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We prove that the Euler scheme for stochastic differential equations
driven by fractional Brownian motions (fBm) with Hurst parameter H > 1/3
and its Malliavin derivatives are integrable uniformly in step size n. Then we
use the integrability results to derive the weak convergence rate n1−4H+ε for
the Euler scheme. The proof for integrability is based on an application of the
argument of (Ann. Probab. 41 (2013) 3026–3050) to a quadratic functional
of the fBm. The proof of weak convergence applies Malliavin calculus and
some upper-bound estimates for weighted random sums.

1. Introduction. This note is concerned with the following stochastic differential equa-
tion driven by a d-dimensional fractional Brownian motion (fBm in the sequel) x with Hurst
parameter 1

3 < H < 1
2 :

(1.1) dyt = V0(yt ) dt + V (yt ) dxt , y0 = a,

where we assume that a ∈ ℝ
m, the collection of vector field V0 = (V i

0 )1≤i≤m belongs to
C2

b(ℝm,ℝm) and V = (V i
j )1≤i≤m,1≤j≤d sits in C3

b(ℝm,ℒ(ℝd,ℝm)). Under this setting the
theory of rough paths gives a framework allowing to get existence and uniqueness results for
equation (1.1), and the unique solution y in the rough paths sense has γ -Hölder continuity
for all γ < H ; see, for example, [15, 17].

One of the basic questions about systems like (1.1) concerns the existence of a proper
numerical scheme approximating the solution y. In case of a Hurst parameter H ∈ (1

3 , 1
2), the

simplest possible solution to this problem is to use a Milstein type scheme. However Milstein
type schemes involve second order expansions and iterated integrals of the fBm x, which
should be morally thought of as objects of the form

x2
st =

∫︂ t

s

∫︂ u

s
dxv ⊗ dxu,

and are notoriously uneasy to simulate. Therefore several contributions aimed in the recent
past at avoiding iterated integrals while still producing convergent numerical schemes for
rough differential equations. The first article tackling this issue is [13], where the iterated
integrals in x2 were replaced by products of increments of x. The rate of convergence ob-
tained in [13] was then pushed to its optimal limit in [14]. Let us also mention the article
[35], which thoroughly explores Runge–Kutta methods based on the same idea of replacing
iterated integrals by products of increments.

In this paper we will focus our attention on another numerical approximation, called first-
order scheme in the sequel. The main idea behind this method is to simply replace the second
order terms x2 by their expected values. This yields simpler schemes than the aforementioned
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methods based on product of increments, and at the same time produces optimal convergence
rates. Specifically, if x is a fBm with Hurst parameter H and one uses an approximating grid
with mesh of order 1/n, then the rate of convergence is of order 1/n2H−1/2. This method has
first been introduced in [23] for a Hurst parameter H > 1/2, and has been extended to the
rough path case in [29]. We also refer to [24, 25] for further extensions.

In order to describe our first-order numerical scheme, let us introduce some basic settings.
For simplicity, we are considering a finite time interval [0, T ] and we take the uniform parti-
tion π : 0 = t0 < t1 < · · · < tn = T on [0, T ]. Specifically, for k = 0, . . . , n we have tk = kΔ,
where we denote Δ = T

n
. In the sequel, the quantity δxst will stand for the vector xt − xs .

Our generic approximation is called yn, and it starts from the initial condition yn
0 = y0 = a.

With this notation in hand, we can now define our scheme recursively as follows (here and
below we set δxtktk+1 = xtk+1 − xtk ):

(1.2) yn
tk+1

= yn
tk

+ V0
(︁
yn
tk

)︁
Δ + V

(︁
yn
tk

)︁
δxtktk+1 + 1

2

d∑︂
j=1

∂VjVj

(︁
yn
tk

)︁
Δ2H ,

where the notation ∂ViVj stands for a vector field of the form

(1.3) ∂ViVj =
(︄

m∑︂
l=1

∂lV
k
i V l

j ;k = 1, . . . ,m,

)︄

and ∂l stands for the partial derivative in the yl direction: ∂l = ∂
∂yi

. As mentioned above, the

rate of convergence of yn to y is of order 1/n2H−1/2. One of the key results in [29] is a
functional central limit theorem of the form

lim
n→∞n2H−1/2(︁yn − y

)︁ (d)= U,

where U is solution to a rough differential equation driven by x plus an additional Brownian
term.

In the current contribution, we are mostly interested in the convergence in distribution of
the approximation yn defined by (1.2). This endeavor is motivated by three main reasons
which can be summarized as follows:

(i) The weak convergence of a numerical scheme is directly related to the performance
of simulation for stochastic models, which is a center issue in mathematical finance and
engineering.

(ii) For diffusions processes, that is, stochastic differential equations driven by a Brown-
ian motion, the convergence in distribution for numerical schemes is a classical problem. This
is assessed e.g by the remarkable publications [2, 3]. As mentioned in those two references, a
good knowledge about the weak convergence is useful in order to evaluate probabilities that
y reaches a certain level, or to get some information about the moments of y.

(iii) In [4, 7, 19] we have started a long term program aiming at understanding the law of
Gaussian rough differential systems. The current result might play an important role in this
approach.

Let us now describe the main result contained in this paper.

THEOREM 1.1. Suppose that V ∈ C4
b and x is a fBm with Hurst parameter H > 1/3.

Let y be the solution of the rough differential equation (1.1) and let yn be the corresponding
Euler scheme (1.2). Then for any ε > 0, f ∈ C4

b(ℝm) and t ∈ [0, T ] there is a constant
CT,H,V,f > 0 independent of n such that

(1.4)
⃓⃓
𝔼f

(︁
yn
t

)︁−𝔼f (yt )
⃓⃓ ≤ CT,H,V,f

n4H−1−ε
.
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To the best of our knowledge, Theorem 1.1 is the first weak convergence result for numeri-
cal schemes of differential equations driven by a fBm with H < 1/2. In order to get a broader
perspective on weak convergence for stochastic differential systems, let us recall some of the
rates obtained in previous contributions:

(a) It is well known that the weak convergence rate for an equation like (1.1) driven by a
Brownian motion is n−1, versus a rate n−1/2 for the strong rate; This has first been established
in the classical references [31, 36] (see also [2, 3]).

(b) In [24] the authors consider differential equations driven by a fBm for the range of
Husrt parameter H ∈ (1/2,1). It is shown that the weak rate is n−1 like in the Brownian
case, regardless of the value of H . This rate is sharp in the sense that the normalized error
n[𝔼f (yn

t ) −𝔼f (yt )] converges to a nonzero limit for any test function f ∈ C4.
(c) The recent articles [16, 18] consider the weak convergence of Euler schemes for a

mixed stochastic integral model ℐ = ∫︁ T
0 φ(BH

t ) dWs , where W is a Wiener process and BH is
a Liouville type fractional Brownian motion driven by W (with Hurst parameter H ∈ (0,1)).
It is proved that for a general choice of functions f , φ, the weak rate is 1/n(3H+1/2)∧1 (to be
contrasted with the strong rate of the Euler scheme for ℐ above, which is 1/nH ). Our result
shows that this surprising behavior is probably due to some specific cancellations for mixed
quantities like ℐ (see further remarks about this fact in [16]).

Compared to this body of literature, our Theorem 1.1 shows that when 1/3 < H < 1/2 the
weak rate for equation (1.1) is n1−4H (note that we believe that our rate is sharp for a generic
test function). This generalizes in a very natural way the convergence rate n−1 obtained for
H ≥ 1/2, except for the slightly nonoptimal ε in relation (1.4). Notice that this small ε is
due to the fact that our analysis of the scheme is mostly pathwise, in spite of dealing with a
convergence in distribution. It is interesting to mention that Theorem 1.4 agrees with the rule
of thumb in the martingale framework (see, e.g., Heston’s model [1], Schrödinger’s equation
[11], reflected diffusions [5] or the stochastic heat equation [12]), namely that the weak rate
n1−4H is twice the strong rate n1/2−2H (see [29]).

REMARK 1.2. For sake of conciseness, we have not tried to quantify precisely the depen-
dence T ↦→ CT,H,V,f . Since our estimates depend on the behavior of Malliavin derivatives,
we expect this dependence to be of exponential type.

At the core of our methodology for the proof of Theorem 1.1 lies a combination of rough
paths and Malliavin techniques, plus some specific tools for discrete rough paths that have
been developed by two of the authors in [29, 30]. Those elements are summarized in Sec-
tion 2 and Sections 4.1-4.2. Specifically, our first main step of the proof is a generalization
of the duality approach developed in [9] to the fBm case. In particular, we will show that
the Malliavin integration by parts can be applied to the error 𝔼f (yn

t ) − 𝔼f (yt ) in the left-
hand side of (1.4), and that the estimate of the error can be transformed to the study of some
weighted sums involving the Malliavin derivatives of the Euler scheme (1.2) and related pro-
cesses. With the transformation established, a main ingredient in the current contribution is
to prove the integrability of Malliavin derivatives for the Euler scheme, uniformly in our ap-
proximation parameter n. A key observation in this direction is that the Euler scheme (1.2) is
a discrete-time equation driven by the mix of a rough path (i.e., the process x) and a quadratic
Young path (that is, a path which is a quadratic functional of x and has a Hölder component
greater than 1/2; see (2.20) for the precise definition). This representation enables us to adapt
the very fruitful idea of greedy sequence put forward in [8], in order to achieve exponential
integrability in a rough paths context. A new situation for the Euler scheme is that now we
have a greedy sequence corresponding not only to x but also to the quadratic path q intro-
duced in (2.20). One of our main efforts will then consist in showing a tail estimate for the
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greedy sequence via Borell’s inequality. Furthermore, due to the discrete feature of equation
(1.2), a separate estimate will involve the big steps related to our partition of [0, T ] (namely
the steps for which the increments δxtktk+1 are very large) separately. These delicate estimates
will be developed in Section 3.

The paper is structured as follows. Section 2 contains the preliminary results on rough
paths, Malliavin calculus, and the Euler scheme. In Section 3 we show that the Malliavin
derivatives of the Euler scheme has moments of any order. After some preparations in Sec-
tion 4.1-4.5, we prove the weak convergence of the Euler scheme in Section 4.6.

NOTATION 1.3. In what follows, we take n ∈ ℕ and Δ = T/n, and consider the uniform
partition: 0 = t0 < t1 < · · · < tn = T on [0, T ], where tk = kΔ. We denote by ⟦s, t⟧ the dis-
crete interval: ⟦s, t⟧ = {tk ∈ [s, t] : k = 0, . . . , n}. For u ∈ [tk, tk+1), we denote η(u) = tk . For
an interval [s, t] ⊂ [0, T ] we define the continuous- and discrete-time simplexes 𝒮2([s, t]) =
{(u, v) : s ≤ u ≤ v ≤ t} and 𝒮2(⟦s, t⟧) = 𝒮2([s, t]) ∩ ⟦s, t⟧2. We use the letters C and K to
denote generic constant which can change from line to line.

2. Preliminary results. In this section we recall some basic notions of rough paths the-
ory and their application to fractional Brownian motion, which allow a proper definition of
equation (1.1). We also give the necessary elements of Malliavin calculus in order to quan-
tify the weak convergence rate. Eventually we recall the pathwise estimates obtained in [28]
for the Malliavin derivatives of our Euler scheme. Notice that this basic presentation can be
found in a very similar way in our companion paper [28].

2.1. Elements of rough paths theory. This subsection is devoted to introduce some basic
concepts of rough paths theory. We are going to restrict our analysis to a generic p-variation
regularity of the driving path of order 1 ≤ p < 3, in order to keep expansions to a reasonable
size. We also fix a finite time horizon T > 0. The following notation will prevail until the end
of the paper: for a finite-dimensional vector space 𝒱 and two functions f ∈ C([0, T ],𝒱) and
g ∈ C(𝒮2([0, T ]),𝒱) we set

(2.1) δfst = ft − fs, and δgsut = gst − gsu − gut .

Let us introduce the analytic requirements in terms of p-variation regularity which
will be used in the sequel. Namely consider two paths x ∈ C([0, T ],ℝd) and x2 ∈
C(𝒮2([0, T ]), (ℝd)⊗2). Then we denote

∥x∥p-var,[s,t] :=
(︃

sup
𝒫

∑︂
(u,v)∈𝒫

|δxuv|p
)︃1/p

,

⃦⃦
x2⃦⃦

p/2-var,[s,t] :=
(︃

sup
𝒫

∑︂
(u,v)∈𝒫

⃓⃓
x2
uv

⃓⃓p/2
)︃2/p

,

(2.2)

where the supremum is taken among all partitions of the time interval [s, t], and for a partition
𝒫 of [s, t] we write (u, v) ∈ 𝒫 if u and v are two consecutive partition points of 𝒫 . When
the semi-norms in (2.2) are finite we say that x and x2 are respectively in Cp-var([s, t],ℝd)

and Cp/2-var(𝒮2([s, t]), (ℝd)⊗2). For convenience, we denote ∥x∥p-var := ∥x∥p-var,[0,T ] and
∥x2∥p/2-var := ∥x2∥p/2-var,[0,T ]. With this preliminary notation in hand, we can now turn to
the definition of rough path.

DEFINITION 2.1. Let x ∈ C([0, T ],ℝd), x2 ∈ C(𝒮2([0, T ]), (ℝd)⊗2), and 1 ≤ p <

3. Denote x1
st = δxst . We call x := S2(x) := (x1, x2) a (second-order) p-rough path if

∥x∥p-var < ∞ and ∥x2∥p/2-var < ∞, and if the following algebraic relation holds true:

(2.3) δx2
sut = x2

st − x2
su − x2

ut = δxsu ⊗ δxut ,
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where we have invoked (2.1) for the definition of δx and δx2. For a p-rough path S2(x), we
define a p-variation semi-norm as follows:

(2.4)
⃦⃦
S2(x)

⃦⃦
p-var := ∥x∥p-var + ⃦⃦

x2⃦⃦1/2
p/2-var.

An important subclass of rough paths are the so-called geometric p-variation rough paths. A
geometric p-variation rough path is a p-rough path (x, x2) such that there exists a sequence
of smooth ℝ

d -valued paths (xn, x2,n) verifying

(2.5) lim
n→∞

(︁⃦⃦
x − xn

⃦⃦
p-var + ⃦⃦

x2 − x2,n
⃦⃦
p/2-var

)︁ = 0.

We will mainly consider geometric rough paths in the remainder of the article.

In relation to (2.5), notice that when x is a smooth ℝ
d -valued path, we can choose x2

defined as the following iterated Riemann type integral:

(2.6) x2
st =

∫︂ t

s

∫︂ u

s
dxv ⊗ dxu.

It is then easily verified that S2(x) = (x1, x2), with x2 defined in (2.6), is a p-rough path with
p = 1. In fact, this is also the unique way to lift a smooth path to a p-rough path for some
p ≥ 1.

Recall now that we interpret equation (1.1) in the rough paths sense. That is, we shall
consider the following general rough differential equation: (RDE):

(2.7) yt = a +
∫︂ t

0
V0(ys) ds +

∫︂ t

0
V (ys) dxs, t ∈ [0, T ],

where V0 and V are smooth enough coefficients and x is a rough path as given in Defini-
tion 2.1. We shall interpret equation (2.7) in a way introduced by Davie in [10], which is
conveniently compatible with numerical approximations.

DEFINITION 2.2. Let (x, x2) be a p-rough path with p < 3. We say that y is a so-
lution of (2.7) on [0, T ] if y0 = a and there exists a control function ω on [0, T ] (i.e.,
ω is a two variable function on 𝒮2([0, T ]) which satisfies the super-additivity condition
ω(s, t) ≥ ω(s,u) + ω(u, t) for s, u, t ∈ [0, T ] : s < u < t), a constant K > 0 and μ > 1
such that

(2.8)

⃓⃓⃓
⃓⃓δyst −

∫︂ t

s
V0(yu) du − V (ys)δxst −

d∑︂
i,j=1

∂ViVj (ys)x
2,ij
st

⃓⃓⃓
⃓⃓ ≤ Kω(s, t)μ

for all (s, t) ∈ 𝒮2([0, T ]), where we recall that δy is defined by (2.1) and ∂ViVj is defined as
in (1.3).

Notice that if y solves (2.7) according to Definition 2.2, then it is also a controlled process
as defined in [15, 21]. Namely, if y satisfies relation (2.8), then we also have

δyst = V (ys)δxst + r
y
st ,

where ry ∈ Cp/2-var(𝒮2([0, T ])). We can thus define iterated integrals of y with respect to
itself thanks to the sewing map; see Proposition 1 in [21]. This yields the following decom-
position: ⃓⃓⃓

⃓⃓∫︂ t

s
yi
u dyj

u − yi
sδy

j
st −

d∑︂
i′,j ′=1

V i
i′V

j

j ′(ys)x
2,i′j ′
st

⃓⃓⃓
⃓⃓ ≤ Kω(s, t)3/p,
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for all (s, t) ∈ 𝒮2([0, T ]) and i, j = 1, . . . ,m. In other words, the signature type path
S2(y) = (y1, y2) defines a rough path according to Definition 2.1, where y2 denotes the iter-
ated integral of y.

We can now state an existence and uniqueness result for rough differential equations. The
reader is referred to, for example, [17], Theorem 10.36, for further details.

THEOREM 2.3. Assume that V = (Vj )1≤j≤d is a collection of C3
b -vector fields on ℝ

m.
Then there exists a unique RDE solution to equation (2.7), understood as in Definition 2.2. In
addition, there exists a constant K > 0 such that the unique solution y satisfies the following
estimate: ⃓⃓

S2(y)st
⃓⃓ ≤ K

(︁
1 ∨ ⃦⃦

S2(x)
⃦⃦p
p-var,[s,t]

)︁
.

Whenever V = (Vj )1≤j≤d is a collection of linear vector fields, existence and uniqueness still
hold for equation (2.7). Furthermore, there exist constants K1,K2 > 0 such that we have the
estimate ⃓⃓

S2(y)st
⃓⃓ ≤ K1

⃦⃦
S2(x)

⃦⃦
p-var,[s,t] exp

(︁
K2

⃦⃦
S2(x)

⃦⃦p
p-var

)︁
.

