 3.3. With a slight abuse of notation, we will write 𝑁 for both the tree 𝑁 and the collection of its branches. For each branch
𝑖 in 𝑁 we denote |𝑖| the number of vertices in 𝑖 and denote 𝑖𝜏 the 𝜏th label in the branch 𝑖. We set

𝓁𝑖
1 = #{𝑖𝜏 = 1 ∶ 𝜏 = 1,… , |𝑖|} and 𝓁𝑖

𝑟 = #{𝑖𝜏 = 𝑟 ∶ 𝜏 = 1,… , |𝑖|} + 1 for 𝑟 = 2,… , |𝑖|.

Also recall that we denote 𝛼𝑖 = 𝓁𝑖
1 + 1.

Remark 3.4. In the sequel we shall use the relation
𝛼𝑖
∑

𝑟=2
𝓁𝑖
𝑟 = 𝑁, (3.1)

valid for every tree 𝑁 from Definition 3.1. Let us give a brief proof of this fact. According to the definition of 𝑁 , for each branch
𝑖 the vertices of 𝑖 are labeled by the numbers 1, 2,… , 𝛼𝑖. No vertex of 𝑖 is labeled a number 𝛼𝑖 + 1 or larger. Therefore, for all 𝑟 > 𝛼𝑖
we have

#{𝑖𝜏 = 𝑟 ∶ 𝜏 = 1,… , |𝑖|} = 0, and 𝓁𝑖
𝑟 = 1.

Moreover, by construction every branch 𝑖 in 𝑁 has length |𝑖| = 𝑁 . Thus
𝛼𝑖
∑

𝑟=1
#{𝑖𝜏 = 𝑟 ∶ 𝜏 = 1,… , |𝑖|} = |𝑖| = 𝑁.

Because 𝛼𝑖 = 𝓁𝑖
1 + 1 = #{𝑖𝜏 = 1 ∶ 𝜏 = 1,… , |𝑖|} + 1, the above becomes

𝛼𝑖
∑

𝑟=2

(

#{𝑖𝜏 = 𝑟 ∶ 𝜏 = 1,… , |𝑖|}
)

+
(

𝛼𝑖 − 1
)

=
𝛼𝑖
∑

𝑟=2

(

#{𝑖𝜏 = 𝑟 ∶ 𝜏 = 1,… , |𝑖|} + 1
)

= 𝑁.

Otherwise stated, according to Notation 3.3 we obtain relation (3.1).

Example 3.5. Let us follow up on Example 3.2, and see how Notation 3.3 works on 4. Namely (1, 2, 1, 3) and (1, 2, 1, 1) are both
branches in 4. For those branches, the reader can easily check that we have

𝓁(1,2,1,3)
1 = 2, 𝓁(1,2,1,3)

2 = 2, 𝓁(1,2,1,3)
3 = 2, 𝛼(1,2,1,3) = 3

𝓁(1,2,1,1)
1 = 3, 𝓁(1,2,1,1)

2 = 2, 𝓁(1,2,1,1)
3 = 1, 𝓁(1,2,1,1)

4 = 1, 𝛼(1,2,1,1) = 4.

It is easily checked that the identity (3.1) holds for these two branches. Namely we have 𝓁(1,2,1,3)
2 +𝓁(1,2,1,3)

3 = 4 and 𝓁(1,2,1,1)
2 +𝓁(1,2,1,1)

3 +
𝓁(1,2,1,1)
4 = 4.

In order to state our differentiation rule for Malliavin derivatives, let us also label some notation about partial differentiation in
R𝑚.

Notation 3.6. For a constant

𝐴 = (𝐴𝑝1 ,…,𝑝𝑘 ; 𝑝1,… , 𝑝𝑘 = 1… , 𝑚) ∈ (R𝑚)⊗𝑘 = R𝑚𝑘
,

and for 𝑎(1), . . . , 𝑎(𝑘) ∈ R𝑚 we set

⟨𝐴, 𝑎(1) ⊗⋯⊗ 𝑎(𝑘)⟩ ∶=
𝑚
∑

𝑝1 ,…,𝑝𝑘=1
𝑎(𝑘)𝑝𝑘

⋯ 𝑎(1)𝑝1
𝐴𝑝1 ,…,𝑝𝑘 .

Notation 3.7. Let 𝑓 ∶ 𝑦 → 𝑓 (𝑦) be a continuous function from R𝑚 to R. We denote by 𝜕 the differential operator from 𝐶1(R𝑚) to
(R𝑚,R) = (R𝑚). That is for 𝑎 = (𝑎1,… , 𝑎𝑚) ∈ R𝑚, we define ⟨𝜕𝑓 , 𝑎⟩ =

∑𝑚
𝑖=1 𝑎𝑖

𝜕𝑓
𝜕𝑦(𝑖)

. Note that the space (R𝑚) can also be identified with
R𝑚. Namely, we can write

𝜕𝑓 ∶= (𝜕1𝑓,… , 𝜕𝑚𝑓 ) ∶=
(

𝜕𝑓
𝜕𝑦(1)

,… ,
𝜕𝑓
𝜕𝑦(𝑚)

)

.

One can generalize this notation to higher order derivatives. Specifically, we denote by 𝜕𝑘 the differential operator from 𝐶𝑘(R𝑚) to
((R𝑚)⊗𝑘,R). Otherwise stated for 𝑎(1), . . . , 𝑎(𝑘) ∈ R𝑚 and 𝑦 ∈ R𝑚 we define a vector

𝜕𝑘𝑓 (𝑦) =
{

𝜕𝑘𝑓 (𝑦)
𝜕𝑦(𝑝𝑘) ⋯ 𝜕𝑦(𝑝1)

; 𝑝1,… , 𝑝𝑘 = 1… , 𝑚
}

,

so that one can write

⟨𝜕𝑘𝑓 (𝑦), 𝑎(1) ⊗⋯⊗ 𝑎(𝑘)⟩ =
𝑚
∑

𝑝1 ,…,𝑝𝑘=1
𝑎(𝑘)𝑝𝑘

⋯ 𝑎(1)𝑝1
𝜕𝑘𝑓 (𝑦)

𝜕𝑦(𝑝𝑘) ⋯ 𝜕𝑦(𝑝1)
. (3.2)

otice that for 𝑘 = 2, 𝜕2𝑓 can also be identified with the matrix ( 𝜕2𝑓 ) .
6
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3.2. A differentiation rule

With the preparation in the previous subsection, we are now ready to state a lemma allowing to compute iterated Malliavin
erivatives for a functional of the form 𝑓 (𝐹 ), with a smooth enough function 𝑓 and random variable 𝐹 . Recall that the Malliavin

derivative operator 𝐷̄ in the Cameron–Martin space ̄ is introduced in Section 2.2.

Lemma 3.8. Let 𝑓, 𝑔 be continuous functions in 𝐶𝑁 (R𝑚) and let 𝐹 ∈ D̄𝑁,2(R𝑚), where the space D̄𝑁,2 is introduced in Section 2.2. Then
we have the following identity:

𝐷̄𝑁
ℎ̄
𝑓 (𝐹 ) =

∑

𝑖∈𝑁

⟨𝜕𝓁
𝑖
1𝑓 (𝐹 ), 𝐷̄

𝓁𝑖2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝑖𝛼𝑖
ℎ̄

𝐹 ⟩ (3.3)

for ℎ̄ ∈ ̄𝑚, where the sum in the right side of (3.3) runs over the branches of 𝑁 as specified in Notations 3.3–3.7. As far as the product
𝑓 (𝐹 )𝑔(𝐹 ) is concerned, we get the following differentiation rule:

𝐷̄𝑁
ℎ̄
(𝑓 ⋅ 𝑔)(𝐹 ) = 𝑀1(𝑁) +𝑀2(𝑁), (3.4)

where

𝑀1(𝑁) =
∑

𝑖∈𝑁

⟨

(𝜕𝓁
𝑖
1𝑓 ⋅ 𝑔)(𝐹 ), 𝐷̄

𝓁𝑖2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝑖𝛼𝑖
ℎ̄

𝐹
⟩

𝑀2(𝑁) =
∑

𝑖∈𝑁

𝛼𝑖
∑

𝑟=2

⟨

𝜕𝓁
𝑖
1−1𝑓 (𝐹 ), 𝐷̄

𝓁𝑖2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄𝓁𝑖𝑟

ℎ̄
𝑔(𝐹 )⊗⋯⊗ 𝐷̄

𝓁𝑖𝛼𝑖
ℎ̄

𝐹
⟩

.

Remark 3.9. Let us check the dimension compatibilities in the right side of (3.3). Since 𝐹 is R𝑚-valued, according to Notation 3.7
we have 𝜕𝓁

𝑖
1𝑓 (𝐹 ) ∈ ((R𝑚)⊗𝓁𝑖1 ;R). Next each term 𝐷̄𝓁𝑖𝑟

ℎ̄
𝐹 sits in R𝑚. Therefore, 𝐷̄

𝓁𝑖2
ℎ̄
𝐹 ⊗⋯⊗𝐷̄

𝓁𝑖𝛼𝑖
ℎ̄

𝐹 ∈ ((R𝑚)⊗(𝛼𝑖−1)). The compatibility
of dimensions in (3.3) thus stems from the relation 𝛼𝑖 = 𝓁𝑖

1 +1 (see Notation 3.3). Similar considerations are also valid for Eq. (3.4),
taking into account the fact that 𝐷̄𝓁𝑖𝑟

ℎ̄
𝐹 ∈ R𝑚 and 𝐷̄𝓁𝑖𝑟

ℎ̄
𝑔(𝐹 ) ∈ R.

Remark 3.10. In order to get a formula for 𝐷̄𝑁
ℎ̄
𝑓 (𝐹 ), we could have invoked some multivariate elaboration of Faà Di Bruno’s

formula; see [6,16]. However, our tree type formulation is required in order to handle the computations in Lemma 3.18 below.

Remark 3.11. Lemma 3.8 can easily be generalized in three directions:
(i) We have stated (3.3) using the directional derivative 𝐷̄ℎ̄. The same formula holds true for the function-valued derivative

𝐷𝑟𝑓 (𝐹 ).
(ii) Instead of the Malliavin derivative, we could have obtained (3.3) as a chain rule for any operator 𝐴 satisfying a Leibniz type

rule of the form 𝐴(𝑓 (𝐹 )) = 𝑓 ′(𝐹 )𝐴𝐹 .
(iii) Instead of considering iterations of the same operation 𝐴, that is a formula for 𝐴𝑁 (𝑓 (𝐹 )), one can obtain a formula like (3.3)

for quantities of the form 𝐴1◦⋯◦𝐴𝑁 (𝑓 (𝐹 )), where each of the operators 𝐴𝑗 satisfies 𝐴𝑗 (𝑓 (𝐹 )) = 𝑓 ′(𝐹 )𝐴𝑗𝐹 .

Proof of Lemma 3.8. We first show by induction that (3.3) is true. To this aim, note that 𝐷̄ℎ̄𝑓 (𝐹 ) = ⟨𝜕𝑓 (𝐹 ), 𝐷̄ℎ̄𝐹 ⟩. On the other
and, by Definition 3.1 we have 1 = {(1)} and according to Notation 3.3 we have 𝓁1 = 𝓁2 = 1 and 𝛼(1) = 2. This concludes (3.3)
or 𝑁 = 1.

