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a b s t r a c t

Light propagation in turbid media is driven by the equation of radiative transfer. We give a formal probabilistic

representation of its solution in the framework of biological tissues and we implement algorithms based on

Monte Carlo methods in order to estimate the quantity of light that is received by a homogeneous tissue when

emitted by an optic fiber. A variance reduction method is studied and implemented, as well as a Markov chain

Monte Carlo method based on the Metropolis–Hastings algorithm. The resulting estimating methods are then

compared to the so-called Wang–Prahl (or Wang) method. Finally, the formal representation allows to derive

a non-linear optimization algorithm close to Levenberg–Marquardt that is used for the estimation of the

scattering and absorption coefficients of the tissue from measurements.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The results presented in this paper have initially been motivated

by several research projects grounded on photodynamic therapy

(PDT), which is a type of phototherapy used for treating several dis-

eases such as acne, bacterial infection, viruses and some cancers. The

aim of this treatment is to kill pathological cells with a photosensi-

tive drug absorbed by the target cells and which is then activated by

light. For appropriate wavelength and power, the light beam makes

the photosensitizer produce singlet oxygen at high doses and induces

the apoptosis and necrosis of the malignant cells. See [1,2] for a re-

view on PDT.

The project that initiated this work focuses on an innovative ap-

plication: the interstitial PDT for the treatment of high-grade brain

tumors [3,4]. This strategy requires the installation of optical fibers

to deliver light directly into the tumor tissue to be treated, while

nanoparticles are used to carry the photosensitizer into the cancer

cells.
∗ Corresponding author at: HEIG-VD, Avenue des Sports 20, Case postale 521,

CH-1401 Yverdon-les-Bains, Switzerland

E-mail address: laura.vinckenbosch@heig-vd.ch (L. Vinckenbosch).
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Due to the complexity of interactions between physical, chemi-

al and biological aspects and due to the high cost and the poor re-

roducibility of the experiments, mathematical and physical models

ust be developed to better control and understand PDT responses.

n this new challenge, the two main questions to which these models

hould answer are:

1. What is the optimal shape, position and number of light sources

in order to optimize the damage on malignant cells?

2. Is there a way to identify the physical parameters of the tissue that

drive the light propagation?

The light propagation phenomenon involves three processes:

bsorption, emission and scattering that are described by the so-

alled equation of radiative transfer (ERT), see [5]. In general, this

quation does not admit any explicit solution, and its study relies

n methods of approximation. One of them is its approximation by

he diffusion equation and the use of finite elements methods to

olve it numerically (see for example [6]). An other approach, which

ppeared in the 1970s, is the simulation of particle-transport with

onte Carlo (MC) method (see [7–9] and references therein). This

ethod has been extended by several authors in order to deal with

he special case of biological tissues and there is now a consensus in

avor of the algorithm proposed by Wang and Jacques in [10], firstly

escribed by Prahl in [11] and Prahl et al. in [12]. This method is

http://dx.doi.org/10.1016/j.mbs.2015.08.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.08.017&domain=pdf
mailto:laura.vinckenbosch@heig-vd.ch
http://dx.doi.org/10.1016/j.mbs.2015.08.017
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Fig. 1. Henyey–Greenstein scattering distribution as a function of cos (θ) = 〈ω, ω̂〉
for several values of the anisotropy factor g. For z = cos (θ), it is given by f (z, g) =
1
2

1−g2

(1+g2−2gz)3/2 , z ∈ [−1, 1] and it is a density function.
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ased on a probabilistic interpretation of the trajectory of a photon.

t is widely used and there exist now turnkey programs based on

his method. However, this method is time consuming in 3D and the

ssociated programs lie inside some kind of black boxes. Due to a

light lack of formalism, it is difficult to speed it up while controlling

he estimation error, or to adapt it to inhomogeneous tissues such as

nfiltrating gliomas. Finally, even though there exist several methods

n order to estimate the optical parameters of the tissue (see for ex-

mple [13–16]), one still misses formal representations that answer

o the questions of identifiability.

In the current work, we wish to give a new point of view on simu-

ation issues for ERT, starting from the very beginning. We first derive

rigorous probabilistic representation of the solution to ERT in ho-

ogeneous tissues, which will help us to propose an alternative MC

ethod to Wang’s algorithm [10]. Then we also propose a variance

eduction method.

Interestingly enough, our formulation of the problem also allows

s to design quite easily a Markov chain Monte Carlo (MCMC) method

ased on Metropolis–Hastings algorithm. We have compared both

C and MCMC algorithms, and our simulation results show that the

lain MC method is still superior in case of a homogeneous tissue.

owever, MCMC methods induce quick mutations, which paves the

ay for very promising algorithms in the inhomogeneous case.

Finally we handle the inverse problem (of crucial importance for

ractitioners), consisting in estimating the optical coefficients of the

issue according to a series of measurements. Towards this aim, we

erive a probabilistic representation of the variation of the fluence

ate with respect to the absorption and scattering coefficients. This

eads us to the implementation of a Levenberg–Marquardt type algo-

ithm that gives an approximate solution to the inverse problem.

Our work should thus be seen as a complement to the standard

lgorithm described in [10]. Focusing on a rigorous formulation, it

pens the way to a thorough analysis of convergence, generalizations

o MCMC type methods and a mathematical formulation of the in-

erse problem.

The paper is organized as follows. We derive the probabilistic rep-

esentation of the solution to ERT in Section 2. In Sections 3 and 4,

e describe the MC and MCMC algorithms which are compared to

ang’s algorithm in Section 5. Finally, the sensitivity of the measures

ith respect to the optical parameters of the medium, as well as their

stimation are treated in Section 6.

. Probabilistic representation of the fluence rate

.1. The radiative transfer equation

Let D = R3 be the set of positions in the biological homogeneous

issue and S2 be the unit sphere in R3. Let us denote the optical pa-

ameters of the tissue by μs > 0 for the scattering coefficient, μa > 0

or the simple absorption coefficient and μ = μs + μa for the total ab-

orption coefficient (or attenuation coefficient). Moreover, let us denote

y Le(x, ω) the emitted light from x in direction ω and by L(x, ω) the

uantity of light at x in the direction ω. Then the equation of radiative

ransfer takes the following form (see e.g. [11,17]):

(x,ω) = Li(x,ω) + TL(x,ω), x ∈ D, ω ∈ S2, (1)

here Li(x, ω) is the incident volume emittance and T : L∞(R3 ×
2; R) → L∞(R3 × S2; R) is the linear operator defined on the Banach

pace of essentially bounded real-valued functions � : R3 × S2 → R,

iven by

�(x,ω) = μs

∫
R+

dr exp (−μr)

∫
S2

dσ(ω̂) f (ω, x − ωr, ω̂)

×�(x − ωr, ω̂), (2)

ith f the so-called bidirectional scattering distribution function and σ
he uniform probability measure on the unit sphere S2. The incident
olume emittance Li is also defined by applying a linear operator Ti

o Le:

i = TiLe, with Ti�(x,ω) =
∫ +∞

0

�(x − rω,ω) exp (−μr)dr. (3)

In the following, we will denote the albedo coefficient by ρ := μs
μ <

. Moreover, since we consider a homogeneous biological tissue, the

cattering distribution is given by the so-called Henyey–Greenstein

unction, see [18], that is

f (ω, x, ω̂) = fHG(ω, ω̂)

= 1 − g2

(1 + g2 − 2g〈ω, ω̂〉)3/2
, ω, ω̂ ∈ S2, ∀x ∈ D, (4)

here the constant g ∈ ] − 1, 1[ is the anisotropy factor of the medium.

he function ω̂ 	→ fHG(ω, ω̂) is a bounded and infinitely differen-

iable probability density function on S2 with respect to the uniform

robability σ . It only depends on the scattering angle θ given by

os (θ) = 〈ω, ω̂〉. The parameter g represents the expected value of

os (θ ), that is
∫
S2〈ω, ω̂〉 fHG(ω, ω̂)dσ(ω̂) = g. Thus, the greater g, the

ess the scattering of the ray (see Fig. 1).

