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1 Introduction

The definition and resolution of evolution type PDEs driven by general Hölder
continuous signals have experienced tremendous progresses during the last past
years. When the Hölder regularity of the driving noise is larger than 1=2, this has
been achieved thanks to Young integrals [9] or fractional integration [11] techniques.
The more delicate issue of a Hölder exponent smaller than 1=2 has to be handled
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thanks to rough paths techniques, either by smart transformations allowing to use
limiting arguments [3, 4, 8] or by an adaptation of the rough paths formalism to
evolution equations [6, 7, 10]. Altogether, those contributions yield a reasonable
definition of rough parabolic PDEs, driven at least by a finite dimensional signal.

With those first results in hand, a natural concern is to get a better understanding
of the processes obtained as solutions to stochastic PDEs driven by rough signals.
This important program includes convergence of numerical schemes (see [5] for a
result in this direction), ergodic properties, and a thorough study of the law of those
processes. This article makes a first step towards the last of these items.

Indeed, we shall consider here a simple case of rough evolution PDEs and see
what kind of result might be obtained as far as densities of the solution are con-
cerned. More specifically, we focus on the following mild heat equation on .0; 1/:

Yt D St' C
Z t

0

St�u.Fi .Y /u/ dBi
u ; t 2 Œ0; T �; (16.1)

where T > 0 is a finite horizon, St stands for the heat semigroup associated
with Dirichlet boundary conditions, ' is a smooth enough initial condition,
Fi W L2.0; 1/ ! L2.0; 1/ and B W Œ0; T � ! R

d is a d -dimensional fractional
Brownian motion with Hurst parameter H > 1=2. For this equation, we obtain the
following results:

1. Existence of a density for the random variable Yt.�/ for any t 2 .0; T � and
� 2 .0; 1/, when the Fi ’s are rather general Nemytskii operators Fi .'/.�/ WD
fi .'.�//. See Theorem 3.2 for a precise statement.

2. When theFi ’s are defined through some regularizing kernel (see Hypothesis 4.1),
we obtain that the density of Yt .�/ is smooth. This will be the content of
Theorem 4.2.

To the best of our knowledge, these are the first density results for solutions to
nonlinear PDEs driven by fractional Brownian motion. Let us point out that we
could have obtained the same kind of results for a more general class of equations
(operator under divergence form, general domain D � R

n, drift term, Gaussian
process as driving noise). We prefer however to stick to the simple case of the
fBm-driven stochastic heat equation for the sake of readability and conciseness.

Our main results will obviously be based on a combination of pathwise estimates
for integrals driven by rough signals and Malliavin calculus tools. In particular,
a major part of our effort will be dedicated to the differentiation of the solution
to Eq. (16.1) with respect to the driving noise B and to a proper estimate of the
derivative. Since the equations for derivatives are always of linear type they lead
to exponential type estimates, which are always a delicate issue. This is where we
shall consider some regularizing vector fields Fi in Eq. (16.1), and proceed to a
careful estimation procedure (see Sect. 4.1). It should also be noticed at this point
that the basis of our stochastic analysis tools is contained in the celebrated book
[12] by Nualart, plus the classical reference [13] as far as equations driven by fBm
are concerned.
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Here is how our article is structured: Section 2 is devoted to recall basic facts
on both pathwise noisy evolution equations and Malliavin calculus for fractional
Brownian motion. We differentiate the solution to Eq. (16.1) and obtain the exis-
tence of the density at Sect. 3. Finally, further estimates on the Malliavin derivative
and smoothness of the density are derived at Sect. 4.

Throughout this article, we will use the generic notation c to refer to the
constants that only depend on nonsignificant parameters. The constants which are
to play a more specific role in our reasoning will be labeled c1; c2; : : :

For any k 2 N, we will denote by Ck;b.RIR/ the space of functions on R

which are k-times differentiable with bounded derivatives. For any � 2 .0; 1/,
C� D C� .Œ0; T �IRd / will stand for the set of (d -dimensional) � -Hölder paths
on Œ0; T �.

2 Setting

One of the technical advantages of dealing with the simple case of a stochastic
heat equation on .0; 1/ is a simplification in the functional analysis setting based
on rather elementary Fourier series considerations (notice in particular that the Lp

considerations of [7] can be avoided). We shall first detail this setting, and then
recall some basic facts on equations driven by noisy signals and fractional Brownian
motion. Throughout the section, we assume that a (finite) horizon T has been fixed
for the equation.

2.1 Fractional Sobolev Spaces

As mentioned above, we are working here with the heat equation in the Hilbert
space B WD L2.0; 1/ with Dirichlet boundary conditions. The Laplace operator �
on B can be diagonalized in the orthonormal basis

en.�/ WD p
2 sin.�n�/ .n 2 N

�/; with eigenvalues �n WD �2n2:

We shall denote by .yn/n the (Fourier) decomposition of any function y 2 B on this
orthonormal basis.

Sobolev spaces based on B are then easily characterized by means of Fourier
coefficients. We label their definition for further use:

Definition 2.1. For any ˛ � 0, we denote by B˛ the fractional Sobolev space of
order ˛ based on B, defined by

B˛ WD
(
y 2 L2.0; 1/ W

1X
nD1

�2˛n .y
n/2 < 1

)
: (16.2)

This space is equipped with its natural norm kyk2B˛ WD k�˛yk2B D P1
nD1 �2˛n .yn/2.

We also set B1 D C.0; 1/.
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The above-defined fractional Sobolev spaces enjoy the following classical
properties (see [1, 15]):

Proposition 2.1. Let B˛;B1 be the Sobolev spaces introduced at Definition 2.1.
Then the following hold true:

• Sobolev inclusions: If ˛ > 1=4, then we have the continuous embedding

B˛ � B1: (16.3)

• Algebra: If ˛ > 1=4, then B˛ is a Banach algebra with respect to pointwise
multiplication, or in other words

k' � kB˛ � k'kB˛k kB˛ : (16.4)

• Composition: If 0 � ˛ < 1=2, ' 2 B˛ and f W R ! R belongs to C1;b, then
f .'/ 2 B˛ and

kf .'/kB˛ � cf f1C k'kB˛g : (16.5)

Here, f .'/ is naturally understood as f .'/.�/ WD f .'.�//.

