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Abstract

In this note we consider the parabolic Anderson model in one dimension with time-independent
fractional noise W in space. We consider the case H < % and get existence and uniqueness of solution.
In order to find the quenched asymptotics for the solution we consider its Feynman—Kac representation
and explore the asymptotics of the principal eigenvalue for a random operator of the form %A + W.
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1. Introduction

The non trivial effects of random perturbations on the spectrum of the Laplace operator
have been a fascinating object of research in the recent past. While a direct spectral analysis
of perturbed Laplacians is possible in simple and regular enough cases [13,16], the problem
is often addressed through the large time behavior of the so-called parabolic Anderson model.
More specifically the parabolic Anderson model is a stochastic heat equation of the following
form:

du(x)
ot

1 .
= zAut(x)+ut(x) W(x), ey
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where the noise W is a stationary spatial random field. Because of the linear form of the noise
term, it is possible under certain regularity conditions to express the solution of (1) using a
Feynman—Kac representation. Related to this representation, the asymptotic behavior of u,(x)
as t goes to oo gives some insight on the spectrum of the operator lA + W.

In the spatially discrete setting with a discrete Laplacian, asymptotlc equivalents for the
solution of Eq. (1) have been studied at length in [4] and [17]. In particular, if u,(x) is the
solution under the discrete setup in Z¢ and U(t) = Y .czd Ui(x) is the total mass, then it
has been proven that both %log(ut(x)) and %log(U (#)) converge almost surely under certain
regularity assumptions. Any information about those limits can then be translated into an
information about the principal eigenvalue of %A + W.

In the spatially continuous setting, the picture is not as clear. Indeed, the large time behavior
of the solution u to Eq. (1) has been analyzed in [5] and [12]. In particular, when the noise
is Gaussian with a smooth covariance structure given by y(x) = Cov(W(0)W (x)) satisfying
limy - oo y(x) = 0, then we have for x € R?

logu,(x) =+/2dy(0) as. 2)

tlggo ¢ F
The fact that the renormalization in (2) is of the form ¢,/logt suggests that the principal
eigenvalue of A + W is divergent, which is confirmed in [3,18] by asymptotics on large
boxes performed for the white noise.

Motivated by the examples above, non-smooth cases of Eq. (1) under the setting of
generalized Gaussian fields have been analyzed in [8]. Namely, the reference [8] handles the
case of a centered Gaussian noise W whose covariance function A is defined informally (see
Section 2.2 for more precise definition) by

E[W(@)W ()] = /R A — y)dxdy, 3)

for all infinite differentiable functions ¢ with compact support. The class of functions A
considered in [8] are continuous on RY \ {0}, bounded away from O with a singularity at O
measured by A(x) ~ c(A)|x|™* with a € (0,2 Ad) as x | 0. In this framework, the following
almost sure renormalization result is proved in [8] for any x € R?:

lim ;2 logu,(x) =¢, as., (@)
=% t(logt)*=
with an explicit constant ¢,. Notice that this result is also applicable under a fractional white
noise with Hurst parameter H > % Namely, considering d = 1 for simplicity, relation (4)
holds for a frE}ctional Brownian noise W with « = 2 — 2H (that is a renormalization of the
form r(logt)T+H7).

In this note we aim to carry forward the asymptotic result (4) to very singular environments.
Specifically, we consider a fractional noise W as in [8], but we allow the Hurst parameter to
be less than % (so that our noise is rougher than white noise). Going back to expression (3), we
assume that A is a positive definite distribution whose Fourier transform FA = p is a tempered
measure given by u(d€) = Cy|£|'"2# d&. That is for test functions ¢ and v we have

E[W(@)W()] =/R}'¢(E)}'W($)M(d§)~ &)

Let us first notice that Eq. (1) driven by a fBm with H < % is not explicitly solved in

the literature. As we will see, one can give a pathwise meaning, in a Young type sense, to
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the solution of Eq. (1). Namely we show that # — u, can be seen as a continuous function
with values in a weighted Besov space (we refer to [19] for a complete definition of weighted
Besov spaces). We will set up a fixed point argument in those weighted spaces and obtain the
following result (see Theorem 3.12 for a more precise formulation).

Theorem 1.1. Let W be the Gaussian noise considered in (5) with H € (0, %) Let uy be an
initial condition lying in a weighted Besov Holder space (see Definition 2.5 or a more detailed
description). Then there exists a unique solution to (1) in a space of continuous functions with
values in Besov spaces, and where the integral with respect to W is understood in the Young
sense.