.2. Neumann series expansion of the solution

In general, (1) admits no analytical solution and a classical way to

xpress its solution is to expand it in Neumann series. This method is

ased on the next classical and general result.

heorem 1 ([19] p.69). Let B be a Banach space equipped with a norm

· ‖ and A a linear operator on B. If ‖A‖ < 1, then the Neumann series
∞
n=0 An converges, the operator Id − A is invertible and for any x0 ∈ B,

he equation x = Ax + x0 admits a unique solution given by

= (Id − A)−1x0 =
∞∑

n=0

Anx0.

In order to apply Theorem 1 in our context, let us now bound the

orm of the operator T defined above by (2).

emma 2. The operator T defined in (2), with f given by (4), satisfies

T‖ = ρ < 1, where we recall that we have set ρ := μs
μ < 1.

roof. Let � ∈ L∞(R3 × S2; R). We have

T�(x,ω)|
� μs

∫
R+

dr exp (−μr)

∫
S2

dσ(ω̂) | fHG(ω, ω̂) �(x − ωr, ω̂)|

� μs‖�‖∞
∫
R

dr exp (−μr) = μs

μ
‖�‖∞,
+
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since fHG is a density function on S2. Thus, ‖T‖ � μs
μ and since T1 ≡

μs
μ , we obtain ‖T‖ = μs

μ and the proof is complete. �

As a corollary of the previous considerations, we are able to derive

an analytic expansion for the solution to Eq. (1):

Corollary 3. If Le ∈ L∞(R3 × S2; R), then the radiative transfer Eq. (1)

with a phase function given by (4) admits a unique solution L in L∞(R3 ×
S2; R). Moreover, L can be decomposed as L = ∑∞

n=0 T nLi = ∑∞
n=0[T n ◦

Ti] Le where T0 ≡ Id and where for n ≥ 1, the linear operator Tn◦Ti on

L∞(R3 × S2; R) is given by:

[T n ◦ Ti] �(x,ω0)

= μn
s

∫
R

n+1
+

dr0 · · · drn exp

(
−μ

n∑
j=0

r j

)∫
(S2)n

dσ⊗n(ω1, . . . , ωn)

n−1∏
j=0

fHG

(
ω j,ω j+1

)
�

(
x −

n∑
k=0

ωkrk,ωn

)
. (5)

Proof. Assume that Le ∈ L∞(R3 × S2; R). It is readily checked from

the definition (3) of Li that we also have Li ∈ L∞(R3 × S2; R). Indeed,

‖Li‖∞ ≤ ‖Le‖∞
μ

< +∞.

Hence, Theorem 1 and Lemma 2 provide the existence and unique-

ness of the solution, as well as its expansion in Neumann series. For-

mula (5) is then found by induction. �

Our next step is now to recast representation (5) into a probabilis-

tic formula.

2.3. Probabilistic representation

The Neumann expansion of T enables us to express L = ∑∞
n=0 T nLi

as an expectation. To this aim, we now introduce some notations. Let

us define

A =
∞⋃

n=0

Mn, with Mn = Rn+1
+ ×

(
S2

)n+1
. (6)

We denote by (r, ω) a generic element of A and by (rn, ωn) a generic

element of Mn for n ∈ N with rn = (r0, . . . , rn) and ωn = (ω0, . . . , ωn).

If (r,ω) ∈ A, we set

|r| =
∞∑

n=1

n 1Mn
(r,ω) (7)

and call it size or length of the path. For n ∈ N, let

G(n)
x (rn,ωn) = Le

(
x −

n∑
k=0

ωkrk,ωn

)
(8)

be defined on Mn, and let

Gx(r,ω) =
∞∑

n=0

G(n)
x (rn,ωn) 1Mn

(r,ω) (9)

be a function on A. Let Y = (R,W) be a A-valued random variable

defined on a probability space (�,F , P), whose law ν is given by

ν(F) =
∞∑

n=0

(1 − ρ)ρnνn(F ∩ Mn), (10)

where we recall that ρ = μs
μ and where νn is the probability measure

on Mn defined by

νn(drn, dωn) = μn+1 e−μ
∑n

j=0 r j

n−1∏
j=0

fHG

(
ω j,ω j+1

)
drn σ⊗(n+1)(dωn)

(11)
ith
∏−1

j=0 a j = 1 by convention. Before we express L as an ex-

ectation involving Gx and Y, let us state some properties of

= (R,W).

roposition 4. Let n ∈ N and let π be a permutation of {0, . . . , n}. Let

s recall that ν defined by (10) is the distribution of Y = (R,W). Then,

onditionally on the event {Y ∈ Mn}, the distribution of the variable

R0, . . . , Rn,W0, . . . ,Wn) is the probability measure νn defined by (11),

hich satisfies

n(dr0, . . . , drn, dω0, . . . , dωn)

= νn(drπ(0), . . . , drπ(n), dωn, dωn−1, . . . , dω0). (12)

n other words, on the event {Y ∈ Mn}, the random variables

Rπ(0), . . . , Rπ(n),Wn,Wn−1, . . . ,W0) and (R0, . . . , Rn,W0, . . . ,Wn)
ave the same distribution νn.

roof. By definition of ν = L(Y) and since (Mp)p∈N is a collection of

airwise disjoint sets, it is straightforward that νn is the distribution

f the variable (R0, . . . , Rn,W0, . . . ,Wn) on the set {Y ∈ Mn}. Let us

ow emphasize that the phase function is symmetric, i.e. fHG(ω, ·) =
fHG(·, ω). Then replacing fHG(ω j,ω j+1) by fHG(ω j+1,ω j) and using

he invariance of the definition of νn under permutations of the vari-

bles (r0, . . . , rn), we obtain (12). �

orollary 5. For all n ∈ N, conditionally on the events {Y ∈ Mn} and

Y ∈ ⋃
p≥n Mp}, for any j = 0, . . . , n, the marginal distribution γWj

of

he direction Wj is the uniform probability σ on S2. In particular, W0 is

niformly distributed on S2.

roof. Let n, j ∈ N such that j ≤ n. By Proposition 4, on the event

Y ∈ Mn}, the probability measure νn defined by (11) is the distri-

ution of (Rn, Wn). Then, integrating the law νn with respect to all

ariables except wj and using that fHG(ω, ·) = fHG(·, ω) is a density

unction on S2, one obtains that, on the event {Y ∈ Mn}, Wj is uni-

ormly distributed on S2. Since this also holds true replacing n by any

≥ n and since Mp, p ≥ n, are pairwise disjoint sets, this implies

hat, on the event {Y ∈ ⋃
p≥n Mn}, Wj is also uniformly distributed

n S2. �

roposition 6. The series
∑∞

n=0 T nLi can be expressed as

(x,ω) =
∞∑

n=0

T nLi(x,ω) = 1

μa
E
[
Gx(Y) | W0 = ω

]
. (13)

roof. We shall relate [Tn◦Ti]Le to the measure νn defined above,

hich will be sufficient for our purpose. To this aim, consider ω̂0 ∈ S2,

nd write a somehow more cumbersome version of formula (5) with

= Le:

T n ◦ Ti] Le(x, ω̂0)

= μn
s

∫
R

n+1
+

dr0 · · · drn exp

(
−μ

n∑
j=0

r j

)∫
(S2)n

dσ⊗n(ω1, . . . , ωn)

fHG(ω̂0,ω1)
n−1∏
j=1

fHG

(
ω j,ω j+1

)
Le

(
x − ω̂0r0 −

n∑
k=0

ωkrk,ωn

)
.

oting that μn
s = (1−ρ)ρn μn+1

μa
, we get the following identity

T n ◦ Ti] Le(x, ω̂0) = (1 − ρ)ρn μn+1

μa

∫
R

n+1
+

dr0 · · · drn

× exp

(
−μ

n∑
j=0

r j

)∫
(S2)n+1

dσ̂n,ω̂0
(ω0, . . . , ωn)

n−1∏
j=0

fHG

(
ω j,ω j+1

)
Le

(
x −

n∑
k=0

ωkrk,ωn

)
,
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here the measure σ̂n,ω̂0
on Sn+1 is given by σ̂n,ω̂0

(dω0, . . . , dωn) =
ω̂0

(dω0) ⊗ σ⊗n(dω1, . . . , dωn). Finally set ϕn(rn,ωn) = Le(x −
n
k=0 ωkrk,ωn). Taking into account the identity above and (11), we

asily get

T n ◦ Ti] Le(x, ω̂0) = (1 − ρ)ρn

μa
νn(ϕn|ω0 = ω̂0),

rom which our claim is straightforward. �

emark 7. In the following, we will call the random variable Y =
R,W) a ray. Notice that it does not correspond exactly to a ray of

ight in the physics sense, since Y has a finite length (though random)

nd since a given realization of Y does not carry the information due

o light absorption. Also notice that Y owns a complete probabilistic

escription which allows to exactly simulate it (see Proposition 10 for

imulation considerations).