Let now St be the heat semigroup associated with �, and notice that if an
element y 2 L2.0; 1/ can be decomposed as y D P

n�1 ynen, then Sty DP
n�1 e��ntynen. The general theory of fractional powers of operators provides us

with sharp estimates for the semigroup St (see for instance [14]):

Proposition 2.2. The heat semigroup St satisfies the following properties:

• Contraction: For all t � 0, ˛ � 0, St is a contraction operator on B˛.
• Regularization: For all t 2 .0; T �, ˛ � 0, St sends B on B˛ and

kSt'kB˛ � c˛;T t
�˛k'kB: (16.6)

• Hölder regularity: For all t 2 .0; T �, ' 2 B˛,

kSt' � 'kB � c˛;T t
˛k'kB˛ : (16.7)

2.2 Young Convolutional Integrals

The stochastic integrals involved in Eq. (16.1) will all be understood in the Young
sense. In order to define them properly, let us first introduce some notation
concerning Hölder type spaces in time. To begin with, for any ˛ � 0 and any
subinterval I � Œ0; T �, set C0.I IB˛/ for the space of continuous B˛-valued
functions on I , equipped with the supremum norm. Then Hölder spaces of B˛-
valued functions can be defined as follows: for � 2 .0; 1/, set

C�.I IB˛/ WD
�
y 2 C0.I IB˛/ W sup

s<t2I
kyt � yskB˛

jt � sj� < 1
�
:
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Observe now that the definition of our stochastic integrals weighted by the heat
semigroup will require the introduction of a small variant of those Hölder spaces
(see [7, 10] for further details): we define OC�.I IB˛/ as

OC�.I IB˛/ WD
�
y 2 C0.I IB˛/ W sup

s<t2I
kyt � St�s yskB˛

jt � sj� < 1
�
:

In order to avoid confusion, the natural norms on the spaces C�.I IB˛/, OC�.I IB˛/
are respectively denoted by N Œ�I C�.I IB˛/�, N Œ�I OC�.I IB˛/�, etc. For the sake of
conciseness, we shall often write C�.B˛/ (resp. OC�.B˛/) instead of C�.Œ0; T �IB˛/
(resp. OC�.Œ0; T �IB˛/). We also need to introduce a family of spaces OC0;�.I IB�/ in
the following way:

Lemma 2.1. For any � 2 .0; 1/ and any subinterval I � Œ0; T �, let OC0;�.I IB�/ be
the space associated with the norm

N Œ�I OC0;�.I IB�/� WD N Œ�I C0.I IB�/�C N Œ�I OC�.I IB�/�:

Then the following continuous embedding holds true:

OC0;�.I IB�/ � C�.I IB/: (16.8)

More generally, for every � � �,

N ŒyI C�.I IB/� � N ŒyI OC�.I IB�/�C c� jI j��� N ŒyI C0.I IB�/�: (16.9)

Proof. Indeed, owing to Eq. (16.7), one has, for every s < t 2 I ,

kyt�yskB�kyt�St�syskBCk.St�s� Id/yskB�kyt�St�syskB�Cc� jt�sj� kyskB� :

ut
With those definitions in hand, the following proposition (borrowed from [7])

will be invoked in the sequel in order to give a meaning to our stochastic integrals
weighted by the heat semigroup:

Proposition 2.3. Consider a � -Hölder real-valued function x defined on Œ0; T �. Let
I D Œ`1; `2� be a subinterval of Œ0; T � and fix � 2 Œ0; �� such that �C� > 1. Suppose
that z 2 C0.I IB�/ \ C�.I IB��˛/ for some parameters � � 0, 0 � ˛ � min.�; �/.
Then, for every s < t 2 I , the convolutional Riemann sum

X
tk2…

St�tkC1
ztkC1

�
xtkC1

� xtk
�

converges in B� as the mesh of the partition … WD fs D t0 < t1 < : : : < tn D tg
tends to 0, and we denote the limit by

R t
s St�uzu dxu.
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Moreover, for every ' 2 B�, there exists a unique path y 2 OC� .I IB�/ such that
y`1 D ' and yt � St�sys D R t

s St�u.zu/ dxu if s < t 2 I . For this function, the
following estimate holds:

N ŒyI OC� .I IB�/� � ckxk�
˚N ŒzI C0.I IB�/�C jI j��˛ N ŒzI C�.I IB��˛/�

�
;

(16.10)

for some constant c that only depends on .�; �; �; ˛/.

2.3 Malliavin Calculus Techniques

This section is devoted to present the Malliavin calculus setting which we shall work
in, having in mind the differentiability properties of the solution to Eq. (16.1).

2.3.1 Wiener Space Associated to fBm

Let us first be more specific about the probabilistic setting in which we will work.
For some fixedH 2 .1=2; 1/, we consider .	;F ;P/ the canonical probability space
associated with the fractional Brownian motion with Hurst parameter H . That is,
	 D C0.Œ0; T �IRd / is the Banach space of continuous functions vanishing at 0
equipped with the supremum norm,F is the Borel sigma-algebra and P is the unique
probability measure on 	 such that the canonical process B D fBt; t 2 Œ0; T �g
is a d -dimensional fractional Brownian motion with Hurst parameter H , with
covariance function

E
�
Bi
t B

j
s

� D 1

2

�
t2H C s2H � jt � sj2H �

1.iDj /; s; t 2 Œ0; T �: (16.11)

In particular, the paths of B are almost surely � -Hölder continuous for all � 2
.0;H/.

Consider then a fixed parameter H > 1=2, and let us start by briefly describing
the abstract Wiener space introduced for Malliavin calculus purposes (for a more
general and complete description, we refer the reader to [13, Sect. 3]).

Let .e1; : : : ; ed / be the canonical basis of R
d , E be the set of R

d -valued step
functions on Œ0; T � and H the completion of E with respect to the semi-inner product

h1Œ0;t � ei ; 1Œ0;s� ej iH WD RH.s; t/ 1.iDj /; s; t 2 Œ0; T �:
Then, one constructs an isometry K�

H W H ! L2.Œ0; T �IRd / such that
K�
H.1Œ0;t � ei / D 1Œ0;t � KH .t; �/ ei , where the kernelK D KH is given by

K.t; s/ D cH s
1
2�H

Z t

s

.u � s/H� 3
2 uH� 1

2 du
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and verifies that EŒBi
s B

i
t � D R s^t

0
K.t; r/K.s; r/ dr , for some constant cH .

Moreover, let us observe that K�
H can be represented in the following form:

ŒK�
H'�t D

Z T

t

'r@rK.r; t/ dr D dH t
H�1=2 h

I
H�1=2
T�

�
uH�1=2'

�i
t
; (16.12)

where I ˛T� stands for the fractional integral of order ˛. The fractional Cameron–
Martin space can be introduced in the following way: let KH W L2.Œ0; T �IRd / !
HH WD KH.L

2.Œ0; T �IRd // be the operator defined by

ŒKHh�.t/ WD
Z t

0

K.t; s/ h.s/ ds; h 2 L2.Œ0; T �IRd /:

Then, HH is the Reproducing Kernel Hilbert space associated with the fractional
Brownian motion B . Observe that, in the case of the classical Brownian motion,
one has that K.t; s/ D 1Œ0;t �.s/, K� is the identity operator in L2.Œ0; T �IRd / and
HH is the usual Cameron–Martin space.