We close this section by recalling a sewing map lemma with respect to discrete control
functions. It is a generalization of the sewing lemma [15], Lemma 4.2, to a discrete setting.
It should also be seen as an elaboration of [29], Lemma 2.5, and proves to be useful in the
analysis of the numerical scheme. Let π : 0 = t0 < t1 < · · · < tn−1 < tn = T be a generic
partition of the interval [0, T ] for n ∈ ℕ. We denote by ⟦s, t⟧ the discrete interval {tk : s ≤
tk ≤ t} for 0 ≤ s < t ≤ T .

LEMMA 2.4. Suppose that ω is a control on ⟦0, T ⟧. In other words, ω is a two vari-
able function on 𝒮2(⟦0, T ⟧) which satisfies a super-additivity condition: ω(s, t) ≥ ω(s,u) +
ω(u, t) for s, u, t ∈ ⟦0, T ⟧ : s < u < t . Consider a Banach space ℬ with norm | · | and R :
𝒮2(⟦0, T ⟧) → ℬ, and denote δRsut = Rst − Rsu − Rut . Suppose that |Rtktk+1 | ≤ ω(tk, tk+1)

μ

for all tk ∈ ⟦0, T ⟧, and that |δRsut | ≤ ω(s, t)μ with the exponent μ > 1. Then the following
relation holds:

(2.9) |Rst | ≤ Kμω(s, t)μ, where Kμ = 2μ
∞∑︂
l=1

l−μ.

The lemma allows to bound discrete sums which are crucial in our numerical scheme
context. As a first application along those lines we present a probabilistic result below, which
combines Proposition 4.1 and Remark 4.2 in [29].

LEMMA 2.5. Consider two processes f and g such that for all s, t ∈ ⟦0, T ⟧ we have

∥δfst∥L2p ≲ |t − s|α, and ∥δgst∥L2p ≲ |t − s|β,

for a given p ≥ 1 and α, β such that α + β > 1. Let Jst be the discrete sum given by

(2.10) Jst = ∑︂
s≤tk<t

δfstk δgtktk+1 .

Then we have

∥Jst∥Lp ≲ (t − s)α+β.
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2.2. Rough path above fractional Brownian motion. We now specialize our setting to
a path x = (x1, . . . , xd) defined as a standard d-dimensional fBm on [0, T ] with Hurst pa-
rameter H ∈ (1

3 , 1
2). This fBm is defined on a complete probability space (Ω,ℱ,ℙ), and we

assume that the σ -algebra ℱ is generated by x. In this situation, recall that the covariance
function of each coordinate of x is defined on 𝒮2([0, T ]) by

(2.11) R(s, t) = 1

2

[︁
s2H + t2H − |t − s|2H ]︁

,

where recall that the simplex 𝒮2([0, T ]) is introduced in Notation 1.3. We start by reviewing
some properties of the covariance function of x considered as a function on (𝒮2([0, T ]))2.
Namely, take (u, v, s, t) in (𝒮2([0, T ]))2 and set

(2.12) R
(︁[u, v], [s, t])︁= 𝔼

[︁
δxj

uvδx
j
st

]︁
, j = 1, . . . , d.

Then, whenever H > 1/4, it can be shown that the integral
∫︁

R dR is well defined as a Young
integral in the plane (see, e.g., [17], Section 6.4). Furthermore, if the intervals [u, v] and [s, t]
are disjoint, we have

(2.13) R
(︁[u, v], [s, t])︁=

∫︂ v

u

∫︂ t

s
μ
(︁
dr ′ dr

)︁
.

Here and in the following, the signed measure μ is defined as

(2.14) μ
(︁
dr ′ dr

)︁ = −H(1 − 2H)
⃓⃓
r − r ′ ⃓⃓2H−2

dr ′ dr.

Using the elementary properties above, it is shown in [17], Chapter 15, that for any piece-
wise linear or mollifier approximation xn to x, the smooth rough path S2(x

n) defined by (2.6)
converges in the p-variation semi-norm (2.4) to a p-geometric rough path S2(x) := (x1, x2)

(given as in Definition 2.1) for 3 > p > 1/H . In addition, for i ≠ j the covariance of x2,ij

can be expressed in terms of a two-dimensional Young integral:

(2.15) 𝔼
[︁
x2,ij
uv x

2,ij
st

]︁ =
∫︂ v

u

∫︂ t

s
R
(︁[u, r], [︁s, r ′]︁)︁dR

(︁
r ′, r

)︁
.

It is also established in [17], Chapter 15, that S2(x) enjoys the following integrability prop-
erty.

PROPOSITION 2.6. Let x = (x1, . . . , xd) be a fBm with Hurst parameter H ∈ (1
3 , 1

2) on
a complete probability space (Ω,ℱ,ℙ). Let S2(x) := (x1, x2) be the geometric rough path
above x as given in Definition 2.1, and p ∈ (1/H,3). Then there exists a random variable
Gp ∈ ⋂︁

i≥1 Li(Ω) such that ∥S2(x)∥p-var ≤ Gp ℙ-almost surely, where ∥ · ∥p-var is defined by
(2.4).

According to Theorem 2.3, given that the vector fields V ∈ C3
b , equation (2.7) driven by a

d-dimensional fBm x with Hurst parameter H > 1/3 admits a unique solution.

2.3. Malliavin calculus for x. As mentioned in the Introduction, we will analyze the
convergence of distribution for our numerical approximations thanks to Malliavin calculus
tools. We proceed to recall the main concepts which will be used later in the paper and refer
to [33] for further details. We start by labeling a definition for the Cameron–Martin type space
ℋ related to our fractional Brownian motion x.
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DEFINITION 2.7. Denote by ℰ[a,b] the set of step functions on an interval [a, b] ⊂ [0, T ].
We call ℋ[a,b] the Hilbert space defined as the closure of ℰ[a,b] with respect to the scalar
product

⟨1[u,v],1[s,t]⟩ℋ[a,b] = R
(︁[u, v], [s, t])︁.

In order to alleviate notation, we will write ℋ = ℋ[a,b] when [a, b] = [0, T ]. Notice that
the mapping 1[s,t] → δxst can be extended to an isometry between ℋ[a,b] and the Gaussian
space associated with {xt , t ∈ [a, b]}. We denote this isometry by h → ∫︁ b

a hδ⋄x. The random
variable

∫︁ b
a hδ⋄x is called the (first-order) Wiener integral and is also denoted by I1(h).

The space ℋ is very useful in order to define Wiener integrals with respect to x. In this
paper we also need to introduce another Cameron–Martin type space ℋ̄. The space ℋ̄ allows
to identify pathwise derivatives with respect to x and the Malliavin derivatives. In order to
construct ℋ̄, let ℛ be the linear operator such that ℛ : h ∈ ℋ → ⟨h,1[0,t]⟩ℋ. Then the space
ℋ̄ is defined as the Hilbert space ℋ̄ = ℛ(ℋ) equipped with the inner product⟨︁ℛ(g),ℛ(h)

⟩︁
ℋ̄ = ⟨g,h⟩ℋ.

We refer to [20, 34] for more details about the spaces ℋ and ℋ̄.
For the sake of conciseness, we refer to [33] for a proper definition of Malliavin derivatives

and related Sobolev spaces in Gaussian analysis. Let us just mention that we will denote the
Malliavin derivative by DF , the Sobolev spaces by 𝔻

k,p and the corresponding norms by
∥F∥k,p . We denote by DkF the kth iteration of the Malliavin derivative D applied on F . The
nth order chaos of x is denoted by 𝒦x

n . Also notice that we are considering a d-dimensional
fBm x = (x1, . . . , xd). Therefore, we shall consider partial Malliavin derivatives with respect
to each coordinate xi in the sequel. Those partial derivatives will be denoted by D(i). Then
for h = (h1, . . . , hd) ∈ℋd we write DhF = ∑︁d

i=1⟨D(i)F,hi⟩ℋ. For L ≥ 2 we also denote by
DL

h the iterated versions of Dh. Namely we set

(2.16) DL
h F = Dh ◦ · · · ◦ DhF.

The Sobolev spaces related to the Malliavin derivatives are denoted by 𝔻
k,p and the cor-

responding norms are written ∥ · ∥k,p . The dual of the Malliavin derivative is the Skorohod
integral, for which we use the notation δ⋄. Its domain includes the space 𝔻

1,2(ℋd), and the
integration by parts formula can be read as

(2.17) 𝔼
[︁
Fδ⋄(u)

]︁ = 𝔼
[︁⟨DF,u⟩ℋd

]︁
,

valid for F ∈ 𝔻
1,2 and u ∈ 𝔻

1,2(ℋd).

2.3.1. Differentiability. As we will see below, under the condition that V ∈ C
⌊1/γ ⌋+1
b

the solution y to (2.7) is differentiable in the Malliavin calculus sense. We shall express its
Malliavin derivative in terms of the Jacobian Φ of the equation, which is defined by the
relation Φ

ij
t = ∂aj

y
(i)
t , where recall that a = (a1, . . . , am) is the initial value of the system

(2.7). Setting ∂Vj for the Jacobian of Vj seen as a function from ℝ
m to ℝ

m, let us recall that
Φ is the unique solution to the linear equation

(2.18) Φt = Idm +
∫︂ t

0
∂V0(ys)Φs ds +

d∑︂
j=1

∫︂ t

0
∂Vj (ys)Φs dxj

s .

Moreover, the following results hold true.
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PROPOSITION 2.8. Let y be the solution to equation (2.7) and suppose (V0,V1, . . . , Vd)

is a collection of vector fields in C3
b . Then for every i = 1, . . . ,m, t > 0, and a ∈ ℝ

m, we have

y
(i)
t ∈ 𝔻

2,p(ℋ) for p ≥ 1 and

D(j)
s yt = Φs,tVj (ys), j = 1, . . . , d,0 ≤ s ≤ t,

where D
(j)
s y

(i)
t is the j th component of Dsy

(i)
t , Φt = ∂ayt solves equation (2.18) and Φs,t =

ΦtΦ
−1
s .

Let us now quote the result [8], which gives a useful estimate for moments of the Jacobian
of rough differential equations driven by Gaussian processes. Note that this result is expressed
in terms of p-variations, for which we refer to [17].

PROPOSITION 2.9. Consider a fractional Brownian motion x with Hurst parameter H ∈
(1/4,1/2] and p > 1/H . Then for any η ≥ 1, there exists a finite constant cη such that the
Jacobian Φ defined by (2.18) satisfies

(2.19) 𝔼
[︁∥Φ∥η

p-var;[0,1]
]︁ = cη.

2.4. Pathwise estimate of Euler scheme and its derivatives. Recall that the Euler scheme
yn is defined in (1.2). In this subsection we state a pathwise upper-bound estimate of the
Malliavin derivatives of yn obtained in our companion paper [28]. We first introduce some
notation.

Let b be a fBm independent of x. Recall that the rough paths above x and b are denoted
by (x1, x2) and (b1, b2), respectively (see Definition 2.1). We introduce some second chaos
processes which play a prominent role in the analysis of Euler schemes (see [29]). Namely
for [s, t] ∈ ⟦0, T ⟧ we set

q
ij
st = ∑︂

s≤tk<t

(︃
x

2,ij
tktk+1

− 1

2
Δ2H 1{i=j}

)︃
,

q
b,ij
st = ∑︂

s≤tk<t

(︃
b

2,ij
tktk+1

− 1

2
Δ2H 1{i=j}

)︃
.

(2.20)

REMARK 2.10. The reader might wonder about the introduction of an additional fBm b.
As we will see in Theorem 2.12, this additional fBm is crucial to bound Malliavin derivatives.
The proof of Theorem 2.12 (see our companion paper [28]) is based on a technique borrowed
from [26].

A main observation of the technique in [26] is that, given that y is the solution of a differen-
tial equation driven by a fBm x, the estimate of the Malliavin derivatives of y can be reduced
to the estimate of a related differential equation driven by the joint process (x, b). This makes
the Malliavin calculus bounds much more readable (the use of Cameron–Martin spaces is
mostly avoided) and allows Hilbert–Schmidt norms estimates of the Malliavin derivatives.

In the current paper, our study of weak convergence for Euler scheme (1.2) requires the
estimate of first and second Malliavin derivatives of the Euler scheme. For this purpose we
have reproduced the techniques of [26] for the Euler scheme (1.2) in [28]. The introduction
of the fBm b in the statement of Theorem 2.12 is thus a consequence of the application of
this technique.

We recall a basic inequality taken from [29], Lemma 3.4: for (s, t) ∈ 𝒮2(⟦0, T ⟧) we have

(2.21)
(︁
𝔼
[︁∥qst∥2]︁)︁1/2 ≲ (t − s)1/2

n2H−1/2 .
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We also introduce a Gaussian process w which encompasses the coordinates of both the
driving noise x and the extra noise b. Specifically we define w such that

(2.22) δwst := (︁
δw1

st , . . . , δw2d
st

)︁ := (︁
δx1

st , . . . , δx
d
st , δb

1
st , . . . , δb

d
st

)︁
.

Let w = S2(w) = (w1,w2) be the p-rough path above w (see Definition 2.1). Denote by
∥ · ∥p-var;⟦s,t⟧ the p-variation norm on ⟦s, t⟧:

∥w∥p-var;⟦s,t⟧ =
(︃

sup
𝒫

∑︂
(u,v)∈𝒫

|wuv|p
)︃1/p

,

where |wuv| := |w1
uv| + |w2

uv|1/2, and the supremum is taken among all discrete intervals 𝒫
such that 𝒫 ⊂ ⟦s, t⟧ and we write (u, v) ∈ 𝒫 if u and v are two consecutive points of 𝒫 . We
define a control ω by

(2.23) ω(s, t) = ∥w∥p

p-var;⟦s,t⟧ + ∥q∥p/2
p/2-var;⟦s,t⟧ + ⃦⃦

qb
⃦⃦p/2
p/2-var;⟦s,t⟧, (s, t) ∈ 𝒮2

(︁
⟦0, T ⟧

)︁
,

where q is defined in (2.20).
Our pathwise upper-bound estimate is achieved by considering small, medium, and big

steps of the Euler scheme separately. Let α > 0 be a positive constant. The small and medium
steps are those such that ω(tk, tk+1) ≤ α, and the big steps otherwise. Precisely, let s0 = 0 and
define sj+1 recursively as

(2.24) sj+1 =
{︄
sj + Δ, if ω(sj , sj + Δ) > α,

max
{︁
u ∈ ⟦0, T ⟧ : u > sj and ω(sj , u) ≤ α

}︁
, if ω(sj , sj + Δ) ≤ α.

Then we split the set of sj ’s as

S0 = {︁
sj : α/2 ≤ ω(sj , sj+1) ≤ α

}︁; S1 = {︁
sj : ω(sj , sj+1) < α/2

}︁;(2.25)

S2 = {︁
sj : ω(sj , sj+1) > α

}︁
.(2.26)

We set

ℳ0 = ∏︂
sj∈S0

(︁
Kω(sj , sj+1)

1/p + 1
)︁
,

ℳ1 = ∏︂
sj∈S1

(︁
Kω(sj , sj+1)

1/p + 1
)︁
,

ℳ2 = ∏︂
sj∈S2

(︁
K|δwsj sj+1 | + KΔ2H + 1

)︁
,

(2.27)

and K is a constant independent of n.

REMARK 2.11. The reason why we are considering small, medium and big steps sep-
arately in our upper-bound estimate is the following: when the increments are small or
medium, the estimate of the Euler scheme can be derived in a similar way as for the
continuous-time differential equations (see, e.g., the proof of [8], Theorem 8.4, for the
continuous-time case). More specifically, we can find a proper constant α > 0 depending
on the coefficient function V and the Hurst parameter H only (α is defined explicitly in
(4.27) in Section 4.2 in our companion paper [28]) such that the estimate of Euler scheme
is obtained on [sj , sj+1] for sj ∈ [0, T ] such that ω(sj , sj+1) ≤ α. (Recall that ω(s, t) is de-
fined in equation (2.23).) By iterating this estimate we can obtain a global upper bound for
the Euler scheme.

On the other hand, when the increments are large, that is, when ω(sj , sj + T/n) > α, the
above argument will require to take sj+1 ∈ (sj , sj + T/n). Therefore, the iteration of the
argument used in the small/medium increment case would not allow to get out of the time
interval [sj , sj + T/n]. We thus have to proceed differently for our estimates in that case.
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We now recall the following pathwise estimates for the Euler scheme in [28], Theo-
rem 4.13.

THEOREM 2.12. Take r, r ′ ≥ 0. One can find integers k0, k′
0 such that r ∈ (tk0, tk0+1] and

r ′ ∈ (tk′
0
, tk′

0+1]. Suppose that V ∈ C4
b and p > 1/H . Define a Malliavin derivative vector ξn

as

(2.28) ξn
t = (︁

yn
t ,Dry

n
t ,DrDr ′yn

t

)︁ := (︁
ξ

n,0
t , ξ

n,1
t , ξ

n,2
t

)︁
.

Then we can find a constant α > 0 depending on V and H only such that for L = 0,1,2 and
all (s, t) ∈ 𝒮2⟦0, T ⟧ we have the estimate⃦⃦

ξn,L
⃦⃦
p-var,⟦s,t⟧ ≤ K · ω(s, t)1/p · 𝒢,(2.29)

where the random variable 𝒢 is defined by

(2.30) 𝒢 = |S0 ∪ S1 ∪ S2| · (ℳ0 ·ℳ1 ·ℳ2)
L,

and where the quantities Si , ℳi are respectively defined for i = 0,1,2 in (2.25)–(2.26) and
(2.27). Moreover, for (s, t) ∈ 𝒮2(⟦sj , sj+1⟧) such that sj ∈ S0 ∪ S1 we have⃓⃓

δyn
st − V

(︁
yn
s

)︁
δxst

⃓⃓ ≤ Kω(s, t)2/p, and⃓⃓
δξ

n,L
st −ℒLV

(︁
yn
s

)︁
δxst

⃓⃓ ≤ Kω(s, t)2/p · 𝒢2, L = 1,2,
(2.31)

where we have set

ℒ0V
(︁
yn
s

)︁ = V
(︁
yn
s

)︁
, ℒ1V

(︁
yn
s

)︁ = ∂V
(︁
yn
s

)︁
Dry

n
s ,

and where ℒ2V (yn
s ) is defined by

ℒ2V
(︁
yn
s

)︁ = ∂2V
(︁
yn
s

)︁
Dry

n
s Dr ′yn

s + ∂V
(︁
yn
s

)︁
Dr ′Dry

n
s .