.4. Model for light propagation

Observe that our formula (13) induces a Monte Carlo procedure

o estimate L(x, ω) for each (x,ω) ∈ R3 × S2 based on the simulation

f independent copies of Y. Nevertheless this procedure is time con-

uming. Indeed, assuming that the light is only emitted by an optical

ber, many realizations y of Y lead to a null contribution in the es-

imation of L(x, ω). Our aim is now to accelerate our simulation by

eans of a coupling between random variables corresponding to dif-

erent (x, ω). Towards this aim, we now focus on an averaged model

or light propagation.

Let thus V ⊂ R3 be a cube whose center coincides with the ori-

in. We discretize it into a partition of K smaller cubes (voxels in the

mage processing terminology) {Vk, k = 0, . . . , K − 1}, whose volume

quals h3, h ∈ R+ and such that the origin is the center of V0. Let us

enote by xk the center of the voxel Vk. We work under the following

implified assumption for the form of the light source.

ypothesis 8. We assume that the only emission of light in the do-

ain V comes from the optical fiber. Let C2α ⊂ S2 denote the cone

ith opening angle 2α, whose summit is placed at the origin and

hose axis follows −�e3. The light source is defined by S = {(x, ω) :

∈ V0, ω ∈ C2α}. We assume that the emission of light satisfies

e(x,ω) = c 1V0×C2α (x,ω) :=
{

c, if (x,ω) ∈ V0 × C2α,

0, otherwise,
(14)

here c > 0 is a given constant.

This model remains close to reality and it is possible to refine it by

eighting the light directions of the source in order to stick better to

he shape of the fiber. With Hypothesis 8 in mind, we are interested

n estimating the fluence rate at the center of the voxels Vk, k �= 0, that

s the mean light intensity averaged in all directions

(xk) :=
∫
S2

L(xk,ω0) σ (dω0). (15)

his quantity admits a nice probabilistic representation.

roposition 9. Let k ∈ {0, . . . , K − 1} and let Y = (R,W) be a random

ariable with distribution ν defined by (10). Then, the fluence rate L(xk)

t the center xk of the voxel Vk, which is defined by (15), can also be

xpressed as

(xk) = c

μa
P

(
xk −

|R|∑
j=0

RjWj ∈ V0, W|R| ∈ C2α

)
(16)

here we recall that the length |R| of the ray Y is defined by (7).

roof. Invoking Proposition 6 and by definition of L, we get

(xk) = 1

μa

∫
2

E
[
Gxk

(Y)|W0 = ω0

]
σ(dω0)
S

here Gxk
is defined by (9). Since by Corollary 5, σ is the distribution

f W0, the previous equation can be written as

(xk) = 1

μa
E
[
Gxk

(Y)
]
.

hen using Eqs. (8) and (7), we get

xk
(Y) = Le

(
xk −

|R|∑
j=0

RjWj, W|R|

)
.

ow applying Hypothesis 8, the random variable Gxk
(Y) can be ex-

ressed as

xk
(Y) = c 1{xk−

∑|R|
j=0

RjWj∈V0,W|R|∈C2α},

hich finishes our proof. �

Instead of seeing Y as a ray starting at xk which possibly hits the

ight source V0 × C2α , we can imagine that it starts at the center of

he light source and it possibly hits the voxel Vk in any direction. This

ossibility stems from the invariance of ν stated in Proposition 4, and

s exploited in the next result.

roposition 10. For any 0 � k � K − 1, we have:

(xk) = c(1 − cos α)

2μa
P(SN ∈ Vk), (17)

here N ∼ NB(1, ρ) is a negative binomial random variable with param-

ter (1, ρ), that is a random variable whose law is given by P(N = n) =
1 − ρ)ρn for all n ∈ N, and where for n ∈ N

n =
n∑

i=0

RiWi,

ith (Ri)i≥0 and (Wi)i≥0 satisfying the following assertions:

• (Ri)i≥0 is a sequence of independent identically distributed (i.i.d.) ex-

ponentially random variables of parameter μ (i.e. such that E(Ri) =
μ−1);

• W0 is uniformly distributed on the cone C2α ;
• for any i ≥ 1, the conditional distribution of Wi given

{(W0, . . . ,Wi−1) = (ω0, . . . , ωi−1)} is fHG(ωi−1,ωi)σ (dωi);
• N, (Ri)i≥0 and (Wi)i≥0 are independent.

roof. Let k ∈ {0, . . . , K − 1}. Notice that, if Vk + x denotes the trans-

ation of the voxel Vk by the vector x ∈ R3, then it is clear that

0 + xk = Vk. Therefore, we can rewrite (16) as

(xk) = c

μa
P

( |R|∑
j=0

RjWj ∈ Vk,W|R| ∈ C2α

)
, (18)

here the distribution of Y = (R,W) is the probability measure ν de-

ned by (10). Then,

(xk) = c

μa

+∞∑
n=0

(1 − ρ)ρnP

(
n∑

j=0

RjWj ∈ Vk,Wn ∈ C2α

)
,

here the distribution of (R0, . . . , Rn,W0, . . . ,Wn) is the probability

n defined by (11). Therefore, applying Proposition 4, we get

(xk) = c

μa

+∞∑
n=0

(1 − ρ)ρnP

(
n∑

j=0

RjWj ∈ Vk,W0 ∈ C2α

)
.

y definition of νn, we easily see that(
n∑

i=0

RiWi ∈ Vk, W0 ∈ C2α

)
= σ(C2α)P

(
n∑

i=0

R′
iW

′
i ∈ Vk

)
,

here (R′
0, . . . , R′

n,W ′
0, . . . ,W ′

n) is a random variable with distribution
′
n, defined by replacing in (11) the uniform probability σ (dω0) on the
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̂

̂

Table 1

Optical parameters values in rat brain for red light (wavelength λ = 632 nm)

given by [20].

μs μa μ ρ g

Healthy tissue 280 cm−1 0.57 cm−1 280.57 cm−1 0.998 0.9

Tumor 73 cm−1 1.39 cm−1 74.39 cm−1 0.981 0.9
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sphere S2 by the uniform probability 1{ω′
0
∈C2α}σ(dω′

0
)/σ (C2α) on the

cone C2α . By definition of ν ′
n, this means that

P

(
n∑

i=0

RiWi ∈ Vk, W0 ∈ C2α

)
= σ(C2α)P(Sn ∈ Vk),

where S = (Sp)p≥0 is the random walk defined in the statement of the

proposition. Thanks to the fact that N is a NB(1, ρ) random variable

independent of the random walk S, we obtain (17). �

Remark 11. The random variables N, Ri and W0 in Proposition 10 are

simulated in a straightforward way. The simulation of the sequence

(Wi)i≥1 is obtained as follows. The direction Wi of the ith step of the

random walk is sampled relatively to the direction Wi−1. We sam-

ple the spherical angles (�i, �i) between the two directions accord-

ing to the Henyey–Greenstein phase function. Namely, cos (�i) =
〈Wi−1,Wi〉 owns a cumulative distribution function, whose inverse is

F−1(y) = 1

2g

(
1 + g2 −

(
1 − g2

1 − g + 2gy

)2
)

, y ∈ [0, 1]

and �i, the azimuth angle of Wi in the frame linked to Wi−1, is uni-

formly distributed on [0, 2π ], see (4). To recover the Cartesian coordi-

nates of the directions, we inductively apply appropriate changes of

frame. The corresponding formulas can be found in [11, p. 37].