In order to deduce that .	;H;P/ defines an abstract Wiener space, we remark
that H is continuously and densely embedded in 	. In fact, one proves that the
operator RH W H ! HH given by

RH WD
Z �

0

K.�; s/ŒK� �.s/ ds

defines a dense and continuous embedding from H into 	; this is due to the fact
that RH is H -Hölder continuous (for details, see [13, p. 400]).

Let us also recall that there exists a d -dimensional Wiener processW defined on
.	;H;P/ such that B can be expressed as

Bt D
Z t

0

K.t; r/ dWr; t 2 Œ0; T �: (16.13)

This formula will be referred to as Volterra’s representation of fBm.

2.3.2 Malliavin Calculus for B

Let us introduce now the Malliavin derivative operator on the Wiener space
.	;H;P/. Namely, we first let S be the family of smooth functionals F of the form

F D f .B.h1/; : : : ; B.hn//;

where h1; : : : ; hn 2 H, n � 1, and f is a smooth function having polynomial
growth together with all its partial derivatives. Then, the Malliavin derivative of
such a functional F is the H-valued random variable defined by

DF D
nX
iD1

@f

@xi
.B.h1/; : : : ; B.hn//hi :
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For all p > 1, it is known that the operatorD is closable fromLp.	/ intoLp.	IH/
(see, e.g., [12, Chap. 1]). We will still denote byD the closure of this operator, whose
domain is usually denoted by D

1;p and is defined as the completion of S with respect
to the norm

kF k1;p WD �
E.jF jp/C E.kDF kpH/

� 1
p :

Sobolev spaces Dk;p for any k 2 N and p � 1 can be defined in the same way, and
we denote by D

k;p
loc the set of random variables F for which there exists a sequence

.	n; Fn/n�1 � F �D
k;p such that	n " 	 a.s. and F D Fn a.s. on	n. We also set

D
1 D \k;pD

k;p.

Remark 2.1. For F 2 D
1;2, one can write DF D Pd

jD1Dj F ej , where Dj F

denotes the Malliavin derivative with respect to the j th component of B .

Since we deal with pathwise equations, we shall also be able to differentiate them
in a pathwise manner. The relation between almost sure and Malliavin derivatives
has been established by Kusuoka, and we quote it according to [12, Proposition
4.1.3].

Proposition 2.4. A random variable F is said to be H-differentiable if for almost
all ! 2 	 and for any h 2 H, the map 
 7! F.! C 
RHh/ is differentiable. Those
random variables belong to the space D

1;p
loc , for any p > 1. Moreover, the following

relation holds true:

hDF; hiH D DF.B/.RHh/; h 2 H; (16.14)

where we recall that D stands for the Malliavin derivative and D for the pathwise
differentiation operator.

Stochastic analysis techniques are widely used in order study laws of random
variables defined on a Wiener space. Let us recall the main criterions we shall use
in this direction:

Proposition 2.5. Let F be a real-valued random variable defined on .	;F ;P/.
Then

(i) If F 2 D
1;p

loc for p > 1 and kDF kH > 0 almost surely, then the law of F admits
a density p with respect to Lebesgue measure.

(ii) If F 2 D
1 and EŒkDF k�p

H � is finite for all p � 1, then the density p of F is
infinitely differentiable.

3 Existence of the Density in the Case of Nemytskii-Type
Vector Fields

In this section, we first consider a general equation of the form

yt D St' C
Z t

0

St�u.Fi .y/u/ dxiu ; ' 2 L2.0; 1/ ; t 2 Œ0; T �; (16.15)
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driven by a d -dimensional noise x D .x1; : : : ; xd / considered as a C� function with
� 2 .1=2; 1/. We shall be able to handle the general case of a perturbation involving
Nemytskii operators, i.e.,

Fi .'/.�/ WD fi .'.�// ; ' 2 B ; � 2 .0; 1/;

for smooth enough functions fi W R ! R, i D 1; : : : ; d .
Thus, Eq. (16.15) can here be written as

yt D St' C
Z t

0

St�u.fi .yu// dxiu ; ' 2 B ; t 2 Œ0; T �; (16.16)

or equivalently, in a multiparameter setting,

y.t; �/ D
Z 1

0

Gt .�; �/'.�/ d�

C
Z 1

0

Z t

0

Gt�u.�; �/fi .y.u; �// dxiud�; t 2 Œ0; T �; � 2 .0; 1/;

where Gt stands for the heat kernel on .0; 1/ associated with Dirichlet boundary
conditions.
It is readily checked that if each fi belongs to C1;b.RIR/ and y 2 OC0;�.B�/ for some
� 2 .max.1 � �; 1=4/; 1=2/, then the integral in the right-hand side of Eq. (16.16)
can be interpreted with Proposition 2.3. Indeed, owing to Eq. (16.5), we know that
f .y/ 2 C0.B�/, while, due to the embedding Eq. (16.8),

N Œf .y/I C� .B/� � kf 0k1N ŒyI C�.B/� � ckf 0k1N ŒyI OC0;�.B�/� < 1:

For the remainder of the section, we shall rely on the following regularity assump-
tions.

Hypothesis 3.1. We consider � 2 .max.1 � �; 1=4/; 1=2/ and an initial condition
' 2 B� . The family of functions ff1; : : : ; fd g is such that fi is an element of
C3;b.RIR/ for i D 1; : : : ; d .

In this context, the following existence and uniqueness result has been proven in
[7, Theorem 3.10]:

Proposition 3.1. Under Hypothesis 3.1, Eq. (16.16) interpreted with Proposi-
tion 2.3 admits a unique solution y 2 OC0;�.B�/, where we recall that the space
OC0;�.B�/ has been defined at Lemma 2.1.

As a preliminary step towards Malliavin differentiability of the solution to
Eq. (16.1), we shall study the dependence on x of the deterministic equation (16.16).
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3.1 Differentiability with Respect to Driving Noise

For Eq. (16.16), consider the application

ˆ W C� ! OC0;�.B�/; x 7! y; (16.17)

for a given initial condition '. We shall elaborate on the strategy designed in [13] in
order to differentiateˆ. Let us start with a lemma on linear equations:

Lemma 3.1. Suppose that .x; y/ 2 C� � OC0;�.B�/ and fix t0 2 Œ0; T �. Then for every
w 2 OC0;�.Œt0; T �IB�/, the equation

vt D wt C
Z t

t0

St�u.f
0
i .yu/ � vu/ dxiu ; t 2 Œt0; T �; (16.18)

admits a unique solution v 2 OC0;�.Œt0; T �IB�/, and one has

N ŒvI OC0;�.Œt0; T �IB�/� � Cx;y;T � N ŒwI OC0;�.Œt0; T �IB�/�; (16.19)

where Cx;y;T WD C.kxk� ;N ŒyI OC0;�.B�/�; T / for some function C W .RC/3 ! R
C

growing with its arguments.