(The reader is referred to [28], equations (3.17) and (3.27), for the general definition of the
operator ℒL and the explicit expression of the constant α, respectively.) In both estimates
(2.29) and (2.31), K is a constant independent of r , r ′, j and n.

REMARK 2.13. Our bound (2.31) involves the control ω defined by (2.23). This control
depends on the fBm b and the quadratic process qb. As mentioned in Remark 2.10, the fBm
b thus plays a prominent role in Theorem 2.12.

REMARK 2.14. Theorem 2.12 is an upper-bound estimate for the first and second-order
Malliavin derivatives of the Euler scheme. The reader is referred to [28], Theorem 4.13, for
a general result for Malliavin derivatives of all orders. On the other hand, Theorem 2.12 will
be sufficient for our purpose in this paper. Specifically, we will conduct Malliavin integration
by parts twice in our study of the Euler scheme, and therefore only first and second-order
Malliavin derivatives will appear. For this reason we have used the operators ℒL for L =
0,1,2 only.

2.5. Sharpness of the weak convergence rate. In Theorem 1.1 we claim a rate of conver-
gence (1/n)4H−1−ε for the Euler scheme. Before getting into the details of the proof for this
statement, we now analyze a simple example showing that this rate is sharp.

Specifically, consider the following simple stochastic differential equation:

(2.32) dy1
t = dx1

t , dy2
t = y1

t dx2
t , y1

0 = y2
0 = 0, t ∈ [0,1].
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We denote y = (y1, y2) the solution. The driving process x := (x1, x2) is a two-dimensional
fBm. In the setting of equation (1.1), this corresponds to the situation

m = d = 2, T = 1, V0 ≡ 0, a = 0, V1(y) =
(︃

1
0

)︃
, V2(y) =

(︃
0
y1

)︃
.

Moreover, equation (2.32) admits the explicit solution

y1
t = x1

t , y2
t =

∫︂ t

0
x1
s dx2

s ,

where the integral is understood in the Stratonovich sense. Also notice that y1 and y2 are
both components of the signature S2(x) in Definition 2.1.

In the specific case of equation (2.32), the numerical scheme (1.2) becomes

(2.33) y
1,n
t = x1

t , y
2,n
t = ∑︂

0≤tk<t

x1
tk
δx2

tk tk+1
, t ∈ ⟦0,1⟧,

where tk = k/n, k = 0, . . . , n. It has been shown in [32] (and also as a particular case of [29])
that a sharp strong rate of convergence of yn to y is of order (1/n)2H−1/2. As far as the weak
rate of convergence is concerned, let us consider the test function

f :ℝ2 → ℝ such that f
(︁
z1, z2)︁ = ⃓⃓

z2 ⃓⃓2.
Notice that f is not bounded as requested in Theorem 1.1. It is still a valid test function for a
quick validation of our convergence rate. More specifically, a direct computation gives

𝔼f (y1) = 𝔼

(︃⃓⃓⃓
⃓
∫︂ 1

0
x1
s dx2

s

⃓⃓⃓
⃓2
)︃

=
∫︂
[0,1]2

R(u, v) dR(u, v)

= ∑︂
0≤tk,tk′<1

∫︂
[tk,tk+1]×[tk′ ,tk′+1]

R(u, v) dR(u, v).

(2.34)

On the other hand, for the numerical approximation yn
1 we have

𝔼f
(︁
yn

1
)︁ = 𝔼

(︃⃓⃓⃓
⃓ ∑︂
0≤tk<1

x1
tk
δx2

tk tk+1

⃓⃓⃓
⃓2
)︃

= ∑︂
0≤tk,tk′<1

R(tk, tk′)R
(︁[tk, tk+1], [tk′, tk′+1])︁(2.35)

= ∑︂
0≤tk,tk′<1

∫︂
[tk,tk+1]×[tk′ ,tk′+1]

R(tk, tk′) dR(u, v).

Taking the difference between (2.34) and (2.35) we obtain

(2.36) 𝔼f (y1) −𝔼f
(︁
yn

1
)︁ = ∑︂

0≤tk,tk′<1

∫︂
[tk,tk+1]×[tk′ ,tk′+1]

(︁
R(u, v) − R(tk, tk′)

)︁
dR(u, v).

Now applying the self-similarity property n2HR(s, t) = R(ns,nt) and then the change of
variable (nu,nv) → (u, v) to (2.36) we obtain

(2.37) 𝔼f (y1) −𝔼f
(︁
yn

1
)︁ = (1/n)4H−1λ(n),
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FIG. 1. The value of lim
n→∞λ(n) versus H

where we denote

λ(n) = 1

n

n−1∑︂
k,k′=0

∫︂
[k,k+1]×[k′,k′+1]

(︁
R(u, v) − R

(︁
k, k′)︁)︁dR(u, v).

Figure 1 is a plot of the numerical values of the limit limn→∞ λ(n) for various H , carried out
using MATLAB.

The plot shows that λ(n) has a nonzero limit for all H ∈ (1/3,1/2). According to relation
(2.37), this implies that (1/n)4H−1 is the exact rate of (2.33). The sharpness of this rate then
follows.

2.6. Outline of proof for Theorem 1.1. We conclude this section by providing an out-
line of the proof for our main result, Theorem 1.1. For convenience we consider the one-
dimensional setting m = d = 1 only.

Our first step of the proof is to derive the following representation of the error process
y − yn:

(2.38) yt − yn
t = ∑︂

0≤tk<t

Ftkqtktk+1 + higher-order multiple integrals,

where q is the one-dimensional version of the quadratic functional qij defined in (2.20).
Namely, in dimension d = 1 we have qtktk+1 = 1

2((δxtktk+1)
2 − Δ2H ). The reader is referred

to relation (4.63) in Section 4.5 for the precise representation of the error yn
t −yt . Specifically,

the weighted sum
∑︁

0≤tk<t Ftkqtktk+1 is corresponding to J 1
t + J 5

t . Notice that the representa-
tion (2.38) and (4.63) are obtained via the “fundamental” solutions, denoted by Γ and Λ (see
Definition 4.12), of a linear equation satisfied by the error process y − yn. For t ∈ [0, T ], Ft

is a random variable involving the processes Γ, Λ, y and yn.
Let f be a smooth function. With relation (2.38) in hand and applying an elementary

interpolation, we have

(2.39) 𝔼f (yt ) −𝔼f
(︁
yn
t

)︁ = ∑︂
0≤tk<t

𝔼(F̃tkqtktk+1) +𝔼(higher-order multiple integrals),

where F̃ is a process similar to F . Note that if one applies deterministic type estimates to
the right-hand side of (2.39), the convergence rate can be shown to be (1/n)2H−1/2; see [29].
Our goal is to show that using Malliavin calculus we obtain an order (1/n)4H−1.
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To this aim, our second main step is to prove that processes Γ, Λ, y and yn and their
Malliavin derivatives are integrable uniformly in n. This is the content of Section 3 and
Section 4.3-4.4. More specifically, we show that ℳ0, ℳ1 and ℳ2 in (2.27) are integrable;
see Section 3. Then, according to Theorem 2.12, this implies that the Malliavin derivatives
of yn are also integrable. In Section 4.3-4.4 we derive an upper-bound estimate for Γ, Λ

and their Malliavin derivatives similar to those of Theorem 2.12; see Lemma 4.13. Then by
applying the integrability of ℳ0, ℳ1 and ℳ2 again we obtain the uniform integrability for
Γ, Λ and their Malliavin derivatives.

With the uniform integrability in hand, our next main step is to apply the integration by
parts to the expected value 𝔼[Ftkqtktk+1], which gives:

𝔼[Ftkqtktk+1] = 𝔼
⟨︁
D2Ftk , βtktk+1

⟩︁
ℋ⊗2,

where β stands for the indicate function βst = 1{(u, v) : s ≤ u ≤ v ≤ t}. Then some nice fBm
scaling and monotonicity properties observed in Section 4.1 allow to show that the quantity
𝔼⟨D2Ftk , βtktk+1⟩ℋ⊗2 is bounded by (1/n)4H .

Finally, we show that the higher-order multiple integrals in (2.39) can also be bounded by
(1/n)4H−1, with the help of the results developed in Section 4.2.

3. Uniform integrability for Malliavin derivatives of the Euler scheme. In this sec-
tion we tackle the integrability issue for the Malliavin derivatives of the Euler scheme. Before
proceeding to our main considerations, some remarks about our global strategy are in order.
Recall that ℳ0, ℳ1, ℳ2 are defined in (2.27), b is an independent copy of x, and qb are
defined in (2.20). Recall that the signature x = S2(x) = (x1, x2) of x is defined in Defini-
tion 2.1.

REMARK 3.1. Due to the bound (2.29), the integrability of ℳ0, ℳ1, ℳ2 is our main
task towards a uniform bound for the Malliavin derivatives as a function of n. We mostly
focus on this problem in the sequel.

REMARK 3.2. Observe that b (resp. qb) in (2.23) is a mere copy of the fBm x (resp.
the quadratic sum q). Furthermore, expression (2.23) involves both quantities ∥q∥p/2-var and
∥qb∥p/2-var. Duplicates like this one would be ubiquitous in our computations. Therefore, in
order to avoid lengthy expressions, we will simply omit the b-terms in the sequel. With this
convention, (2.23) would become

(3.1) ω(s, t) = |x|p
p-var;⟦s,t⟧ + |q|p/2

p/2-var;⟦s,t⟧.
To be completely clear, let us highlight the fact that we do not assume b = 0 here. We have
just chosen to drop the b-terms from our expressions involving ω in (2.23), for notational
sake. We hope this does not lead to confusions.

We now turn our attention to the integrability of the random variables ℳi .

3.1. Uniform integrability of ℳ1 and ℳ2. In this subsection, we consider the uniform
integrability of ℳ1 and ℳ2 in (2.27). The proof is achieved thanks to a tail analysis of the
cardinality of the large size steps, that is, steps with size > α.

THEOREM 3.3. Let ℳ2 = ℳ2(n) be the random variable defined by (2.27). Suppose
that ℳ2 is given by

(3.2) ℳ2 = ∏︂
sj∈S2

(︁
K|δxsisi+1 | + KΔ2H + 1

)︁
,

where S2 is the subset of ⟦0, T ⟧ displayed in (2.26). Suppose that x is a fBm with Hurst
parameter H > 1/3. Then we have supn∈ℕ 𝔼[|ℳ2|ν] < ∞ for all ν ≥ 1.
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PROOF. Recall that ω is defined by (2.23). With our convention (3.1), since b and qb are
omitted, the control ω is reduced to

ω(tk, tk+1) = |xtk tk+1 |p + |qtktk+1 |p/2,

where |xtk tk+1 | stands for |x1
tk tk+1

| + |x2
tk tk+1

|1/2, so that definition (2.26) yields the following
relation:

S2 = {︁
tk : ω(tk, tk+1) > α

}︁ ={︁
tk : |xtk tk+1 |p + |qtktk+1 |p/2 > α

}︁
.(3.3)

Moreover, it is readily checked that

|xtk tk+1 |p + |qtktk+1 |p/2 ≲ |δxtktk+1 |p + ⃓⃓
x2
tk tk+1

⃓⃓p/2 + |Δ|Hp≲ |xtk tk+1 |p + |Δ|Hp.

If we choose n so that |Δ|Hp ≤ α/2, that is, n ≥ T · (α/2)
− 1

Hp =: Kα,p,T , from the expression
(3.3) we get

S2 ⊂ {︁
tk : |xtk tk+1 |2 > (α/2)2/p}︁ =: S3.

This inclusion implies that

ℳ2 = ∏︂
sj∈S2

(︁
K|xsj sj+1 | + 1

)︁ ≤ ∏︂
sj∈S3

(︁
K|xsj sj+1 | + 1

)︁ ≤ Cα

∏︂
sj∈S3

K|xsj sj+1 |,(3.4)

where we have invoked the fact that |xsj sj+1 | > (α/2)1/p whenever sj ∈ S3 for the last in-
equality. In the following, we show that the ν-moment of the right-hand side of (3.4) is
bounded uniformly in n. This implies that supn≥Kα,p,T

𝔼[|ℳ2|ν] < ∞. Recall that α is a
constant depending on V and H only (see Theorem 2.12). It will thus follow that

sup
n∈ℕ

𝔼
[︁|ℳ2|ν]︁ < ∞.

We now divide the proof in several steps.
Step 1: Some pathwise bounds. Recall again that x is a fBm with Hurst parameter H >

1/3. Pick β < H . Denote by ∥δx∥[0,T ],β and ∥x2∥[0,T ],2β the Hölder norms of δx and x2,
respectively. Namely,

∥δx∥[0,T ],β = sup
(s,t)∈𝒮2([0,T ])

|δxst |
|t − s|β and

⃦⃦
x2⃦⃦

[0,T ],2β = sup
(s,t)∈𝒮2([0,T ])

|x2
st |

|t − s|2β
.

Let

(3.5) 𝒢 ≡ ∥x∥[0,T ],β := ∥δx∥[0,T ],β + ⃦⃦
x2⃦⃦1/2

[0,T ],2β.

It is well known that 𝒢 is almost surely finite. This implies that |xsj sj+1 | ≤ 𝒢n−β , and there-
fore

(3.6) ℳ2 ≤ ∏︂
tk∈S3

K
(︁𝒢n−β)︁ ≤ (︁

K𝒢n−β)︁|S3|.

In addition, according to (3.5) we have

S3 ⊂ ⋃︂
i,j

(︁
Si

31 ∪ S
ij
32 ∪ S

ij
33
)︁
,

where the sets S31, S32, S33 are defined by

Si
31 = {︁

tk : (︁δxi
tktk+1

)︁2
> αp

}︁
, S

ij
32 = {︁

tk : x2,i,j
tktk+1

> αp

}︁
,

S
ij
33 = {︁

tk : −x
2,i,j
tktk+1

> αp

}︁
,

(3.7)
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and where taking into account the dimension of x, we take αp defined by

(3.8) αp =
(︃

α

2(d2 + d + 1)

)︃2/p

.

Therefore recalling that K designates a generic constant, we have obtained the following
upper bound for the random variable ℳ2:

ℳ2 ≤
(︄

d∏︂
i=1

(︁
K𝒢n−β)︁|Si

31|
)︄

·
(︄

d∏︂
i,j=1

(︁
K𝒢n−β)︁|Sij

32|
)︄

·
(︄

d∏︂
i,j=1

(︁
K𝒢n−β)︁|Sij

33|
)︄
.(3.9)

In the following we consider the integrability of the random variable (K𝒢n−β)|Si
31| for all

i = 1, . . . , d which appear in the right-hand side of (3.9). The other terms in (3.9) can be
handled very similarly.

Step 2: Tail estimates for |S31|. For each subset u ≡ {uj ; j = 1, . . . , n′}, n′ ≤ n of the set
of discrete instants ⟦0, T ⟧ = {tk, k = 0,1, . . . , n} we introduce the quantity:

𝒳 i (u) = ∑︂
tk∈{uj ;j=1,...,n′}

(︁⃓⃓
δxi

tktk+1

⃓⃓2 − Δ2H )︁
.

Suppose that |Si
31| = n′ and denote Si

31 = {uj ; j = 1, . . . , n′} =: u ⊂ ⟦0, T ⟧. Then by the
definition of Si

31 in (3.7) we have |δxi
uj uj+1

|2 > αp for all uj ∈ Si
31, where αp is defined by

(3.8). It follows that for n such that Δ2H < αp/2 we have

𝒳 i (u) > n′(αp − αp/2) = n′αp/2.

We have thus proved that

(3.10)
{︁⃓⃓

Si
31

⃓⃓ = n′}︁ ⊂ ⋃︂
u⊂{tk}

{︁𝒳 i (u) > n′αp/2
}︁
.

As a consequence of the above relation, we trivially get

(3.11) ℙ
{︁⃓⃓

Si
31

⃓⃓ = n′}︁ ≤ ∑︂
u⊂{tk}

ℙ
{︁𝒳 i (u) > n′αp/2

}︁
.

Next set σ 2
u = (𝔼|𝒳 i (u)|2). Owing to a slight variation of (2.21) we have σ 2

u ≲ 1/n4H−1.
Therefore starting from the right-hand side of (3.11) we get

ℙ
(︁⃓⃓
Si

31

⃓⃓ = n′)︁ ≤ ∑︂
{uj ;j=1,...,n′}⊂{tk}

ℙ

{︃𝒳 i (u)

σu
>

Kp,α · n′

σu

}︃

≤ ∑︂
{uj ;j=1,...,n′}⊂{tk}

ℙ

{︃𝒳 i (u)

σu
>

Kp,α · n′

1/n2H−1/2

}︃
.

(3.12)

The right-hand side of (3.12) is handled in the following way: taking into account the fact
that 𝒳 i (u)/σu is a normalized random variable in the second chaos of x, we apply Borell’s
inequality (see, e.g., [22], Theorem 5.12). In addition the number of sets of the form u =
{uj ; j = 1, . . . , n′} is

(︁ n
n′
)︁
. Hence we end up with

ℙ
(︁⃓⃓
Si

31

⃓⃓ = n′)︁ ≤ n!
n′!(n − n′)! exp

(︁−n2H−1/2 · Kp,α · n′)︁
≤ nn′

exp
(︁−n2H−1/2 · Kp,α · n′)︁.

(3.13)
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Step 3: Computations involving 𝒢. Let us now turn our attention to the term 𝒢 in (3.5). Since
our fBm x is a Gaussian process, Fernique’s lemma asserts that ℙ(𝒢 > a) ≤ e−Ka2

for a given
constant K and any a ≥ 1. This sub-Gaussian bound is sufficient to claim that for all n′ ≥ 1
we have

𝔼𝒢n′ ≤ K
(︁
n′)︁n′ = Ken′ lnn′

.(3.14)

We are now ready to go back to the study of the random variable (K𝒢n−β)ν|Si
31|, K > 0.