Now suppose that (3.3) is true for 𝑁 = 𝐿. This means that 𝐷̄𝐿
ℎ̄
𝑓 (𝐹 ) is equal to the summation over 𝑖 ∈ 𝑁 of quantities of

he form ⟨𝜕𝓁1𝑓 (𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⟩ which are one-to-one corresponding to the branches in 𝐿. Consider a generic term in this
ummation and differentiate it in a direction ℎ ∈ ̄. Dropping the superscript 𝑖 in 𝓁𝑖

𝑟 for notational sake, we get

𝐷̄ℎ̄

(

⟨𝜕𝓁1𝑓 (𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⟩

)

= ⟨𝜕𝓁1+1𝑓 (𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⊗ 𝐷̄ℎ̄𝐹 ⟩

+ ⟨𝜕𝓁1𝑓 (𝐹 ), 𝐷̄𝓁2+1
ℎ̄

𝐹 ⊗⋯⊗ 𝐷̄
𝓁𝛼𝑖
ℎ̄

𝐹 ⟩ +⋯ + ⟨𝜕𝓁1𝑓 (𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖+1

ℎ̄
𝐹 ⟩. (3.5)

ne can relate relation (3.5) to our tree Definition 3.1 in the following way. Namely in the recursive step (ii) in Definition 3.1, from
𝐿 we have created a new tree by adding labeled offsprings to the branch 𝑖. Specifically we add the branches (𝑖, 1), (𝑖, 2), . . . , (𝑖, 𝛼𝑖),

nd we set 𝛼(𝑖,1) = 𝛼𝑖 + 1 and 𝛼(𝑖,𝑟) = 𝛼𝑖 for 𝑟 = 2,… , 𝛼𝑖. This shows that after differentiation, the term corresponding to the branch 𝑖
s replaced by 𝛼𝑖 terms corresponding to the branches: (𝑖, 1), (𝑖, 2),. . . , (𝑖, 𝛼𝑖). These are exactly the branches in 𝐿+1 which overlap
ith 𝑖 in the first |𝑖| vertices. Here the sum (3.5) can also be written as

∑

⟨𝜕𝓁
𝑗
1𝑓 (𝐹 ), 𝐷̄

𝓁𝑗2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝑗𝛼𝑗
ℎ̄

𝐹 ⟩,
7

𝑗∈𝐾𝑖
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where the branches 𝑗 sit in a set 𝐾𝑖 defined by

𝐾𝑖 = {(𝑖, 𝑟) ∶ 1 ≤ 𝑟 ≤ 𝛼𝑖}.

umming all those contributions we get

𝐷̄𝐿+1
ℎ̄

𝑓 (𝐹 ) =
∑

𝑖∈𝐿

∑

𝑗∈𝐾𝑖

⟨𝜕𝓁
𝑗
1𝑓 (𝐹 ), 𝐷̄

𝓁𝑗2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝑗𝛼𝑗
ℎ̄

𝐹 ⟩, (3.6)

rom which it is easily seen that (3.3) holds up to order 𝐿 + 1. This finishes our induction procedure for (3.3).
Let us now consider (3.4). First, it is easy to verify that (3.4) holds for 𝑁 = 1. Next suppose that (3.4) is true for 𝑁 = 𝐿. Let us

ow differentiate the terms in 𝑀1(𝐿) on the right-hand side of (3.4). Still writing 𝓁𝑟 instead of 𝓁𝑖
𝑟 for notational sake, we get:

𝐷̄ℎ̄

(

⟨(𝜕𝓁1𝑓 ⋅ 𝑔)(𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⟩

)

= 𝐻 𝑖
1 +𝐻 𝑖

2, (3.7)

here the term 𝐻 𝑖
1 takes care of the differentiation of 𝑔(𝐹 ) in the left side of (3.7), while 𝐻 𝑖

2 corresponds to the differentiation of
𝓁1𝑓 (𝐹 ) and 𝐷̄𝓁𝑟

ℎ̄
𝐹 . Specifically, we get

𝐻 𝑖
1 = ⟨𝜕𝓁1𝑓 (𝐹 ), 𝐷̄𝓁2

ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⟩ ⋅ 𝐷̄ℎ̄𝑔(𝐹 ),

hile 𝐻 𝑖
2 is obtained similarly to (3.5) as

𝐻 𝑖
2 = ⟨(𝜕𝓁1+1𝑓 ⋅ 𝑔)(𝐹 ), 𝐷̄𝓁2

ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⊗⋯⊗ 𝐷̄ℎ̄𝐹 ⟩

+ ⟨(𝜕𝓁1𝑓 ⋅ 𝑔)(𝐹 ), 𝐷̄𝓁2+1
ℎ̄

𝐹 ⊗⋯⊗ 𝐷̄
𝓁𝛼𝑖
ℎ̄

𝐹 ⟩ +⋯ + ⟨(𝜕𝓁1𝑓 ⋅ 𝑔)(𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖+1

ℎ̄
𝐹 ⟩.

ow we follow the same argument as the one leading to (3.6) to get
∑

𝑖∈𝐿

𝐻 𝑖
2 =

∑

𝑖∈𝐿+1

⟨(𝜕𝓁1𝑓 ⋅ 𝑔)(𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝛼𝑖
ℎ̄

𝐹 ⟩ = 𝑀1(𝐿 + 1). (3.8)

n order to complete the induction proof it remains to show that
∑

𝑖∈𝐿

𝐻 𝑖
1 + 𝐷̄ℎ̄𝑀2(𝐿) = 𝑀2(𝐿 + 1). (3.9)

or this purpose we consider the map from 𝑖 ∈ 𝐿 to (𝑖, 1). It is clear that this is a one-to-one mapping. We conclude from this
ne-to-one correspondence that

∑

𝑖∈𝐿

𝐻 𝑖
1 =

∑

𝑗=(𝑖,1)∶ 𝑖∈𝐿

⟨𝜕𝓁
𝑗
1−1𝑓 (𝐹 ), 𝐷̄

𝓁𝑗2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝑗𝛼𝑗−1

ℎ̄
𝐹 ⊗ 𝐷̄

𝓁𝑗𝛼𝑗
ℎ̄

𝑔(𝐹 )⟩, (3.10)

here we recall that according to Notation 3.3 we have 𝓁𝑗
𝛼𝑗 = 1 for 𝑗 = (𝑖, 1).

We turn to the second summation 𝑀2(𝐿) in (3.4). Note that each term in (3.4) corresponds to a couple (𝑖; 𝑟) where 𝑖 is a branch
n 𝐿 and 𝑟 ∈ {2,… , 𝛼𝑖} denotes the position for which a term of the form 𝐷̄𝓁𝑖𝑟

ℎ̄
𝑔(𝐹 ) shows up. By differentiating 𝑀2(𝐿) we see that

he term corresponding to the couple (𝑖; 𝑟) is replaced by the terms corresponding to ((𝑖, 1); 𝑟), ((𝑖, 2); 𝑟), . . . , ((𝑖, 𝛼𝑖); 𝑟). Precisely, we
ave

𝐷̄ℎ̄𝑀2(𝐿) =
∑

(𝑗;𝑟)∈2,𝐿

⟨𝜕𝓁1−1𝑓 (𝐹 ), 𝐷̄𝓁2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄𝓁𝑟

ℎ̄
𝑔(𝐹 )⊗⋯⊗ 𝐷̄

𝓁𝛼𝑗
ℎ̄

𝐹 ⟩, (3.11)

here

2,𝐿 =
⋃

𝑖∈𝐿

𝛼𝑖
⋃

𝑟=2
{((𝑖, 1); 𝑟), ((𝑖, 2); 𝑟),… , ((𝑖, 𝛼𝑖); 𝑟)}.

bserve that in a similar way we can also write (3.10) as
∑

𝑖∈𝐿

𝐻 𝑖
1 =

∑

(𝑗;𝑟)∈1,𝐿

⟨𝜕𝓁
𝑗
1−1𝑓 (𝐹 ), 𝐷̄

𝓁𝑗2
ℎ̄
𝐹 ⊗⋯⊗ 𝐷̄

𝓁𝑗𝛼𝑗−1

ℎ̄
𝐹 ⊗ 𝐷̄

𝓁𝑗𝛼𝑗
ℎ̄

𝑔(𝐹 )⟩, (3.12)

here

1,𝐿 =
⋃

𝑖∈𝐿

{((𝑖, 1); 𝛼𝑖 + 1)} =
⋃

𝑖∈𝐿

{((𝑖, 1); 𝛼(𝑖,1))}.

On the other hand, note that 𝛼(𝑖,2) = ⋯ = 𝛼(𝑖,𝛼𝑖) = 𝛼𝑖, and 𝛼(𝑖,1) = 𝛼𝑖 + 1. Therefore, we can express the tree 𝐿+1 as follows:

⋃

𝑖∈𝐿+1

𝛼𝑖
⋃

𝑟=2
{(𝑖; 𝑟)} = 2,𝐿 ∪ 1,𝐿. (3.13)

Observe that 1,𝐿 and 2,𝐿 corresponds to the terms in 𝐻 𝑖
2 and 𝐷̄ℎ̄𝑀2(𝐿) thanks to (3.12) and (3.11), while the set

𝑖∈𝐿+1

⋃𝛼𝑖
𝑟=2{(𝑖; 𝑟)} corresponds to the terms in 𝑀2(𝐿+ 1). We conclude from identity (3.13) that relation (3.9) holds. The proof is

ow complete. □
8
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3.3. An expression for the Malliavin derivatives of the Euler scheme

In this subsection we come back to the solution 𝑦 of our rough differential equation (1.1). However, for notational sake, we shall
mit from now the drift term 𝑉0 in (1.1). Therefore we are reduced to an equation of the form

𝑦𝑡 = 𝑎 +
𝑑
∑

𝑖=1
∫

𝑡

0
𝑉𝑖(𝑦𝑠)𝑑𝑥𝑖𝑠 . (3.14)

The corresponding Euler scheme 𝑦𝑛 (given by (1.2)) can now be expressed as:

𝛿𝑦𝑛𝑡𝑘𝑡𝑘+1 = 𝑉 (𝑦𝑛𝑡𝑘 )𝑥
1
𝑡𝑘𝑡𝑘+1

+ 1
2

𝑑
∑

𝑗=1
𝜕𝑉𝑗𝑉𝑗 (𝑦𝑛𝑡𝑘 )𝛥

2𝐻 , (3.15)

where we recall that 𝛥 = 𝑇 ∕𝑛 and 𝑡𝑘 = 𝑘𝛥, where the notation 𝑥1 = 𝛿𝑥 is introduced in Definition 2.1, and where we have used the
notation in (1.3) for the quantities 𝜕𝑉𝑗𝑉𝑗 (𝑦). Notice that for 𝑡 ∈ [[0, 𝑇 ]], the approximation 𝑦𝑛𝑡 can also be written as

𝑦𝑛𝑡 = 𝑦0 +
∑

0≤𝑡𝑘<𝑡
𝑉 (𝑦𝑛𝑡𝑘 )𝑥

1
𝑡𝑘𝑡𝑘+1

+ 1
2

∑

0≤𝑡𝑘<𝑡

𝑑
∑

𝑗=1
𝜕𝑉𝑗𝑉𝑗 (𝑦𝑛𝑡𝑘 )𝛥

2𝐻 . (3.16)

Remark 3.12. In the general case taking 𝑉0 into account, Eq. (1.1) can be written as

𝑑𝑦𝑡 = 𝑉 (𝑦𝑡)𝑑𝑥̃, 𝑦0 = 𝑎,

here 𝑉 (𝑦𝑡) = (𝑉0(𝑦𝑡), 𝑉 (𝑦𝑡)) and 𝑥̃𝑡 = (𝑡, 𝑥𝑡). Similarly, the Euler scheme (3.15) becomes:

𝛿𝑦𝑛𝑡𝑘𝑡𝑘+1 = 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥̃𝑡𝑘𝑡𝑘+1 +
1
2

𝑑
∑

𝑗=1
𝜕𝑉𝑗𝑉𝑗 (𝑦𝑛𝑡𝑘 )𝛥

2𝐻 .

Therefore, our discussions in this paper stays unchanged except that the products 𝑉 (𝑦𝑡)𝑑𝑥𝑡 and 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 are replaced by 𝑉 (𝑦𝑡)𝑑𝑥̃𝑡
and 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥̃𝑡𝑘𝑡𝑘+1 .

The aim of this section is to find a proper expression for the Malliavin derivatives of 𝑦𝑛.

Remark 3.13. In order to show upper bounds on Malliavin derivatives ‖𝐷̄𝐿𝑦𝑛𝑡 ‖̄⊗𝐿 of the Euler scheme we borrow Inamaha’s
pproach in [15]. However, a very special attention to combinatoric issues will have to be paid, due to the fact that we are
onsidering a discrete equation. We have prepared the ground for this in Sections 3.1 and 3.2. Furthermore, note that the uniform
ontinuity in 𝑛 of Lyons-Itô’s map fails in our discrete context. Hence the upper-bound estimates for Eq. (3.15) have to be treated
ifferently for small and large step sizes of the Euler scheme; see Section 4.2.

emark 3.14. Note that since the Euler scheme 𝑦𝑛 is the result of a finite iteration, the existence of Malliavin derivatives is easily
btained via an induction argument. Precisely, assuming that 𝑦𝑛𝑡𝑘 ∈ D𝐿,2, then by relation (3.15) we have:

𝐷𝐿𝑦𝑛𝑡𝑘+1 = 𝐷𝐿𝑦𝑛𝑡𝑘 +𝐷𝐿[𝑉 (𝑦𝑛𝑡𝑘 )𝑥
1
𝑡𝑘𝑡𝑘+1

] + 1
2

𝑑
∑

𝑗=1
𝐷𝐿[𝜕𝑉𝑗𝑉𝑗 (𝑦𝑛𝑡𝑘 )]𝛥

2𝐻 . (3.17)

Given that 𝑉 and its derivatives up to order 𝐿 are continuous and bounded, the right-hand side of (3.17) also belongs to D𝐿,2. It
follows that we have 𝑦𝑛𝑡𝑘+1 ∈ D𝐿,2.

One of the basic ideas in [15] is to use an independent copy 𝑏 of the fBm 𝑥 in order to obtain norms in the Cameron–Martin
space ̄. With this consideration in mind, we now define a family of processes which will be at the heart of our computations of
Malliavin derivatives. We start by introducing a family of operators which will be useful for our future definitions.

Notation 3.15. Let 𝑦𝑛 be the numerical scheme defined in (3.15). Let 𝑓 ∶ R𝑚 → R be a smooth function. For each 𝑙 = 1,… , 𝐿, we let
𝑙
𝑡 , 𝑡 ∈ [[0, 𝑇 ]] be a process with values in R𝑚. We denote the process 𝜉𝑡 = (𝜉1𝑡 ,… , 𝜉𝐿𝑡 ) ∈ R𝐿𝑚, 𝑡 ∈ [[0, 𝑇 ]].