Proof. The existence and uniqueness of the solution stem from the same fixed-point
argument as in the proof of Proposition 3.1 (see [7, Theorem 3.10]), and we only
focus on the proof of Eq. (16.19).
Let I D Œ`1; `2� be a subinterval of Œt0; T �. One has, according to Proposition 2.3,

N ŒvI OC�.I IB�/�
�N ŒwI OC� .B�/�Cc jI j��� kxk�

˚N Œf 0
i .y/ � vI C0.I IB�/�CN Œf 0

i .y/ � vI C�.I IB/�� :
(16.20)

Now, by using successively Eqs. (16.4) and (16.5), we get

N Œf 0
i .y/ � vI C0.I IB�/� � cN Œf 0

i .y/I C0.B�/�N ŒvI C0.I IB�/�
� c

˚
1C N ŒyI C0.B�/�

�N ŒvI C0.I IB�/�;

while, owing to Eqs. (16.8) and (16.3),

N Œf 0
i .y/ � vI C�.I IB/�

� N Œf 0
i .y/I C�.I IB/�N ŒvI C0.I IB1/�C N Œf 0

i .y/I C0.I IB1/�N ŒvI C� .I IB/�
� c

n
1C N ŒyI OC0;�.B�/�

o
N ŒvI OC0;�.I IB�/�:
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Going back to Eq. (16.20), these estimates lead to

N ŒvI OC�.I IB�/� � N ŒwI OC�.B�/�C cx;y jI j��� N ŒvI OC0;�.I IB�/�;

and hence

N ŒvI OC0;�.I IB�/� � kv`1kB� C cN ŒwI OC� .B�/�C cx;y jI j��� N ŒvI OC0;�.I IB�/�:

Control (16.19) is now easily deduced with a standard patching argument. ut
The following lemma on flow-type linear equations will also be technically

important for our computations below.

Lemma 3.2. Fix .x; y/ 2 C� � OC0;�.B�/ and for every u 2 Œ0; T �, consider the
system of equations

‰i
t;u D St�u.fi .yu//

C
Z t

u
St�w.f

0
j .yw/ �‰i

w;u/ dxjw ; t 2 Œu; T � ; i 2 f1; : : : ; mg: (16.21)

Then, for every i 2 f1; : : : ; mg and t 2 Œ0; T �, the mapping u 7! ‰i
t;u is continuous

from Œ0; t � to B� . In particular, for every � 2 .0; 1/, u 7! ‰i
t;u.�/ is a continuous

function on Œ0; t �.

Proof. Let us fix i 2 f1; : : : ; mg, t 2 Œ0; T �. For any 0 � u < v � t , set

�iv;u.s/ WD ‰i
s;v �‰i

s;u ; s 2 Œv; T �:

It is easy to check that �iv;u is solution of the equation on Œv; T �

�iv;u.s/ D Ss�v.‰
i
v;v �‰i

v;u/C
Z s

v
Ss�w.f

0
j .yw/ � �iv;u.w// dxjw:

Therefore, according to the estimate (16.19),

k‰i
t;v �‰i

t;ukB� D k�iv;u.t/kB� � N Œ�iv;uI C0.jv; T �IB�/� � cx;y;T k‰i
v;v �‰i

v;ukB� :

Now, observe that

‰i
v;v �‰i

v;u D fi .yv/� Sv�u.fi .yu//C
Z v

u
Sv�w.f

0
j .yw/ �‰i

w;u/ dxjw;

and since y 2 OC0;�.B�/, it becomes clear that k‰i
v;v �‰i

v;ukB�
v!u�! 0. ut

We now show how to differentiate a function which is closely related to
Eq. (16.16).



372 A. Deya and S. Tindel

Lemma 3.3. The application F W C� � OC0;�.B�/ ! OC0;�.B�/ defined by

F.x; y/t WD yt � St' �
Z t

0

St�u.fi .yu// dxiu;

is differentiable in the Fréchet sense and denoting by D1F (resp. D2F ) the
derivative of F with respect to x (resp. y), we obtain

D1F.x; y/.h/t D �
Z t

0

St�u.fi .yu// dhiu; (16.22)

D2F.x; y/.v/t D vt �
Z t

0

St�u.f
0
i .yu/ � vu/ dxiu: (16.23)

Besides, for any x 2 C� , the mapping D2F.x;ˆ.x// is a homeomorphism of
OC0;�.B�/.

Proof. One has, for every h 2 C� ; v 2 OC0;�.B�/,

F.x C h; y C v/t � F.x; y/t D vt �
Z t

0

St�u.f
0
i .yu/ � vu/ dxiu

�
Z t

0

St�u.fi .yu// dhiu � �
R1t .v/CR2t .h; v/

�
;

(16.24)

with

R1t .v/ WD
Z t

0

St�szis dxis ; zis WD
Z 1

0

dr
Z 1

0

dr 0 r f 00
i .ys C rr 0vs/ � v2s ;

R2t .v; h/ WD
Z t

0

St�s Qzis dhis ; Qzis WD
Z 1

0

dr f 0
i .ys C rvs/ � vs;

and we now have to show that

N ŒR1: .v/CR2: .h; v/I OC0;�.B�/� D o

	h
khk2� C N ŒvI OC0;�.B�/�2

i1=2

:

Observe first that N ŒR1: .v/I OC0;�.B�/� � cN ŒR1: .v/I OC�.B�/�. Thanks to Eqs. (16.4)
and (16.5), we get

kzskB� � c

“
Œ0;1�2

drdr 0 kf 00
i .ys C rr 0vs/kB�kvsk2B�

� c f1C kyskB� C kvskB� g kvsk2B� :

Besides, owing to Eqs. (16.3) and (16.8) and setting Mts.r; r
0/ D f 00

i .yt C rr 0vt /�
f 00
i .ys C rr 0vs/ we end up with
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kzt � zskB �
“
Œ0;1�2

drdr 0 kMts.r; r
0/kB kvsk2B1

C ckvt � vskB fkvtkB1
C kvskB1

g
� c fkyt � yskB C kvt � vskBg kvsk2B�

C ckvt � vskB fkvtkB� C kvskB� g :

� c jt � sj�
� �

N ŒyI OC0;�.B�/�C N ŒvI OC0;�.B�/�
�
N ŒvI C0.B�/�2

C N ŒvI OC0;�.B�/�N ŒvI C0.B�/�
�
:

The estimate (16.10) for the Young convolutional integral now provides us with
the expected control N ŒR1: .v/I OC0;�.B�/� D O.N ŒvI OC0;�.B�/�2/. In the same way,
one can show that N ŒR2: .h; v/I OC0;�.B�/� D O.khk� � N ŒvI OC0;�.B�/�/, and the
differentiability of F is thus proved.