Remark 12. Notice that SN does not depend on the voxel xk under

consideration. This permits to use a single sample of realizations of

this random variable in order to estimate the right-hand side of (17)

for all k ∈ {0, . . . , K − 1} simultaneously. We call this improvement

coupling, meaning that the random variables related to the Monte

Carlo evaluations at different voxels are completely correlated.

3. Monte Carlo approach with variance reduction

In the last section, we have derived a probabilistic representation

of L(xk) for every voxel Vk by means of the arrival position of a ran-

dom walk (Sn)n≥1 stopped at a negative binomial time. This classically

means that L(xk) can be approximated by MC methods. We first de-

rive the expression of the approximate fluence rate by means of the

basic MC method and then describe the variance reduction method

that we implemented.

Proposition 13. Let us consider a random walk S = (Sn)n≥0 and a neg-

ative binomial random variable N as defined in Proposition 10. Let (Si,

Ni)1≤i≤M be M independent copies of (S, N). Then, for k = 0, . . . , K − 1,

LMC(xk) := c(1 − cos α)

2μaM

M∑
i=1

1{Si
Ni

∈Vk} (19)

is an unbiased and strongly consistent estimator of L(xk).

Proof. This statement follows simply from the discussion of the pre-

vious section and the law of large numbers (LNN). �

In addition to this proposition, let us highlight the fact that cen-

tral limit theorem provides confidence intervals for the estimator

LMC(xk). Furthermore, owing to Remark 12, the family (Si, Ni)1≤i≤M

enables to estimate the fluence rate L(xk) for all k ∈ {0, . . . , K − 1} at

once.

The reader should be aware of the fact that the quantity ρ is large

in general in biological tissues, which means that the size of the ray,

given by N ∼ NB(1, ρ), will often be large. Typical values of the param-

eters are provided in Table 1. Therefore, sampling a ray is relatively

time consuming and it is necessary to improve the basic Monte Carlo

algorithm in order to reduce the variance of the estimates.

Furthermore, because of the formulation (18), only the last point

of each whole ray is used in the estimation. It is however possible
o take into account more points of the rays and still have unbiased

stimators. Finally, the angular symmetry of the problem, allows us

o replicate observed rays by applying rotation. We took these two

onsiderations into account and named the resulting method Monte

arlo with some points (MC-SOME). The idea is to firstly draw some

andom walks which share the same initial direction and to pick a

iven number of points of each walk. Then, we apply rotations to that

et of points with respect to different initial directions. We finally

ount the number of points in each voxel. This artificially increase the

ize of the samples and thus reduce the variance of our estimation of

(xk). Specifically, the resulting estimator is given by:

efinition 14 (MC-SOME). Let M, Mpoints, Mrot ∈ N∗ be the parame-

ers of the method. Let us assume that the following assertions hold:

• (W j
0
)1≤ j≤Mrot

are i.i.d. copies of W0 ∼ U(C2α);
• N�

i
, 1 ≤ i ≤ M, 1 ≤ � ≤ Mpoints, are i.i.d. copies of a negative binomial

random variable with parameter (1, ρ);
• (Si

n)n≥0, 1 ≤ i ≤ M, are i.i.d. copies of the random walk S defined

in Proposition 10, all sharing the same initial direction W 1
0 ;

• the sequences (N�
i
)i,� and (W j

0
, Si

n)i, j are independent.

et S
i, j

N�
i

denotes the N�
i
-th point of the ith random walk (Si

n)n≥0 after a

otation corresponding to the jth initial direction W0 = W
j

0
.

Then, for k ∈ {0, . . . , K − 1}, the MC-SOME estimate of L(xk) is de-

ned by

MC-SOME(xk) = c(1 − cos α)

2μaMrotMpointsM

M∑
i=1

Mpoints∑
�=1

Mrot∑
j=1

1{Si, j

N�
i

∈Vk}. (20)

This estimator is unbiased and strongly consistent. Its construc-

ion is illustrated in Fig. 2 and it will be compared to Wang’s algo-

ithm estimator in Section 5.

emark 15. Choosing only some points (SN� , 1 � � � Mpoints) of the

ath instead of all (Si, 1 ≤ i ≤ n) provides a more efficient estimation.

ndeed, it would take a lot of time to run over all voxels Vk in order to

valuate the indicator functions 1{Si∈Vk}. Moreover, the information

rought by close points is in a sense redundant. Choosing points ac-

ording to a negative binomial law maintains the estimator unbiased,

hile speeding up the estimation.

. A Metropolis–Hastings algorithm for light propagation

Inspired by results in computer graphics, see [21–23], we imple-

ented a Metropolis–Hastings algorithm which is a Markov chain

onte Carlo method (MCMC) by random walk [24,25]. We shall first

iscuss general principles and then practical implementation issues.

he main motivation for the development of such algorithm in the

ontext of light propagation lies in the fact that simulations requires a

ubstantial computational effort. In many applications, it is necessary

o consider 3D domains, which increases significantly the simulation

ime compared to 2D. It is thus crucial to reduce as much as possi-

le this time and one common way is to reuse sampled observations,

ith the same spirit as in the variance reduction method proposed

n the MC-SOME algorithm. MCMC by random walks can accelerate

he simulations of the paths traveled by photons by sampling modifi-

ations (or mutations) of themselves instead of sampling a fully new
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Fig. 2. Description of MC-SOME method. In this example, the grey path is a rotation of the black one with respect to its initial direction ω j+1
0

and M = 4.
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ath at each iteration. In this section, we implement and demonstrate

he convergence of an example of such algorithm. The purpose of this

xample is, first to show that this kind of methods can be used in our

ontext and second, to pave the way for future developments.

For simplicity reasons, by slightly abusing the notations, we iden-

ify the stopped random walk S = (Sn)0�n�N of Proposition 10 with

he ray (R0, . . . , RN,W0, . . . ,WN) which defines it. The law of this ray,

hich will still be denoted by ν , is given by replacing in (10) the uni-

orm measure σ (dω0) on the sphere by the uniform measure on the

one C2α .

A realization of the walk S stopped at N = n will be indiffer-

ntly referred to as (S0, . . . , Sn), as (r0, . . . , rn,ω0, . . . , ωn) or as

r0, θ0, ϕ0, . . . , rn, θn, ϕn) where (θ0, ϕ0) are the spherical coordinates

f ω0 and for 1 ≤ i ≤ n, cos (θi) = 〈ωi−1,ωi〉 and ϕi is the azimuth an-

le of ωi in the frame linked to ωi−1.

.1. General principle

For a given ω0 ∈ C2α and for 0 � k � K − 1, we are willing to esti-

ate the conditional probability P(SN ∈ Vk | W0 = ω0) by generating

Markov chain whose steady-state measure is the conditional distri-

ution ν|W0=ω0
and by applying LNN for ergodic Markov chains. We

hen combined this estimation with the classical LNN sampling the

nitial direction W0 in C2α to obtain an estimate of L(xk) viewed as

n (17).

An overview of the MCMC dynamics in this context is the follow-

ng. Let ω0 ∈ C2α be a fixed initial direction. The Markov chain starts

t time t = 1 in the state S(1) ∈ A with W0 = ω0. At each time t ∈ N∗,
move (mutation) is proposed from the current state S(t) to the state
′(t) according to a proposal density q(S(t), ·) and such that the ini-

ial direction of S′(t) is still ω0. The chain then jumps to S′(t) with

cceptance probability α(S(t), S′(t)) or stays in S(t) with probability

− α(S(t), S′(t)). This is described in pseudo-code in Algorithm 1.

lgorithm 1 Metropolis–Hastings algorithm for light propagation

Initialization:

draw ω0 uniformly on C2α ,

draw S(1) according to ν|W0=ω0

for t = 1 to T − 1 do

S′(t) ∼ q(S(t), ·)

α(S(t), S′(t)) ← min

{
1,

ν|W0=ω0

(
S′(t)

)
q(S′(t), S(t))

ν|W0=ω0
(S(t)) q(S(t), S′(t))

}
if Rand()< α(S(t), S′(t)) then

S(t + 1) ← S′(t)
else

S(t + 1) ← S(t)
end if

end for

he MCMC simulation generates a Markov chain {S(t); t ≥ 1} on the

pace of rays A whose steady-state measure is the desired distribu-

ion ν|W0=ω0
(see [26,§2.3.1]).
If the ray S(t) = (S0(t), . . . , SNt
(t)) denotes the position of the

hain at a given time t, then, for 0 � k � K − 1,

lim
→∞

1

T

T∑
t=1

1{SNt
(t)∈Vk} = P(SN ∈ Vk | W0 = ω0) almost surely,

(21)

n condition that the chain {S(t); t ≥ 1} is Harris positive with respect

o ν|W0=ω0
. Indeed, this statement relies on LLN for Harris recurrent

rgodic chains, see [27, Theorem 17.0.1].