Once we have solved (1) , we will give a property of the (formal) operator %A + W which
is reminiscent of the density of states results contained e.g. in [13,16]. The result we obtain
can be summarized informally in the following theorem:

Theorem 1.2. Let Ay, (Q;) be the principal eigenvalue of the random operator %A + W over
a restricted space of functions having compact support on Q, :=(—t,t). Then the following
limit holds:

)\, .
lim LQ’I) = Qcy€)TE  as, (6)
t—00 (lOg t)H_—H
with a strictly positive constant £ defined by
2
E= sup / / e g?(x)dx| A2 dn )
geGR) JR [JR

where G(R) is the space of all Schwartz functions satisfying ||g||% + %”g’”% =1

Using a Feynman—Kac representation for the solution u of (1), our next step will be to relate
the logarithmic behavior of u, to the principal eigenvalue Ay, (Q,). This is the content of the
following theorem:

Theorem 1.3. Let W be the Gaussian noise defined by (5) for H < and consider the
unique solution u to (1). Then for all x € R we have

1
2!
Flog(ui(x))

im =1, a.s.
1—oo Ay (Qr)

As the reader might conceive, our main asymptotic result will be a simple consequence of

Theorems 1.2 and 1.3. It gives a generalization of (4) to the case H < %

Theorem 1.4. Under the same conditions as in Theorem 1.3 and for H < % we have

log(u,(x))
t(log t)lJ%H

lim — Q&) as. 8)

1—>00

Remark 1.5. Let us draw the reader’s attention to the fact that formula (8) has already been
proved in [8] for H € [1/2, 1) and hence our contributions in this paper imply that formula
(8) holds for all H € (0, 1).
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Let us say a few words about the methodology we have resorted to in order to get our main
results.

(i) Theorem 1.2 is obtained by splitting the eigenvalue problem into small intervals, similarly
to what is performed in other parabolic Anderson model studies (see e.g. [17] and [8]). Then
on each subdomain we combine some variational arguments with supremum computations for
Gaussian processes. Extra care is required in our case, due to the singularity of our noise.

(ii) Theorem 1.3 relies on a Feynman—Kac representation of u,(x), whose main ingredient
is an integrability property established thanks to a subtle sub-additive argument (see Proposi-
tion 4.4 below). Once this Feynman—Kac representation (involving a Brownian motion B) is
given, a probabilistic cutoff procedure on the underlying Brownian motion B allows to reduce
the logarithmic behavior of u,(0) to the quantity Ay, (Q;).

(iii) As mentioned above, Theorem 1.4 is an easy consequence of Theorems 1.2 and 1.3.

Eventually let us highlight the fact that Theorem 1.4 provides a rather complete description
of the asymptotic behavior of log(u,(x)) in dimension 1. A very challenging situation would be
to handle the case of a rough noise in dimension 2 or higher. In this case it is a well known fact
that a renormalization procedure is needed to define the solution « of (1), as shown e.g. in [10].
The effect of this kind of renormalization procedure on the principal eigenvalue of %A + W
has been partially investigated for the space white noise when d = 2 in [3].

This paper is organized as follows. Section 2 contains some preliminaries on Besov spaces
and the structure of our noise. In Section 3 we prove the existence and uniqueness of our
solution as outlined in Theorem 1.1. The Feynman—Kac representation of the solution is
obtained in Section 4. The upper and lower bounds to the long-time asymptotics of the principal
eigenvalue of the operator %A + W are obtained in Sections 5.2 and 5.3 respectively. The
asymptotic relation between the solution and the principal eigenvalue of the previous section
is completed in Section 6.

Notations. We denote by p,(x) the one-dimensional heat kernel p,(x) = 27t)™
for any ¢t > 0, x € R. The space of real valued infinitely differentiable functions with compact
support is denoted by D(R). The space of Schwartz functions is denoted by .#(R). Its dual,
the space of tempered distributions, is .#/(R). The Fourier transform is defined as

2
1/2 g=lx?/2

Fu(®) = 4(€) = / 8 ()l

R

The inverse Fourier transform is F'u(£) = (2m)~!Fu(—&). Denote by [ the following
probability density function in S(R):

1
l(x) = cexp (—1 — x2> 1(‘X|<1),

where ¢ is a normalizing constant such that fR I(x)dx = 1. For every ¢ > 0, let the set of
mollifiers generated by I be given by I,(x) = e~ 'I(s~'x). Observe that, owing to the fact that
[ is a probability measure, we have limg_,0 FI(§) =1 and FI(§) <1 forall £ € R.