Of course, the two expressions (16.22) and (16.23) for the partial derivatives are
now easy to derive from Eq. (16.24). As for the bijectivity of D2F.x;ˆ.x//, it is a
consequence of Lemma 3.1. ut

We are now ready to differentiate the applicationˆ defined by Eq. (16.17):

Proposition 3.2. The mapˆ W C� ! OC0;�.B�/ is differentiable in the Fréchet sense.
Moreover, for every x 2 C� and h 2 C1, the following representation holds: if
t 2 Œ0; T �; � 2 .0; 1/,

Dˆ.x/.h/t .�/ D
Z t

0

‰i
t;u.�/ dhiu; (16.25)

where ‰i
t;: 2 C.Œ0; t �IB�/ is defined through the equation

‰i
t;u D St�u.fi .ˆ.x/u//C

Z t

u
St�w.f

0
j .ˆ.x/w/ �‰i

w;u/ dxjw: (16.26)

Proof. Thanks to Lemma 3.3, the differentiability of ˆ is a consequence of the
implicit function theorem, which gives in addition

Dˆ.x/ D �D2F.x;ˆ.x//
�1 ıD1F.x;ˆ.x//; x 2 C� :

In particular, for every x; h 2 C� , z WD Dˆ.x/.h/ is the (unique) solution of the
equation

zt D
Z t

0

St�u.fi .ˆ.x/u// dhiuC
Z t

0

St�u.f
0
i .ˆ.x/u/�zu/ dxiu; t 2 Œ0; T �: (16.27)
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If x 2 C� and h 2 C1, an application of the Fubini theorem shows (as in the
proof of [13, Proposition 4]) that the path Qzt WD R t

0
‰i
t;u dhiu (which is well-defined

thanks to Lemma 3.2) is also solution of Eq. (16.27), and this provides us with the
identification (16.25). ut

As the reader might expect, one can obtain derivatives of any order for the
solution when the coefficients of Eq. (16.16) are smooth:

Proposition 3.3. Suppose that fi 2 C1;b.RIR/ for every i 2 f1; : : : ; mg. Then the
function ˆ W C� ! OC0;�.B�/ defined by Eq. (16.17) is infinitely differentiable in the
Fréchet sense. Moreover, for every n 2 N

� and every x; h1; : : : ; hn 2 C� , the path
zt WD Dnˆ.x/.h1; : : : ; hn/t satisfies a linear equation of the form

zt D wt C
Z t

0

St�u.f
0
i .ˆ.x/u/ � zu/ dxiu ; t 2 Œ0; T �; (16.28)

where w 2 OC0;�.B�/ only depends on x; h1; : : : ; hn.

Proof. The details of this proof are omitted for the sake of conciseness, since they
simply mimic the formulae contained in the proof of [13, Proposition 5]. As an
example, let us just observe that for x; h; k 2 C� , the path zt WD D2ˆ.x/.h; k/t is
the unique solution of Eq. (16.28) with

wt W D
Z t

0

St�u.f
0
i .ˆ.x/u/ �Dˆ.x/.h/u/ dkiu

C
Z t

0

St�u.f
0
i .ˆ.x/u/ �Dˆ.x/.k/u/ dhiu

C
Z t

0

St�u.f
00
i .ˆ.x/u/ �Dˆ.x/.h/u �Dˆ.x/.k/u/ dxiu: ut

3.2 Existence of the Density

We will now apply the results of the previous section to an evolution equation driven
by a fractional Brownian motion B D .B1; : : : ; Bd / with Hurst parameter H >

1=2. Namely, we fix � 2 .max.1=4; 1 � �/; 1=2/ and an initial condition ' 2 B� .
We also assume that fi 2 C3;b.RIR/ for i D 1; : : : ; m. We denote by Y D ˆ.B/

the solution of

Yt D St' C
Z t

0

St�u.fi .Yu// dBi
u ; t 2 Œ0; T �: (16.29)
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Notice that since H > 1=2 the paths of B are almost surely � -Hölder continuous
with Hölder exponent greater than 1=2. Thus, Eq. (16.29) can be solved by a direct
application of Proposition 3.1. Moreover, one can invoke Proposition 3.2 in order to
obtain the Malliavin differentiability of Yt .�/:

Lemma 3.4. For every t 2 Œ0; T �; � 2 .0; 1/, Yt.�/ 2 D
1;2
loc and one has, for any

h 2 H,

hD.Yt .�//; hiH D Dˆ.B/.RHh/t .�/: (16.30)

Proof. According to Eq. (16.14), we have that

hD.Yt .�//; hiH D D.Yt .�//.RHh/ D d

d" j"D0
ˆ.B C "RHh/t .�/:

Furthermore, Proposition 3.2 asserts that ˆ W C� ! OC0;�.B�/ is differentiable.
Therefore

1

"
Œˆ.x C "RHh/t .�/ �ˆ.x/t .�/� D Dˆ.x/.RHh/t .�/C 1

"
R."RHh/t .�/;

with

jR."RHh/t .�/j � N ŒR."RHh/I C0.B1/� � cN ŒR."RHh/I C0.B�/� D o."/;

and hence d
d" j"D0ˆ.B C "RHh/t .�/ D Dˆ.B/.RHh/t .�/, which trivially yields

both the inclusion Yt.�/ 2 D
1;2
loc and expression (16.30). ut

With this differentiation result in hand plus some non degeneracy assumptions,
we now obtain the existence of a density for the random variable Yt .�/:

Theorem 3.1. Suppose that for all � 2 R, there exists i 2 f1; : : : ; d g such that
fi .�/ ¤ 0. Then, for all t 2 .0; 1� and � 2 .0; 1/, the law of Yt.�/ is absolutely
continuous with respect to Lebesgue measure.

Proof. We apply Proposition 2.5 part (i), and we will thus prove that
kD.Yt .�//kH > 0 almost surely. Assume then that kD.Yt .�//kH D 0. In this
case, owing to Eq. (16.30), we have Dˆ.B/.RHh/t .�/ D 0 for every h 2 H. In
particular, due to Eq. (16.25), one has

R t
0
‰i
t;u.�/ dh

i
u D 0 for every h 2 C1. As

u 7! ‰i
t;u.�/ is known to be continuous, it is easily deduced that ‰i

t;u.�/ D 0 for
every u 2 Œ0; t � and every i 2 f1; : : : ; d g, and so 0 D ‰i

t;t .�/ D fi .Yt .�// for every
i 2 f1; : : : d g, which contradicts our nonvanishing hypothesis. ut

4 Smoothness of the Density in the Case of Regularizing
Vector Fields

Up to now, we have been able to differentiate the solution to Eq. (16.16) when the
coefficients are fairly general Nemytskii operators. However, we have only obtained
the inclusion Yt .�/ 2 D

1;2
loc . Additional problems arise when one tries to prove
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Yt.�/ 2 D
1;2, due to bad behavior of linear equations driven by rough signals

in terms of moment estimates. This is why we shall change our setting here, and
consider an equation of the following type

yt D St' C
Z t

0

St�u.L.fi .yu/// dxiu ; t 2 Œ0; T �; ' 2 B; (16.31)

where x 2 C� .Œ0; T �IRd / with � > 1=2, each fi W R ! R (i 2 f1; : : : ; d g)
is seen as a Nemytskii operator (see the beginning of Sect. 3), and L stands for a
regularizing linear operator of B. Let us be more specific about the assumptions in
this section:

Hypothesis 4.1. We assume that for every i 2 f1; : : : ; d g, fi is infinitely differen-
tiable with bounded derivatives. Moreover, the operator L W B ! B is taken of
the form

L.
/.�/ WD
Z 1

0

d�U.�; �/
.�/;

for some positive kernelU such that: (i) U is regularizing, i.e.,L is continuous from
B to B� for every � � 0, and (ii) one has cU WD min�2.0;1/

R 1
0

d�U.�; �/ > 0.