Recall that the trees 𝐿 are introduced in Definition 3.1. For each 𝑖 ∈ 𝐿 we denote by 𝑐𝐿,𝑖 and 𝑐𝐿,𝑖 some constant depending on 𝐿
and 𝑖. Also recall our Notations 3.6–3.7. For 𝓁1 = 𝓁𝑖

1 corresponding to a branch 𝑖 ∈ 𝐿, we have to consider 𝜕𝓁1𝑓 (𝑦) as an element of
((R𝑚)⊗𝓁1 ;R). In addition, still for a branch 𝑖 ∈ 𝐿, owing to the relation 𝓁1 = 𝛼𝑖 − 1 we have 𝜉𝓁2𝑠 ⊗⋯⊗ 𝜉

𝓁𝛼𝑖
𝑠 ∈ (R𝑚)⊗(𝛼𝑖−1) = (R𝑚)⊗𝓁1 .

With these elementary algebra considerations in mind, we define the following notation

𝐿
𝜉,𝑐𝑓 (𝑦

𝑛
𝑡𝑘
) ∶=

∑

𝑖∈𝐿

𝑐𝐿,𝑖⟨𝜕
𝓁1𝑓 (𝑦𝑛𝑡𝑘 ), 𝜉

𝓁2
𝑡𝑘

⊗⋯⊗ 𝜉
𝓁𝛼𝑖
𝑡𝑘

⟩

=
∑

𝑐𝐿,𝑖
𝑚
∑

𝜉𝓁2 ,𝑝1𝑡𝑘
⋯ 𝜉

𝓁𝛼𝑖 ,𝑝𝓁1
𝑡𝑘

𝜕𝓁1𝑓 (𝑦𝑛𝑡𝑘 )

𝜕𝑦(𝑝𝓁1 ) ⋯ 𝜕𝑦(𝑝1)
. (3.18)
9
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Moreover, for smooth functions 𝑓 ∶ R𝑚 → R and 𝑔 ∶ R𝑚 → R𝑚 we set

̄𝐿
𝜉,𝑐 (𝜕𝑓 ⋅ 𝑔)(𝑦𝑛𝑡𝑘 ) ∶=

∑

𝑖∈𝐿

𝑐𝐿,𝑖⟨(𝜕𝓁1+1𝑓 ⋅ 𝑔)(𝑦𝑛𝑡𝑘 ), 𝜉
𝓁2
𝑡𝑘

⊗⋯⊗ 𝜉
𝓁𝛼𝑖
𝑡𝑘

⟩

+
∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖⟨𝜕

𝓁1𝑓 (𝑦𝑛𝑡𝑘 ), 𝜉
𝓁2
𝑡𝑘

⊗⋯⊗ 𝓁𝑟
𝜉,𝑐𝑔(𝑦

𝑛
𝑡𝑘
)⊗⋯⊗ 𝜉

𝓁𝛼𝑖
𝑡𝑘

⟩, (3.19)

̃𝐿
𝜉,𝑐,𝑐 (𝜕𝑓 ⋅ 𝑔)(𝑦𝑛𝑡𝑘 ) =

∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖⟨𝜕

𝓁1𝑓 (𝑦𝑛𝑡𝑘 ), 𝜉
𝓁2
𝑡𝑘

⊗⋯⊗ 𝓁𝑟−1
𝜉,𝑐 𝑔(𝑦𝑛𝑡𝑘 )⊗⋯⊗ 𝜉𝓁𝛼𝑖

𝑡𝑘
⟩, (3.20)

here

𝜕𝓁1+1𝑓 ⋅ 𝑔(𝑦) =
⎛

⎜

⎜

⎝

𝑚
∑

𝑝𝓁1+1=1

𝜕𝓁1+1𝑓 (𝑦)

𝜕𝑦(𝑝𝓁1+1) ⋯ 𝜕𝑦(𝑝1)
𝑔𝑝𝓁1+1 (𝑦), 𝑝1,… , 𝑝𝓁1 = 1,… , 𝑚

⎞

⎟

⎟

⎠

and

⟨𝜕𝓁1+1𝑓 ⋅ 𝑔(𝑦𝑛𝑡𝑘 ), 𝜉
𝓁2
𝑡𝑘

⊗⋯⊗ 𝜉
𝓁𝛼𝑖
𝑡𝑘

⟩ =
𝑚
∑

𝑝1 ,…,𝑝𝓁1+1=1
𝜉𝓁2 ,𝑝1𝑡𝑘

⋯ 𝜉
𝓁𝛼𝑖 ,𝑝𝓁1
𝑡𝑘

𝜕𝓁1+1𝑓 (𝑦𝑛𝑡𝑘 )

𝜕𝑦(𝑝𝓁1+1) ⋯ 𝜕𝑦(𝑝1)
𝑔𝑝𝓁1+1 (𝑦𝑛𝑡𝑘 ).

We also set 0
𝜉,𝑐 = ̄0

𝜉,𝑐 = Id and ̃0
𝜉,𝑐,𝑐 = ̃−1

𝜉,𝑐,𝑐 = −1
𝜉,𝑐 = ̄−1

𝜉,𝑐 = 0.

In order to be able to differentiate our processes of interest in the Malliavin calculus sense, let us label the following regularity
assumption on the vector fields 𝑉𝑖.

Hypothesis 3.16. The vector fields 𝑉1,… , 𝑉𝑑 are 𝐶 (𝐿+2)∨3
𝑏 (R𝑚) (bounded together with all their derivatives up to order (𝐿+2) ∨ 3)

for 𝐿 ≥ 0.

We can now define a family of paths which will encode the expressions for the Malliavin derivatives of the Euler scheme.

Definition 3.17. For 𝑛 ≥ 1 we consider the Euler scheme 𝑦𝑛 given by (3.15), and recall that 𝑏 designates a fBm independent of 𝑥.
Let 𝐿, ̄𝐿, ̃𝐿 be the operators introduced in Notation 3.15. Then for 𝐿 ≥ 0 we define a discrete process 𝛯𝐿 defined for 𝑡 = 𝑡𝑘 and
taking values in R𝑚, given similarly to (3.16) by the iterative equation

𝛿𝛯𝐿
𝑡𝑘𝑡𝑘+1

= 𝐿
𝛯,𝑐𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 + 𝐿−1

𝛯,𝑐 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑏𝑡𝑘𝑡𝑘+1

+1
2

𝑑
∑

𝑗=1
̄𝐿
𝛯,𝑐

(

𝜕𝑉𝑗 ⋅ 𝑉𝑗
)

(𝑦𝑛𝑡𝑘 )𝛥
2𝐻 + 1

2

𝑑
∑

𝑗=1
̃𝐿−1
𝛯,𝑐,𝑐

(

𝜕𝑉𝑗 ⋅ 𝑉𝑗
)

(𝑦𝑛𝑡𝑘 )𝛥
2𝐻 , (3.21)

r in the integral form

𝛯𝐿
𝑡 = 𝛯𝐿

𝑡0
+

∑

𝑡0≤𝑡𝑘<𝑡
𝐿
𝛯,𝑐𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 +

∑

𝑡0≤𝑡𝑘<𝑡
𝐿−1
𝛯,𝑐 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑏𝑡𝑘𝑡𝑘+1

+1
2

∑

𝑡0≤𝑡𝑘<𝑡

𝑑
∑

𝑗=1
̄𝐿
𝛯,𝑐

(

𝜕𝑉𝑗 ⋅ 𝑉𝑗
)

(𝑦𝑛𝑡𝑘 )𝛥
2𝐻 + 1

2
∑

𝑡0≤𝑡𝑘<𝑡

𝑑
∑

𝑗=1
̃𝐿−1
𝛯,𝑐,𝑐

(

𝜕𝑉𝑗 ⋅ 𝑉𝑗
)

(𝑦𝑛𝑡𝑘 )𝛥
2𝐻 ,

where 𝑡0 ∈ [[0, 𝑇 ]] is the initial time of the iteration equation and 𝑐 = (𝑐𝐿,𝑖, 𝑖 ∈ 𝐿) and 𝑐 = (𝑐𝐿,𝑖, 𝑖 ∈ 𝐿) are some constants.
Note that we apply 𝐿

𝛯,𝑐 to every component of 𝑉 (i.e. 𝑓 = 𝑉 𝑖
𝑗 for each 𝑖 and 𝑗) in order to get a R𝑚-valued element

𝐿
𝛯,𝑐𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 in the right-hand side of (3.21). Precisely, we have 𝐿

𝛯,𝑐𝑉 (𝑦) = (𝐿
𝛯,𝑐𝑉

𝑖
𝑗 , 𝑖 = 1… , 𝑚, 𝑗 = 1,… , 𝑑). ̄𝐿

𝛯,𝑐 (𝜕𝑉𝑗 ⋅ 𝑉𝑗 )(𝑦)
and ̃𝐿

𝛯,𝑐,𝑐 (𝜕𝑉𝑗 ⋅ 𝑉𝑗 )(𝑦) should be interpreted in the same way.

We now state our general expression for the Malliavin derivatives of the Euler scheme. In the following, for conciseness we drop
the subscript (𝛯, 𝑐) of 𝐿

𝛯,𝑐 and simply write 𝐿. This simplification is also applied to ̄𝐿
𝛯,𝑐 and ̃𝐿

𝛯,𝑐,𝑐 .

Lemma 3.18. For 𝑛 ≥ 1 let 𝑦𝑛 be the Euler scheme defined by (3.16). Assume that Hypothesis 3.16 holds for 𝐿 ≥ 1. Recall that a notation
𝐷̄ℎ̄ has been introduced in Section 2.2 for the Malliavin derivative with respect to the fBm 𝑥. We also write 𝐷̂ℎ̄ for the directional derivative
with respect to the independent fBm 𝑏. Let 𝛯𝐿 be the process introduced in Definition 3.17 with 𝑐𝐿,𝑖 = 𝑐𝐿,𝑖 =

𝓁2!⋯𝓁𝛼𝑖 !
𝐿! for all 𝑖 ∈ 𝐿. Then

for all 𝑡 ∈ [[0, 𝑇 ]] the iterated derivative (2.14) of 𝑦𝑛𝑡 can be expressed as

𝐷̄𝐿
ℎ̄
𝑦𝑛𝑡 = 𝐷̂𝐿

ℎ̄
𝛯𝐿
𝑡 . (3.22)

Proof. According to Definition 3.17 and recalling our convention −1 = ̃−1 = 0, it is straightforward to see that 𝛯0 = 𝑦𝑛.
For 𝐿 ≥ 1, consider the process 𝛯𝐿 defined by (3.21). Our next endeavor is to find a difference equation satisfied by 𝐷̂𝐿𝛯𝐿. To

this aim we differentiate the terms in the right-hand side of (3.21). Note that 𝑦𝑛 does not depend on 𝑏 and therefore 𝐷̂
[

𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 )
]

= 0.
𝓁 𝑏
10

We now prove that 𝛯 belongs to the 𝓁th Wiener chaos of 𝑏, which will be denoted by 𝓁 (similarly to that of 𝑥 in Section 2.2).
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This can be done recursively on 𝐿 using relation (3.21). Namely we assume that 𝛯𝑝
𝑡𝑘
∈ 𝑏

𝑝 for all 𝑝 ≤ 𝐿 − 1. It can be checked that
the terms on the right-hand side of (3.21) belongs to 𝑏

𝐿. For sake of conciseness, let us focus on the following term of (3.21) (the
other terms being left to the patient reader):

𝐿−1
𝛯,𝑐 𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑏𝑡𝑘𝑡𝑘+1 =

∑

𝑖∈𝐿−1

𝑐𝐿−1,𝑖
⟨

𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 ), 𝛯
𝓁2
𝑡𝑘

⊗⋯⊗𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩

𝛿𝑏𝑡𝑘𝑡𝑘+1 . (3.23)

y the induction assumption the generic term on the right-hand side of (3.23) is in the chaos

𝑏
∑𝛼𝑖

𝑝=2 𝓁𝑝+1
= 𝑏

(𝐿−1)+1 = 𝑏
𝐿, (3.24)

here we have invoked Remark 3.4 for the second equation. Relation (3.24) thus proves that 𝛯𝓁
𝑡𝑘
∈ 𝑏

𝓁 by induction. In particular,
̂ 𝓁′
ℎ̄
𝛯𝓁 = 0 if 𝓁′ > 𝓁.

In order to differentiate the right-hand side of (3.21), we need to differentiate generic terms of the form 𝛯𝓁2
𝑡𝑘

⊗ ⋯ ⊗ 𝛯
𝓁𝛼𝑖
𝑡𝑘

for
∈ 𝐿. It is easily seen that

𝐷̂𝐿
ℎ̄

(

𝛯𝓁2
𝑡𝑘

⊗⋯⊗𝛯
𝓁𝛼𝑖
𝑡𝑘

)

=
∑

(𝑝2 ,…,𝑝𝛼𝑖 )∶𝑝2+⋯+𝑝𝛼𝑖=𝐿

𝐿!
𝑝2!⋯ 𝑝𝛼𝑖 !