2. Preliminaries

This section is devoted to introduce the basic Besov spaces notions which will be used in
the remainder of the paper. Observe that since we are dealing with a variable x in the whole
space R, we will need to deal with weighted Besov spaces. The definitions and main properties
of those spaces are borrowed from [19].
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2.1. Besov spaces

In this subsection we define some classes of weights which are compatible with our heat
Eq. (1). Two scales of weights will be used: stretched exponential weights and polynomial
weights.

Definition 2.1. Let |x|, =1+ |x|> and fix 8 € (0, 1). Denote by W the class of weights
consisting of:

(i) the weights w, of the form w, (x) = e”"”i, with y > 0.
(ii) the weights W, of the form w,(x) = |x|;°, with o > 0.

The definition of our Besov spaces depends heavily on a dyadic partition of unity. In order
to handle weights as in Definition 2.1 we have to work (as done in [19]) with functions in the
so-called Gevrey class, that we now proceed to define.

Definition 2.2. Let 6 > 1. We call G?, the set of infinitely differentiable functions f : R — R
satisfying

for every compact K, there exists C < oo such that for everyn € N,
sup 9" f| < C"* ()’
K

We let GY be the set of compactly supported functions in GY.

We are now ready to state the existence of a partition of unity in the Gevrey class GY.

Proposition 2.3. One can construct two functions x, x € gf, taking values in [0, 1] and such
that

(i) Supp % < [0, %] and Supp x < [3.%].
(ii) For all £ € R, we have x (&) + Z;fiox(2"‘$) -1
In the sequel we also set xi (&) = X(Z_ké)for k> 0.

With the partition of unity in hand, the blocks Au of the Besov type analysis can be defined
as follows.

Definition 2.4. Set x_; = x, and define for k > —1 and u € S(R),
Agu = F~ ().

Our analysis will rely on Besov spaces defined through the weighted blocks introduced in
Definition 2.4.

Definition 2.5. Let x and x be the functions introduced in Proposition 2.3. For any « € R,
weW, p,qell,oo] and f € S(R), we define weighted norms of f in the following way:
1

o0

1l = | 32 (2904, 51,)" | ©)

j=—1
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where LY, is the weighted space LP(R, w(x)dx). Denote the weighted Besov space By as
KW . )
By = € SRy I £lggn < oo}
Remark 2.6. Notice that as in [20], we define || /|| .»®d:wx)ax) @S | f Wl Lpre)- This is slightly
different from [19], but yields similar results.
In the next section we will solve the heat equation in a weighted Besov space whose weight

is varying with time. We now define this kind of space.

Notation 2.7. Let X and o be two strictly positive constants. For t > 0 we define v as the
Sfunction v; = wy4q,, where we recall that w,, is introduced in Definition 2.1. We consider an
additional parameter k, > 0 and q € [1, 00). Then the space Cl’]‘“’)"" is defined by

g — {f € C(10. T1 x RY: | fill v < cf] .
2.2. Description of the noise

The noise driving equation (1) is considered as a centered Gaussian family {W(¢), ¢ € D
(R)} on a complete probability space ({2, F, P) with the following covariance structure:

E[W(QWW)] = /]RZ P()Y (y)A(x — y)dxdy, (10)

where A : R — R, is a non-negative definite distribution. In fact the covariance structure of
W is better described in Fourier modes. Indeed, the distribution A can be seen as the inverse
Fourier transform of a measure y on R defined by

w(dg) = cylg|' M ds.
Then for ¢, ¥ € D(R) we have

E[W(@)W)] =/RF¢(E)]‘"¢(E)M(61€)- (In

It can be shown that (11) defines an inner product on D(R). We call H the completion of
D(R) with this inner product. It also holds that the variance of our noise W has an alternate
direct-coordinate representation (see e.g. [14, relation (2.8)]) in addition to the one suggested
by (11). Namely for ¢ € H, we have

lp(x + y) — p(x)I?

|272H

EW@W=@/ dxdy. (12)

R JR ly

The mapping ¢ — W(¢) defined in D(R) extends to a linear isometry between H and the
Gaussian space spanned by W. This isometry will be denoted by

W) = [ sew). (13)
R
Remark 2.8. Notice that the measure u(d&) = cyl&|'?"dE satisfies the following
condition
d
/Lf?_<oo, for ¢ < H. 14)
r 1+ g2
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This relation will be crucial in order to see that W belongs to a weighted Besov space in the
proposition below.