We can then sample the law of W0 to recover an estimate of

(SN ∈ Vk). Let Mrot ∈ N∗ and let (ω1
0
, . . . , ωMrot

0
) be a sample of

.i.d. initial directions drawn according to U(C2α). For i = 1, . . . , Mrot

nd t = 1, . . . , T, let S(i)(t) denote the rotation of the random walk S(t)

ith respect to the initial direction ωi
0
, see Fig. 2. For k ∈ {0, . . . , K −

}, our Metropolis–Hastings estimator of L(xk) is defined by

MH(xk) = c(1 − cos α)

2μaMrot T

Mrot∑
i=1

T∑
t=1

1{S(i)
Nt

(t)∈Vk}. (22)

his estimator is strongly consistent on condition that the proposal

ensity q(·, ·) of Algorithm 1 provides a Harris recurrent chain.

.2. Mutation strategy

One of the delicate issues in the implementation of MCMC meth-

ds is the choice of a convenient proposal density q. Here, we

ropose, as an example, a mixture of mutations of two types for

he Metropolis–Hastings algorithm: rotation-translation and deletion-

ddition. In order to describe them, let us introduce some notations.

he method uses a perturbed phase function f
εg
HG

, ε ∈ [−1, 1] which

as an anisotropic coefficient εg instead of g. It also uses two coprime

ntegers 1 ≤ j < J, which denote respectively the small and the big size

f a length change.

emark 16. The need for these two numbers to be coprime will be

ade clearer in the proof of Proposition 19, as it will ensure that the

utations produce paths of arbitrary length.

efinition 17 (Mutation rule). Let us assume that, at time t ∈ N∗, the

urrent ray is given by S(t) = (r0, θ0, ϕ0, . . . , rnt , θnt , ϕnt ). Our propo-

ition for the next move from S(t) to S(t + 1) is the following.

(i) With probability 1
2 , the mutation is of type deletion–addition.

Draw �(nt) according to the following law that depends on the

size of the current ray

�(n) ∼

⎧⎨⎩
U({−J,− j, j, J}), if n � J,

U({− j, j, J}), if j � n < J,

U({ j, J}), if 0 � n < j.

• If �(nt) < 0, then delete the last |�(nt)| edges of S(t). The

proposed path is

S′(t) =
(
r0, θ0, ϕ0, . . . , rnt −�(nt ), θnt −�(nt ), ϕnt −�(nt )

)
.

• If �(nt) > 0, then add �(nt) new edges at the end of S(t):

- Draw (rnew
nt +1

, . . . , rnew
nt +�(nt )

) i.i.d. according to E(μ).

- Draw (θnew
nt +1

, . . . , θnew
n +�(n )

) i.i.d. according to f
εg
HG

.

t t
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Fig. 3. Metropolis–Hastings algorithm. Example of a mutation by rotation.
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- Draw (ϕnew
nt +1

, . . . , ϕnew
nt +�(nt )

) i.i.d. uniformly on [0, 2π ].

The proposed path is

S′(t) = (r0, θ0, ϕ0, . . . , rnt
, θnt

, ϕnt
, rnew

nt +1, θnew
nt +1, ϕnew

nt +1,

. . . , rnew
nt +�(nt )

, θnew
nt +�(nt )

, ϕnew
nt +�(nt )

).

(ii) With probability 1
2 , the mutation is of type rotation-translation.

Choose an index i uniformly over {0, . . . , nt}.

• If i �= 0, then make a rotation of the path at the i-th edge:

- Draw a new angle θnew
i

according to f
εg
HG

.

- Draw a new angle ϕnew
i

uniformly on [0, 2π ].

The proposed path is (see Fig. 3)

S′(t) =
(
r0, θ0, ϕ0, . . . , ri, θ

new
i , ϕnew

i , . . . , rnt
, θnt

, ϕnt

)
.

• If i = 0, then translate from the initial edge:

- Draw a new edge length rnew
0

according to E(μ).

The proposed path is

S′(t) = (rnew
0 , θ0, ϕ0, r1, θ1, ϕ1, . . . , rnt

, θnt
, ϕnt ).

Remark 18. The initial direction is fixed, thus mutations of (θ0, ϕ0)

are forbidden. However, the length r0 has to change from time to time.

This is ensured by the translations and this is why the initial edge

needs to be considered separately in the mutation rule.

Let us now compute the proposal density q(S, ·) of this mutation

rule. For m ∈ N∗, let

ζ (m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

4
, if m � J,

1

3
, if j � m < J,

1

2
, if 0 � m < j.

Assume that S′ is a mutation of S, denote by i the first index where

there is a difference between them, denote by n′ and n their respec-

tive length and set � = n′ − n. We have

• if � = 0 and i ≥ 1, then q(S, S′) = 1
2

1
n+1

1
2π f

εg
HG

(
θ ′

i

)
;

• if � = 0 and i = 0, then q(S, S′) = 1
2

1
n+1 μe−μr′

0 ;

• if � < 0, then q(S, S′) = 1
2 ζ (n);

• if � > 0, then q(S, S′) = 1
2 ζ (n)e

−μ
∑�

k=1
r′
n+k

(
μ

2π

)� ∏�
k=1 f

εg
HG

(
θ ′

n+k

)
.

From these formulas, it is straightforward to recover the acceptance

probability.

The idea behind this mixture of mutations is to find a compro-

mise between large jumping size of the Markov chain which implies

a lot of “burnt” samples, and smaller jumps which provide more cor-

related samples, hence a worse convergence. The rotations lead to a

good exploration of the domain at low cost, whereas the addition–

deletion mutations ensure the visit of the whole state space A with

0 = ω0. The use of a perturbed phase function decreases the accep-

tance probability of the mutations and thus, increases the number of

samples needed in order to converge to the invariant measure. But, it

allows a better exploration of the domain and this why the parameter

ε, as well as the sizes j, J, need to be adapted on a case-by-case basis.
inally, we can prove that, with this rule of mutations, Algorithm 1

roduces a Markov chain that satisfies the LLN. This guarantees the

onvergence of the estimator defined in (22).

roposition 19. The chain (S(t))t∈N∗, obtained by Algorithm 1 with the

utation rule given in Definition 17, is Harris positive with respect to the

easure ν|W0=ω0
and the estimator L̂MH(xk) defined in (22) is strongly

onsistent for all 0 � k � K − 1.

roof. The fact that ν|W0=ω0
is an invariant measure of (S(t))t∈N∗

s an inherent property of Metropolis–Hastings algorithm ([26,28]).

arris recurrence property is then obtained by checking that the

hain is irreducible with respect to ν|W0=ω0
, see [26, Corollary 2].

et τA = inf{t ∈ N∗ : S(t) ∈ A} denote the hitting time of any A ⊂ A
uch that ν|W0=ω0

(A) > 0. We must demonstrate that (S(t))t∈N∗ is ir-

educible with respect to ν|W0=ω0
, that is,

s(τA < +∞) > 0, for all s ∈ A, (23)

here Ps(S(1) = s) = 1. Furthermore, notice that it is sufficient to

heck this property for subsets A of the type

= {ω0} × I0 ×
n∏

i=1

(Ii × Ei), (24)

here n ∈ N∗ and where for all 1 ≤ i ≤ n, the sets Ii ⊂ R+ and Ei ⊂ S2

re all sets of positive Lebesgue measure.