𝐷̂𝑝2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝑝𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

.

owever, if (𝑝2,… , 𝑝𝛼𝑖 ) ≠ (𝓁𝑖
2,… ,𝓁𝑖

𝛼𝑖
), at least one of the 𝓁𝑖

𝑗 will be larger than 𝑝𝑗 , yielding a null contribution. Therefore the only
surviving term in the sum above is

𝐷̂𝐿
ℎ̄
[𝛯𝓁2

𝑡𝑘
⊗⋯⊗𝛯

𝓁𝛼𝑖
𝑡𝑘

] = 𝐿!
𝓁2!⋯𝓁𝛼𝑖 !

⋅ 𝐷̂𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

. (3.25)

he reader is referred to [15] for more details about the above computation. Note that the number of ways to assign the 𝐿 operators
̂ ℎ̄,. . . , 𝐷̂ℎ̄ into groups of sizes 𝓁2,. . . , 𝓁𝛼𝑖 is 𝐿!

𝓁2!⋯𝓁𝛼𝑖 !
, which explains the multiplicative constant in the equation.

With (3.25) in hand, we are now ready to differentiate the right-hand side of (3.21). For the first term, using definition (3.18)
of 𝐿 we get

𝐷̂𝐿
ℎ̄
𝐿𝑉 (𝑦𝑛𝑡𝑘 ) =

∑

𝑖∈𝐿

⟨𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷̂
𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩.

Along the same lines and resorting to (3.19) for the definition of ̄𝐿, it is easily checked that

𝐷̂𝐿
ℎ̄
̄𝐿(𝜕𝑉 ⋅ 𝑉 )(𝑦𝑛𝑡𝑘 ) =

∑

𝑖∈𝐿

⟨(𝜕𝓁1+1𝑉 ⋅ 𝑉 )(𝑦𝑛𝑡𝑘 ), 𝐷̂
𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩

+
∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
⟨𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷̂

𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂𝓁𝑟
ℎ̄
𝓁𝑟𝑉 (𝑦𝑛𝑡𝑘 )⊗⋯⊗ 𝐷̂

𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩.

Similarly, for the second term on the right-hand side of (3.21), we end up with

𝐷̂𝐿
ℎ̄
𝐿−1𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑏𝑡𝑘𝑡𝑘+1 = 𝐿

∑

𝑖∈𝐿−1

⟨𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷̂
𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⊗ 𝛿ℎ̄𝑡𝑘𝑡𝑘+1 ⟩.

Note also that the fourth term on the right-hand side of (3.21) is in the (𝐿 − 2)th chaos of 𝑏 and thus has zero 𝐷̂𝐿 derivative.
Differentiating both sides of (3.21) and taking into account the above computations, we have thus obtained

𝐷̂𝐿
ℎ̄
𝛯𝐿
𝑡 =

∑

0≤𝑡𝑘<𝑡

∑

𝑖∈𝐿

⟨𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷̂
𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩𝛿𝑥𝑡𝑘𝑡𝑘+1

+ 𝐿
∑

0≤𝑡𝑘<𝑡

∑

𝑖∈𝐿−1

⟨𝜕𝓁1𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷̂
𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⊗ 𝛿ℎ̄𝑡𝑘𝑡𝑘+1 ⟩ (3.26)

+ 1
2

∑

0≤𝑡𝑘<𝑡

𝑑
∑

𝑗=1

∑

𝑖∈𝐿

(

⟨(𝜕𝓁1+1𝑉𝑗 ⋅ 𝑉𝑗 )(𝑦𝑛𝑡𝑘 ), 𝐷̂
𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂
𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩

+
𝛼𝑖
∑

𝑟=2
⟨𝜕𝓁1𝑉𝑗 (𝑦𝑛𝑡𝑘 ), 𝐷̂

𝓁2
ℎ̄
𝛯𝓁2
𝑡𝑘

⊗⋯⊗ 𝐷̂𝓁𝑟
ℎ̄
𝓁𝑟𝑉𝑗 (𝑦𝑛𝑡𝑘 )⊗⋯⊗ 𝐷̂

𝓁𝛼𝑖
ℎ̄

𝛯
𝓁𝛼𝑖
𝑡𝑘

⟩

)

𝛥2𝐻 .

Let us now differentiate 𝑦𝑛𝑡 according to its definition (3.16). To this aim resorting to the fact that 𝛿𝑥𝑡𝑘𝑡𝑘+1 is in the first chaos of 𝑥,
we get

𝐷̄𝐿
ℎ̄
𝑦𝑛𝑡 =

∑

0≤𝑡𝑘<𝑡
𝐷̄𝐿

ℎ̄
𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 + 𝐿

∑

0≤𝑡𝑘<𝑡
𝐷̄𝐿−1

ℎ̄
𝑉 (𝑦𝑛𝑡𝑘 )𝛿ℎ̄𝑡𝑘𝑡𝑘+1

+1
2

∑

0≤𝑡𝑘<𝑡

𝑑
∑

𝑗=1
𝐷̄𝐿

ℎ̄

[

(

𝜕𝑉𝑗 ⋅ 𝑉𝑗
)

(𝑦𝑛𝑡𝑘 )
]

𝛥2𝐻 . (3.27)

Next we differentiate the terms 𝑉 (𝑦𝑛𝑡𝑘 ) and (𝜕𝑉𝑗 ⋅ 𝑉𝑗 )(𝑦𝑛𝑡𝑘 ) thanks to Lemma 3.8. It is readily checked that we get exactly the same
expression as (3.26). This shows our claim (3.22) and finishes our proof. □
11
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4. Upper-bound estimates of Malliavin derivatives of the Euler scheme

In Section 2.2 we have recalled some known results on the Malliavin derivative of the solution 𝑦 to (1.1). Note that upper bounds
for higher order derivatives of 𝑦 are obtained in [4,15]. With the preparation in Section 3 we are ready to extend those estimates
to the Euler scheme approximations 𝑦𝑛.

4.1. Some auxiliary results

This subsection is dedicated to some necessary auxiliary results. Throughout the subsection we fix an integer 𝑁 > 0. Recall that
𝐿 is defined by the iterative equation in Definition 3.17. We start by introducing a process related to 𝛯𝐿, 𝐿 = 0, 1,… , 𝑁 . In the

following we assume that Hypothesis 3.16 holds with 𝐿 replaced by 𝑁 . Namely, we assume that 𝑉 ∈ 𝐶 (𝑁+2)∨3(R𝑚).

efinition 4.1. For each 𝑠 ∈ [0, 𝑇 ] we define 𝑃𝐿
𝑠 to be the maximum among the quantities of the form |𝛯 𝑖1

𝑠 | × ⋯ × |𝛯
𝑖𝑁0
𝑠 | with

0 > 0 such that 𝑖1,… , 𝑖𝑁0
∈ {1,… , 𝐿} and 𝑖1 +⋯ + 𝑖𝑁0

≤ 𝐿. We also define 𝑃 0 ≡ 1 and 𝑃−1 ≡ 0.

The following result follows immediately from the definition of 𝑃𝐿:

emma 4.2. The following three inequalities hold for 𝑠 ∈ [[0, 𝑇 ]]:

𝑃𝐿 ≥ 𝑃𝐿′
, 𝑃𝐿

𝑠 × 𝑃𝐿′
𝑠 ≤ 𝑃𝐿+𝐿′

𝑠 for 𝐿 ≥ 𝐿′ ≥ 0, and |𝛯𝐿
𝑠 | ≤ 𝑃𝐿

𝑠 for 𝐿 ≥ 1.

Let us now fix some constants which we will make extensive use of: For 𝑓 ∈ 𝐶𝑁+2
𝑏 , 𝑁 ∈ N we set

𝐶0
𝑓 = sup

𝜏≤𝑁+2
‖𝜕𝜏𝑓‖∞, (4.1)

here ‖ ⋅ ‖∞ denotes the sup norm for continuous functions. Also recall that for 𝑖 ∈ 𝐿 the constants 𝛼𝑖 and 𝑐𝐿,𝑖 are defined
espectively in Notation 3.3 and Lemma 3.18, and 𝐶0

𝑉 is defined in (4.1). Then for 𝐿 = 1, 2,… , 𝑁 we define

𝐶1
𝐿,𝑉 =

∑

𝑖∈𝐿

𝑐𝐿,𝑖𝐶
0
𝑉 , 𝐶1

0,𝑉 = 𝐶0
𝑉 , 𝐶1

−1,𝑉 = 0, (4.2)

𝐶2
𝐿,𝑉 =

∑

𝑖∈𝐿

𝑐𝐿,𝑖𝐶
0
𝑉

(

𝐶0
𝑉 +

𝛼𝑖
∑

𝑟=2
𝐶1
𝓁𝑟 ,𝑉

)

, 𝐶2
0,𝑉 = 2(𝐶0

𝑉 )
2, 𝐶2

−1,𝑉 = 0, (4.3)

𝐶3
𝐿,𝑉 =

∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖𝐶

0
𝑉 𝐶

1
𝓁𝑟−1,𝑉

, 𝐶3
0,𝑉 = 0, 𝐶3

−1,𝑉 = 0. (4.4)

e will also resort to the following constants:

𝐾𝐿
1 = 𝐶1

𝐿,𝑉 + 𝐶1
𝐿−1,𝑉 + 1, 𝐾𝐿

2 = 𝐶2
𝐿,𝑉 + 𝐶2

𝐿−1,𝑉 + 𝐶3
𝐿,𝑉 + 𝐶3

𝐿−1,𝑉 + 1. (4.5)

Next we introduce a family of sets in the following way, for 𝐿 ≥ 1:

𝑆𝐿 = {(𝐿′,𝓁1,… ,𝓁𝐿′ ) ∶ 𝐿′ ∈ N+,𝓁1,… ,𝓁𝐿′ ∈ N+, 𝓁1 +⋯ + 𝓁𝐿′ = 𝐿}.

elated to this definition, we define another family of constants:

𝐶4
𝐿 = max

(𝐿′ ,𝓁1 ,…,𝓁𝐿′ )∈𝑆𝐿
2𝐿+1 ×𝐾𝓁1

1 ×⋯ ×𝐾𝓁𝐿′
1 , (4.6)

nd

𝐶5
𝑓,𝐿 = 2

∑

𝑖∈𝐿

𝑐𝐿,𝑖𝐶
0
𝑓

(

𝐾1
1 +

𝛼𝑖
∑

𝑟=2
𝐾𝓁𝑟

1

)

(1 + 𝐶4
𝐿), 𝐶5

𝑓,0 = 𝐶0
𝑓𝐾

0
1 . (4.7)

emark 4.3. The constants introduced above will appear in our proof for the upper bound of 𝛯𝐿. We will see that because our
roof is an induction argument, it is important to keep track of these constants.

With this additional notation, in the following we derive an upper-bound estimate for the product of 𝛯𝐿.

emma 4.4. Let 𝜔 be a control function on [[0, 𝑇 ]]. Recalling our definition (2.1) for the operator 𝛿, let (𝑠, 𝑢) ∈ 2([[0, 𝑇 ]]) be such that

𝜔(𝑠, 𝑢)1∕𝑝 ≤ 1∕2, and |𝛿𝛯𝐿
𝑠𝑢| ≤ 𝐾𝐿

1 𝑃
𝐿
𝑠 𝜔(𝑠, 𝑢)1∕𝑝, 𝐿 = 1,… , 𝑁. (4.8)

et 𝐿0 ≤ 𝑁 and (𝑁 ′,𝓁1,… ,𝓁𝑁 ′ ) ∈ 𝑆𝐿0
. Then we have

( 𝓁1 𝓁𝑁′
) 4 𝐿0 1∕𝑝
12

|𝛿 𝛯 ⊗⋯⊗𝛯 𝑠𝑢 | ≤ 𝐶𝐿0
⋅ 𝑃𝑠 ⋅ 𝜔(𝑠, 𝑢) . (4.9)
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Proof. We first note that a straightforward computation shows that 𝛿
(

𝛯𝓁1 ⊗⋯⊗𝛯𝓁𝑁′
)

𝑠𝑢 is equal to the summation of products of
he quantities of the forms 𝛯𝓁𝑟

𝑠 and 𝛿𝛯𝓁𝑟
𝑠𝑢 with 𝑟 = 1,… , 𝑁 ′. Apply Lemma 4.2 to 𝛯𝓁𝑟 and condition (4.8) to |𝛿𝛯𝓁𝑟

𝑠𝑡 |. Also take into
ccount that 𝜔(𝑠, 𝑢)1∕𝑝 ≤ 1∕2, according to (4.8). We obtain that each product in the summation is bounded by

(

max
(𝑁 ′ ,𝓁1 ,…,𝓁𝑁′ )∈𝑆𝐿0

𝐾𝓁1
1 ×⋯ ×𝐾𝓁𝑁′

1

)

⋅ 𝑃𝐿0
𝑠 ⋅ 2𝜔(𝑠, 𝑢)1∕𝑝.