Before a complete description of our noise regularity, we state below a Besov embedding
result for weighted Besov spaces. Notice that this embedding result is part of the folklore in
the analysis literature. However, we include a complete proof here since we have not been able
to spot a precise reference. In particular our result (20) does not hold true in the setting of [19],
for which the weights behave differently from ours. We start off with a version of Bernstein’s
lemma for our weighted spaces.

Lemma 2.9. Let B be a ball. For every p > q € [1, 00] and non-negative integer k, there
exists C < oo such that for every .. > 1 and f € S(R) we have

; k k(A1)
Suppf C AB = 10 fll,r = CAH P fl (1)
where the weight W, is given in Definition 2.1
Proof. The proof is similar to that in [19]. Due to the differences in definition of weighted
Besov space it is still provided here. Moreover we will only consider the situation where p, g

are finite, the proof when at least one of them is infinite being similar.
Let ¢ € G; be such that ¢ = 1 on B. Define ¢, = ¢ (X) Observe that

f=F"(fe:) = t. (16)
where the function g, is defined by g, = F'¢p = Agi(A-). Writing gﬁk) = (akgl),\ =
NCA g1)(A-), we can differentiate (16) in order to get

o f = )»kgf\k) * f.

Notice that our weight w, satisfies W, (x + y) < W_s(x)We(y). Using this and the weighted
Young inequality [19, Theorem 2.4] we have:

- k A &)~ N
AR f e = NG ol S 185 Dol 1L o e, (17)
where r is such that 1 + % = % + 5 Since gf\k) = A% g1)(A-) and 8*g, is the inverse Fourier
transform of a function in gf we have due to [19, Proposition 2.2]:

Consequently, recalling the norm | - |, introduced in Definition 2.1, we obtain

A _ 3 r
”gik)w—a”]‘r 5 A(/e cr|ix| IXIZ’dx)
X

— )L]—l/r /Ae—cr\xl‘S
A

Observe that A > 1 implies |x/A|, < |x|,. Thus the integral in (18) can be bounded above by

*

1
wdx) . (18)

a constant independent of A. In addition, it holds that 1 — % = é — é. We thus end up with the
following relation:
1 1
g ol < 2T, (19)

Using (19) in (17) yields our desired result (15). O
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The Besov embedding result we need in order to quantify our noise regularity is now a
direct consequence of Lemma 2.9 and is provided below.

Proposition 2.10. Let k > k' > 0. There exist K < oo and q large enough such that

I e = KILF N gt i - (20)

q 2

Proof. From the definition of A, f, observe that the support of its Fourier transform is
contained in 2B for some ball B in R. Thus we may apply Lemma 2.9 with k = 0 and
p = oo to obtain:

k
14cf g < C29NAf N -
Replacing g by 2¢g and premultiplying by 2~k we obtain:
27 A f e < €27 NS N,

e

= ¥ A . 1)
Fix a g large enough such that w = x — k' — ﬁ is positive. Denoting 27| A; f ;. by xi

and 2‘”/k||Akf||L%q by v, Eq (21) can be restated as:
2“”‘xk < Cyx.
This implies that

00 1/2¢ L& 1/29
2 2qwk .2
1ylle2g = ( § ykq> > E( E 2% qu) .

k=—1 k=—1

Since 2249k > 22% for k > —1 we obtain

(1 2
2!/
1yl = E(Z 32q0 ™k )

k=—1

R oy
= @<Z x,f"> = oo Il (22)
k=—1

where in the last inequality we have used the fact that |[x||,2s > |[x[|,~ for any sequence
x € RN, Applying inequality (22) to the sequences x and y given in (21), we now arrive
at (20). O

v

Proposition 211. For all «k € (1 — H,1) and every arbitrary o > 0, W has a version in
B “’“, where W, is given in Definition 2.1 and B! '”"" is introduced in Definition 2.5. In
addmon the random variable || W|| i has moments of all orders.

Proof. Consider «, ¥’ such that x > «’ > 1 — «, where « is defined by (14). Due to (14)
observe that this implies that we can consider any k > 1—H. For g > 1, denote the Besov space
Bz_q'fz’;)" by A,. Invoking Proposition 2.10 observe that for large enough ¢, A, is continuously
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embedded in B .07, ie.,

Wi S IW L4, (23)

Hence it is enough to work with || Wl A
Let us now evaluate the quantity Wl Ay To this aim, notice that A; f(x) = [K ixf ] (x)
where K ;(z) = 2/ F ' x(2/z). Therefore, using the notation K (y) = K;(x — y) we obtain:

E[||W||f§q] =y 27 /R E[IW(K;01%] 02 (x)dx. (24)
j=—1

Using the fact that W(K ;) is Gaussian we thus have
E[IW(K;0P] < ¢, B [[W(K;.0P].