In other words, we are now concerned with the following equation on Œ0; T � �
.0; 1/:

y.t; �/ D
Z 1

0

Gt .�; �/'.�/ d�C
Z 1

0

Z 1

0

Z t

0

Gt�u.�; �/U.�; �/fi .y.u; �// dxiud�d�;

with U satisfying the above conditions (i)–(ii).
This setting covers for instance the case of an (additional) heat kernel U D G"

on .0; 1/ for any fixed " > 0. The following existence and uniqueness result then
holds true:

Proposition 4.1. Under Hypothesis 4.1, for any � � � and any initial condition
' 2 B�, Eq. (16.31) interpreted with Proposition 2.3 admits a unique solution in
OC� .B�/.

Proof. As in the proof of Proposition 3.1, the result can be obtained with a fixed-
point argument. Observe indeed that if y 2 OC� .I IB�/ (I WD Œ`1; `2� � Œ0; 1�) and z
is the path defined by z`1 D y`1 , zt � St�szs D R t

s St�u.L.fi .yu/// dxiu (s < t 2 I ),
then, according to Proposition 2.3, z 2 OC� .I IB�/ and one has

N ŒzI OC� .I IB�/� � ckxk�
˚N ŒL.f .y//I C0.I IBm� /�

C jI j� N ŒL.f .y//I C� .I IBm� /�g : (16.32)

Now, owing to the regularizing effect ofL, it follows that N ŒL.f .y//I C0.I IBm� /� �
kLkL.B;B�/kf k1 and

N ŒL.f .y//I C� .I IBm� /��kLkL.B;B�/kf 0k1N ŒyI C� .I IB/��cN ŒyI OC0;� .I IB�/�;
which, together with Eq. (16.32), allows to settle the fixed-point argument. ut
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For the sake of clarity, we henceforth assume that T D 1. The generalization to
any (fixed) horizon T > 0 easily follows from slight modifications of our estimates.

Moreover, for some technical reasons that will arise in the proofs of Propo-
sitions 4.2 and 4.3, we will focus on the case � D 2 C � in the statement of
Proposition 4.1. In other words, from now on, we fix the initial condition ' in the
space B2C� .

4.1 Estimates on the Solution

Under our new setting, let us find an appropriate polynomial control on the solution
to Eq. (16.31) in terms of x.

Proposition 4.2. Suppose that y is the solution of Eq. (16.31) in OC� .B2C�/ with
initial condition '. Then there exists a constant C�;f;L such that

N ŒyI OC� .Œ0; 1�IB2C�/� � C�;f;L
�
1C kxk�

� �
max

�
kxk1=�� ; k'k1=2B2C�

��1��
:

(16.33)
Proof. For any N 2 N

�, let us introduce the two sequences

"k D "N;k WD 1

N C k
; `0 WD 0 ; `kC1 D `NkC1 WD `Nk C "N;k:

The first step of the proof consists in showing that we can pick N such that for
every k,

"2kky`kkB2C�
� 1: (16.34)

For the latter control to hold at time 0 (i.e., for k D 0), we must first assume that
N � k'k1=2B2C�

. Now, observe that for any k, one has, owing to Eq. (16.10),

N ŒyI OC� .Œ`k; `kC1�IB2C� /�
� ckxk�

n
N ŒL.f .y//I C0.Œ`k; `kC1�IBm2C� /�

C "
�

kN ŒL.f .y//I C� .Œ`k; `kC1�IBm2C� /�
o

� ckxk�kLkL.B;B2C� /

˚
1C "

�

kN ŒyI C� .Œ`k; `kC1�IB/�
�

� ckxk�
n
1C "

�

kN ŒyI OC� .Œ`k; `kC1�IB2C� /�C "
�C2
k N ŒyI C0.Œ`k; `kC1�IB2C� /�

o

� c1kxk�
n
1C "

�

kN ŒyI OC� .Œ`k; `kC1�IB2C� /�C "
�C2
k ky`kkB2C�

o
; (16.35)

where we have used Eq. (16.9) to get the third inequality. Consequently, if we take
N such that 2c1N��kxk� � 1 (i.e., N � .2c1kxk� /1=� ), we retrieve

N ŒyI OC� .Œ`k; `kC1�IB2C� /� � 2c1kxk� C "2kky`kkB2C�
(16.36)
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and hence

ky`kC1
kB2C�

� 1C .1C "
2C�
k /ky`kkB2C�

:

From this estimate, if we assume that "2kky`kkB2C�
� 1, then

"2kC1ky`kC1
kB2C�

� "2kC1 C "2kC1
˚ky`kkB2C�

C "
�

k

�

� 2"2kC1 C "2kC1
"2k

D 2C .N C k/2

.N C k C 1/2
� 1

and Eq. (16.34) is thus proved by induction. Going back to Eq. (16.36), we get, for
every k,

N ŒyI OC� .Œ`k; `kC1�IB2C� /� � 2c1kxk� C 1: (16.37)

By a standard patching argument, this estimate yields

N ŒyI OC� .Œ0; 1�IB2C� /� � ˚
2c1kxk� C 1

�
K1�� ;

whereK stands for the smallest integer such that
PK

kD0 "k � 1.
Finally, observe that 2 � PK

kD0 "k D PNCK
kDN 1

k
, and thus one can check that

K � .e2 � 1/N � 7N . To achieve the proof of Eq. (16.33), it now suffices to notice
that N can be picked proportional to max.kxk1=�� ; k'k1=2B2C�

/. ut
We now consider a linear equation, which is equivalent to Eq. (16.18) in our

regularized context:

zt D wt C
Z t

0

St�u.L.f
0
i .yu/ � zu// dxiu ; t 2 Œ0; 1�; (16.38)

where w 2 OC�.B2C� / and y stands for the solution of Eq. (16.31) with initial
condition ' 2 B2C� .

The existence and uniqueness of a solution for Eq. (16.38) can be proved along
the same lines as Proposition 4.1, that is to say via a fixed-point argument. We shall
get a suitable exponential control for this solution.