ote that there are at most 2𝐿0 − 1 terms in the summation. Hence owing to the definition of 𝐶4
𝐿0

in (4.6) we obtain the desired
stimate (4.9). □

Following is an estimate for the Euler scheme 𝑦𝑛:

emma 4.5. Let 𝜔 be a control function on [[0, 𝑇 ]] and consider the Euler scheme in (3.15). Let (𝑠, 𝑢) ∈ 2([[0, 𝑇 ]]) be such that

|𝛿𝑦𝑛𝑠𝑢| ≤ 𝐾0
1𝜔(𝑠, 𝑢)

1∕𝑝. (4.10)

hen for 0 ≤ 𝐿 ≤ 𝑁 and recalling that 𝐶0
𝑓 is defined by (4.1), we have:

|𝛿
(

𝜕𝐿𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢 | ≤ 𝐶0
𝑓𝐾

0
1𝜔(𝑠, 𝑢)

1∕𝑝.

roof. The lemma follows immediately from the mean value theorem and the condition (4.10). □

Recall that we have defined the solution to (3.14) as the controlled process in (2.6). The following lemma improves our
emma 4.5 when 𝑦 is a discrete controlled process.

emma 4.6. Let 𝜔 be a control function on [[0, 𝑇 ]]. Let (𝑠, 𝑢) ∈ 2([[0, 𝑇 ]]) be such that

|𝛿𝑦𝑛𝑠𝑢| ≤ 𝐾0
1𝜔(𝑠, 𝑢)

1∕𝑝 and |𝛿𝑦𝑛𝑠𝑢 − 𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢| ≤ 𝐾0
2𝜔(𝑠, 𝑢)

2∕𝑝. (4.11)

Then the following relation holds true for 0 ≤ 𝐿 ≤ 𝑁 :

|𝛿
(

𝜕𝐿𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 − (𝜕𝐿+1𝑉 𝑉 )(𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢| ≤ 𝐶0
𝑉
(

𝐾0
1𝐾

0
1 +𝐾0

2
)

𝜔(𝑠, 𝑢)2∕𝑝. (4.12)

roof. The lemma follows from the application of an obvious second order Taylor expansion, as well as the conditions in (4.11).
recisely, let 𝑓 be a continuous function from R𝑚 ↦ R whose first- and second-order derivatives exist and are continuous. Then the
lementary mean value theorem shows that we have the relation:

|𝑓 (𝑏) − 𝑓 (𝑎) − 𝜕𝑓 (𝑎)(𝑏 − 𝑎)| ≤ ‖𝜕2𝑓‖∞ ⋅ |𝑏 − 𝑎|2. (4.13)

aking 𝑓 = 𝜕𝐿𝑉 , 𝑎 = 𝑦𝑛𝑠 and 𝑏 = 𝑦𝑛𝑢 in (4.13) we obtain the relation:

|𝛿
(

𝜕𝐿𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 − 𝜕𝐿+1𝑉 (𝑦𝑛𝑠 )𝛿𝑦
𝑛
𝑠𝑢| ≤ ‖𝜕𝐿+2𝑉 ‖∞ ⋅ |𝛿𝑦𝑛𝑠𝑢|

2

≤ 𝐶0
𝑉 ⋅ |𝐾0

1 |
2𝜔(𝑠, 𝑢)2∕𝑝,

here in the second inequality we have used the first condition in (4.11) and the fact that ‖𝜕𝐿+2𝑉 ‖∞ ≤ 𝐶0
𝑉 . In order to prove (4.12)

t thus remains to show that

|𝜕𝐿+1𝑉 (𝑦𝑛𝑠 )𝛿𝑦
𝑛
𝑠𝑢 − (𝜕𝐿+1𝑉 𝑉 )(𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢| ≤ 𝐶0

𝑉 ⋅𝐾0
2𝜔(𝑠, 𝑢)

2∕𝑝. (4.14)

t is easy to see that (4.14) follows by applying the second condition in (4.11). We thus conclude that (4.12) holds. □

Recall that 𝐿
𝛯,𝑐 , ̄

𝐿
𝛯,𝑐 , ̃

𝐿
𝛯,𝑐,𝑐 are defined in Notation 3.15. For the sake of simplicity we will drop the subscript and write 𝐿,

̄𝐿, ̃𝐿 in the following series of lemmas.

emma 4.7. Recall that 𝑦𝑛 is the numerical scheme given by (3.15), and that Hypothesis 3.16 holds true. For 𝐿 ≥ 0 let 𝐶1
𝐿,𝑉 , 𝐶2

𝐿,𝑉
nd 𝐶3

𝐿,𝑉 be the constants defined by (4.2)–(4.4) and recall that 𝑃𝐿
𝑠 is introduced in Definition 4.1. Then the following holds true for all

∈ [[0, 𝑇 ]] and 𝐿 ≥ 0:

|𝐿𝑉 (𝑦𝑛𝑠 )| ≤ 𝐶1
𝐿,𝑉 𝑃

𝐿
𝑠 , (4.15)

|̄𝐿(𝜕𝑉 𝑉 (𝑦𝑛𝑠 ))| ≤ 𝐶2
𝐿,𝑉 𝑃

𝐿
𝑠 , (4.16)

|̃𝐿(𝜕𝑉 𝑉 )(𝑦𝑛𝑠 )| ≤ 𝐶3
𝐿,𝑉 𝑃

𝐿
𝑠 . (4.17)

roof. An application of Lemma 4.2 to (3.18) yields

|𝐿𝑉 (𝑦𝑛𝑠 )| ≤
∑

𝑐𝐿,𝑖𝐶
0
𝑉 𝑃

𝐿
𝑠 .
13

𝑖∈𝐿
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Relation (4.15) then follows immediately from the definition of 𝐶1
𝐿,𝑉 in (4.2). Now apply Lemma 4.2 to (3.19) as before, and then

pply (4.15) in order to handle the terms 𝓁𝑟𝑔(𝑦𝑛𝑡𝑘 ) in the right-hand side of (3.19). We obtain:

|̄𝐿(𝜕𝑉 𝑉 (𝑦𝑛𝑠 ))| ≤
∑

𝑖∈𝐿

𝑐𝐿,𝑖𝐶
0
𝑉

(

𝐶0
𝑉 𝑃

𝐿
𝑠 +

𝛼𝑖
∑

𝑟=2
𝐶1
𝓁𝑟 ,𝑉

𝑃𝐿
𝑠

)

.

Hence resorting to the definition of 𝐶2
𝐿,𝑉 in (4.3) we obtain relation (4.16). The last relation (4.17) can be shown in a similar way.

We have

|̃𝐿(𝜕𝑉 𝑉 )(𝑦𝑛𝑠 )| ≤
∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖𝐶

0
𝑉 𝐶

1
𝓁𝑟−1,𝑉

𝑃𝐿
𝑠 .

Relation (4.17) then follows from the definition of 𝐶3
𝐿,𝑉 in (4.4). □

In the following we consider the increments of processes in Lemma 4.7.

Lemma 4.8. Let 𝜔 be a control function on [[0, 𝑇 ]]. Recall that we write 𝐿, ̄𝐿, ̃𝐿 for 𝐿
𝛯,𝑐 , ̄

𝐿
𝛯,𝑐 , ̃

𝐿
𝛯,𝑐,𝑐 . Assume that (4.8) and (4.10)

hold (notice that (4.8) for 𝐿 = 0 in fact implies (4.10)) for some (𝑠, 𝑢) ∈ 2([[0, 𝑇 ]]). Then we have the following relations 𝐿 ≥ 0:

|𝛿
(

𝐿𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢 | ≤ 𝐶5
𝑓,𝐿𝑃

𝐿
𝑠 𝜔(𝑠, 𝑢)1∕𝑝, (4.18)

|

|

|

𝛿
(

̄𝐿(𝜕𝑉 𝑉 )(𝑦𝑛⋅ )
)

𝑠𝑢
|

|

|

≤ 𝐶6
𝑉 ,𝐿𝑃

𝐿
𝑠 𝜔(𝑠, 𝑢)1∕𝑝, (4.19)

|

|

|

𝛿
(

̃𝐿(𝜕𝑉 𝑉 )(𝑦𝑛⋅ )
)

𝑠𝑢
|

|

|

≤ 𝐶7
𝑉 ,𝐿𝑃

𝐿
𝑠 𝜔(𝑠, 𝑢)1∕𝑝. (4.20)

Proof. Recall that 𝐿 is defined in (3.18). For two functions 𝑓 , 𝑔: [0, 𝑇 ] → R and for the operator 𝛿 defined by (2.1), it is easily
seen that

𝛿(𝑓𝑔)𝑠𝑢 = 𝛿𝑓𝑠𝑢 𝑔𝑢 + 𝑓𝑠 𝛿𝑔𝑠𝑢. (4.21)

nvoking repeatedly this relation and consistently replacing the terms 𝑔𝑢 above by 𝑔𝑠 we end up with the relation

𝛿
(

𝐿𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢 = 𝐽 1
𝑠𝑢 + 𝐽 2

𝑠𝑢, (4.22)

here the terms 𝐽 1
𝑠𝑢 and 𝐽 2

𝑠𝑢 are defined by

𝐽 1
𝑠𝑢 =

∑

𝑖∈𝐿

𝑐𝐿,𝑖
(

⟨𝛿
(

𝜕𝓁1𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢 , 𝛯
𝓁2
𝑠 ⊗⋯⊗𝛯

𝓁𝛼𝑖
𝑠 ⟩

+
𝛼𝑖
∑

𝑟=2
⟨𝜕𝓁1𝑓 (𝑦𝑛𝑠 ), 𝛯

𝓁2
𝑠 ⊗⋯⊗ 𝛿𝛯𝓁𝑟

𝑠𝑢 ⊗⋯⊗𝛯
𝓁𝛼𝑖
𝑠 ⟩

)

, (4.23)

𝐽 2
𝑠𝑢 =

∑

𝑖∈𝐿

𝑐𝐿,𝑖
{⟨

𝛿
(

𝜕𝓁1𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢 , 𝛿
(

𝛯𝓁2
⋅ ⊗⋯⊗𝛯

𝓁𝛼𝑖
⋅

)

𝑠𝑢

⟩

+
𝛼𝑖
∑

𝑟=2

⟨

𝜕𝓁1𝑓 (𝑦𝑛𝑠 ), 𝛯
𝓁2
𝑠 ⊗⋯⊗ 𝛿𝛯𝓁𝑟

𝑠𝑢 ⊗ 𝛿
(

𝛯𝓁𝑟+1
⋅ ⊗⋯⊗𝛯

𝓁𝛼𝑖
⋅

)

𝑠𝑢

⟩}

. (4.24)

n order to bound 𝐽 1
𝑠𝑢 above we apply Lemma 4.2 to the quantities 𝛯𝑟, and Lemma 4.5 to 𝛿

(

𝜕𝓁1𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢 in (4.23). We get

|𝐽 1
𝑠𝑢| ≤

∑

𝑖∈𝐿

𝑐𝐿,𝑖

(

𝐶0
𝑓𝐾

0
1𝑃

𝐿
𝑠 +

𝛼𝑖
∑

𝑟=2
𝐶0
𝑓𝐾

𝓁𝑟
1 𝑃𝐿

𝑠

)

𝜔(𝑠, 𝑢)1∕𝑝. (4.25)

We can bound 𝐽 2
𝑠𝑢, in a similar way. As before we apply Lemmas 4.2 and 4.5 respectively to 𝛯𝑟

𝑠 and 𝛿
(

𝜕𝓁1𝑓 (𝑦𝑛⋅ )
)

𝑠𝑢, and then
apply Lemma 4.4 to the quantity 𝛿(𝛯𝓁𝑟+1

⋅ ⊗⋯⊗𝛯
𝓁𝛼𝑖
⋅ )𝑠𝑢. Taking into acount the assumption 𝜔(𝑠, 𝑢)1∕𝑝 < 1∕2 in (4.8), we obtain

|𝐽 2
𝑠𝑢| ≤ 2

∑

𝑖∈𝐿

𝑐𝐿,𝑖𝐶
0
𝑓

(

𝐾0
1𝐶

4
𝐿𝑃

𝐿
𝑠 +

𝛼𝑖
∑

𝑟=2
𝐾𝓁𝑟

1 𝐶4
𝐿𝑃

𝐿
𝑠

)

⋅ 𝜔(𝑠, 𝑢)1∕𝑝. (4.26)