In order to prove relation (23) for sets of the form (24), consider

he conditional measure νn|W0=ω0
using (11). By assumptions on A,

e see easily that ν|W0=ω0
(A) > 0. Now, notice that by the Markov

roperty, if τ A and τ{ω0}×I0
denote respectively the time for the chain

o be in A, resp. in {ω0} × I0, then we have

s(τA< + ∞) � Ps(τ{ω0}×I0 < +∞)P{ω0}×I0(τA < +∞),

or all s ∈ A. We can lower bound the right-hand side of this relation

n the following way:

(i) We have that Ps(τ{ω0}×I0
< +∞) is greater than the probability

of deleting all the edges of s except (r0, ω0) and of modifying

its length so that r′
0

∈ I0. This probability is strictly positive, as

well as its acceptance. Indeed, we use here the fact that j and

J are coprime (through Bezout’s lemma) plus elementary rela-

tions for uniform distributions to assert that the probability of

deleting all the edges is strictly positive. The positivity of ac-

ceptance is due to absolute continuity properties of q(s, ·).
(ii) The same kind of argument works in order to lower bound

P{ω0}×I0
(τA < +∞). Namely, this quantity is greater than the

probability to construct directly a ray s ∈ A, which is itself

strictly positive. Indeed, since j and J are mutually prime, it is

possible to construct a ray of any desired length. Moreover, at

each step, the probability of adding an edge (r′
i
,ω′

i
) ∈ Ii × Ei, as

well as its acceptance are always strictly positive.

We have thus obtained that

s(τ{ω0}×I0 < +∞)P{ω0}×I0(τA < +∞) > 0,

hich concludes the proof. �

emark 20. The process (Nt)t≥1 that gives the length of the ray S(t) at

ime t, behaves like a birth-death process with inhomogeneous rates.

f there exists an invariant measure of the process (Nt)t≥1, then it must

oincide with the negative binomial distribution NB(1, ρ) that drives

he length of a path S ∼ ν . This provides an easy criterion in order

o check that the chain has already mixed, for example with a chi-

quared test on the empirical distribution of (Nt)t≥1.

. Simulation and comparison of the methods

In this section, we compare the estimates of the fluence rate L(xk)

rovided by three methods: Monte Carlo with Wang–Prahl algorithm



L. Vinckenbosch et al. / Mathematical Biosciences 269 (2015) 48–60 55

Fig. 4. Contour plots of the fluence rate estimates in the plane x = −0.04 for WANG, MC-SOME and MH.
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Fig. 5. Choice of six particular voxels and position of the lines (�i)i=1,...,6 in the cube V.
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denoted by WANG, see [10,11]), MC-SOME (see (20)) and MH defined

n (22) with the mutation rule given in Definition 17. We tested the

ethods in different settings. Here, we present results in a framework

orresponding to a healthy homogeneous rat brain tissue. We chose

o follow [20] for the values of the optical parameters (see Table 1).

ther values for rat or human brain can be found in [29–31]. The vol-

me of the cube V equals 8 cm3, that is V = [−1, 1]3. It is discretized

nto voxels whose volume is (0.04)3 cm3. The half-opening angle of

he optical fiber was set to α = π
10 and the constant c in (16) was set

o c = 1.

We chose the following simulation parameters for the three meth-

ds so that they need the same amount of computational time. Those

re

WANG: M = 6000 photons trajectory.

MC-SOME: M = 30000 rays, Mpoints = 40 points chosen in each

ray and Mrot = 30 rotations with respect to the initial direc-

tion.

MH j = 10, J = 21, ε = 0.9, T = 250000 steps of the chain and

Mrot = 30 rotations with respect to the initial direction.

The choice of parameters value for j, J and ε has not been opti-

ized in itself, but several values have been tested. It appears that,

n order to obtain a good exploration of the state space while not re-

ecting too much proposed mutations, the value of ε has to be close

o 1. The values of j and J were chosen so that the size of the jumps in

he addition–deletion mutation is near to 2%, respectively 5%, of the

verage length of a path, that is μs
μa

≈ 491. This seems to provide a

easonable compromise between exploration and rejection of muta-

ion.

In Fig. 4, we picture for each methods, a zoom of the contour plot

f the estimates in the plane x = −0.04. In Fig. 6, we compare the

stimates along several lines of voxels (�i)i=1,...,6 which are parallel

o the y-axis and pass through the points (0, 0, −0.08), (0, 0, −0.12),
0, 0,−0.16), (0, 0, −0.4), (0, 0,−0.48) and (0, 0, −0.6) respectively

see Fig. 5). We notice that MC-SOME gives more consistent estimates

han the two other algorithms whose estimates are more noisy. More-

ver, it seems that the MH-estimates are not very symmetric. Perhaps

ecause the algorithm had not converged yet.

Let us conclude this section by studying the accuracy of the meth-

ds by means of 50 independent replicates of these estimates. In

ig. 7, boxplots compare the dispersion of the 50 independent esti-

ates for each method in six voxels (vi)i=1,...,6 such that (see Fig. 5)

0, 0.2, 0) ∈ v1, (0, 0.6, 0) ∈ v2, (0, 0,−0.2) ∈ v3,

0, 0,−0.6) ∈ v4, (0, 0.2,−0.2) ∈ v5, (0, 0.6,−0.6) ∈ v6. (25)

n one hand, we see that MC-SOME is much more consistent than

ANG, because of the variance reduction used in the former. On the

ther hand, MH gives more spread estimates, which is due to repli-

ates for which the Markov chain has not yet converged. The mean of
he estimates and their standard deviation in each of the six voxels

re provided in Table 2. Notice that by Proposition 13, MC-SOME es-

imates are unbiased, so the corresponding standard deviation given

n Table 2 can be seen as estimates of the root-mean-square error.

. Inverse problem and sensitivity

For biologists, it is of considerable practical importance to have

ood estimates of the optical coefficients of the tissue they consider.

ne way to do this estimation is to compare simulated data with

easurements of the fluence rate in the tissue and adjust the opti-

al parameters of the simulation until obtaining values close to the

easurements. As we shall see, thanks to the probabilistic represen-

ation (16), this problem can be solved numerically.

.1. Sensitivity of the measurements

As a preliminary step towards a good resolution of the inverse

roblem, we first observe how fluence rate measurements vary with

espect to the optical parameters g, μs and μa. To this aim, we built

small database of simulations for different values of the parame-

ers and then compared the estimated fluence rate. The estimates

re computed by resorting to MC-SOME, which is the best perform-

ng method among the three we have implemented according to

ection 5.

First, we choose a reference simulation obtained with reference pa-

ameters (g∗,μ∗
a,μ

∗
s ). Then, we pick n ≥ 1 voxels and consider their

espective fluence rate estimates as measurements. That is, we choose
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Fig. 6. Fluence rate estimates along the lines (�i)i=1,...,6 with WANG, MC-SOME and MH.

Table 2

Mean and standard deviation of 50 independent fluence rate estimates in six voxels with WANG, MC-SOME

and MH.

Mean Standard deviation

WANG MC-SOME M-H WANG MC-SOME M-H

v1 1.203 · 10−5 1.2366 · 10−5 1.3083 · 10−5 1.2034 · 10−6 6.2536 · 10−7 2.1250 · 10−6

v2 2.4309 · 10−7 2.7177 · 10−7 1.6545 · 10−7 7.9867 · 10−8 5.0593 · 10−8 1.2004 · 10−7

v3 2.0014 · 10−5 2.0033 · 10−5 1.8337 · 10−5 1.5820 · 10−6 5.5143 · 10−7 4.0249 · 10−6

v4 3.4947 · 10−7 3.5713 · 10−7 2.1497 · 10−7 1.1889 · 10−7 2.8589 · 10−8 1.2577 · 10−7

v5 6.7519 · 10−6 6.6047 · 10−6 5.4786 · 10−6 8.9698 · 10−7 2.1161 · 10−7 1.0666 · 10−6

v6 3.9952 · 10−8 4.217 · 10−8 1.8755 · 10−8 2.8992 · 10−8 8.1839 · 10−9 2.5576 · 10−8

Table 3

Values of the optical parameters for the study of sensi-

tivity.