Proposition 4.3. There exists constants C1; C2 which only depends on f , L and �
such that

N ŒzI C0.Œ0; 1�IB2C�/� � C1N ŒwI OC0;� .B2C�/� exp
�
C2 max

�
k'k1=2B2C�

; kxk1=��
��
:

(16.39)

Moreover, if wt D St for some function  2 B2C� , there exists an additional
constant C3 which only depends on f , L and � such that

N ŒzI OC� .Œ0; 1�IB2C�/�
� C3k kB2C�

max
�
k'k1=2B2C�

; kxk1=��
�

exp
�
C2 max

�
k'k1=2B2C�

; kxk1=��
��

(16.40)
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Proof. We go back to the notation "N;k ; `Nk of the proof of Proposition 4.2, and set,
for every c � 0,

N.c/ WD max
�
k'k1=2B2C�

; .2ckxk� /1=�
�
:

We have seen in the proof of Proposition 4.2 that there exists a constant c1 such that
for every N � N.c1/ and every k, one has simultaneously

"2N;kkylNk kB2C�
� 1 ; N ŒyI OC� .Œ`Nk ; `NkC1�IB2C� /� � 2c1kxk� C 1: (16.41)

Suppose that N � N.c1/ and set Nw WD N ŒwI OC� .B2C� /�. One has, similarly to
Eq. (16.35),

N ŒzI OC� .Œ`Nk ; `NkC1�IB2C� /�

� NwCckxk�
n
N Œf 0.y/ � zI C0.Œ`Nk ; `NkC1�IBm/�C"�N;kN Œf 0.y/ � zIC� .Œ`Nk ; `NkC1�IBm/�

o

� Nw C ckxk�
˚N ŒzIC0.Œ`Nk ; `NkC1�IB/�C "

�

N;k
N ŒzIC� .Œ`Nk ; `NkC1�IB/�

C"�
N;k

N ŒyI C� .Œ`Nk ; `NkC1�IB/�N ŒzI C0.Œ`Nk ; `NkC1�IB1/�
�

� Nw C c2kxk�N ŒzI C0.Œ`Nk ; `NkC1�IB2C� /�
n
1C "

�

N;k
N ŒyI C� .Œ`Nk ; `NkC1�IB/�

o

Cc2kxk� "�N;kN ŒzI OC� .Œ`Nk ; `NkC1�IB2C� /�;

where we have used Eqs. (16.3) and (16.9) to derive the last inequality. Therefore, if
we choose N2 � max

�
N.c1/; .2c2kxk� /1=�

�
, one has, for any N � N2 and any k,

N ŒzI OC� .Œ`Nk ; `NkC1�IB2C� /�

� 2Nw C 2c2kxk�N ŒzI C0.Œ`Nk ; `NkC1�IB2C� /�
n
1C "

�

N;k
N ŒyI C� .Œ`Nk ; `NkC1�IB/�

o
:

Thanks to Eqs. (16.9) and (16.41), we know that

N ŒyI C� .Œ`Nk ; `NkC1�IB/� � c
n
N ŒyI OC� .Œ`Nk ; `NkC1�IB2C� /�C "2N;kky`Nn kB2C�

o

� c
˚
2c1kxk� C 2

�
:

As a consequence, there exists c3 such that for any N � N2,

N
h
zI OC� ��

`Nk ; `
N
kC1

� IB2C�
�i

� 2Nw C c3kxk�N
�
zI C0 ��

`Nk ; `
N
kC1

� IB2C�
�� n

1C "
�

N;kkxk�
o
: (16.42)
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Then, for any N � N2,

N ŒzI C0.Œ`Nk ; `NkC1�IB2C� /�
� 2Nw C kz`Nk kB2C�

C c3kxk� "�N;kN ŒzI C0.Œ`Nk ; `NkC1�IB2C� /�
n
1C "

�

N;kkxk�
o
:

Pick now an integer N3 � N2 such that

c3N
��
3 kxk�

˚
1CN

��
3 kxk�

� � 1

2
;

and we get, for any k,

N ŒzI C0.Œ`N3k ; `N3kC1�IB2C� /� � 2kz
`
N3
k

kB2C�
C 4Nw;

so N ŒzI C0.Œ0; 1�IB2C� /� � 2K.N3/kw0kB2C�
C2K.N3/C2Nw, whereK.N3/ stands for

the smallest integer such that
PK.N3/

kD0 "N3;k � 1. As in the proof of Proposition 4.2,
one can check that K.N3/ � cN3. In order to get Eq. (16.39), it suffices to observe
that there exists a constant c4 such that any integer N3 � c4 max.k'k1=2B2C�

; kxk1=�� /

meets the above requirements.
Suppose now that wt D St . In particular, Nw D 0. Then we go back to

Eq. (16.42) to obtain, thanks to Eq. (16.39),

N ŒzI OC� .Œ`N3k ; `N3kC1�IB2C� /� � C1k kB2C�
N
�
3 exp

�
C2 max

�
k'k1=2B2C�

; kxk1=��
��
;

which entails

N ŒzI OC� .Œ0; 1�IB2C� /�
� C1k kB2C�

N
�
3 K.N3/

1�� exp
�
C2 max

�
k'k1=2B2C�

; kxk1=��
��

� C3k kB2C�
N3 exp

�
C2 max

�
k'k1=2B2C�

; kxk1=��
��
;

and Eq. (16.40) is thus proved. ut
Remark 4.1. For any t0 2 Œ0; 1�, the proof of Proposition 4.3 can be easily adapted
to the equation starting at time t0

zt D wt;t0 C
Z t

t0

St�u.L.f
0
i .yu/ � zu// dxiu ; w:;t0 2 OC�.Œt0; 1�IB2C� / ; t 2 Œt0; 1�;

and both estimates (16.39) and (16.40) remain of course true in this situation.
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4.2 Smoothness of the Density

Let us now go back to the fractional Brownian situation

Yt D St' C
Z t

0

St�u.L.fi .Yu/// dBi
u ; t 2 Œ0; 1� ; ' 2 B2C� ; (16.43)

where � 2 . 1
2
;H/ is a fixed parameter. We suppose, for the rest of the section,

that the initial condition ' is fixed in B2C� and that Hypothesis 4.1 is satisfied. We
denote by Y the solution of Eq. (16.43) in OC� .B2C�/ given by Proposition 4.1.

As in Sect. 3.2, we wish to study the law of Yt .�/ for t 2 Œ0; 1� and � 2 .0; 1/.
Without loss of generality, we focus more exactly on the law of Y1.�/, for � 2 .0; 1/.

The first thing to notice here is that the whole reasoning of Sect. 3 can be
transposed without any difficulty to Eq. (16.43), which is more easy to handle due
to the regularizing effect of L. Together with the estimates (16.33) and (16.39), this
observation leads us to the following statement:

Proposition 4.4. For every � 2 .0; 1/, Y1.�/ 2 D
1 and the law of Y1.�/ is

absolutely continuous with respect to the Lebesgue measure.