Namely we apply Hölder’s inequality with two conjugates p,q > 1, and we combine this
with (3.13) and (3.14). We get

𝔼
(︁(︁

K𝒢n−β)︁νn′
1{|Si

31|=n′}
)︁ = Kνn′

n−βνn′(︁
𝔼
[︁𝒢pνn′]︁)︁1/p · ℙ(︁⃓⃓Si

31

⃓⃓ = n′)︁1/q

≤ eνn′ lnn′
n−βνn′ · ℙ(︁⃓⃓Si

31

⃓⃓ = n′)︁1/q(3.15)

≤ exp
(︁
f
(︁
n′)︁)︁,

where the function f is defined by

(3.16) f
(︁
n′)︁ := K1n

′ lnn′ − βKn′ lnn + K2n
′ lnn − K3n

2H−1/2n′,

for three positive constants K1, K2, K3 whose exact value is irrelevant.
We now compute the maximum of the function f thanks to elementary considerations.

First we calculate

f ′′(︁n′)︁ = K/n′ ≥ 0.

Therefore f is upward convex and

sup
2≤n′≤n

f
(︁
n′)︁ ≤ f (2) ∨ f (n) ≤ f (2) + f (n).(3.17)

Moreover one can explicitly compute f (2) and f (n) thanks to the expression (3.16). We
obtain

f (n) = (K1 + K2 − βK)n lnn − Kn2H+1/2, f (2) = K − K lnn − Kn2H−1/2.

Reporting this expression into (3.15), we discover that

𝔼
(︁
K𝒢n−β)︁ν|Si

31| =
n∑︂

n′=0

𝔼
(︁(︁

K𝒢n−β)︁νn′
1{|S31|=n′}

)︁

≤
n∑︂

n′=2

exp
(︁
f
(︁
n′)︁)︁

≤ n exp
(︁
f (n) + f (2)

)︁ ≤ n exp
(︁
C1n lnn − C2n

2H+1/2)︁.
(3.18)

Step 4: Conclusion. Since we have assumed H > 1/3, it is readily checked that the right-
hand side of (3.18) is dominated by a constant. Therefore, we end up with the inequal-
ity supn≥1 𝔼[(K𝒢n−β)ν|Si

31|] ≡ M < ∞. This concludes the uniform (in n) integrability of

(K𝒢n−β)ν|Si
31|, for all indices i = 1, . . . , d . The integrability of the other two quantities

(K𝒢n−β)ν|Sij
32| and (𝒢n−β)ν|Sij

33| can be shown in a similar way. Combining these integrability
results with relation (3.9) and with Hölder’s inequality, we obtain the uniform integrability of
ℳν

2. Our proof is complete. □
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REMARK 3.4. As the reader can see, we have used the assumption H > 1/3 in order
to bound the right-hand side of (3.18). This hypothesis is ubiquitous in our considerations.
As far as extensions to lower values of H , let us mention the following two points: (1) We
have not proved yet that the our numerical scheme (1.2) is convergent when H ∈ (1/4,1/3].
Now for the case H > 1/3, rough paths computations are based on second order expansions.
Therefore we only need to deal with tail estimate of quadratic functionals in (3.10). We are
not sure if our arguments in Theorem 3.3 still apply for higher-order rough path expansions
or numerical methods. (2) To the best of our knowledge, a proper construction of a geometric
rough path above a fBm x with H ≤ 1/4 is still an open question. Therefore solving equation
(1.1) for H ≤ 1/4 is also an open problem.

Once the bound of ℳ2 is established, we can link the expected value of ℳ1 to that of
ℳ2 by the observation that there are less steps with a small size (< α) than with a large size
(> α). This is the content of the following result.

COROLLARY 3.5. Let ℳ1 be defined in (2.27) and we are still working with a fBm x

with Hurst parameter H > 1/3. Then supn∈ℕ 𝔼[|ℳ1|ν] < ∞ for all ν ≥ 1.

PROOF. In order to consider the integrability of ℳ1 we observe that by the definition of
S1, for sj ∈ S1 we must have ω(sj , sj+1) ≤ α/2 and ω(sj+1, sj+1 + Δ) ≥ α/2. This implies
that the cardinality of S1 is less than that of the set S′

3 = {tk : ω(tk, tk+1) > α/2}, namely,
|S1| ≤ |S′

3|, and so

ℳ1 = ∏︂
sj∈S1

(︁
K1ω(sj , sj+1)

1/p + 1
)︁ ≤ (K1α + 1)|S1| ≤ K |S′

3|.

Observe that K |S′
3| is in the form similar to (3.6) for ℳ2. So in a similar way as in Theo-

rem 3.3, we can show that Kν|S′
3| and thus ℳν

1 is uniformly integrable. □

3.2. Integrability of ℳ0. In this section, we will take care of the products in (2.27) in-
volving small steps of ω. Now recall that those steps, defined by (2.23), involve the Gaussian
process w and the second chaos process q . The presence of q will require a specific transla-
tion procedure on the Wiener space, which is carried out in Section 3.2.1. Then a weighted
sum argument is invoked in Section 3.2.2.

3.2.1. Translation of the fBm and some functionals. Let us recall that x is a fBm with
H > 1/3 and q is defined in (2.20). In this subsection, we consider an upper-bound estimate
for the translation of the fBm x and the process q . Notice that in the sequel our generic
random element in the space Ω will be denoted by ϕ. In the following result, we deal with
the Cameron–Martin space (or equivalently, the reproducing kernel Hilbert space) related to
our fBm; the reader is referred to our companion paper [28], Section 2.2, for an introduction
of this space.

LEMMA 3.6. Take 3 > p > 1/H and p′ > 1 such that 1/p + 1/p′ > 1. Let h be a path in
Cp′-var([0, T ],ℝm), and let Th denote the translation operator: Thϕ = ϕ+h on the Cameron–
Martin space associated with our fBm. Then the following translation inequality holds:

∥Thq∥p/2
p/2-var,⟦s,t⟧ + ∥Thx∥p

p-var,⟦s,t⟧

≤ Kp

(︁∥q∥p/2
p/2-var,⟦s,t⟧ + ∥x∥p

p-var,[s,t] + ∥h∥p

p′-var,[s,t]
)︁
,

(3.19)

where Kp is a constant depending only on p.
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PROOF. The estimate of ∥Thx∥p

p-var,⟦s,t⟧ is shown in Lemma 3.1 [8]. In the following we

consider the estimate of ∥Thq∥p/2
p/2-var,⟦s,t⟧. Specifically, consider an element u, v ∈ 𝒮2(⟦s, t⟧).

By definition we can write

Thquv = quv + A1
uv + A2

uv + A3
uv,(3.20)

where

A1
uv = ∑︂

u≤tk<v

∫︂ tk+1

tk

δhtkr ⊗ dxr, A2
uv = ∑︂

u≤tk<v

∫︂ tk+1

tk

δxtkr ⊗ dhr,(3.21)

A3
uv = ∑︂

u≤tk<v

∫︂ tk+1

tk

δhtkr ⊗ dhr .(3.22)

Next we further decompose the term A1 into

(3.23) A1
uv = A11

uv + A12
uv,

where A11 and A12 are respectively defined by

A11
uv =

∫︂ v

u
δhur ⊗ dxr, and A12

uv = −𝒥 v
u (h, x),(3.24)

and where the term 𝒥 above is given as

(3.25) 𝒥 v
u (h, x) = ∑︂

u≤tk<v

δhutk ⊗ δxtktk+1 .

In the following, we bound the terms on the right-hand side of (3.20).
First, by a direct computation for all (u, r, v) ∈ 𝒮3(⟦s, t⟧) we have

δA12
urv = δhur ⊗ δxrv.(3.26)

In order to bound δA12, we consider the function

(3.27) ω(u, v) =: ∥h∥p′-var,[u,v]∥x∥p-var,[u,v].

It is well known that since 1/p + 1/p′ > 1, ω is a control function. In fact, it is easy to show
that ω1 =: ω1/μ is a control function for μ such that 1/p + 1/p′ > μ > 1. It follows from
(3.26) and the definition of ω1 that ⃓⃓

δA12
urv

⃓⃓ ≤ ω1(u, v)μ.

In addition, it is readily checked from our definition (3.25) that A12
tktk+1

= 0 for all tk ∈ ⟦s, t⟧.
Therefore a direct application of Lemma 2.4 yields:⃓⃓

A12
uv

⃓⃓ ≤ Kμω1(u, v)μ = Kμω(u, v).(3.28)

Let us turn to the estimate of A11 defined by (3.24). In that case, due to the fact that A11

can be interpreted as a Young integral, some elementary estimates (see, e.g., [37]) reveal that

(3.29)
⃓⃓
A11

uv

⃓⃓ ≤ ω(u, v).

Hence reporting (3.28) and (3.29) into (3.23) we end up with⃓⃓
A1

uv

⃓⃓ ≤ (Kμ + 1)ω(u, v) ≤ (Kμ + 1)
(︁∥h∥2

p′-var,[u,v] + ∥x∥2
p-var,[u,v]

)︁
,(3.30)

where we recall that the control ω is given by (3.27). The term A2 in (3.21) can be bounded
in a similar way as for A1, and we obtain the same estimate as in (3.30). The details are thus
omitted.
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In order to bound A3 defined by (3.22), we apply Young’s inequality again and also the
super-additivity of the control ω2(u, v) =: ∥h∥2

p′-var,[u,v] (Notice that ω2 is a control owing to
the fact that p′ < 2). We get⃓⃓

A3
uv

⃓⃓ ≤ ∑︂
u≤tk<v

∥h∥2
p′-var,[tk,tk+1] ≤ ∥h∥2

p′-var,[u,v].

Putting together the estimates of A1, A2 and A3 and equation (3.20), we obtain

|Thquv| ≤ |quv| + 2(Kμ + 1)∥x∥2
p-var,[u,v] + (2Kμ + 3)∥h∥2

p′-var,[u,v].(3.31)

Now consider a generic partition π = {uj } of ⟦s, t⟧. Thanks to (3.31) and super-additivity
properties we have∑︂

{uj }
|Thqujuj+1 |p/2

≤ Kp

(︃∑︂
{uj }

|qujuj+1 |p/2 + ∑︂
{uj }

∥x∥p
p-var,[uj ,uj+1] + ∑︂

{uj }
∥h∥p

p′-var,[uj ,uj+1]
)︃

≤ Kp

(︁∥q∥p/2
p/2-var,[s,t] + ∥x∥p

p-var,[s,t] + ∥h∥p

p′-var,[s,t]
)︁
.

Finally, taking the sup over all partitions of [s, t] on the left side we obtain the desired estimate
(3.19). □

3.2.2. Integrability of ℳ0. This section is devoted to a study of the intermediate sized
increments of ω. Otherwise stated, we are ready to show the uniform integrability of ℳ0.

THEOREM 3.7. Let S0 and ℳ0 be defined in (2.25) and (2.27), respectively, for a fBm x

with Hurst parameter H > 1/3 and a threshold α > 0. Then for any given γ < 2H + 1 there
exists K = Kγ such that for all a ≥ 1 we have

ℙ
(︁|S0| > a

)︁ ≤ Ke−Kaγ

.(3.32)

In particular, supn∈ℕ 𝔼[ℳν
0] < ∞ for all ν ≥ 1.

PROOF. The proof will be done in several steps.
Step 1. Preparations. Recall that S0 is given by

(3.33) S0 = {︁
sj : α/2 ≤ ω(sj , sj+1) ≤ α

}︁
,

where ω is defined in (2.23). As mentioned in Remark 3.2, we will drop the b-terms in ω for
sake of conciseness. Precisely, we will prove Theorem 3.7 for S0 given in (3.33) but with ω

defined in (3.1), instead of in (2.23). Note that with this consideration the set {|S0| ≤ a} is
now a collection of sample paths of the fBm x, instead of that of the extended fBm (x, b).
We would like to insist again on the fact that we do not assume b = 0 here. We just omit the
b-terms in our computations for notational sake.

Let us go back to inequality (3.19). Remember that p > 1/H therein. Since H > 1/4, it
is easily checked that one can pick p′ > (H + 1/2)−1 such that p, p′ still satisfy 1

p
+ 1

p′ >

1. This pair of p, p′ will be fixed for the remainder of the proof. Recalling the constant
Kp featuring in (3.19) and our threshold α, we also choose β > 0 small enough so that
α/2−Kpβ > 0. Since p > 1/H , according to [29], Remark 3.6, there exists an almost surely
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finite random variable Gp such that supn∈ℕ ∥q∥p/2
p/2-var,⟦s,t⟧ ≤ Gp . Related to those quantities,

we define the following two sets:

An = {︁
ϕ ∈ Ω : ∥q∥p/2

p/2-var,⟦s,t⟧ + ∥x∥p
p-var,[s,t] < β

}︁
,

A = {︁
ϕ ∈ Ω : Gp + ∥x∥p

p-var,[s,t] < β
}︁
,

where we recall that the typical element of (Ω,ℱ,ℙ) is denoted by ϕ. It is clear that A ⊂ An.
Step 2. Tail inclusion relations. Let a ≥ 1 be our generic threshold. Having the notation of

Step 1 in mind we define a constant κ as follows:

(3.34) κ =
(︃

α/2 − Kpβ

Kp

)︃1/p

a1/p′
.

Recall that the Cameron–Martin type space ℋ̄ is defined in Section 2.3. Let us call Bℋ̄ the
unit ball in ℋ̄, namely: Bℋ̄ = {h ∈ ℋ̄; ∥h∥ℋ̄ ≤ 1}. Our first aim is to show that

A + κBℋ̄ ⊂ An + κBℋ̄ ⊂ {︁|S0| ≤ a
}︁
.(3.35)

Suppose that ϕ ∈ An + κBℋ̄. In the following, we show that |S0| ≤ a for such ϕ, which
then implies the relation (3.35). First, for ϕ ∈ An + κBℋ̄ we have ϕ − h ∈ An for some
h ∈ κBℋ̄, and thus ⃦⃦

q(ϕ − h)
⃦⃦p/2
p/2-var,⟦s,t⟧ + ⃦⃦

x(ϕ − h)
⃦⃦p
p-var,[s,t] < β.

Recall that Thx(ϕ) = x(ϕ+h) for any h ∈ ℋ̄ almost surely. Hence the above relation becomes

(3.36)
⃦⃦
T−hq(ϕ)

⃦⃦p/2
p/2-var,⟦s,t⟧ + ⃦⃦

T−hx(ϕ)
⃦⃦p
p-var,[s,t] < β.

We now consider the control ω defined by ω(s, t) = ∥q∥p/2
p/2-var,⟦s,t⟧ + ∥x∥p

p-var,⟦s,t⟧. For a
generic element ϕ ∈ An + κBℋ̄ we have

ω(s, t)(ϕ) = ⃦⃦
ThT−hq(ϕ)

⃦⃦p/2
p/2-var,⟦s,t⟧ + ⃦⃦

ThT−hx(ϕ)
⃦⃦p

p-var,⟦s,t⟧.

Hence invoking Lemma 3.6 we get

ω(s, t)(ϕ) ≤ Kp

(︁⃦⃦
T−hq(ϕ)

⃦⃦p/2
p/2-var,⟦s,t⟧ + ⃦⃦

T−hx(ϕ)
⃦⃦p
p-var,[s,t] + ∥h∥p

p′-var,[s,t]
)︁
,

and owing to (3.36) one ends up with the following relation valid for all ϕ ∈ An + κBℋ̄:

ω(s, t)(ϕ) ≤ Kpβ + Kp∥h∥p

p′-var,[s,t].

In particular, when s = sj and t = sj+1 for sj ∈ S0 we obtain

α/2 ≤ ω(sj , sj+1) ≤ Kpβ + Kp∥h∥p

p′-var,[sj ,sj+1],

and thus

∥h∥p′
p′-var,[sj ,sj+1] ≥

(︃
α/2 − Kpβ

Kp

)︃p′/p
.(3.37)

Since ω1(s, t) ≡ ∥h∥p′
p′,[s,t] is a control it follows from (3.37) that

(3.38) ∥h∥p′
p′-var,[0,T ] ≥ ∑︂

sj∈S0

∥h∥p′
p′-var,[sj ,sj+1] ≥

(︃
α/2 − Kpβ

Kp

)︃p′/p
|S0|.
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We now specify the left-hand side of (3.38). First since we have chosen p′ > (H +1/2)−1,
the reference [7], Page 14, asserts that |h|ℋ̄ ≥ ∥h∥p′-var,[0,T ]. Moreover we have assumed that
h ∈ κBℋ̄. We thus obtain

κp′ ≥ |h|p′
ℋ̄ ≥ ∥h∥p′

p′-var,[0,T ].

Plugging this inequality into (3.38), we obtain that if ϕ ∈ An + κBℋ̄ then

|S0| ≤ κp′
(︃

α/2 − Kpβ

Kp

)︃−p′/p
= a,

where the last identity stems from the definition (3.34) of κ . We have thus proved that if
ϕ ∈ An + κBℋ̄, then |S0| ≤ a. This concludes the proof of (3.35).

Step 3. Tail estimates. Let us introduce some extra bits of notation. Namely we write Φ for
the standard Gaussian CDF. For a set A ⊂ Ω we also define aA ∈ ℝ as the number such that
Φ(aA) = ℙ(A). Then the isoperimetric type inequality in [27], Theorem 4.3, together with
(3.35), yield

ℙ
(︁|S0| > a

)︁ ≤ ℙ
(︁
(A + κBℋ̄)c

)︁ ≤ e−K(aA+κ)2 = eK κ2
2 −K(aA+κ)2

e−K κ2
2 .

Let KA > 0 be an upper bound of the quadratic function f (κ) = K κ2

2 − K(aA + κ)2 on ℝ.
Then considering a constant K which can change from line to line and recalling the definition
(3.34) of κ , we get

ℙ
(︁|S0| > a

)︁ ≤ KAe−K κ2
2 = KAe−Ka2/p′

.(3.39)

Recall again that p′ can be chosen arbitrarily close to (H +1/2)−1. Hence 2/p′ is of the form
2H + 1 − ε for a small ε > 0. This conclude the tail estimate (3.32). It follows immediately
from (3.32) that |S0|ν and thus ℳν

0 is uniformly integrable for any ν ≥ 1. □

3.3. Integrability of Malliavin derivatives. With the preliminary results of Sections 3.1
and 3.2 in hand, we can now turn to the integrability result for the Malliavin derivatives of the
Euler scheme. Notice that we restrict our analysis here to the first two Malliavin derivatives of
yn. However, it is clear that our estimates could be extended to arbitrary Malliavin derivatives.