Combining the estimates (4.25) and (4.26) in (4.22) and recalling the definition of 𝐶5
𝑓,𝐿 in (4.7), relation (4.18) is now easily

btained. □

We end this subsection with a result on the remainder of 𝐿𝑉 (𝑦𝑛𝑠 ) considered as a controlled process:

emma 4.9. Let 𝜔 be a control function on [[0, 𝑇 ]]. Suppose that

𝐿 𝐿 𝑛 𝐿−1 𝑛 𝐿 𝐿 2∕𝑝
14

|𝛿𝛯𝑠𝑢 −  𝑉 (𝑦𝑠 )𝛿𝑥𝑠𝑢 −  𝑉 (𝑦𝑠 )𝛿𝑏𝑠𝑢| ≤ 𝐾2 𝑃𝑠 𝜔(𝑠, 𝑢) , 𝐿 = 0, 1,… , 𝑁 (4.27)
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for some (𝑠, 𝑢) ∈ 2([[0, 𝑇 ]]), where 𝑃𝐿
𝑠 is the quantity given in Definition 4.1. Suppose that (4.8) and (4.11) holds for the same (𝑠, 𝑢). Then

we have the following relation for 𝐿 ≥ −1:
|

|

|

𝛿
(

𝐿𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 − ̄𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢 − ̃𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑢
|

|

|

≤ 𝐶8
𝑉 ,𝐿𝑃

𝐿
𝑠 𝜔(𝑠, 𝑢)2∕𝑝,

here we define the constants {𝐶8
𝑉 ,𝐿, 𝐿 ≥ −1} by

𝐶8
𝑉 ,𝐿 = 2

∑

𝑖∈𝐿

𝑐𝐿,𝑖𝐶
0
𝑉

(

𝐾0
1𝐾

0
1 +𝐾0

2 +𝐾1
0𝐶

4
𝐿 +

𝛼𝑖
∑

𝑟=2
(𝐾𝓁𝑟

2 +𝐾𝓁𝑟
1 𝐶4

𝐿)

)

,

𝐶8
𝑉 ,0 = 𝐶0

𝑉 (𝐾
0
1𝐾

0
1 +𝐾0

2 ), 𝐶8
𝑉 ,−1 = 0.

roof. Recall that 𝐿, ̄𝐿 and ̃𝐿 are introduced in (3.18)–(3.20). Similarly to the beginning of the proof of Lemma 4.8, we apply
elation (4.21) and replace the terms 𝑔𝑢 by 𝑔𝑠. This leads to a decomposition of the form

𝛿
(

𝐿𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 − ̄𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢 − ̃𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑢 =
4
∑

𝓁=1
𝐽𝓁
𝑠𝑢, (4.28)

here 𝐽 1
𝑠𝑢 and 𝐽 2

𝑠𝑢 are defined in (4.23)–(4.24), and we also introduce the increments

𝐽 3
𝑠𝑢 = −

∑

𝑖∈𝐿

𝑐𝐿,𝑖⟨(𝜕𝓁1+1𝑉 𝑉 )(𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢, 𝛯
𝓁2
𝑠 ⊗⋯⊗𝛯

𝓁𝛼𝑖
𝑠 ⟩

𝐽 4
𝑠𝑢 = −

∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖⟨𝜕

𝓁1𝑉 (𝑦𝑛𝑠 ), 𝛯
𝓁2
𝑠 ⊗⋯⊗

(

𝓁𝑟𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢 + 𝓁𝑟−1𝑉 (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑢
)

⊗⋯⊗𝛯
𝓁𝛼𝑖
𝑠 ⟩.

otice that one can combine 𝐽 1, 𝐽 3 and 𝐽 4 into

𝐽 1
𝑠𝑢 + 𝐽 3

𝑠𝑢 + 𝐽 4
𝑠𝑢

=
∑

𝑖∈𝐿

𝑐𝐿,𝑖
⟨(

𝛿
(

𝜕𝓁1𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 − (𝜕𝓁1+1𝑉 𝑉 )(𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢
)

, 𝛯𝓁2
𝑠 ⊗⋯⊗𝛯

𝓁𝛼𝑖
𝑠

⟩

+
∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖

⟨

𝜕𝓁1𝑉 (𝑦𝑛𝑠 ), 𝛯
𝓁2
𝑠 ⊗⋯⊗

(

𝛿𝛯𝓁𝑟
𝑠𝑢 − 𝓁𝑟𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢 − 𝓁𝑟−1𝑉 (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑢

)

⊗⋯⊗𝛯
𝓁𝛼𝑖
𝑠

⟩

.

e are now in a position to apply Lemma 4.6 and condition (4.27) in order to get:

|𝐽 1
𝑠𝑢 + 𝐽 3

𝑠𝑢 + 𝐽 4
𝑠𝑢| ≤

∑

𝑖∈𝐿

𝑐𝐿,𝑖𝑃
𝐿
𝑠 𝐶0

𝑉 (𝐾
0
1𝐾

0
1 +𝐾0

2 )𝜔(𝑠, 𝑢)
2∕𝑝

+
∑

𝑖∈𝐿

𝛼𝑖
∑

𝑟=2
𝑐𝐿,𝑖𝐶

0
𝑉 𝐾

𝓁𝑟
2 𝑃𝐿

𝑠 𝜔(𝑠, 𝑢)2∕𝑝.

ombining this estimate and the relation (4.26) in (4.28), and taking into account the definition of the constant 𝐶8
𝑉 ,𝐿 we obtain the

esired relation. □

.2. Upper-bound estimate of the derivatives

In this subsection, we derive a uniform upper-bound estimate for the Malliavin derivatives of 𝑦𝑛. For a given threshold 𝛼 > 0,
ur estimates consist of three parts, which are estimates of the derivative over the steps of (1) small size (<< 𝛼); (2) medium size
≈ 𝛼); (3) large size (>> 𝛼).

We now specify our threshold parameter 𝛼. Towards this aim, recall that 𝐾𝐿
1 and 𝐾𝐿

2 for 𝐿 = 0, 1,… , 𝑁 , are introduced in (4.5)
nd 𝐾𝜇 is defined in (2.7). We also define:

𝐾𝐿
3 = 𝐾𝜇𝐾

𝐿
4 ∨ 1, where 𝐾𝐿

4 = (𝐶8
𝑉 ,𝐿 + 𝐶8

𝑉 ,𝐿−1 + 4𝐶6
𝑉 ,𝐿 + 4𝐶7

𝑉 ,𝐿) ∨ 1. (4.29)

hen we shall resort to a positive constant 𝛼 such that:

𝛼1∕𝑝 = min{1∕2, 1∕𝐾𝐿
2 , 1∕𝐾

𝐿
3 , 𝐿 = 0, 1,… , 𝑁}. (4.30)

ventually we introduce some second chaos processes which play a prominent role in the analysis of Euler schemes (see [18]).
amely for [𝑠, 𝑡] ∈ [[0, 𝑇 ]] we set

𝑞𝑖𝑗𝑠𝑡 =
∑

𝑠≤𝑡𝑘<𝑡

(

𝑥2,𝑖𝑗𝑡𝑘𝑡𝑘+1
− 1

2
𝛥2𝐻𝟏{𝑖=𝑗}

)

, and 𝑞𝑏,𝑖𝑗𝑠𝑡 =
∑

𝑠≤𝑡𝑘<𝑡

(

𝑏2,𝑖𝑗𝑡𝑘𝑡𝑘+1
− 1

2
𝛥2𝐻𝟏{𝑖=𝑗}

)

. (4.31)

For convenience we also introduce a specific notation for the cross integrals between the independent fractional Brownian motions
𝑥 and 𝑏. Namely we first introduce a Gaussian process w which encompasses the coordinates of both the driving nose 𝑥 and the
extra noise 𝑏. Specifically we define

𝛿w ∶= (𝛿w1 ,… , 𝛿w2𝑑 ) ∶= (𝛿𝑥1 ,… , 𝛿𝑥𝑑 , 𝛿𝑏1 ,… , 𝛿𝑏𝑑 ). (4.32)
15
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Then writing w2 for the iterated integral of w (see Definition 2.1) we set

w̃𝑠𝑡 =
(

w2,𝑖𝑗
𝑠𝑡 , 𝑖 = 𝑑 + 1,… , 2𝑑, 𝑗 = 1,… , 𝑑

)

(4.33)

𝑞𝑠𝑡 =

(

∑

𝑠≤𝑡𝑘<𝑡
w2,𝑖𝑗

𝑡𝑘𝑡𝑘+1
, 𝑖 = 𝑑 + 1,… , 2𝑑, 𝑗 = 1,… , 𝑑

)

, (4.34)

or 𝑠, 𝑡 ∈ 2([0, 𝑇 ]). With this notation in hand, we now state our bound on derivatives of the Euler scheme.

heorem 4.10. Let 𝑦 and 𝑦𝑛 be the solution of the SDE (3.14) and the corresponding Euler scheme (3.15), respectively. Let 𝛯 be given
n Definition 3.17. Suppose that 𝑉 ∈ 𝐶 (𝐿+2)∨3

𝑏 for some integer 𝐿 ≥ 0. Let 𝑝 > 1∕𝐻 . Let w = (𝑥, 𝑏) be defined in (4.32) and let 𝐰 ∶= 𝑆2(w)
e the rough path lifted from w. We introduce a control 𝜔 by

𝜔(𝑠, 𝑡) = ‖𝐰‖𝑝𝑝-var;[[𝑠,𝑡]] + ‖𝑞‖𝑝∕2𝑝∕2-var;[[𝑠,𝑡]] + ‖𝑞𝑏‖𝑝∕2𝑝∕2-var;[[𝑠,𝑡]], (𝑠, 𝑡) ∈ 2([[0, 𝑇 ]]), (4.35)

here 𝑞 is defined in (4.31). Denote 𝑠0 = 0. Then given 𝑠𝑗 , we define 𝑠𝑗+1 recursively as

𝑠𝑗+1 =

{

𝑠𝑗 + 𝛥 , if 𝜔(𝑠𝑗 , 𝑠𝑗 + 𝛥) > 𝛼
max{𝑢 ∈ [[0, 𝑇 ]] ∶ 𝑢 > 𝑠𝑗 and 𝜔(𝑠𝑗 , 𝑢) ≤ 𝛼} , if 𝜔(𝑠𝑗 , 𝑠𝑗 + 𝛥) ≤ 𝛼

(4.36)

ext we split the set of 𝑠𝑗 ’s as

𝑆0 = {𝑠𝑗 ∶ 𝛼∕2 ≤ 𝜔(𝑠𝑗 , 𝑠𝑗+1) ≤ 𝛼}; 𝑆1 = {𝑠𝑗 ∶ 𝜔(𝑠𝑗 , 𝑠𝑗+1) < 𝛼∕2}; (4.37)

𝑆2 = {𝑠𝑗 ∶ 𝜔(𝑠𝑗 , 𝑠𝑗+1) > 𝛼}. (4.38)

hen we have:

a) The following relation holds for all (𝑠, 𝑡) ∈ 2([[0, 𝑇 ]]):

‖𝛯𝐿
‖𝑝-var,[[𝑠,𝑡]] ≤ 𝐾 ⋅ 𝜔(𝑠, 𝑡)1∕𝑝|𝑆0 ∪ 𝑆1 ∪ 𝑆2| ⋅ (0 ⋅1 ⋅2)𝐿 , (4.39)

here we have set

0 =
∏

𝑠𝑗∈𝑆0

(

𝐾𝜔(𝑠𝑗 , 𝑠𝑗+1)1∕𝑝 + 1
)

, 1 =
∏

𝑠𝑗∈𝑆1

(

𝐾𝜔(𝑠𝑗 , 𝑠𝑗+1)1∕𝑝 + 1
)

,

2 =
∏

𝑠𝑗∈𝑆2

(

𝐾|𝛿w𝑠𝑗 𝑠𝑗+1 | +𝐾𝛥2𝐻 + 1
)

, (4.40)

nd 𝐾 is a constant independent of 𝑛.

b) For (𝑠, 𝑡) ∈ 2([[𝑠𝑗 , 𝑠𝑗+1]]) such that 𝑠𝑗 ∈ 𝑆0 ∪ 𝑆1 we have

|𝛿𝛯𝐿
𝑠𝑡 − 𝐿𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑡 − 𝐿−1𝑉 (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑡| ≤ 𝐾𝜔(𝑠, 𝑡)2∕𝑝 ⋅ 𝑃𝐿

𝑠 .

emark 4.11. The reader might argue that the right-hand side of (4.39) still depends on 𝑛. However, in our companion paper [17]
we will show that this right-hand side is uniformly integrable in 𝑛. Thus 𝛯𝐿

𝑡 is also uniformly integrable in 𝑛.

Remark 4.12. The fact that the quantities 0, 1, 2 are finite can be argued as follows: Note that 𝑆0, 𝑆1, 𝑆2 are contained in
he finite set [[0, 𝑇 ]], and therefore the number of components of the products in the definitions of 0, 1, 2 in (4.40) are finite.
n the other hand, the control function 𝜔 is defined over the discrete interval [[0, 𝑇 ]], and thus it is also finite. We conclude that

0, 1, 2 are all finite.