Proof. The absolute continuity of the law of Y1.�/ can be obtained by following
the lines of Sect. 3, which gives Y1.�/ 2 D

1
loc as well. Then, like in Proposition 3.3,

observe that nth (Fréchet) derivatives Zn of the flow associated with Eq. (16.43)
satisfy a linear equation of the form

Zn
t D W n

t C
Z t

0

St�u
�
L.f 0

i .Yu/ �Zn
u /

�
dBi

u; t 2 Œ0; 1�:

The explicit expression forW n (n � 1) can be derived from the formulae contained
in [13, Proposition 5], and it is easy to realize that due to Eq. (16.33), one has
N ŒW nI OC0;� .B2C�/� 2 Lp.	/ for any n and any p. Then, thanks to Eq. (16.39), we
deduce that N ŒZnI C0.B2C� /� is a square-integrable random variable, which allows
us to conclude that Y1.�/ 2 D

1 (see [12, Lemma 4.1.2]). ut
The following proposition, which can be seen as an improvement of Lemma 3.2

(in this regularized situation), provides us with the key-estimate to prove the
smoothness of the density:

Proposition 4.5. For every s 2 Œ0; 1�, consider the system of equations

‰i
t;s D St�s.L.fi .Ys///

C
Z t

s

St�u.L.f
0
j .Yu/ �‰i

u;s // dBj
u ; t2Œs; 1�; i2f1; : : : ; mg: (16.44)

Then, for every i 2 f1; : : : ; mg and every t 2 Œ0; 1�, ‰i
t;: 2 C�.Œ0; t �IB2C� /. In

particular, for any � 2 .0; 1/, ‰i
t;:.�/ 2 C� .Œ0; t �/.
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Moreover, one has the following estimate

N Œ‰i
t;:I C� .Œ0; t �IB2C� /�

� Q.k'kB2C�
; kBk� / � exp

�
cmax

�
k'k1=2B2C�

; kBk1=��
��
; (16.45)

for some polynomial expression Q.

Proof. As in the proof of Lemma 3.2, we introduce the path

�iv;u.s/ WD ‰i
s;v �‰i

s;u ; s 2 Œv; 1� ; 0 � u < v � t;

and it is readily checked that �iv;u solves the equation on Œv; 1�

�iv;u.s/ D Ss�v.‰
i
v;v �‰i

v;u/C
Z s

v
Ss�w.L.f

0
j .Yw/ � �iv;u.w/// dBj

w :

Therefore, thanks to the estimate (16.39), we get

k‰i
t;v �‰i

t;ukB2C�
D k�iv;u.t/kB2C�

� N Œ�iv;uI C0.Œv; 1�IB2C� /�
� ck‰i

v;v �‰i
v;ukB2C�

exp
�
cmax

�
k'k1=2B2C�

; kBk1=��
��
:

(16.46)

Then, by writing

‰i
v;v �‰i

v;u D L.fi .Yv/ � fi .Yu// � ŒSv�u � Id� .L.fi .Yu///

�
Z v

u
Sv�w.L.f

0
j .Yw/ �‰i

w;u// dBj
w ;

we deduce that

k‰i
v;v �‰i

v;ukB2C�
� c jv � uj� ˚kLkL.B;B2C� /N ŒY I C�.B/�C kLkL.B;B2C2� /

C kLkL.B;B2C� /kBk�
�N Œf 0.Y / �‰i

:;uI C0.Bm/�
C N Œf 0.Y / �‰i

:;uI C� .Bm/���
� cjv � uj� ˚

1C kBk�
� f1C N ŒY I C� .B/�g

� ˚
1C N Œ‰i

:;uI C0.B2C�/�C N Œ‰i
:;uI C�.B/��:

Going back to Eq. (16.46), the result now easily follows from the embedding
OC0;� .B2C�/ � C� .B/ and the three controls (16.33), (16.39) and (16.40). ut

Proposition 4.5 implies in particular that the Young integral
R t
0
‰i
t;u.�/ dh

i
u is

well-defined for every h 2 C� , t 2 Œ0; 1� and � 2 .0; 1/. We are thus in a position
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to apply the Fubini-type argument of [13, Propositions 4 and 7] so as to retrieve the
following convenient expression for the Malliavin derivative:

Corollary 4.1. For every � 2 .0; 1/, the Malliavin derivative of Y1.�/ is given by

Di
s.Y1.�// D ‰i

1;s.�/ ; s 2 Œ0; 1� ; i 2 f1; : : : ; mg; (16.47)

where ‰i
:;s stands for the solution of Eq. (16.44) on Œs; 1�.

Theorem 4.2. Suppose that there exists �0 > 0 such that for every i 2 f1; : : : ; mg
and every � 2 R, fi .�/ � �0. Then, for every � 2 .0; 1/, the density of Y1.�/ with
respect to the Lebesgue measure is infinitely differentiable.

Proof. We shall apply here the criterion stated at Proposition 2.5 item (ii). Notice
that we already know that Y1.�/ 2 D

1, so it remains to show that for every p � 2,
there exists "0.p/ > 0 such that if " < "0.p/, then P .kD:.Y1.�//kH < "/ � "p .

To this end, we resort to the following practical estimate, borrowed from [2,
Corollary 4.5]: for every ˇ > H � 1=2, there exist ˛ > 0 such that

P .kD:.Y1.�//kH < "/ � P .kD:.Y1.�//k1 < "˛/C P
�kD:.Y1.�//kˇ > "�˛� :

(16.48)

The first term in the right-hand side of Eq. (16.48) is easy to handle. Indeed,
owing to the expression (16.47) for the Malliavin derivative of Y1.�/, one has

kD:.Y1.�//k1 � inf
iD1;:::;m j‰i

1;1.�/j D inf
iD1;:::;m jL.fi .Y1//.�/j

D inf
iD1;:::;m

ˇ̌
ˇ̌Z 1

0

d�U.�; �/fi .Y1.�//

ˇ̌
ˇ̌ � cU �0 > 0

(remember that U and cU have been defined in Hypothesis 4.1), so that
P.kD:.Y1.�//k1 < "˛/ D 0 for " small enough.

Then, in order to cope with P
�kD:.Y1.�//kˇ > "�˛�, one can simply rely on the

Markov inequality, since, according to Eq. (16.45),

kD:.Y1.�//kˇ D k‰1;:.�/kˇ � c sup
i2f1;:::;mg

N Œ‰i
1;:I C� .Œ0; 1�IB2C�/�

� c Q
�k'kB2C�

; kBk�
� � exp

�
cmax

�
k'kB2C�

; kBk1=��
��
;

which proves that kD:.Y1.�//kˇ 2 Lq.	/ for every q � 1. ut
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