THEOREM 3.8. Let yn be the Euler scheme defined by (1.2). The first and second Malli-
avin derivatives of yn are contained in the vector ξn introduced in (2.28). We assume that the
vector field V is C4

b and that x is a fBm with Hurst parameter H > 1/3. Then for all ν ≥ 1
we have

(3.40) 𝔼
[︁⃦⃦

ξn
⃦⃦ν
p-var

]︁
< ∞.

In particular, the following sup-norm inequality holds true:

(3.41) 𝔼

[︂
sup

n∈ℕ,r,r ′,t∈[0,T ]
⃓⃓
ξn
t

⃓⃓ν]︂
< ∞.

PROOF. Inequality (3.40) follows by showing that all terms in the right-hand side of
(2.29) have moments of all orders. Applying Theorem 3.7, Corollary 3.5 and Theorem 3.3
respectively we obtain the integrability of ℳ0, ℳ1, ℳ2. The integrability of |S0| follows
from (3.32). The integrability of |S1| and |S2| are implied by the relation |Si | ≲ℳi , i = 1,2,
respectively. The upper bound (3.41) is an easy consequence of (3.40). □
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4. Weak convergence. With our Malliavin derivative and integrability estimates in hand,
in this section we consider the weak convergence of the Euler scheme. The first sections are
preparations of the main result.

4.1. Estimation of an inner product in ℋ⊗2. In this subsection, we derive a useful upper-
bound estimate for an inner product of the form ⟨φ,1[u,v] ⊗ 1[s,t]⟩ℋ⊗2 , involving some indi-
cator functions. We first need a positivity result for the rectangular increment function R of
the fBm.

LEMMA 4.1. Recall that the covariance R is defined in (2.11), with rectangular incre-
ments R([u, v], [s, t]) introduced in (2.12). Then for any u, v, s, t ∈ ℝ such that s ≤ u ≤ v ≤ t

we have

R
(︁[u, v], [s, t])︁≥ 0.

PROOF. We first write

R
(︁[u, v], [s, t])︁= R

(︁[u, v], [u, v])︁+ R
(︁[u, v], [u, v]C)︁,

where we denoted [u, v]C = [s, t] \ [u, v]. Since R([u, v], [u, v]) = (v − u)2H it suffices to
show that R([u, v], [u, v]C) ≥ −(v − u)2H .

By definition (2.11)–(2.12) of R we can write

R
(︁[u, v], [u, v]C)︁ = R

(︁[u, v], [s, u])︁+ R
(︁[u, v], [v, t])︁

= 1

2

(︁|v − s|2H − |u − s|2H − |v − u|2H )︁
(4.1)

+ 1

2

(︁|t − u|2H − |t − v|2H − |v − u|2H )︁
.

Note that |v − s|2H − |u − s|2H and |t − u|2H − |t − v|2H are nonnegative. We thus obtain

(4.2) R
(︁[u, v], [u, v]C)︁ ≥ −|v − u|2H .

The proof is complete. □

The above positivity result leads to a surprisingly easy bound on products in ℋ⊗2.

LEMMA 4.2. Let φ ∈ ℋ⊗2 and p > 0 be such that 2H + 1/p > 1. Assume that φ ∈
Cp-var([0, T ],Cp-var([0, T ],ℝ)). For s, t, u, v ∈ [0, T ]: s < t , u < v we define α(η, ζ ) =
1[u,v](η)1[s,t](ζ ) for η, ζ ∈ [0, T ]. Then the following relation holds:

(4.3)
⃓⃓⟨φ,α⟩ℋ⊗2

⃓⃓ ≤ 4(t − s)2H(v − u)2H∥φ∥∞.

PROOF. Starting from Definition 2.7 and taking limits on indicator functions of rectan-
gles (following the arguments in the proof of [17], Lemma 15.39), one can prove that the
inner product between φ and α in ℋ⊗2 can be expressed as a double 2D Young integral of
the form

⟨φ,α⟩ℋ⊗2 = ⟨φ,1[u,v] ⊗ 1[s,t]⟩ℋ⊗2

=
∫︂
[0,T ]4

φ(η, ζ )1[u,v]
(︁
η′)︁1[s,t]

(︁
ζ ′)︁dR

(︁
η,η′)︁dR

(︁
ζ, ζ ′)︁.(4.4)
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We note that the condition φ ∈ Cp-var([0, T ],Cp-var([0, T ],ℝ)) is needed here while applying
the arguments in [17], Lemma 15.39. One can then integrate out the η′ and ζ ′ variables in the
right-hand side of (4.4) in order to get

(4.5) ⟨φ,α⟩ℋ⊗2 =
∫︂
[0,T ]2

φ(η, ζ ) dR
(︁
η, [u, v])︁dR

(︁
ζ, [s, t])︁.

We further decompose the inner product ⟨φ,α⟩ℋ⊗2 using the identity:

1 = α1 + α2 + α3 + α4,

where the functions α1, . . . , α4 are given by

α1(η, ζ ) = 1[u,v](η)1[s,t](ζ ), α2(η, ζ ) = 1[u,v]C (η)1[s,t](ζ ),

α3(η, ζ ) = 1[u,v](η)1[s,t]C (ζ ), α4(η, ζ ) = 1[u,v]C (η)1[s,t]C (ζ ),

and where similar to what we wrote in Lemma 4.1, we have set [s, t]C = [0, T ] \ [s, t] and
[u, v]C = [0, T ] \ [u, v]. Otherwise stated, we recast (4.5) as

(4.6) ⟨φ,α⟩ℋ⊗2 =
∫︂
[0,T ]2

φ(η, ζ ) dR
(︁
η, [u, v])︁dR

(︁
ζ, [s, t])︁=

4∑︂
i=1

J i
T ,

where the terms J i
T are respectively defined by

J i
T =

∫︂
[0,T ]2

φ(η, ζ )αi(η, ζ ) dR
(︁
η, [u, v])︁dR

(︁
ζ, [s, t])︁.

Those four terms will be handled with slightly different arguments. That is, for J 1
T , owing to

Lemma 4.1 we have that both dR(ζ, [s, t]) and dR(η, [u, v]) are positive when η ∈ [u, v] and
ζ ∈ [s, t]. Therefore, we have

(4.7)
⃓⃓
J 1

T

⃓⃓ ≤ ∥φ∥∞R
(︁[s, t], [s, t])︁R(︁[u, v], [u, v])︁≤ (t − s)2H(v − u)2H∥φ∥∞.

For the second term J 2
T in (4.6) we observe that dR(ζ, [s, t]) is positive and dR(η, [u, v])

is negative. Therefore the product dR(η, [s, t]) · dR(η, [u, v]) does not change sign and we
get ⃓⃓

J 2
T

⃓⃓ ≤ ∥φ∥∞
⃓⃓
R
(︁[u, v], [u, v]C)︁R(︁[s, t], [s, t])︁⃓⃓.

Hence thanks to an elementary computation similar to (4.1)–(4.2) we discover that

(4.8)
⃓⃓
J 2

T

⃓⃓ ≤ (t − s)2H (v − u)2H∥φ∥∞.

In conclusion, gathering (4.7), (4.8) and similar bounds for J 3
T , J 4

T into (4.6), we get the
desired estimate (4.3). This concludes the proof. □

We now extend the previous lemma to the indicator of a simplex in [0, T ]2.

LEMMA 4.3. Let φ ∈ ℋ⊗2 be as in Lemma 4.2. Let β ∈ ℋ⊗2 be of the form

(4.9) βst (u, v) = 1𝒮2([s,t])(u, v),

where we recall that the simplex 𝒮2([s, t]) is defined in Notation 1.3. Then there exists a
constant CH such that the following relation holds:

(4.10)
⃓⃓⟨φ,βst ⟩ℋ⊗2

⃓⃓ ≤ CH(t − s)4H∥φ∥∞.
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PROOF. We will use a dyadic partition of the function β . Namely for n ≥ 0 and 0 ≤ i ≤
2n we set ui,n = s + 2−n(t − s)i. Next for ℓ ≥ 1 we define

βℓ
st =

ℓ∑︂
n=1

2n−1−1∑︂
i=0

1[u2i,n,u2i+1,n]×[u2i+1,n,u2i+2,n].

Then it can be shown that ∥βℓ
st − βst∥ℋ⊗2 → 0. In order to prove the lemma it thus suffices

to show that for all ℓ ≥ 1 we have⃓⃓⟨︁
φ,βℓ

st

⟩︁
ℋ⊗2

⃓⃓ ≤ (︁
24H − 2

)︁−1
(t − s)4H∥φ∥∞.

In the following we prove this relation with the help of Lemma 4.2. We first observe that by
the definition of βℓ

⃓⃓⟨︁
φ,βℓ

st

⟩︁
ℋ⊗2

⃓⃓ ≤ ℓ∑︂
n=1

2n−1−1∑︂
i=0

⃓⃓⟨φ,1[u2i,n,u2i+1,n]×[u2i+1,n,u2i+2,n]⟩ℋ⊗2
⃓⃓
.

Applying Lemma 4.2 with (s, u, v, t) = (u2i,n, u2i+1,n, u2i+1,n, u2i+2,n), we obtain

⃓⃓⟨︁
φ,βℓ

st

⟩︁
ℋ⊗2

⃓⃓ ≤ ℓ∑︂
n=1

2n−1−1∑︂
i=0

(︁
2−n(t − s)

)︁2H (︁
2−n(t − s)

)︁2H∥φ∥∞

= 1

2
(t − s)4H∥φ∥∞

ℓ∑︂
n=1

(︁
2n)︁1−4H ≤ 1

24H − 2
(t − s)4H∥φ∥∞.

This completes the proof of our claim (4.10). □

In the sequel we will also need an inequality for products in ℋ. Its proof is similar to the
proof of Lemma 4.3 and is omitted for sake of conciseness.

LEMMA 4.4. Let φ ∈ ℋ be a function in Cp-var([0, T ]). Then the following relation holds:⃓⃓⟨φ,1[s,t]⟩ℋ
⃓⃓ ≤ (t − s)2H∥φ∥∞

for all (s, t) ∈ 𝒮2(0, T ).

4.2. An extension of the sewing lemma. In this section we extend Lemma 2.4 to the
integral of two controlled processes. Our findings are summarized in the following lemma.

LEMMA 4.5. Let S2(x) := (x1, x2) be the geometric rough path above x as given in
Definition 2.1, and p < 3. We consider two couples of paths (z, z′) and (z̃, z̃′) with z, z̃ ∈
C([s, t],ℝm) and z′, z̃′ ∈ C([s, t],ℝm×d). Let ωx(u, v) = ∥x∥p

p-var,[u,v] for (u, v) ∈ 𝒮2([s, t]).
We assume the existence of two controlled functions ωz, ωz

1 and ωz′
on ⟦s, t⟧ such that for all

(u, v) ∈ 𝒮2(⟦s, t⟧) we have⃓⃓
δzuv − z′

ux
1
uv

⃓⃓ ≤ ωz(u, v)2/p, |δzuv| ≤ ωz
1(u, v)1/p,⃓⃓

δz′
uv

⃓⃓ ≤ ωz′
(u, v)1/p.

(4.11)

We also assume that the relations in (4.11) hold for z̃, with related increments z̃′, ωz′
. Next

we introduce some new control functions:

(4.12) ωx,z,z′ = ωx + ωz + ωz′
, and ω

x,z,z′
1 = ωx,z,z′ + ωz

1,
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and similarly for (z̃, z̃′). We now define some remainder terms in the integrals of z with respect
to z̃ or x. Namely for (u, v) ∈ 𝒮2(⟦s, t⟧) we set

(4.13) Rzz̃
uv =

∫︂ v

u

(︁
δzur − z′

ux
1
ur

)︁⊗ dz̃r and Rz̃x
uv =

∫︂ v

u

(︁
δz̃ur − z̃′

ux
1
ur

)︁⊗ dxr,

where the above integrals are understood in the rough path sense. We suppose that the incre-
ments R are such that for any point tk ∈ ⟦s, t⟧ we have

(4.14)
⃓⃓
Rzz̃

tktk+1

⃓⃓ ≤ ωx(tk, tk+1)
3/p and

⃓⃓
Rz̃x

tktk+1

⃓⃓ ≤ ωx(tk, tk+1)
3/p.

Then the following relation holds for all (u, v) ∈ 𝒮2(⟦s, t⟧):

(4.15)
⃓⃓
Rzz̃

uv

⃓⃓ ≤ Kp

[︁
ωR(u, v)

]︁μ
,

where μ > 1 is a given constant and where Kp > 0 is a constant depending on p. In (4.15),
we shall see that the control ωR is defined by the relation[︁

ωR(u, v)
]︁μ := (︁

ωz(u, v)2/p + ωz′
(u, v)1/pωx(u, v)1/p)︁ωx,z̃,z̃′

1 (u, v)1/p

× (︁
ωx,z̃,z̃′

(u, v)1/p + ⃦⃦
z̃′⃦⃦

∞,[u,v] + 1
)︁
,

(4.16)

in which μ > 1 is taken such that ωR(u, v) is a control (note that this can be done thanks to
the relation 3/p > 1).

PROOF. The proof of the lemma is an application of Lemma 2.4. Namely the existence
of R as a rough integral is ensured by general rough paths considerations (see, e.g., [21]).
Then some elementary manipulations starting from the definition (4.13) of R show that for
(u, s, v) ∈ 𝒮3(⟦0, T ⟧) we have

(4.17) δRzz̃
usv = (︁

δzus − z′
ux

1
us

)︁⊗ δz̃sv + z′
us

∫︂ v

s
x1
sr ⊗ dz̃r ,

where we recall that δ is defined as in (2.1).
We first consider the case when (z̃, x) is in the place of (z, z̃), that is, the remainder Rz̃x

defined in (4.13). In this case one can recast (4.17) as

(4.18) δRz̃x
usv = (︁

δz̃us − z̃′
ux

1
us

)︁⊗ x1
sv + z̃′

usx
2
sv.

Applying the conditions in (4.11) we thus get

(4.19)
⃓⃓
δRz̃x

usv

⃓⃓ ≤ ωz̃(u, v)2/p · ωx(u, v)1/p + ωz̃′
(u, v)1/p · ωx(u, v)2/p.

Moreover, we have assumed that (4.14) holds true for the increments Rz̃x
tktk+1

. Hence a direct

application of Lemma 2.4 implies that the upper bound in (4.19) for δRz̃x
usv also holds for Rz̃x

uv ,
that is, the relation (4.15) holds in the special case when (z̃, x) is in the place of (z, z̃).

In order to prove (4.15) for a general z̃, let us first bound the integral
∫︁ v
s x1

sr ⊗dz̃r in (4.17).
To this aim, we observe that a simple integration by parts (valid for integrals driven by the
geometric rough path (x1, x2) thanks to a limiting procedure on smooth approximations)
yields the relation

(4.20)
∫︂ v

s
x1
sr ⊗ dz̃r = x1

sv ⊗ δz̃sv −
∫︂ v

s
δz̃sr ⊗ dxr .

Note that the integrals in (4.20) are well defined in the controlled rough path sense; see, for
example, [15]. Next owing to our conditions (4.11) for z̃, the first term in the right hand side
of (4.20) is bounded by

(4.21)
⃓⃓
x1
sv ⊗ δz̃sv

⃓⃓ ≤ ωx(s, v)1/pωz̃
1(s, v)1/p.
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For the second term in the right-hand side of (4.20), let us write∫︂ v

s
δz̃sr ⊗ dxr = z̃′

s ⊗ x2
sv + Rz̃x

sv .

Since we have obtained that (4.15) holds for Rz̃x , for every s ≤ u < v ≤ t we end up with⃓⃓⃓
⃓
∫︂ v

u
δz̃ur ⊗ dxr

⃓⃓⃓
⃓ ≤ ⃓⃓

Rz̃x
uv

⃓⃓+ ⃓⃓
z̃′
u

⃓⃓
ωx(u, v)2/p

≤ ωz̃(u, v)2/p · ωx(u, v)1/p + ωz̃′
(u, v)1/p · ωx(u, v)2/p(4.22)

+ ⃦⃦
z̃′⃦⃦

∞,[u,v]ω
x(u, v)2/p.

We can now safely plug (4.21) and (4.22) (with u replaced by s) into relation (4.20). This
yields the estimate⃓⃓⃓

⃓
∫︂ v

s
x1
sr ⊗ dz̃r

⃓⃓⃓
⃓ ≤ ωz̃(u, v)2/p · ωx(u, v)1/p + ωz̃′

(u, v)1/p · ωx(u, v)2/p

+ ⃦⃦
z̃′⃦⃦

∞,[u,v] · ωx(u, v)2/p + ωx(s, v)1/pωz̃
1(s, v)1/p.

(4.23)

Let us now return to relation (4.17). By a simple application of (4.11) one discovers that

⃓⃓
δRzz̃

usv

⃓⃓ ≤ ωz(u, v)2/p · ωz̃
1(u, v)1/p + ωz′

(u, v)1/p ·
⃓⃓⃓
⃓
∫︂ v

s
x1
sr ⊗ dz̃r

⃓⃓⃓
⃓.

Inserting (4.23) into this relation, we thus obtain⃓⃓
δRzz̃

usv

⃓⃓ ≤ Kp

(︁
ωz(u, v)2/p + ωz′

(u, v)1/pωx(u, v)1/p)︁ωx,z̃,z̃′
1 (u, v)1/p

× (︁
ωx,z̃,z̃′

(u, v)1/p + ⃦⃦
z̃′⃦⃦

∞,[u,v] + 1
)︁
.