Before proving Theorem 4.10, let us state a corollary giving the actual bound on the Malliavin derivatives of 𝑦𝑛. Recall that 𝑏 is
n independent copy of the fBm 𝑥 as given in Definition 3.17 and we denote 𝐷̂ the Malliavin derivative operator for 𝑏. We denote
̂ and D̂𝐿,𝑝 the expectation and the Sobolev space corresponding to 𝑏, respectively.

orollary 4.13. Under the same conditions as for Theorem 4.10 and recalling our notation from Section 2.2, we have

sup
𝑛∈N

‖𝐷̄𝐿𝑦𝑛𝑡 ‖̄⊗𝐿 ≤ 𝐾 ⋅ 𝜔(0, 𝑇 )1∕𝑝|𝑆0 ∪ 𝑆1 ∪ 𝑆2| ⋅ (0 ⋅1 ⋅2)𝐿.

roof. Because 𝛯𝐿
𝑡 as a functional of 𝑏 is in a finite chaos, we have ‖𝛯𝐿

𝑡 ‖D̂𝐿,𝑝 ≤ 𝐶(Ê|𝛯𝐿
𝑡 |

𝑝)1∕𝑝. Our claim is thus an easy consequence
f (4.39) combined with Lemma 3.18. □

emark 4.14. A natural question raised by Corollary 4.13 is whether we have the convergence of those Malliavin derivatives
̄𝐿𝑦𝑛𝑡 : 𝐷̄𝐿𝑦𝑛𝑡 → 𝐷̄𝐿𝑦𝑡 as 𝑛 → ∞. It has been shown in [12] that this convergence does hold when 𝐻 > 1∕2, and the convergence has
een applied in the same paper to derive the asymptotic error of weak convergence of the Euler scheme. On the other hand, to our
16
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Proof of Theorem 4.10. The proof is divided into several steps.

tep 1. Representation of remainders. Recall the definition of 𝛯𝐿 in (3.21), that is

𝛿𝛯𝐿
𝑡𝑘𝑡𝑘+1

= 𝐿𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 + 𝐿−1𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑏𝑡𝑘𝑡𝑘+1 (4.41)

+1
2

𝑑
∑

𝑗=1
̄𝐿 (

𝜕𝑉𝑗 ⋅ 𝑉𝑗
)

(𝑦𝑛𝑡𝑘 )𝛥
2𝐻 + 1

2

𝑑
∑

𝑗=1
̃𝐿−1 (𝜕𝑉𝑗 ⋅ 𝑉𝑗

)

(𝑦𝑛𝑡𝑘 )𝛥
2𝐻 .

Next observe that owing to our definition (4.31), (4.33) and (4.34) we have
1
2
𝛥2𝐻 Id𝑑 = 𝑥2𝑡𝑘𝑡𝑘+1 − 𝑞𝑡𝑘𝑡𝑘+1 ,

1
2
𝛥2𝐻 Id𝑑 = 𝑏2𝑡𝑘𝑡𝑘+1 − 𝑞𝑏𝑡𝑘𝑡𝑘+1 and w̃2

𝑡𝑘𝑡𝑘+1
− 𝑞𝑡𝑘𝑡𝑘+1 = 0.

Hence recalling our notation (4.33)–(4.34), one can recast (4.41) as

𝛿𝛯𝐿
𝑡𝑘𝑡𝑘+1

= 𝐿𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 + 𝐿−1𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑏𝑡𝑘𝑡𝑘+1 + ̄𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑡𝑘 )(𝑥
2
𝑡𝑘𝑡𝑘+1

− 𝑞𝑡𝑘𝑡𝑘+1 )

+̃𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑡𝑘 )(𝑏
2
𝑡𝑘𝑡𝑘+1

− 𝑞𝑏𝑡𝑘𝑡𝑘+1 ) + ̃𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑡𝑘 )(w̃
2
𝑡𝑘𝑡𝑘+1

− 𝑞𝑡𝑘𝑡𝑘+1 )

+̄𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑡𝑘 )(w̃
2
𝑡𝑘𝑡𝑘+1

− 𝑞𝑡𝑘𝑡𝑘+1 )
𝑇 . (4.42)

This suggests to define the following remainder process for 𝐿 = 0, 1,… , 𝑁 and 𝑠, 𝑡 ∈ [[0, 𝑇 ]]:

𝑅𝐿
𝑠𝑡 = − 𝛿𝛯𝐿

𝑠𝑡 + 𝐿𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑡 + 𝐿−1𝑉 (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑡
+ ̄𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )(𝑥

2
𝑠𝑡 − 𝑞𝑠𝑡) + ̃𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )(𝑏

2
𝑠𝑡 − 𝑞𝑏𝑠𝑡)

+ ̃𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )(w̃
2
𝑠𝑡 − 𝑞𝑠𝑡) + ̄𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )(w̃

2
𝑠𝑡 − 𝑞𝑠𝑡)𝑇 . (4.43)

Notice that as a straightforward consequence of (4.42) we have 𝑅𝐿
𝑡𝑘𝑡𝑘+1

= 0 for all 𝑘.
Our aim is now to prove that 𝑅𝐿 is indeed a small remainder by applying Lemma 2.3. Since 𝑅𝐿

𝑡𝑘𝑡𝑘+1
= 0 it remains to analyze the

increment 𝛿𝑅 as defined in (2.1). Now starting from (4.43), an elementary computation yields:

𝛿𝑅𝐿
𝑠𝑢𝑡 = 𝐸1

𝑠𝑢𝑡 +⋯ + 𝐸5
𝑠𝑢𝑡,

where we define

𝐸1
𝑠𝑢𝑡 = − 𝛿

(

𝐿𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 𝛿𝑥𝑢𝑡
𝐸2
𝑠𝑢𝑡 = − 𝛿

(

𝐿−1𝑉 (𝑦𝑛⋅ )
)

𝑠𝑢 𝛿𝑏𝑢𝑡
𝐸3
𝑠𝑢𝑡 =̄

𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢 ⊗ 𝛿𝑥𝑢𝑡 + ̃𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑢 ⊗ 𝛿𝑥𝑢𝑡
𝐸4
𝑠𝑢𝑡 =̃

𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑢 ⊗ 𝛿𝑏𝑢𝑡 + ̄𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑢 ⊗ 𝛿𝑏𝑢𝑡
𝐸5
𝑠𝑢𝑡 = − 𝛿

(

̄𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛⋅ )
)

𝑠𝑢 (𝑥
2
𝑢𝑡 − 𝑞𝑢𝑡) − 𝛿

(

̃𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛⋅ )
)

𝑠𝑢 (𝑏
2
𝑢𝑡 − 𝑞𝑏𝑢𝑡)

− 𝛿
(

̃𝐿 (𝜕𝑉 𝑉 ) (𝑦𝑛⋅ )
)

𝑠𝑢 (w̃
2
𝑢𝑡 − 𝑞𝑢𝑡) − 𝛿

(

̄𝐿−1 (𝜕𝑉 𝑉 ) (𝑦𝑛⋅ )
)

𝑠𝑢 (w̃
2
𝑢𝑡 − 𝑞𝑢𝑡)𝑇 .

In the following steps we estimate the terms 𝐸1, . . . , 𝐸5 differently on small and large steps.

Step 2. Estimate over small and medium size steps. We consider the intervals [𝑠𝑗 , 𝑠𝑗+1] such that 𝑠𝑗 ∈ 𝑆0 ∪𝑆1, with 𝑆0 and 𝑆1 defined by
(4.37). In the following, we show by induction that for 𝑠, 𝑢, 𝑡 ∈ [𝑠𝑗 , 𝑠𝑗+1] the following inequalities for 𝐿 = 0, 1,… , 𝑁 are satisfied:

|𝛿𝛯𝐿
𝑠𝑡 | ≤ 𝐾𝐿

1 𝑃
𝐿
𝑠 𝜔(𝑠, 𝑡)1∕𝑝, |𝛿𝛯𝐿

𝑠𝑡 − 𝐿𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑡 − 𝐿−1𝑉 (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑡| ≤ 𝐾𝐿
2 𝑃

𝐿
𝑠 𝜔(𝑠, 𝑡)2∕𝑝, (4.44)

|𝑅𝐿
𝑠𝑡| ≤ 𝐾𝐿

3 𝑃
𝐿
𝑠 𝜔(𝑠, 𝑡)3∕𝑝 , |𝛿𝑅𝐿

𝑠𝑢𝑡| ≤ 𝐾𝐿
4 𝑃

𝐿
𝑠 𝜔(𝑠, 𝑡)3∕𝑝, (4.45)

where we recall that 𝐾𝐿
1 , . . . , 𝐾𝐿

4 are defined in (4.5) and (4.29), and where 𝑃𝐿
𝑠 is introduced in Definition 4.1. Namely, suppose

that (4.44)–(4.45) hold for 𝑠, 𝑢, 𝑡 ∈ [𝑠𝑗 , 𝑣]. In the following, we are going to show that (4.44)–(4.45) also holds on [𝑠𝑗 , 𝑣 + 𝛥].
To this aim, it is enough to estimate 𝛿𝑅𝐿

𝑠𝑢𝑡 for 𝑠, 𝑢 ∈ [𝑠𝑗 , 𝑣] and 𝑡 ∈ [𝑣, 𝑣 + 𝛥]. For such a tuple (𝑠, 𝑢, 𝑡), we apply Lemma 4.8 to 𝐸5
and Lemma 4.9 to (𝐸1 + 𝐸3) and (𝐸2 + 𝐸4). We obtain

|𝛿𝑅𝐿
𝑠𝑢𝑡| ≤(𝐶

8
𝑉 ,𝐿𝑃

𝐿
𝑠 + 𝐶8

𝑉 ,𝐿−1𝑃
𝐿−1
𝑠 )𝜔(𝑠, 𝑡)3∕𝑝 + 4(𝐶6

𝐿,𝑉 + 𝐶7
𝐿,𝑉 )𝑃

𝐿
𝑠 𝜔(𝑠, 𝑡)3∕𝑝

≤𝐾𝐿
4 𝑃

𝐿
𝑠 𝜔(𝑠, 𝑡)3∕𝑝. (4.46)

From (4.46), one can thus complete the proof of the second inequality in (4.45) by induction. The first inequality in (4.45) is then
obtained from the second one by a direct application of Lemma 2.3.

We now turn our attention to the proof of (4.44). By applying relation (4.45), (4.16) and (4.17) to (4.43) and taking into account
the condition 𝜔(𝑠, 𝑡)1∕𝑝 ≤ 1∕𝐾𝐿

3 , we obtain

|𝛿𝛯𝐿
𝑠𝑡 − 𝐿𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑡 − 𝐿−1𝑉 (𝑦𝑛𝑠 )𝛿𝑏𝑠𝑡|

2 2 3 3 𝐿 2∕𝑝
17

≤ (𝐶𝐿,𝑉 + 𝐶𝐿−1,𝑉 + 𝐶𝐿,𝑉 + 𝐶𝐿−1,𝑉 + 1)𝑃𝑠 𝜔(𝑠, 𝑡) . (4.47)
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I

w

W
u

This concludes the proof of the second relation in (4.44). In order to show the first relation we apply (4.15) to (4.47) and take into
account the assumption that 𝜔(𝑠, 𝑡)1∕𝑝 ≤ 1∕𝐾𝐿

2 . We get

|𝛿𝛯𝐿
𝑠𝑡 | ≤ (𝐶1

𝐿,𝑉 + 𝐶1
𝐿−1,𝑉 + 1)𝑃𝐿

𝑠 𝜔(𝑠, 𝑡)1∕𝑝.

This completes the proof of (4.44)–(4.45) for 𝑠, 𝑢, 𝑡 ∈ [𝑠𝑗 , 𝑣 + 𝛥], under the hypothesis 𝑠𝑗 ∈ 0 ∪ 1. Our induction procedure is thus
achieved.

Step 3. Estimate over large size steps. For large size steps, we will use a cruder estimate. Namely, when 𝑠𝑗 sits in the set 𝑆2 defined
by (4.38), we have 𝑠𝑗+1 = 𝑠𝑗 + 𝛥. It follows from Eq. (4.41) that

|𝛿𝛯𝐿
𝑠𝑗 𝑠𝑗+1

| = |𝛿𝛯𝐿
𝑠𝑗 , 𝑠𝑗+𝛥

| ≤ (𝐶1
𝐿,𝑉 + 𝐶1

𝐿−1,𝑉 + 𝐶2
𝐿,𝑉 + 𝐶3

𝐿−1,𝑉 )𝑃
𝐿
𝑠𝑗

(

|w1
𝑠𝑗 𝑠𝑗+1

| + 𝛥2𝐻
)

, (4.48)

where w1
𝑠𝑡 = 𝛿w𝑠𝑡, and thus with Definition 4.1 in mind we simply get

|𝛯𝐿
𝑠𝑗+1

| ≤ 𝑃𝐿
𝑠𝑗

(

𝐾|w1
𝑠𝑗 𝑠𝑗+1

| +𝐾𝛥2𝐻 + 1
)

. (4.49)

Step 4. Conclusion. We first derive the uniform upper-bound for 𝛯𝐿. That is, for 𝑡 ∈ [[𝑠𝑗 , 𝑠𝑗+1]] we write

|𝛯𝐿
𝑡 | ≤ |𝛿𝛯𝐿

𝑠𝑗 𝑡
| + |𝛯𝐿

𝑠𝑗
|. (4.50)

Hence in the case 𝑠𝑗 ∈ 𝑆0 ∪ 𝑆1, applying (4.44) to (4.50) we have

|𝛯𝐿
𝑡 | ≤ 𝑃𝐿

𝑠𝑗
⋅
(

1 +𝐾𝐿
1 𝜔(𝑠𝑗 , 𝑡)

1∕𝑝) .