g 0.85 0.90 0.95

μa in cm−1 0.5 0.75 1 1.25 1.5

μs in cm−1 75 90 105 120 135

e

v

x

l

i

n

p

T

F

fi

t

t

n voxel centers (xki
)i=1,...,n and define

mi = L̂(xki
; g∗,μ∗

a,μ
∗
s ), i = 1, . . . , n,

where we recall that L(xki
) is defined by (15) with γW0

=
1{ω′

0
∈C2α}σ(dω′

0)/σ (C2α) and where we stress the dependence on the

optical coefficients by writing L̂(xki
; g∗,μ∗

a,μ
∗
s ) ≡ L̂(xki

). Now for each

possible triplet of parameters (g, μa, μs), we compute the normalized

quadratic error (or evaluation error)

J(μa,μs, g) = 1

2

n∑
i=1

(
L̂(xki

; g,μa,μs) − mi

mi

)2

. (26)

For the dataset of simulations, we use the same settings as in

Section 5 (|V | = 8 cm3, the volume of a voxel is (0.04)3 cm3 and α =
π
10 ). The variable parameters are: g, μa and μs. Their values are given

in Table 3. This choice is motivated by [20,29–31]. The anisotropy pa-

rameter g does not vary a lot between tissue type (healthy or tumor-

ous) and it is often even hidden in a reduction of the scattering co-

efficient μ′
s = μs(1 − g). For this reason, we chose only three values

in a small range of common values. Concerning the other parame-

ters, we chose five values in intervals covering values corresponding

to healthy and tumorous brain tissues according to [20,31].
Figs. 8 and 9 give different representation of the variation of the

rror J(μa, μs, g) with respect to the optical parameters. The real

alues are (μ∗
a,μ

∗
s , g∗) = (0.75, 105, 0.9) and we set n = 3, xk1

∈ v2,

k2
∈ v4, xk3

∈ v6 respectively (see Fig. 5). This choice of measurement

ocations has been motivated by the following aspects. The first one

s linked to the application to photodynamic therapy, for which the

umber and the location of measurements are limited. For exam-

le, the optic fiber prevents any measurement above the light source.

hese points correspond to x, y ≈ 0 and z > 0 in our model (see Fig. 5).

urthermore, [32] suggests that three measurements should be suf-

cient to ensure the identifiability of the parameters. Finally, a few

ests showed that the points should not be aligned if one wishes

he evaluation error to be sensitive with respect to the scattering
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Fig. 7. Boxplots of 50 independent fluence rate estimates in the voxels (vi)i=1,...,6 with

WANG, MC-SOME and MH.
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oefficient. Indeed, this coefficient affects the geometric shape of the

alo. One should therefore avoid to take measurements symmetri-

ally with respect to the light source, in order to capture the effect of

s on the propagation. We see that the sensitivity in the parameters

s and g is very low compared to the sensitivity in μa. In Fig. 8, we

ee that a wrong value of μa has strong effects on the error function

nd that it becomes then almost impossible to see any tendency for

he anisotropy parameter g. Notice also that an undervaluation of μa

s worse than an overvaluation in terms of the error.

.2. Parameters estimation

This section is devoted to the estimation of the parameters μa and

s only. Indeed, we have seen in the last section that the sensitivity

f the fluence rate with respect to the anisotropic parameter g is low.

oreover, simulations do not show any monotonicity or tendency in
μs

μ
a

Quadratic error J (·, ·, g = 0.85)
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Fig. 8. Colormap of the quadratic error (μa, μs) 	→ J(μa, μs , g) for three va
he error for this parameter because, in our settings, the Monte Carlo

rror prevails over the evaluation error. In addition, for our purpose,

he uncertainty about g is small in front of the uncertainty of the two

ther parameters (see [20]). We shall thus suppose in the sequel that

is known.

With these preliminary considerations in mind, our goal is to solve

he following nonlinear least square minimization problem: Find (μs,

a) in order to minimize

(μs,μa) = 1

2

n∑
i=1

(
L(xki

;μs,μa) − mi

mi

)2

, (27)

here (mi)i=1,...,n are measurements in n different voxels centered at

xki
)i=1,...,n.

The optimization method that we implemented to solve this prob-

em is based on the Levenberg–Marquardt algorithm (see [33]). This

radient descent algorithm involves the computation of the gradi-

nt, as well as the Hessian matrix of the score function J. It is de-

cribed in pseudo-code in Algorithm 2. In this description, we have

lgorithm 2 Gradient descent algorithm for the estimation of μa and

s

nput: measurements (mi)i=1,...,n, initial couple (μ0
s ,μ0

a), precision

ε > 0.

k ← 0

while J(μk
s ,μ

k
a) > ε do

(μk+1
s ,μk+1

a ) ← (μk
s ,μ

k
a) − τk

[
Hk + λk Diag (Hk)

]−1∇J(μk
s ,μ

k
a)

k ← k + 1

end while

utput: an approximation (μk
s ,μ

k
a) of the real parameters (μ∗

s ,μ
∗
a)

et Hk = Hess ( J)(μk
s ,μ

k
a) for k ≥ 0. Diag (Hk) denotes the diagonal

atrix of Hk, λk is the so-called damping factor which may be either

onstant or corrected at each step, and τk ∈ R+ controls the step size

f each iteration.

The simple form of the objective function in (27) allows to express

he term on the right-hand side of line 3 in Algorithm 2 explicitly as

function of the partial derivatives of L. Indeed, the gradient of J is

iven by

J( · ) =
n∑

i=1

L(xki
; ·) − mi

m2
i

∇L(xki
; ·), (28)

nd its Hessian matrix is given by

ess ( J)(·) =
n∑

i=1

(
L(xki

; ·) − mi

m2
i

Hess (L)(xi; ·)

+ 1

m2
i

∇L(xki
; ·)∇t L(xki

; ·)
)

. (29)

oreover, as stated in the following proposition, the formal repre-

entation in Proposition 6 enables the use of MC-SOME in order to
J (·, ·, g )

120 135
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lues of g, where μs is displayed on the x-axis and μa on the y-axis.
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estimate the first order and the second order partial derivatives of L

which can be expressed similarly to (18).

Proposition 21. The partial derivatives of L(xki
;μs,μa) can be ex-

pressed as the expectation of fully simulable random variables. Using the

same notations as in (17), they are given by

∂L

∂μa
(xki

;μs,μa) = − c(1 − cos (α))

2μa
E

(
1{SN∈Vki

}
N∑

j=0

Rj

)
(30)

and
∂L

∂μs
(xki

;μs,μa)

= c(1 − cos (α))

2μa
E

(
1{SN∈Vki

}

(
N

μs
−

N∑
j=0

Rj

))
. (31)

Proof. We start by differentiating term-by-term the Neumann series

of Corollary 3. Let us first note that by definition of Li we have

∂Li

∂μa
(x,ω0;μs,μa)

= −
∫ +∞

0

r exp (−(μs + μa)r)Le(x − rw, w) dr.

Moreover, for n ≥ 1, by definition of Tn◦Ti (see (5)), we also have

∂[T n ◦ Ti]Le

∂μa
(x,ω0;μs,μa)

= μn
s

∫
Rn+

dr0 · · · drn

(
−

n∑
j=0

r j

)
exp

(
−(μs + μa)

n∑
j=0

r j

)
∫
(S2)(n+1)

dσ⊗(n+1)(ω0, . . . , ωn)

n−1∏
j=0

fHG

(
ω j,ω j+1

)
Le

(
x −

n∑
k=0

rkωk,ωn

)
.

Looking back at Section 2.3 and using the same notations, we de-

duce that

∞∑
n=0

∂[T n ◦ Ti]Le

∂μa
(x,ω0;μs,μa) = −

∫
A
ν(dr, dω) Gx(r,ω)

|r|∑
i=0

ri,

where we recall that |r| stands for the size of r. Assuming that the

left-hand side coincides with the partial derivative ∂L
∂μa

, then (30) is

found just like (17) and the same arguments provide (31), considering

that for all n ≥ 0

∂[T n ◦ Ti]Le

∂μs
= n

μs
[T n ◦ Ti]Le + ∂[T n ◦ Ti]Le

∂μa
.

To conclude the proof, notice that the match between the partial

derivatives and the term-by-term differentiation of the Neumann se-

ries is ensured by the fact that the operator Tn◦Ti is infinitely contin-

uously differentiable for all n and by the uniform convergence of the
orresponding sequences of truncated sums

m =
m∑

n=0

∂[T n ◦ Ti]Le

∂μs
(x,ω0;μs,μa), m � 0.