(4.24)

Note that the right-hand side of (4.24) is equal to KpωR(u, v) defined in (4.16). Taking (4.14)
into account, another use of Lemma 2.4 (together with an application of [17], Exercise 1.9
(iii), to show that ωR is a control), proves our claim (4.15). □

4.3. Interpolation of the Euler method. Recall that the Euler scheme yn is defined in
(1.2). We also refer the reader to Section 2.4-2.5 for an upper-bound estimate and some
preliminary discussions of the Euler scheme. In this section we shall extend our Euler scheme
to a process in continuous time and obtain some uniform bounds. Specifically, recall that the
Euler approximation yn is defined on ⟦0, T ⟧ by (1.2) and for convenience we will take V0 ≡ 0.
For t in the continuous interval [0, T ] we shall use the following interpolation:

δyn
tkt

=V
(︁
yn
tk

)︁
δxtkt + 1

2

d∑︂
j=1

∂VjVj

(︁
yn
tk

)︁
(t − tk)

2H , t ∈ [tk, tk+1].(4.25)

Recall that x = S2(x) = (x1, x2) denotes the rough path above x (as given in Definition 2.1).
In the sequel we will also need some continuous interpolations of the processes q and

qb, which had been defined on the grid in (2.20). Namely for (s, t) ∈ 𝒮2([0, T ]) such that
tk1 ≤ s < tk1+1 < · · · < tk2−1 ≤ t < tk2 , we define

q
ij
st = ∑︂

k1≤k<k2

(︃
x

2,ij
tk∨s,tk+1∧t − 1

2
(tk+1 ∧ t − tk ∨ s)2H 1{i=j}

)︃
,(4.26)

q
b,ij
st = ∑︂

k1≤k<k2

(︃
b

2,ij
tk∨s,tk+1∧t − 1

2
(tk+1 ∧ t − tk ∨ s)2H 1{i=j}

)︃
.(4.27)
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With the above definition (4.26) in hand, we will also extend the definition of ω from the grid
to [0, T ]. This extension will be useful in the estimate of yn and its Malliavin derivatives on a
continuous interval; see Lemma 4.8. Recall that ω has been defined on 𝒮2(⟦0, T ⟧) by (2.23)
for a fixed partition length parameter n, and that we are considering p < 3. The next result
extend ω to 𝒮([0, T ]).

LEMMA 4.6. For (s, t) ∈ 𝒮2([0, T ]) define

ω(s, t) = ∥w∥p
p-var;[s,t] + ∥q∥p/2

p/2-var;[s,t] + ⃦⃦
qb

⃦⃦p/2
p/2-var;[s,t] + |t − s|.(4.28)

Then ω is a control on [0, T ]. In other words, ω is super-additive, continuous and vanishes
on the diagonal.

REMARK 4.7. Note that we have included an additional component |t − s| in the defini-
tion (4.28). This is needed for the estimate of yn

st when |t − s| is small. Specifically, take a
continuous interval [s, t] such that [s, t] ≤ [tk, tk+1]. Then according to (4.25) we have

δyn
st = V

(︁
yn
tk

)︁
δxst + 1

2

d∑︂
j=1

∂VjVj

(︁
yn
tk

)︁[︁
(t − tk)

2H − (s − tk)
2H ]︁

.

It follows that we have ⃓⃓
δyn

st

⃓⃓
≲ |δxst | +

⃓⃓
(t − tk)

2H − (s − tk)
2H

⃓⃓
≲ |δxst | + (t − s)2H .

(4.29)

We can now bound |δxst | by ∥w∥p-var;[s,t] and (t − s)2H by |t − s|1/p . Raising those terms to
a power p, this gives the estimate |δyn

st |p ≲ ω(s, t), with ω as in (4.28).

PROOF OF LEMMA 4.6. We first note that

∥q∥p/2
p/2-var;[s,t] ≤ ∥q∥p/2

p/2-var;⟦s,t⟧ + ∥w∥p
p-var;[s,t] + |t − s|,(4.30)

and the same kind of inequality holds true for qb. Therefore ω(s, t) is finite almost surely.
Thanks to the definition (4.28) of ω it is also readily checked that the superadditivity and zero
on the diagonal properties hold true.

It remains to show the continuity of ω. To this aim, taking into account the definition (4.28)
of ω, it is easily seen that we only have to focus on the increments q and qb in (4.26)–(4.27).
Moreover q and qb are handled exactly in the same way. Hence we will just focus our atten-
tion on ω̃ given by

(4.31) ω̃(s, t) := ∥q∥p/2
p/2-var;[s,t].

Take s < u < t < η(u) + Δ, where we recall from Notation 1.3 that η(u) is the largest tk ∈
⟦0, T ⟧ such that tk ≤ u. In the following we show that ω̃(s, t) − ω̃(s, u) → 0 as t − u → 0,
which is one of the main steps towards the continuity of ω̃.

Owing to the definition (4.31) of ω̃, for any ε > 0, we can find a partition of [s, t], denoted
by s = v0 < · · · < vN = t such that

(4.32) ω̃(s, t) ≤
N−1∑︂
i=0

|qvivi+1 |p/2 + ε.
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Suppose that u ∈ [vi0, vi0+1] := [v, v′]. Then we can bound the summation in (4.32) by the
following:

ω̃(s, t) ≤
i0−1∑︂
i=0

|qvivi+1 |p/2 + |qvv′ |p/2 +
N−1∑︂

i=i0+1

|qvivi+1 |p/2 + ε

≤ ω̃(s, v) + |qvv′ |p/2 + ω̃
(︁
v′, t

)︁+ ε.

(4.33)

Now go back to (4.30) for v′ and t and pick u close enough to t so that v′ ∈ [u, t] satisfies
∥q∥p/2-var;⟦v′,t⟧ = 0 (since our grid ⟦u′, t⟧ has fixed mesh T/n, this is easily seen when u → t ,
owing to our expression (4.26)). One can thus recast (4.30) as

(4.34) ω̃
(︁
v′, t

)︁ := ∥q∥p/2
p/2-var;[v′,t] ≤ ∥w∥p

p-var;[v′,t] + ⃓⃓
t − v′ ⃓⃓.

It is then easily seen from (4.34) that limv′→t ω̃(v′, t) = 0. Since u < v′ < t , we will pick u

close enough to t so that ω̃(v′, t) ≤ ε. Plugging this information into (4.33), we obtain

(4.35) ω̃(s, t) ≤ ω̃(s, v) + |qvv′ |p/2 + 2ε.

In addition, if u → t we also have |v′ − u| → 0. Therefore, basic continuity properties of q

ensure that ||qvv′ |p/2 − |qvu|p/2| ≤ ε if u is close enough to t . Hence (4.35) becomes

ω̃(s, t) ≤ ω̃(s, v) + |qvu|p/2 + 3ε ≤ ω̃(s, u) + 3ε,

where we have used the super-additivity property of ω̃ for the second inequality. Since
ω̃(s, t) ≥ ω̃(s, u) by monotonicity properties, we have obtained

(4.36)
⃓⃓
ω̃(s, t) − ω̃(s, u)

⃓⃓ ≤ 3ε,

for all (s, u, t) ∈ 𝒮3([0, T ]) such that |t − u| is sufficiently small. Since ε in (4.36) can be
arbitrarily small, this proves that limu→t ω̃(s, u) = ω̃(s, t). The same kind of arguments also
show that limu→s ω̃(u, t) = ω̃(s, t), which completes our proof. □

We now go back to the interpolated version of our Euler scheme yn. In the following we
show that (yn, x, b) is a rough path, which is an important step in the convergence analysis.

LEMMA 4.8. Consider the interpolated Euler scheme introduced in (4.25). Recall that x

is our driving fBm and b is another fBm with parameter H > 1/3, independent of x. Also
recall that the augmented process w = (x, b) has been introduced in (2.22). We assume that
the vector field V sits in C4

b .
Denote by Z the couple Z = (yn,w). Then Z admits a lift S2(Z) according to Defini-

tion 2.1. Moreover, recalling the sets S0, S1 in (2.25), consider sj ∈ S0 ∪ S1. Then for all
(s, t) ⊂ 𝒮2([sj , sj+1]) we have the following uniform bound in n:⃦⃦

S2(Z)
⃦⃦
p-var,[s,t] ≤ K · ω(s, t)1/p,(4.37)

where p > 1/H and K is a constant depending on V only, and where the control ω is defined
in (4.28).

PROOF. Take (s, t) ⊂ (sj , sj+1) such that sj ∈ S0 ∪S1. Theorem 2.12, applied for L = 0,
shows that for (s, t) ∈ 𝒮2(⟦sj , sj+1⟧) we have

(4.38)
⃓⃓
δyn

st

⃓⃓ ≤ Kω(s, t)1/p and
⃓⃓
δyn

st − V
(︁
yn
s

)︁
δxst

⃓⃓ ≤ Kω(s, t)2/p,

where ω is the control given in (4.28). Using standard interpolation methods, it can be
shown in a straightforward way that the relation for |δyn

st | in (4.38) still holds if (s, t) ∈
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𝒮2([sj , sj+1]). So in order to prove (4.37) it remains to show that
∫︁ t
s yn

su ⊗ dwu and∫︁ t
s yn

su ⊗ dyn
u are bounded by ω(s, t)2/p .

Consider the following remainder process for (s, t) ⊂ (sj , sj+1) such that sj ∈ S0 ∪ S1:

Rst =
∫︂ t

s

(︁
δyn

su − V
(︁
yn
s

)︁
δxsu

)︁⊗ dwu.(4.39)

Note that R is a remainder of the form Rynw , defined as in (4.13). In order to apply Lemma 4.5
to this remainder, we need to check that Rtktk+1 ≤ ω(tk, tk+1)

3/p as in (4.14). Now according
to (4.39) we have

(4.40) Rtktk+1 =
∫︂ tk+1

tk

(︁
δyn

tku
− V

(︁
yn
tk

)︁
δxtku

)︁⊗ dwu.

Furthermore, owing to our interpolation formula (4.25), for all u ∈ [tk, tk+1] we have

δyn
tku

− V
(︁
yn
tk

)︁
δxtku = 1

2

d∑︂
j=1

∂VjVj

(︁
yn
tk

)︁
(u − tk)

2H .

Reporting this identity into (4.40), we end up with

(4.41) Rtktk+1 = 1

2

d∑︂
j=1

∂VjVj

(︁
yn
tk

)︁⊗
∫︂ tk+1

tk

(u − tk)
2H dwu.

The stochastic integral in the right-hand side of (4.41) can be interpreted in the Young sense,
and it is easy to see that |Rtktk+1 | ≲ ω(tk, tk+1)

3/p , where ω is still the control introduced in
(4.28). This proves (4.14) for the remainder R, and therefore one can safely apply Lemma 4.5
in order to get that, provided sj ∈ S0 ∪ S1,

|Rst | ≤ Kω(s, t)3/p for (s, t) ∈ 𝒮2
(︁
⟦sj , sj+1⟧

)︁
.(4.42)

Going back to (4.39), observe that we have∫︂ t

s
δyn

su ⊗ dwu = V
(︁
yn
s

)︁ ∫︂ t

s
δxsu ⊗ dwu + Rst .

Invoking (4.42) and since x is part of the rough path w, we easily get⃓⃓⃓
⃓
∫︂ t

s
δyn

su ⊗ dwu

⃓⃓⃓
⃓ ≤ Kω(s, t)2/p, for (s, t) ∈ 𝒮2

(︁
⟦sj , sj+1⟧

)︁
.(4.43)

In the following we extend the above estimate for
∫︁ t
s δyn

su dwu to any (s, t) ∈ 𝒮2([sj , sj+1]).
That is, we take (s, t) such that s ∈ [tk, tk+1] and t ∈ [tk′, tk′+1]. We write∫︂ t

s
δyn

su ⊗ dwu =
∫︂ tk+1

s
δyn

su ⊗ dwu +
∫︂ tk′

tk+1

δyn
su ⊗ dwu +

∫︂ t

tk′
δyn

su ⊗ dwu

=
∫︂ tk+1

s
δyn

su ⊗ dwu + δyn
stk+1

⊗ δwtk+1tk′ +
∫︂ tk′

tk+1

δyn
tk+1u

⊗ dwu(4.44)

+ δyn
stk′ ⊗ δwtk′ t +

∫︂ t

tk′
δyn

tk′u ⊗ dwu =:
5∑︂

i=1

Ii .

Let us bound the terms I1, . . . , I5 above. First it follows from (4.43) that |I3| ≤ Kω(s, t)2/p .
It is also clear that |I2| and |I4| are bounded by the same estimate ω(s, t)2/p . In order to
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bound I1, observe that according to our interpolation formula (4.25) we have

I1 = V
(︁
yn
tk

)︁ ∫︂ tk+1

s
δxsu ⊗ dwu

+ 1

2

d∑︂
j=1

∂VjVj

(︁
yn
tk

)︁⊗
∫︂ tk+1

s

[︁
(u − tk)

2H − (s − tk)
2H ]︁

dwu.

(4.45)

It is clear that the first integral in (4.45) is bounded by ω(s, tk+1)
2/p . Note also that

(u − tk)
2H − (s − tk)

2H ≤ (u − s)2H . So applying Young’s inequality (see, e.g., [17], Theo-
rem 6.8) we obtain that the second integral in (4.45) is bounded by (tk+1 − s)2Hω(s, tk+1)

1/p .
Combining these two estimates we obtain that |I1| ≲ ω(s, tk+1)

2/p . The term I5 is bounded
in the similar way. Putting together our upper bounds on I1, . . . , I5, we have thus obtained
that (4.43) holds for any (s, t) ∈ 𝒮2([sj , sj+1]). Summarizing our considerations so far, we
have proved that

(4.46)
⃦⃦
M1⃦⃦

p-var;[s,t] ≤ Kω(s, t) with M1
uv :=

∫︂ v

u
δyn

ur ⊗ dwr .

The proof is now finished along the same arguments. Namely the increment M2
uv := ∫︁ v

u δyn
ur ⊗

dyn
ur can be bounded similar to M1, leading to the same inequality as (4.46). More precisely,

we consider the remainder:

R̃st =
∫︂ t

s

(︁
δyn

su − V
(︁
yn
s

)︁
δxsu

)︁⊗ dyn
u.

Then, as for R, we can show that relation (4.14) holds for the remainder R̃, and therefore
Lemma 4.5 can be applied to obtain the estimate M2

st ≲ ω(s, t)2/p for (s, t) ∈ 𝒮2(⟦sj , sj+1⟧)
and sj ∈ S0 ∪ S1. Now by considering a decomposition for M2

st similar to (4.44) we can
extend this estimate to (s, t) ∈ 𝒮2([sj , sj+1]). This proves our claim (4.37). □

LEMMA 4.9. Let the assumptions in Lemma 4.8 prevail. Under the setting of Theo-
rem 2.12, we consider the vector-valued stochastic process Z̃ = (yn,Dry

n,Dr ′Dry
n,w) for

r, r ′ ∈ [0, T ]. Then for (s, t) ⊂ (sj , sj+1) with sj ∈ S0 ∪ S1 we have (uniformly in n, r and
r ′): ⃦⃦

S2(Z̃)
⃦⃦
p-var,[s,t] ≤ K · ω(s, t)1/p · 𝒢2,(4.47)

where the quantities 𝒢 have been introduced in (2.30).

REMARK 4.10. Note that in Lemma 4.9, we are bounding the Malliavin derivatives
Dry

n, DrDr ′yn uniformly in r , r ′ (instead of looking at their ℋ-norms). These are the bounds
we need for our future estimates in the proof of the sharp rate (1/n)4H−1 (see, e.g., relation
(4.79)). In addition, in our study we also found that ℋ-norms for Malliavin derivatives would
not yield the desired rate.

PROOF OF LEMMA 4.9. The estimate (4.47) can be obtained along the same lines as in
Lemma 4.8. We apply Theorem 2.12 with L = 1,2 to get:⃓⃓

δ
(︁
Dry

n)︁
st

⃓⃓ ≤ Kω(s, t)1/p · 𝒢,
⃓⃓
δ
(︁
Dry

n)︁
st −ℒV

(︁
yn
s

)︁
δxst

⃓⃓ ≤ Kω(s, t)2/p · 𝒢2,⃓⃓
δ
(︁
D2

rr ′yn)︁
st

⃓⃓ ≤ Kω(s, t)1/p · 𝒢,
⃓⃓
δ
(︁
D2

rr ′yn)︁
st −ℒ2V

(︁
yn
s

)︁
δxst

⃓⃓ ≤ Kω(s, t)2/p · 𝒢2.

Then we replace relations in (4.38) by these relations, and replace ω(s, t) by ω(s, t) · 𝒢p in
the inequalities for the remainders. This completes our proof. □
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4.4. Integrability of some linear equations. Our convergence estimates are based on lin-
earization procedures. In this section we bound some related linear differential equations. We
start by defining the objects we wish to study.

DEFINITION 4.11. Recall that every V i has to be seen, for i = 1, . . . ,m, as a smooth
vector field on ℝ

m. Let yn be the interpolated scheme (4.25). Then for i = 1, . . . ,m we
define an averaged ℝ

d×m-valued process Ṽ i(t) = {Ṽ i
j i′(t); j = 1, . . . , d, i ′ = 1, . . . ,m}. This

process is indexed by t ∈ [0, T ] and is given by

Ṽ i
j i′(t) =

∫︂ 1

0
∂i′V

i
j

(︁
θyt + (1 − θ)yn

t

)︁
dθ.

We also define a (ℝd×m)m-valued process as Ṽ (t) = (Ṽ 1(t), . . . , Ṽ m(t)).

We are now ready to define the linear equation we wish to analyze.

DEFINITION 4.12. Let Ṽ be the (ℝd×m)m-valued process introduced in Definition 4.11.
We will call Γ the ℝ

m×m-valued solution to the following systems of equations on [0, T ]:

(4.48) Γii′
t = Idii′ +

d∑︂
j=1

m∑︂
i′′=1

∫︂ t

0
Ṽ i

j i′′(s)Γ
i′′i′
s dxj

s , for i, i ′ ∈ {1, . . . ,m}.

For conciseness we will simply write (4.48) as Γt = Id + ∫︁ t
0 Ṽ (s)Γs dxs . We also denote by

Λ the inverse of Γ, namely Λ is defined by the relation ΛtΓt ≡ Id.

Our next lemma presents an important estimate for the processes Γ and Λ defined above.

LEMMA 4.13. Let the assumption be as in Theorem 2.12. Let p > 1
H

and q be such that
1
p

+ 1
q

> 1. Let Γ and Λ be defined in (4.48). Then
(a) For all (s, t) ∈ 𝒮2([0, T ]) we have

|δΓst | + sup
r∈[0,T ]

⃓⃓
Dr(δΓst )

⃓⃓+ sup
r,r ′∈[0,T ]

⃓⃓
D2

rr ′(δΓst )
⃓⃓

≤ K · ω(s, t)1/p · |S0 ∪ S1 ∪ S2| ·ℳ0 ·ℳ1 · exp(𝒩T ),

(4.49)

where ω is defined in (4.28) and 𝒩T is some random variable such that 𝒩 1/q
T has a Gaussian

tail. The relation still holds when Γ is replaced by Λ.
(b) Both processes Γ and Λ and their Malliavin derivatives are uniformly integrable. Pre-

cisely, for all p ≥ 1 we have

(4.50) 𝔼

[︂
sup

n∈ℕ,r,r ′,t∈[0,T ]
(︁|Γt |p + ⃓⃓

Dr(Γt )
⃓⃓p + ⃓⃓

D2
rr ′(Γt )

⃓⃓p)︁]︂
< ∞.