Moreover, in the case that 𝑠𝑗 ∈ 𝑆2, relation (4.49) implies that

|𝛯𝐿
𝑡 | ≤ 𝑃𝐿

𝑠𝑗
(𝐾|w1

𝑠𝑗 𝑠𝑗+1
| +𝐾𝛥2𝐻 + 1).

terating the above two estimates, we end up with

|𝛯𝐿
𝑡 | ≤ 𝐾 ⋅ (0 ⋅1 ⋅2)𝐿 , for all 𝑡 ∈ [[0, 𝑇 ]], (4.51)

hich is our desired uniform bound.
We turn to the estimate of the increments of 𝛯𝐿. We first write

|𝛿𝛯𝐿
𝑠𝑡 | ≤

∑

𝑠≤𝑠𝑗<𝑡
|𝛿𝛯𝐿

𝑠∨𝑠𝑗 ,𝑡∧𝑠𝑗+1
|.

e apply the increment inequalities (4.44) for small sized steps and (4.48) for large sized steps. We also take into account the
niform estimate (4.51). We then obtain

|𝛿𝛯𝐿
𝑠𝑡 | ≤ 𝐾

⎛

⎜

⎜

⎝

∑

𝑠𝑗∈𝑆0∪𝑆1

𝜔(𝑠𝑗 , 𝑠𝑗+1)1∕𝑝 +𝐾
∑

𝑠𝑗∈𝑆2

(

|w1
𝑠𝑗 𝑠𝑗+1

| +𝐾𝛥2𝐻 + 1
)
⎞

⎟

⎟

⎠

(0 ⋅1 ⋅2)𝐿. (4.52)

In the right-hand side of (4.52), bounding each 𝜔(𝑠𝑖, 𝑠𝑖+1) by 𝜔(𝑠, 𝑡) for every 𝑠𝑗 ∈ 𝑆0 ∪ 𝑆1 we get
∑

𝑠𝑗∈𝑆0∪𝑆1

𝜔(𝑠𝑗 , 𝑠𝑗+1)1∕𝑝 ≤ 𝜔(𝑠, 𝑡)1∕𝑝|𝑆0 ∪ 𝑆1|. (4.53)

In addition, recall that the control 𝜔 is defined by (4.35), which includes the term ‖𝜔‖𝑝𝑝-var. Hence if 𝑠𝑗 ∈ 𝑆2 (that is 𝜔(𝑠𝑗 , 𝑠𝑗+1) > 𝛼)
and 𝛥 is small enough, we have

𝐾
∑

𝑠𝑗∈𝑆2

|w1
𝑠𝑗 𝑠𝑗+1

| +𝐾𝛥2𝐻 ≤ 𝐾𝜔(𝑠, 𝑡)1∕𝑝|𝑆2|. (4.54)

Plugging (4.53) and (4.54) into (4.52), we obtain

|𝛿𝛯𝐿
𝑠𝑡 | ≤ 𝐾 ⋅ 𝜔(𝑠, 𝑡)1∕𝑝|𝑆0 ∪ 𝑆1 ∪ 𝑆2| ⋅ (0 ⋅1 ⋅2)𝐿 , (4.55)

for all (𝑠, 𝑡) ∈ 2([[0, 𝑇 ]]). The upper-bound (4.39) for |𝛿𝛯𝐿
𝑠𝑡 | is exactly (4.55). □

4.3. Point-wise upper-bound estimate

Theorem 4.10 and Corollary 4.13 provide estimates in 𝑝-variation for the Malliavin derivatives of the Euler scheme 𝑦𝑛. In this
subsection we use similar arguments in order to derive a pointwise estimate for the Malliavin derivatives of the form 𝐷𝑦𝑡 (recall
that those -valued derivatives have been defined in Section 2.2). Notice that we have stated and proved the theorem below for the

𝑛

18

first two derivatives of 𝑦 . However, the extension of this result to higher order derivatives is just a matter of cumbersome notation.
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𝑟

T

f
s

I

P
W

(

(
𝟏

(

Theorem 4.15. Let the notations in Theorem 4.10 prevail. Suppose that 𝑉 ∈ 𝐶4
𝑏 . Take 𝑟, 𝑟′ ≥ 0 and let 𝑘0, 𝑘′0 ∈ N be such that

∈ (𝑡𝑘0 , 𝑡𝑘0+1] and 𝑟′ ∈ (𝑡𝑘′0 , 𝑡𝑘′0+1]. We define a Malliavin derivative vector 𝜉𝑛 as

𝜉𝑛𝑡 = (𝐷𝑟𝑦
𝑛
𝑡 , 𝐷𝑟𝐷𝑟′𝑦

𝑛
𝑡 ) ∶= (𝜉𝑛,1𝑡 , 𝜉𝑛,2𝑡 ) (4.56)

hen 𝜉𝑛,𝐿, 𝐿 = 1, 2 satisfies the iterative Eq. (3.21) with 𝑐𝐿,𝑖 = 1 and 𝑐𝐿,𝑖 = 0. Furthermore, we have the estimate

‖𝜉𝑛,1‖𝑝-var,[[𝑠,𝑡]] + ‖𝜉𝑛,2‖𝑝-var,[[𝑠,𝑡]] ≤ 𝐾 ⋅ 𝜔(𝑠, 𝑡)1∕𝑝|𝑆0 ∪ 𝑆1 ∪ 𝑆2| ⋅ (0 ⋅1 ⋅2)𝐿 , (4.57)

or all (𝑠, 𝑡) ∈ 2[[0, 𝑇 ]], where 𝑆𝑖, 𝑖 are respectively defined for 𝑖 = 0, 1, 2 in (4.37)–(4.38) and (4.40). Moreover, for (𝑠, 𝑡) ∈ 2([[𝑠𝑗 , 𝑠𝑗+1]])
uch that 𝑠𝑗 ∈ 𝑆0 ∪ 𝑆1 and 𝐿 = 1, 2 we have

|𝛿𝜉𝑛,𝐿𝑠𝑡 − 𝐿𝑉 (𝑦𝑛𝑠 )𝛿𝑥𝑠𝑡| ≤ 𝐾𝜔(𝑠, 𝑡)2∕𝑝 ⋅ 𝑃𝐿
𝑠 . (4.58)

n both estimates (4.57) and (4.58), 𝐾 is a constant independent of 𝑟, 𝑟′, 𝑗 and 𝑛.

roof. Recall that 𝑦𝑛 is defined in (3.16). Let us first derive the iterative equation for the derivatives of 𝑦𝑛. Recall that 𝑟 ∈ (𝑡𝑘0 , 𝑡𝑘0+1].
e can divide the differentiation of 𝛿𝑦𝑛𝑡𝑘𝑡𝑘+1 in three cases.

i) If 𝑘0 > 𝑘, then 𝑟 > 𝑡𝑘+1. Therefore, since 𝑦𝑡𝑘 ∈ 𝑡𝑘 we get 𝐷𝑟[𝛿𝑦𝑛𝑡𝑘𝑡𝑘+1 ] = 0.

ii) If 𝑘0 = 𝑘, then 𝑡𝑘 < 𝑟 ≤ 𝑡𝑘+1. Moreover it is readily checked from Eq. (2.12) that 𝐷𝑟[𝛿𝑥𝑡𝑘𝑡𝑘+1 ] = 𝟏[𝑡𝑘 ,𝑡𝑘+1](𝑟). Hence we have
(𝑡𝑘 ,𝑡𝑘+1](𝑟) = 1 almost everywhere and differentiating (3.16) on both sides we obtain

𝐷𝑟[𝛿𝑦𝑛𝑡𝑘𝑡𝑘+1 ] =
𝑑
∑

𝑗=1
𝑉𝑗 (𝑦𝑛𝑡𝑘 )𝟏[𝑡𝑘 ,𝑡𝑘+1](𝑟) =

𝑑
∑

𝑗=1
𝑉𝑗 (𝑦𝑛𝑡𝑘0

) ≡ 𝑎1.

iii) If 𝑘0 < 𝑘, then we can differentiate both sides of (3.16). We obtain the equation:

𝛿𝐷𝑟𝑦
𝑛
𝑡𝑘𝑡𝑘+1

= ⟨𝜕𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷𝑟𝑦
𝑛
𝑡𝑘
⟩𝛿𝑥𝑡𝑘𝑡𝑘+1 +

1
2

𝑑
∑

𝑗=1
⟨𝜕(𝜕𝑉𝑗𝑉𝑗 )(𝑦𝑛𝑡𝑘 ), 𝐷𝑟𝑦

𝑛
𝑡𝑘
⟩𝛥2𝐻 .

Gathering item (i), (ii) and (iii) above, and recalling that we have set 𝑎1 =
∑𝑑

𝑗=1 𝑉𝑗 (𝑦
𝑛
𝑡𝑘0

), we get the following expression for 𝑡 ∈ [[0, 𝑇 ]],
𝑟 ≤ 𝑡𝑘 and 𝜉𝑛,1𝑡 = 𝐷𝑟𝑦𝑛𝑡 :

𝛿𝜉𝑛,1𝑡𝑘𝑡𝑘+1
= ⟨𝜕𝑉 (𝑦𝑛𝑡𝑘 ), 𝜉

𝑛,1
𝑡𝑘

⟩𝛿𝑥𝑡𝑘𝑡𝑘+1 +
1
2

𝑑
∑

𝑗=1
⟨𝜕(𝜕𝑉𝑗𝑉𝑗 )(𝑦𝑛𝑡𝑘 ), 𝜉

𝑛,1
𝑡𝑘

⟩𝛥2𝐻 . (4.59)

Also notice that we have obtained 𝜉𝑛,1𝑡 = 0 if 𝑟 > 𝑡. In particular, it is clear that 𝜉𝑛,1 satisfies the iteration equation in Definition 3.17
with 𝑐𝐿,𝑖 = 1 and 𝑐𝐿,𝑖 = 0, with 𝐿 = 1 and initial time 𝑡0 = 𝑡𝑘0 . Precisely, we have

𝛿𝜉𝑛,1𝑡𝑘𝑡𝑘+1
= 1

𝜉𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 +
1
2

𝑑
∑

𝑗=1
̄1
𝜉 (𝜕𝑉𝑗𝑉𝑗 )(𝑦

𝑛
𝑡𝑘
)𝛥2𝐻 . (4.60)

Therefore, a direct application of Theorem 4.10 yields the estimate (4.57) for 𝜉𝑛,1.
In a similar way we can show that 𝜉𝑛,2𝑡 = 𝐷𝑟𝐷𝑟′𝑦𝑛𝑡 satisfies the iterative equation in Definition 3.17 with 𝑐𝐿,𝑖 = 1 and 𝑐𝐿,𝑖 = 0,

with 𝐿 = 2 and initial time 𝑡0 = 𝑡𝑘0 ∨ 𝑡𝑘′0 . Indeed, a straightforward computation shows that

𝐷𝑟′𝜉
𝑛,1
𝑡 = 𝜉𝑛,2𝑡 , 𝐷𝑟′1

𝜉𝑉 (𝑦𝑛𝑡𝑘 ) = 2
𝜉𝑉 (𝑦𝑛𝑡𝑘 ), 𝐷𝑟′ ̄1

𝜉 (𝜕𝑉𝑗𝑉𝑗 )(𝑦
𝑛
𝑡𝑘
) = ̄2

𝜉 (𝜕𝑉𝑗𝑉𝑗 )(𝑦
𝑛
𝑡𝑘
).

Let 𝑟 ∈ [𝑡𝑘0 , 𝑡𝑘0+1) and 𝑟′ ∈ [𝑡𝑘′0 , 𝑡𝑘′0+1). Then, by differentiating both sides of (4.60) by 𝐷𝑟′ and taking into account the above three
relations we get for all 𝑡 ≥ 𝑡0

𝜉𝑛,2𝑡 = 𝑎2 +
∑

𝑟∨𝑟′≤𝑡𝑘<𝑡
2
𝜉𝑉 (𝑦𝑛𝑡𝑘 )𝛿𝑥𝑡𝑘𝑡𝑘+1 +

1
2

∑

𝑟∨𝑟′≤𝑡𝑘<𝑡

𝑑
∑

𝑗=1
̄2
𝜉 (𝜕𝑉𝑗𝑉𝑗 )(𝑦

𝑛
𝑡𝑘
)𝛥2𝐻 ,

where 𝑎2 is the initial value of the iterative equation defined as follows

𝑎2 = 𝟏{𝑘0≥𝑘′0} ⋅
𝑑
∑

𝑗=1
⟨𝜕𝑉𝑗 (𝑦𝑛𝑡𝑘0

), 𝐷𝑟′𝑦
𝑛
𝑡𝑘0

⟩ + 𝟏{𝑘′0≥𝑘0} ⋅
𝑑
∑

𝑗=1
⟨𝜕𝑉𝑗 (𝑦𝑛𝑡𝑘′0

), 𝐷𝑟𝑦
𝑛
𝑡𝑘′0

⟩.

We conclude that the estimate (4.57) also holds for 𝜉𝑛,2. The proof is complete. □
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