�

emark 22. Similar formula to (30) and (31) can be easily found for

he second order derivatives ∂2L

∂μ2
s
, ∂2L

∂μs∂μa
and ∂2L

∂μ2
a

.

The probabilistic representation of L(xki
;μs,μa) in (18) and its

artial derivatives allows us to estimate the score J(μs, μa), its gra-

ient and its Hessian matrix by Monte Carlo methods. A sole sam-

le (y1, . . . , yn) ∈ An of n observations of the random ray Y can be

sed to estimate the expectations in L, ∇L(xki
; ·) and Hess (L)(xi; ·)

t the same time. We denote these estimates by L̂, ∇̂L(xki
; ·) and

êss(L)(xi; ·) and the corresponding score by Ĵ. The updating rule at

ine 3 in Algorithm 2 becomes then

μk+1
s ,μk+1

a ) = (μk
s ,μ

k
a) − τk

[
Ĥk + λk Diag (Ĥk)

]−1∇̂J(μk
s ,μ

k
a).

(32)

Implementation and discussion. The randomness coming from

onte Carlo estimation of the score J, of its gradient and of its Hes-

ian matrix during the run of the algorithm, makes a precise esti-

ation of the real values of (μ∗
a,μ

∗
s ) difficult. We observed that far

rom the real value μ∗
a, the eigenvalues of the Hessian matrix Ĥk are

ery small and that their sign can vary a lot because of the volatil-

ty of the estimates. Conversely, near the real value μ∗
a, the estimate

ˆ
k is more robust and its eigenvalues are almost always both pos-

tive, which legitimates the quadratic approximation of Levenberg–

arquardt algorithm. For these reasons, we implemented a hybrid al-

orithm which chooses between the Levenberg–Marquardt descent

nd the classic steepest gradient descent depending on the sign of

he eigenvalues of Hk. If they are both positive, one moves to the next

oint following (32), else one makes a move in the opposite direction

f the gradient.

In Figs. 10 and 11, we can see two examples of descent of our algo-

ithm. The settings are the following: (i) we choose n = 3 positions for

he measurements: xk1
∈ v2, xk2

∈ v4, xk3
∈ v6 (see Fig. 5) and the val-

es of the measurements m1, m2 and m3 are taken from the database

f simulations described in Section 6.1 with the desired parameters,

ii) the anisotropy factor is set to g = 0.9, (iii) the damping parameter

s constant λ = 0.01, (iv) the precision parameter (see Algorithm 2)

s set to ε = 0.005, (v) the sequence (τ k)k≥1 controlling the step size

f each iteration is decreasing in k and depends on the score of the

teration, as well as on the sign of the eigenvalues of Hk.

In Fig. 10, the reference parameter are (μ∗
a = 1,μ∗

s = 75). Notice

he oscillations around μ∗
a. Those descent zigzags near the real value

f μa are also apparent in the other descent in Fig. 11 for which (μ∗
a =

,μ∗
s = 105). They correspond to iteration where the descent is done

ccording to the classic steepest descent. The iterations for which one
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oves more vertically correspond, as for them, to the case where the

escent is done according to (32). As we can see, a satisfying estimate

f μ∗
a comes up rapidly, whereas μ∗

s is more difficult to approach. This

s due to the low sensitivity of J with respect to μs discussed in the

revious section.

. Discussion

The formal probabilistic representation of the solution to ERT (1)

resented in Section 2 opens the way for new improvements of

onte-Carlo methods in the context of light propagation. The MC-

OME method proposed in Section 3 reduces significantly the vari-

nce of the fluence rate estimates compared to WANG algorithm.

oreover, as exposed in Section 6, the representation allows to con-

ider the inverse problem from a new perspective. An implication

f this is the possibility to improve estimation methods for opti-

al parameters in tissue, which are key elements of dosimetry in

hotodynamic therapy (PDT), since the quantity of light reaching

he photosensitive drug is directly linked to the efficiency of the

herapy.

In this paper, we proposed a Metropolis–Hastings algorithm and

roved its convergence. The comparison in Section 5 shows that

H behaves consistently with respect to WANG and MC-SOME.

he higher standard deviation of its estimates makes it undesirable

hough, at least in the given context. Indeed, our study did not eval-

ate the sensitivity of MH with respect to the parameters appear-

ng in the mutations. However, the aim of this example is more to

how how such methods might be used, than to be an alternative
o MC-SOME which already provides satisfying results. This algo-

ithm should rather be seen as a starting point for new methods, in-

luding in inhomogeneous tissue where the gain in computational

ime intended by mutations of path might overcome traditional MC

ethods.

We should also compare our method to the efforts made with a

ure analytic point of view. Namely, ERT can be approximated by pro-

ection on spherical harmonics and finite element methods. A special

ase of the projection method is obtained when a single spherical

armonic is considered, in which case one is reduced to a diffusion

pproximation of ERT. This methodology has been initiated for light

ransport in tissues in [6], where a 2D homogeneous domain is con-

idered, and diffusion approximation is implemented. The algorithm

s very fast in this case, but the scope of application is arguably re-

uced (especially because the diffusion approximation requires a co-

fficient μa much smaller than μs, a condition which is not really sat-

sfied for pathological tissues). An interesting follow-up is provided

n [34] by considering three spherical harmonics, mainly in a 2D ho-

ogeneous case. The technique is not compared to the MC case there,

ince the main goal of the authors is a comparison with the diffu-

ion approximation case. We are not aware of a simulation by ana-

ytic methods in an inhomogeneous media before [35], where a finite

lements method is proposed and implemented in a 2D context. It

hould thus be mentioned that a 3D implementation seems to be an

bstacle when numerical approximations are considered, while the

fficiency of our MC methods is not really affected by the 3D context.

bserve that this performance gain of Monte Carlo versus numerical

nalysis methods is clearly a classical fact.
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Further research should be undertaken to investigate the case

of inhomogeneous tissue. As already mentioned in the introduc-

tion, several works already considered this type of tissue adapting

WANG algorithm or using diffusion approximation. However, one still

wishes to have a clear theoretical framework for these tissues in order

to propose better algorithms and to compute rates of convergence for

the newly developed methods. Indeed, strengthening the confidence

in fluence rate estimates in complex heterogenous tissue, such as in-

filtrating tumors, is of crucial importance for the applications.

Another natural progression of this work would be to test the

optical parameters estimation method proposed in Section 6 on ex-

perimental data. Some preliminary tests showed that MC-SOME es-

timates are consistent with experimental measurements of fluence

rate on a cube of resin mimicking brain tissue. This is not very sur-

prising, as it is already commonly established that WANG algorithm

provides good estimates compared to experimental and clinical data.

Since MC-SOME gives unbiased estimates of the solution of ERT that

are consistent with WANG estimates (see Table 2), they are naturally

close to real measurements. The validation of the optical parameter

estimation procedure will be the subject of a future publication.

Let us close this section by a brief discussion concerning the im-

pact of our methods on PDT in a broad sense. Indeed, our simulation

study might improve the treatment in several aspects:

(i) The performance of our 3-dimensional methods allows to set

up algorithms optimizing the number, the shape and especially

the position of light sources. It will therefore contribute to the

efficiency of interstitial PDT for the treatment of (for example)

glioblastoma.

(ii) Our Metropolis–Hastings algorithm shows encouraging

promise in the determination of light dose received by the

peripheral infiltrating part of a tumor, which is typically an

heterogeneous tissue.

(iii) The estimation algorithm of Section 6.2, which is consistent

with the light propagation method, will help solving the prob-

lem of the treatment influence on the tissue optical parame-

ters. Indeed, during the therapy, the presence of nanoparticles,

photosensitizer and photo-reactions impact those optical pa-

rameters. Obviously, the light distribution inside cancer tissues

is modified accordingly. Being able to quantify those changes

in real time is thus of crucial practical interest.

As one can see, the preliminary efforts contained in the cur-

rent paper globally aim at a better response of the PDT treat-

ment. New developments will be carried out in some subsequent

publications.
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