PROOF. Applying Corollary 3.5 and Theorem 3.7 to the right-hand side of (4.49) we
conclude the integrability relation in (4.50). It thus remains to prove relation (4.49).

In the following we prove the estimate (4.49) for Γ. Note that due to the fact that the
initial condition Id in (4.48) is nondegenerate, the process Λ is well defined and satisfies a
differential equation which is very similar to Γ (see, e.g., [7, 23] for more details). Therefore
the estimate of Λ in (4.49) can be obtained by following the same steps as for Γ. The proof
for Λ and its derivatives is thus omitted.



EULER SCHEME FOR FBM DRIVEN SDES 1901

With our Definition 4.11 in mind, let us first introduce an auxiliary process ξ given, for
i, i′′ ∈ {1, . . . ,m} and t ∈ [0, T ], by

ξ ii′′
t =

d∑︂
j=1

∫︂ t

0
Ṽ i

j i′′(s) dxj
s .

We now separate the estimates for ξ into two different cases

(i) Case (s, t) ⊂ (sj , sj+1) such that sj ∈ S0 ∪ S1. In this situation, since (yn, x, b) can
be lifted to a rough path (see Lemma 4.8(i)) and y is a process controlled by x, it is readily
checked that for all (s, t) ⊂ (sj , sj+1) such that sj ∈ S0 ∪ S1 we have⃦⃦

S2(ξ)
⃦⃦
p-var,[s,t] ≤ K · ω(s, t)1/p.(4.51)

Furthermore, note that one can recast equation (4.48) as a linear system of the form

(4.52) dΓii′
t =

m∑︂
i′′=1

Γi′′i′
t dξ ii′′

t .

Observe that the path ξ is a functional of the process Z introduced in Lemma 4.8. Now
we recall from [17], Theorem 10.53, that for a linear equation like (4.52), there exist two
constants C1, C2 such that⃓⃓

S2(Γ,Z)st
⃓⃓ ≤ C1|Γs | ·

⃦⃦
S2(ξ)

⃦⃦
p-var,[s,t] · exp

(︁
C2

⃦⃦
S2(ξ)

⃦⃦
p-var,[s,t]

)︁
≤ C1|Γs | · ω(s, t)1/p exp

(︁
C2ω(s, t)1/p)︁,(4.53)

where the second relation stems from (4.51). In addition, we have chosen sj ∈ S0 ∪S1. There-
fore, one can simplify (4.53) and obtain that for any (s, t) ∈ 𝒮2([sj , sj+1]),
(4.54)

⃦⃦
S2(Γ,Z)

⃦⃦
p-var,[s,t] ≤ Kω(s, t)1/p · |Γs |.

(ii) Case (s, t) ⊂ (sj , sj+1) such that sj ∈ S2. For sj ∈ S2 equation (4.48) is a linear
equation driven by x and so we can apply the integrability result [8], equation (4.10) and
Theorem 6.3, to get

(4.55)
⃦⃦
S2(Γ)

⃦⃦
p-var,[s,t] ≤ K|Γs | · ∥x∥p-var;[s,t] · exp(δ𝒩st ) ≤ K|Γs | · exp(δ𝒩st ),

where 𝒩t , t ≥ 0 is a process such that 𝒩0 = 0 and the random variable exp(K · 𝒩t ) is inte-
grable for any constant K > 0 and t ≥ 0.

We are ready to show the estimate (4.49) for δΓst . We first take s = sj and t ∈ [sj , sj+1]
for some j and apply the inequality |Γt |−|Γs | ≤ |δΓst | ≤ ∥S2(Γ)∥p-var to (4.54)–(4.55). This
gives respectively

|Γt | − |Γs | ≤ K|Γs | · ω(s, t)1/p and |Γt | − |Γs | ≤ K|Γs | exp(δ𝒩st ).

It follows that

(4.56) |Γt | ≤ (︁
K · ω(s, t)1/p + 1

)︁|Γs | and |Γt | ≤ K exp(δ𝒩st )|Γs |,
respectively. Iterating (4.56) and recalling that |Γ0| = |Id| = 1, we obtain

|Γt | ≤
∏︂

sj∈S0∪S1

(︁
K · ω(sj , sj+1)

1/p + 1
)︁

exp(K𝒩t )

≤ ℳ0 ·ℳ1 · exp(K𝒩T ).

(4.57)
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Substituting (4.57) into both (4.54)–(4.55) we obtain respectively

|δΓst | ≤ ω(s, t)1/pℳ0 ·ℳ1 · exp(K𝒩T ) and

|δΓst | ≤ ∥x∥p-var;[s,t]ℳ0 ·ℳ1 · exp(K𝒩T ).
(4.58)

Now take (s, t) ∈ 𝒮2([0, T ]) such that sj ≤ s < sj+1 < · · · < sj ′ ≤ t < sj ′+1. Since
|δΓst | ≤ |δΓssj+1 | + · · · + |δΓsj ′ t |, applying (4.58) and the fact that ∥x∥p-var;[s,t] ≤ ω(s, t)1/p

we obtain

|δΓst | ≤ K
(︁
ω(s, sj+1)

1/p + · · · + ω(sj ′, t)1/p)︁ ·ℳ0 ·ℳ1 · exp(K𝒩T ).

Finally, note that

ω(s, sj+1)
1/p + · · · + ω(sj ′, t)1/p ≤ ω(s, t)1/p + · · · + ω(s, t)1/p

≤ ω(s, t)1/p · |S0 ∪ S1 ∪ S2|.
It follows that

|δΓst | ≤ Kω(s, t)1/p · |S0 ∪ S1 ∪ S2| ·ℳ0 ·ℳ1 · exp(𝒩T ).

Namely we have proved (4.49) for Γ. It remains to upper bound the Malliavin derivatives of
Γ.

Recall that Γ satisfies equation (4.48), with Ṽ given in Definition 4.11. For sake of clarity,
the remainder of our computations will be done assuming that all our quantities are real-
valued (we will therefore drop the indices from our next equations). Moreover, according to
our standing assumptions, the process Ṽ is Malliavin differentiable. Hence using standard
arguments for the differentiation of rough differential equations (see [6, 7, 26, 34]) we get
that DrΓt satisfies the linear equation:

DrΓt = Dr

∫︂ t

0
Ṽ (s)Γs dxs

= Ṽ (r)Γr +
∫︂ t

r
DrṼ (s) · Γs dxs +

∫︂ t

r
Ṽ (s)DrΓs dxs,

where note that a direct differentiation gives:

DrṼ (s) =
∫︂ 1

0
∂2V

(︁
θys + (1 − θ)yn

s

)︁(︁
θDrys + (1 − θ)Dry

n
s

)︁
dθ.

Therefore one can use the variation of constant method, similar to [26], equation (2.7), in
order to get the following representation for DrΓt :

(4.59) DrΓt = Γr
t Ṽ (r)Γr + Γr

t

∫︂ t

r
Λr

sDrṼ (s) · Γs dxs,

where {Γr
t ; t ∈ [r, T ]} is the solution of equation (4.52) such that Γr

r = Id and Λr
t is the

inverse of Γr
t . Note that because Γ and Γr satisfy the same equation with different initials,

the estimate of Γ in (4.55) also holds for Γr . In order to estimate DrΓt , it thus remains to get
the estimate (4.49) for the integral

(4.60)
∫︂ t

r
Λr

sDrṼ (s) · Γs dxs

in (4.59). Recall that Γ is the solution of the linear system (4.52) driven by Z, where we
recall that Z = (yn,w). According to (4.47) (Dry,Dry

n,Z) can be lifted to a rough path. So
Γ can also be considered as the solution of a linear system driven by (Dry,Dry

n,Z). Hence
along the same line as for (4.53) we can estimate the quantity (4.60), and thus we obtain the
bound (4.49) for DrΓt .
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We turn to the equation satisfied by D2
rr ′Γ. Differentiating (4.59), we let the patient reader

check that the second derivative verifies a linear equation of the form

(4.61) D2
rr ′Γt = Dr ′

[︁
Ṽ (r)Γr

]︁+ Dr

[︁
Ṽ
(︁
r ′)︁Γr ′

]︁+ ℰrr ′(t) +
∫︂ t

r∨r ′
Ṽ (s)D2

rr ′Γs dxs,

where the term ℰrr ′(t) is defined by

ℰrr ′(t) =
∫︂ t

r∨r ′
Dr ′Ṽ (s) · DrΓs dxs +

∫︂ t

r∨r ′
DrṼ (s) · Dr ′Γs dxs +

∫︂ t

r∨r ′
Drr ′Ṽ (s) · Γs dxs.

It is clear that the process D2
rr ′Γ satisfies a linear equation system analogous to (4.59). The

estimate can thus be obtained by following the same arguments as above, invoking again [26].
This completes the proof of (4.49). □

4.5. A decomposition of the error process. In [29], equations (6.14) and (7.6), we have
decomposed the error process yt − yn

t according to the Jacobian of the equation and some
remainder terms. In the following proposition we get a similar decomposition, adapted to our
needs for the weak convergence estimates. Notice that similar to what we did in Section 4.4,
we will drop the indices from our formulae below for sake of readability.

LEMMA 4.14. We work under the conditions of Lemma 4.8. Recall that x is a standard d-
dimensional fBm with Hurst parameter H . Let y and yn be the solutions of equation (2.7) and
the Euler scheme (4.25), respectively. Let Γ and Λ be respectively the solution of equation
(4.48) and its inverse Λ = Γ−1. We set η(s) = tk for s ∈ [tk, tk+1). For t ∈ [0, T ] we also
define

It = 1

2

∫︂ t

0
∂V ∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H

dxs

+
∫︂ t

0

(︃∫︂ s

η(s)

∫︂ u

η(s)
∂2V

(︁
yn
v

)︁
dyn

v dyn
u

)︃
dxs(4.62)

=: I 1
t + I 2

t .

Then the difference yn
t − yt can be decomposed as

(4.63) yt − yn
t =

5∑︂
e=1

J e
t ,

where the processes J 1
t , J 2

t , J 3
t are respectively defined by

J 1
t = Γt

∫︂ t

0
Λη(s)∂V V

(︁
yn
η(s)

)︁
δxη(s),s dxs,

J 2
t = Γt

∫︂ t

0
(Λs − Λη(s))∂V V

(︁
yn
η(s)

)︁
δxη(s),s dxs,(4.64)

J 3
t = Γt

∫︂ t

0
Λs dIs,

and where J 4
t , J 5

t are given by

J 4
t = −H · Γt

∫︂ t

0
(Λs − Λη(s))∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H−1

ds,

J 5
t = −H · Γt

∫︂ t

0
Λη(s)∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H−1

ds.
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REMARK 4.15. For notational sake, we have stated our result and we will perform our
computations in a one-dimensional setting. For completeness, let us now show how some of
the terms look in a multidimensional setting. For instance the matrix multiplication in (4.62)
should be interpreted as:

∂V ∂V V
(︁
yn
η(s)

)︁
dxs =

(︄
m∑︂

i′,i′′=1

d∑︂
j,j ′=1

∂i′V
i
j ∂i′′V

i′
j ′ V i′′

j ′
(︁
yn
η(s)

)︁
dxj

s , i = 1, . . . ,m

)︄
,

∂2V
(︁
yn
v

)︁
dyn

v dyn
u dxs =

(︄
d∑︂

j=1

m∑︂
i′,i′′=1

∂2
i′i′′V

i
j

(︁
yn
v

)︁
dyn,i′

v dyn,i′′
u dxj

s , i = 1, . . . ,m

)︄
.

Similarly, in (4.64) we have

Γt

∫︂ t

0
Λη(s)∂V V

(︁
yn
η(s)

)︁
δxη(s),s dxs

=
(︄

m∑︂
i′,i′′,i′′′=1

d∑︂
j,j ′=1

Γii′
t

∫︂ t

0
Λi′i′′

η(s)∂i′′′V
i′′
j V i′′′

j ′
(︁
yn
η(s)

)︁
δx

j ′
η(s),s dxj

s , i = 1, . . . ,m

)︄
.

We let the patient reader figure out how the remaining multidimensional quantities would
look like.

PROOF OF LEMMA 4.14. As mentioned in Remark 4.15, for notational sake we will
perform our computations in a one-dimensional setting. We first recall that the continuous
time Euler scheme defined in (4.25) can be written, for s ∈ [0, T ], as

(4.65) δyn
η(s),s = V

(︁
yn
η(s)

)︁
δxη(s),s + 1

2
∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H

,

where we recall that η(s) = tk whenever s ∈ [tk, tk+1). One can also write equation (4.65) in
integral form, which yields an expression of the form

(4.66) yn
t = y0 +

∫︂ t

0
V
(︁
yn
η(s)

)︁
dxs + H

∫︂ t

0
∂V V

(︁
yn
η(s)

)︁(︁
s − η(s)

)︁2H−1
ds.

Gathering (4.66) with equation (2.7) for which we omit the drift term, we get

yt − yn
t =

∫︂ t

0

(︁
V (ys) − V

(︁
yn
s

)︁)︁
dxs +

∫︂ t

0

(︁
V
(︁
yn
s

)︁− V
(︁
yn
η(s)

)︁)︁
dxs

− H ·
∫︂ t

0
∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H−1

ds.

(4.67)

Next we will consider a decomposition of the quantity V (yn
s ) − V (yn

η(s)) in (4.67). Namely
we apply the chain rule twice to obtain

V
(︁
yn
s

)︁− V
(︁
yn
η(s)

)︁ =
∫︂ s

η(s)
∂V

(︁
yn
u

)︁
dyn

u

= ∂V
(︁
yn
η(s)

)︁
δyn

η(s),s +
∫︂ s

η(s)

∫︂ u

η(s)
∂2V

(︁
yn
v

)︁
dyn

v dyn
u.

(4.68)

Plugging (4.65) into (4.68) and then integrating in x we thus get∫︂ t

0

(︁
V
(︁
yn
s

)︁− V
(︁
yn
η(s)

)︁)︁
dxs

=
∫︂ t

0
∂V

(︁
yn
η(s)

)︁(︃
V
(︁
yn
η(s)

)︁
δxη(s),s + 1

2
∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H

)︃
dxs(4.69)

+
∫︂ t

0

(︃∫︂ s

η(s)

∫︂ u

η(s)
∂2V

(︁
yn
v

)︁
dyn

v dyn
u

)︃
dxs.
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Recalling the definition of I 1
t , I 2

t in (4.62), equation (4.69) can also be read as

(4.70)
∫︂ t

0

(︁
V
(︁
yn
s

)︁− V
(︁
yn
η(s)

)︁)︁
dxs =

∫︂ t

0
∂V V

(︁
yn
η(s)

)︁
δxη(s),s dxs + I 1

t + I 2
t .

We now decompose the quantity V (ys) − V (yn
s ) in (4.67). Specifically we write

(4.71) V (yt ) − V
(︁
yn
t

)︁ =
∫︂ 1

0
∂V

(︁
θyt + (1 − θ)yn

t

)︁
dθ · (︁yt − yn

t

)︁ = Ṽ (t) · (︁yt − yn
t

)︁
,

where we recall that the process Ṽ has been introduced in Definition 4.11.
We are ready to plug (4.70) and (4.71) into (4.67) in order to get the following linear

equation for y − yn:

(4.72) yt − yn
t =

∫︂ t

0
Ṽ (s) · (︁ys − yn

s

)︁
dxs + Kt,

where the process Kt is given by

(4.73) Kt =
∫︂ t

0
∂V V

(︁
yn
η(s)

)︁
δxη(s)s dxs + I 1

t + I 2
t − H

∫︂ t

0
∂V V

(︁
yn
η(s)

)︁(︁
s − η(s)

)︁2H−1
ds.

Eventually we recall that Γ solves the Jacobian type equation (4.48) and that Λt = Γ−1
t .

Hence applying Duhamel’s principle in order solve (4.72), we get

yt − yn
t = Γt

∫︂ t

0
Λs dKs.

Thanks to our expression (4.73), the above equation can be written more explicitly as

yt − yn
t =Γt

∫︂ t

0
Λs∂V V

(︁
yn
η(s)

)︁
δxη(s)s dxs + Γt

∫︂ t

0
Λs d

(︁
I 1
s + I 2

s

)︁
− H · Γt

∫︂ t

0
Λs∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H−1

ds.

(4.74)

With relation (4.74) in hand, we can now easily identify the terms in (4.63). Indeed, the sec-
ond term on the right-hand side of equation (4.74) is exactly J 3

t . Also, in the same equation,
by plugging the decomposition Λs = Λη(s) + (Λs − Λη(s)) into the first and third terms we
identify the first and third terms as J 1

t + J 2
t and J 4

t + J 5
t , respectively. We thus conclude the

identity (4.63). The proof is complete. □

4.6. The weak convergence of the Euler scheme. We can now gather all the previous
preliminary estimates in order to obtain our main result. This is summarized in the theorem
below.

THEOREM 4.16. Consider a vector field V ∈ C4
b and a driving fBm x with Hurst parame-

ter H > 1/3. Let y be the solution of the rough differential equation (2.7). The corresponding
interpolated Euler scheme is yn, displayed in (4.25). Then for any f ∈ C4

b(ℝd) and t ∈ [0, T ]
there is a constant C > 0 independent of n such that

(4.75)
⃓⃓
𝔼f

(︁
yn
t

)︁−𝔼f (yt )
⃓⃓ ≤ C

n4H−1−ε
.

PROOF. For conciseness we will prove the theorem for the case V0 ≡ 0 only. The general
case can be considered in the similar way and is left to the patient reader.

Let f be a generic C4
b function. For t ∈ [0, T ] we define an interpolated process

(4.76) f1(t) =
∫︂ 1

0
∂f

(︁
λyt + (1 − λ)yn

t

)︁
dλ.
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Here note that in order to alleviate notation, we still drop indices and perform our computation
as if our quantities were real-valued. Next a simple application of the fundamental theorem
of calculus plus Lemma 4.14 reveal that

(4.77) f (yt ) − f
(︁
yn
t

)︁ = f1(t) · (︁yt − yn
t

)︁ =
5∑︂

e=1

f1(t)J
e
t .

The remainder of the proof is dedicated to estimate the five terms in the right-hand side of
(4.77). For sake of conciseness we prove (4.75) for t ∈ ⟦0, T ⟧ only. The proof for t ∈ [0, T ]
follows the same lines and is left to patient reader.

Step 1: Estimating J 1
t and J 5

t . In this step, we consider the first and fifth term in (4.77).
Note that the integrals in the expressions for J 1

t and J 5
t are in fact discrete sums. We can thus

combine those two terms in order to get

(4.78) f1(t)
(︁
J 1

t + J 5
t

)︁ = ∑︂
tk<t

f1(t)ΓtΛtk∂V V
(︁
yn
tk

)︁(︃
x2
tk tk+1

− 1

2
Δ2H

)︃
.

Let us say a few words about the term ψk ≡ x2
tk tk+1

− 1
2Δ2H in the right-hand side of

(4.78). First we highlight again the fact that we are performing 1-d type computations in
order to simplify notation. In a d-dim setting we would consider random variables of the
form

ψ
ij
k = x

2,ij
tktk+1

− 1

2
Δ2H 1{i=j}, for i, j ∈ {1, . . . , d}.

Here we will just focus on the terms ψk ≡ ψii
k , which are the most demanding ones. We leave

the off-diagonal terms ψ
ij
k to the patient reader for sake of conciseness. Next we should also

have in mind the fact that ψk can be written as

ψk = 1

2
(δxtktk+1)

2 − 1

2
Δ2H = 1

2
Δ2HH2

(︃
(δxtktk+1)

2

Δ2H

)︃
,

where H2 stands for the Hermite polynomial H2(x) = x2 − 1. Invoking [33], Page 23, we
thus get

ψk = δ⋄,2(βtktk+1),

where βtktk+1 is defined by (4.9) and δ⋄,2 stands for a double Skorohod integral (see Sec-
tion 2.3 for Malliavin calculus notation). Hence applying twice the integration by parts (2.17),
we end up with

𝔼
[︁
f1(t)

(︁
J 1

t + J 5
t

)︁]︁ = ∑︂
tk<t

𝔼
[︁⟨︁
D2[︁f1(t)ΓtΛtk∂V V

(︁
yn
tk

)︁]︁
, βtktk+1

⟩︁
ℋ⊗2

]︁
,

where recall that β is defined in (4.9). Applying Lemma 4.3 with φ given by

φ = D2[︁f1(t)ΓtΛtk∂V V
(︁
yn
tk

)︁]︁
,

and recalling that f1 is the process in (4.76), we obtain

(4.79)
⃓⃓
𝔼
[︁
f1(t)

(︁
J 1

t + J 5
t

)︁]︁⃓⃓ ≤ ∑︂
tk<t

n−4H
𝔼
[︁⃦⃦

D2[︁f1(t)ΓtΛtk∂V V
(︁
yn
tk

)︁]︁⃦⃦
∞
]︁
.

The integrability results Theorem 3.8 and Lemma 4.13 (b) guarantee the uniform integrability
in n of the sup-norm in the inequality (4.79). Therefore, we have the estimate

(4.80)
⃓⃓
𝔼
[︁
f1(t)

(︁
J 1

t + J 5
t

)︁]︁⃓⃓ ≤ C
∑︂
tk<t

n−4H = Cn1−4H .



EULER SCHEME FOR FBM DRIVEN SDES 1907

Step 2: Estimating J 2
t . We turn to the estimate of J 2

t in (4.77) and Lemma 4.14. Ob-
serve that according to the fact that Λ = Γ−1 and Λ solves (4.48), we have Λs − Λη(s) =
− ∫︁ s

η(s) ΛuṼ (u) dxu. Substituting this into J 2
t we obtain

(4.81) J 2
t = −Γt

∫︂ t

0

(︃∫︂ s

η(s)
ΛuṼ (u) dxu

)︃
∂V V

(︁
yn
η(s)

)︁
δxη(s)s dxs.

Now let us write

ΛuṼ (u) = (︁
ΛuṼ (u) − Λη(s)Ṽ

(︁
η(s)

)︁)︁+ Λη(s)Ṽ
(︁
η(s)

)︁
.

Reporting this relation into our expression (4.81) for J 2
t yields the decomposition:

J 2
t = − Γt

∫︂ t

0

∫︂ s

η(s)

(︁
ΛuṼ (u) − Λη(s)Ṽ

(︁
η(s)

)︁)︁
dxu · ∂V V

(︁
yn
η(s)

)︁
δxη(s)s dxs

− ∑︂
tk<t

Γt

∫︂ tk+1

tk

Λtk Ṽ (tk)δxtks∂V V
(︁
yn
tk

)︁
δxtks dxs =: J 21

t + J 22
t .

(4.82)

We now proceed to the analysis of J 21
t and J 22

t above.
In order to bound the term J 22

t in our decomposition (4.82), observe that this term is of the
form

∑︁
tk<t ftk δgtktk+1 as in Lemma 2.5. Precisely, we have

(4.83) J 22
t = − ∑︂

tk<t

ΓtΛtk Ṽ (tk)∂V V
(︁
yn
tk

)︁
⏞ ⏟⏟ ⏞

=ftk

·
∫︂ tk+1

tk

δxtksδxtks dxs⏞ ⏟⏟ ⏞
=δgtk tk+1

.

Moreover, according to (4.49) and the Lp-estimates for ℳ0, ℳ1, it is readily checked that
for all p ≥ 1 and (u, v) ∈ 𝒮2(⟦0, T ⟧) we have

(4.84)
(︁
𝔼
[︁|δfuv|2p]︁)︁ 1

2p ≲ |v − u|H−ε.

In addition g has to be seen as a triple iterated integral of x. It has been shown in [29],
Lemma 4.3, that for all (u, v) ∈ 𝒮2(⟦0, T ⟧) we have

(4.85)
(︁
𝔼
[︁|δguv|2p]︁)︁ 1

2p ≲ |v − u|1/2

n3H−1/2 .

Since we are considering points u, v on the grid ⟦0, T ⟧, it is readily checked that v−u ≥ T/n.
Hence one can play with the exponents in (4.85) and write

(4.86)
(︁
𝔼
[︁|δguv|2p]︁)︁ 1

2p ≲ |v − u|1−H+2ε

n4H−1−2ε
.

It follows that gathering (4.84) and (4.86) one can apply Lemma 2.5 to (4.83) and get

(4.87)
⃓⃓
𝔼
[︁
f1(t)J

22
t

]︁⃓⃓ ≤ C

n4H−1−ε
.

In order to bound 𝔼[f1(t)J
21
t ], where J 21

t is defined in (4.82), we need to make a further
decomposition. Using the product rule plus equation (4.48) for Λ, Definition 4.11 for Ṽ , as
well as relation (2.7) and (4.25) for y and yn, we can write

(4.88) ΛuṼ (u) − Λη(s)Ṽ
(︁
η(s)

)︁=
∫︂ u

η(s)
f2(v) dxv +

∫︂ u

η(s)
f3(v) d

(︁
v − η(v)

)︁2H
,

where we have set

f2(v) = −ΛvṼ (v)Ṽ (v) + Λv∂Ṽ (v),(4.89)

f3(v) = 1

4
Λv

∫︂ 1

0
∂∂V

(︁
θyv + (1 − θ)yn

v

)︁
(1 − θ)∂V V (yη(s)),(4.90)
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and where we denote

∂Ṽ (v) =
∫︂ 1

0
∂∂V

(︁
θyv + (1 − θ)yn

v

)︁(︁
θV (yv) + (1 − θ)V

(︁
yn
η(v)

)︁)︁
dθ.

Then we write∫︂ u

η(s)
f2(v) dxv = f2

(︁
η(s)

)︁
δxη(s),u +

∫︂ u

η(s)

(︁
f2(v) − f2

(︁
η(s)

)︁)︁
dxv.

Substituting the above into J 21
t we obtain a weighted sum of two fourth and one fifth order

multiple integral in the form
∑︁

0≤tk<t hk . Precisely, we have J 21
t = −(J 211

t + J 212
t + J 213

t ),
where

J 211
t = ∑︂

0≤tk<t

Γt

∫︂ tk+1∧t

tk

∫︂ s

tk

f2(tk)δxtk,u dxu · ∂V V
(︁
yn
tk

)︁
δxtks dxs

≡ ∑︂
0≤tk<t

Γth
211
t ,

J 212
t = ∑︂

0≤tk<t

Γt

∫︂ tk+1∧t

tk

∫︂ s

tk

∫︂ u

tk

(︁
f2(v) − f2(tk)

)︁
dxv dxu · ∂V V

(︁
yn
tk

)︁
δxtks dxs(4.91)

≡ ∑︂
0≤tk<t

Γth
212
k ,

J 213
t = −Γt

∫︂ t

0

∫︂ s

η(s)

∫︂ u

η(s)
f3(v) d

(︁
v − η(v)

)︁2H
dxu · ∂V V

(︁
yn
η(s)

)︁
δxη(s)s dxs.

We now proceed to estimate the terms J 211
t , J 212

t and J 213
t .

One can easily analyze the term J 211
t by writing

h211
k = f2(tk)∂V V

(︁
yn
tk

)︁
x4
tk,tk+1∧t ,

where x4
st denotes the fourth order iterated integral over the interval [s, t]. It follows that

∥h211
k ∥Lp ≲ 1

n4H for p ≥ 1. This implies that

(4.92) 𝔼
[︁
f1(t)J

211
t

]︁ ≤ ∑︂
tk<t

C · n−4H ≤ C

n4H−1 .

In the same way we can show that the bound (4.92) also holds for J 213
t .

As far as J 212
t is concerned, one can recast the term h212

k as h212
k = ∂V V (yn

tk
)ĥ212

k , with

(4.93) ĥ212
k =

∫︂ tk+1∧t

tk

∫︂ s

tk

∫︂ u

tk

(︁
f2(v) − f2(tk)

)︁
dxv dxuδxtks dxs.

The quantity ĥ212
k has to be seen as a fifth order iterated integral. One way to quantify ĥ212

k is
to resort to Fubini’s theorem for multiple rough integrals:

(4.94)
∫︂ tk+1

tk

∫︂ s

tk

∫︂ u

tk

g(v)δxtks dxv dxu dxs =
∫︂ tk+1

tk

∫︂ tk+1

v

∫︂ tk+1

u
g(v)δxtks dxs dxu dxv,

where we have denoted g(v) = f2(v) − f2(tk). Note that relation (4.94) can be shown by
taking limits along smooth approximations of x, plus using the fact that x is a geometric
rough path. Applying (4.94) to (4.93) gives

ĥ212
k =

∫︂ tk+1

tk

ztktk+1
v dxv, with ztktk+1

v = (︁
f2(v) − f2(tk)

)︁ ∫︂ tk+1

v
dxu

∫︂ tk+1

u
δxtks dxs.
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Using the rough path property of x recalled in Section 2.2 and the definition of f2 in (4.88), it
is readily checked that ztktk+1 is of order (1/n)4H−ε for any ε > 0. Reporting this information
in (4.93), one gets the almost sure relation⃓⃓

ĥ212
k

⃓⃓ ≤ G

n5(H−ε)
,

where G ∈ ⋂︁
p≥1 Lp(Ω). With relation (4.91) in mind and taking into account the definition

(4.76) of f1, we discover that

(4.95)
⃓⃓
𝔼
[︁
f1(t)J

212
t

]︁⃓⃓ ≤ C

n−1+5(H−ε)
≤ C

n4H−1 .

Summarizing our considerations for the term J 2
t , we gather our estimates (4.92) and (4.95).

This yields the desired estimate

(4.96)
⃓⃓
𝔼
[︁
f1(t)J

2
t

]︁⃓⃓ ≤ C

n4H−1−ε
.

Step 3: Estimating J 3
t . In this step, we consider the term J 3

t defined in Lemma 4.14. Also
recall that It has been decomposed into I 1

t + I 2
t in (4.62). Accordingly we shall write

J 3
t = J 31

t + J 32
t ≡ Γt

∫︂ t

0
Λs dI 1

s + Γt

∫︂ t

0
Λs dI 2

s ,

and estimate J 31
t , J 32

t separately. Resorting to expression (4.62) for I 2, let us write J 32
t as

J 32
t = Γt

∫︂ t

0

∫︂ s

η(s)

∫︂ u

η(s)
Λs∂

2V
(︁
yn
v

)︁
dyn

v dyn
u dxs.

In this way, it is readily checked that J 32
t exhibits the same type of regularity as J 2

t defined
by (4.81). The complete analysis of J 32

t thus follows the same steps as J 2
t . It relies on another

discretization procedure, similar to (4.82). Namely one writes J 32
t = J 321

t + J 322
t , with

J 321
t = Γt

∫︂ t

0

∫︂ s

η(s)

∫︂ u

η(s)

(︁
Λs∂

2V
(︁
yn
v

)︁− Λη(s)∂
2V (yη(v))

)︁
dyn

v dyn
u dxs,

J 322
t = Γt

∑︂
tk<t

Λtk∂
2V (ytk )

∫︂ tk+1

tk

∫︂ s

η(s)

∫︂ u

η(s)
dyn

v dyn
u dxs.

In addition, along the same lines as for (4.83) and resorting to the discrete dynamics (4.25) of
yn, one can express J 321

t as a weighted sum of triple integrals of x. We can thus proceed as
in the estimation of J 2

t and get the same inequalities as in (4.87), (4.92) and (4.95). Details
are left to the reader for sake of conciseness. We obtain

(4.97)
⃓⃓
𝔼
[︁
f1(t)J

32
t

]︁⃓⃓ ≤ C

n4H−1−ε
.

In order to bound the term J 31
t , we first use another step of discretization. That is, we

decompose J 31
t as J 311

t + J 312
t with

J 311
t = 1

2
Γt

∫︂ t

0
Λη(s)∂V ∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H

dxs,

J 312
t = 1

2
Γt

∫︂ t

0
(Λs − Λη(s))∂V ∂V V

(︁
yn
η(s)

)︁ · (︁s − η(s)
)︁2H

dxs.

Note that by applying Lemma 2.5 we can bound 𝔼[f1(t)J
311
t ] by 1

n4H−1−ε . Indeed, we can
write

(4.98) f1(t)J
311
t = 1

2
f1(t)Γt

∑︂
0≤tk<t

Λtk∂V ∂V V
(︁
yn
tk

)︁ · νtk,tk+1∧t ,
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where the increment ν is defined by

(4.99) νuv =
∫︂ v

u

(︁
s − η(s)

)︁2H
dxs.

Next recall the following result from Lemma 4.6 in [29]: For a fBm x with Hurst parameter
H and f such that ∥f ∥γ ∈ Lp for all γ < H and p ≥ 1, we have

(4.100)
{︃
𝔼

[︃⃓⃓⃓
⃓ ∑︂
0≤tk<t

ftkνtk,tk+1∧t

⃓⃓⃓
⃓p
]︃}︃1/p

≤ CT

n4H−1−ε
.

One can apply directly this estimate to (4.98) in order to get

(4.101) 𝔼
[︁
f1(t)J

311
t

]︁ ≤ C

n4H−1−ε
.

The term J 312
t has to be compared to J 21

t in (4.82). We can thus follow some computations
which are very similar to (4.88)–(4.91). We end up with second and third integrals involving
x and the increment ν in (4.99). Having the regularity (4.100) of ν into account we let the
reader check that

(4.102) 𝔼
[︁
f1(t)J

312
t

]︁ ≤ C

n4H−1−ε
,

similar to (4.92) and (4.95). We can thus conclude this step by gathering (4.101) and (4.102).
This yields

(4.103)
⃓⃓
𝔼
[︁
f1(t)J

3
t

]︁⃓⃓ ≤ Cn1−4H+ε.

Step 4: Estimating J 4
t . We now turn to an estimate of the term J 4

t in Lemma 4.14. Accord-
ing to the expression therein and equation (4.48) for Λ, observe that

(4.104) 𝔼
[︁
f1(t)J

4
t

]︁ = −H ·
∫︂ t

0
Qt

s · (︁s − η(s)
)︁2H−1

ds,

where the quantity Qt
s is given by

Qt
s = 𝔼

[︃
f1(t)

(︃∫︂ s

η(s)
ΓtΛuṼ (u)T dxu

)︃
∂V V

(︁
yn
η(s)

)︁]︃
.

As for J 31
t we can show that

(4.105)
⃓⃓⃓
⃓𝔼
[︃
f1(t)Γt

(︃∫︂ s

η(s)
ΛuṼ (u)T dxu

)︃
∂V V

(︁
yn
η(s)

)︁]︃⃓⃓⃓⃓ ≤ C

n2H−ε
.

Indeed, by writing and substituting

ΛuṼ (u)T = Λη(s)Ṽ
(︁
η(s)

)︁T + (︁
ΛuṼ (u)T − Λη(s)Ṽ

(︁
η(s)

)︁T )︁
into (4.105), we decompose (4.105) into two components. The second component obtained
is a double integral over the interval [η(s), s], which is bounded by 1

n2H−ε . On the other hand,
the first component is of the form 𝔼[Fδxη(s)s], where

F = f1(t)Γt

(︁
Λη(s)Ṽ

(︁
η(s)

)︁T )︁
∂V V

(︁
yn
η(s)

)︁
.

Note that F is an integrable variable whose Malliavin derivative DF is also integrable. So
applying integration by parts to 𝔼[Fδxη(s)s] and then Lemma 4.4 with φ = DF , together
with the upper-bound estimates in Lemma 4.13 and Theorem 2.12, we obtain the bound 1

n2H .
Gathering those consideration and (4.105) into (4.104), we end up with

(4.106) 𝔼
[︁
f1(t)J

4
t

]︁ ≤ C

n4H−1−ε
.

Step 5: Conclusion. Taking expectations on both sides of (4.77) and reporting (4.80),
(4.96), (4.103), and (4.106) we discover that (4.75) holds true. This finishes the proof. □
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