Consequently, (24) can be recast as:
. 2, _ -K, ~
E[IWIL ] < 27 / E [[W(K;.0I7] 92 (x)dx. (25)
: R
j==1
Now let us work with E [|W(Kj,x)|2]. According to (10) we have

E[IW(K,.012] = /R K (&) uldE).

Let us introduce a new measure v on R defined by v(d§) = %. Notice that due to (14),

v is a finite measure. Since K; = F ‘lxj and the support of x is in a closed interval, say
[a, b], we obtain:

E[IW(K; %] /R |xQ@ 8 uwe) < /R 025 (1ED (1 + 1E179) v(d8)

v ([0,276]) (1 + 275> ™) < ¢, 227 (26)

IA

Therefore plugging (26) into (25) and recalling that 1 — o < k¥’ < «, we get:

E[||W||f§q] <c¢ Y 2*24/'“] ¢420774 24 (x)d x
R

jz-1

=C / fu?ﬂ(x)dx> 22ai(1—o—i) 27)
s < R Z

jz—1

Owing to Definition 2.1 of w,, it is now readily checked that the right hand side of (27) is
convergent whenever ¢ is large enough.

Similar calculations as the ones leading to (27) also show that the random variable
W ko has moments of all orders. [

3. Pathwise solution

Now that we have proved that our noise W is almost surely an element of B;o’f;g“, we
will transform our stochastic Eq. (1) into a deterministic one, which will be solved in the
Riemann-Stieltjes sense. We first label an assumption on a general distribution driving the heat

equation.
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Hypothesis 3.1. Let 6 € (0, 1) be a fixed constant and o > 0 be an arbitrarily small constant.
We consider a distribution % on R such that % € B »’® with « € (0, 1).

Remark 3.2. The constant § € (0, 1) in Hypothesis 3.1 is related to the exponential weights
in Definition 2.1.

We now introduce the notion of solution for Eq. (1) which will be considered in the sequel.
Definition 3.3. Let % be a distribution satisfying Hypothesis 3.1. Let u € Cg"’**" forx,o0 >0

and x, € (k,1), where Cg“’“’ is introduced in Notation 2.7. Consider an initial condition
uy € By",° where we recall v, = w;4,,. We say that u is a mild solution to equation

ou 1
——_A 2
5= 5 u+uW (28)

with initial condition u, if it satisfies the following integral equation

t
4y = pritg + f Pos(us W )ds. 29)
0

Remark 3.4. Observe that the Dirac delta initial condition J falls beyond the scope of our
. . . . K, W),
considerations, as k, needs to be negative in order to have 8, € B, *.

Remark 3.5. In (29), we implicitly assume that the product of distributions u - % is well
defined. This will be treated in Lemma 3.9.
Before we can solve equation (29), we list a few results which would prove useful later.

The first one recalls the action of the heat semigroup on weighted Besov spaces.

Lemma 3.6. The following smoothing effect of the heat flow is valid in Besov spaces: Let
K > K be real numbers, yy > 0 and q € [1, 00]. Then there exists C < 0o such that uniformly
overy <ypandt >0,

_ ko
”p’f||55j;”g’ S

Proof. See [19, Proposition 3.11]. [

We now give a result on comparison of Besov norms for different weights w.

Lemma 3.7. Let wi, w, € W be such that w; < w,. Then for every f € BZ:Z)Z we have

wp < )
1l < 1 g

Proof. Follows easily from Definition 2.5. [J

Our next preliminary lemma is an elementary comparison between the weights correspond-
ing to Definition 2.1.
Lemma 3.8. Recall that the weight v, = wj . has been defined for t > 0 in Notation 2.7.
Then for 0 < s < t and for all o > 0, there exists a constant c, such that

v < colt — S|7"vs@aa-
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. 8 .
Proof. For 0 < s < ¢, observe that v, = v,e =9l Then we use the fact that there exists
a constant ¢, such that

_ Cu
0 < x% ”S—a for x,a,5s e Ry
s

s _ _ L . _ n
Consequently e 7=k < ¢ |t — 5|7 |x|;°® which implies v, < ¢, |t — 5| " vygs. [

Let us recall the definition of products of distributions within the weighted Besov spaces
framework.

Lemma 3.9. Let o < 0 < B be such that a + 8 > 0. In addition, consider p, q € [1, oo] and
v € [0, 1]. Let py, pr € [1, o0] be such that

1 v l_l—v

A

and W = w,W,.

pp PP

Then the mapping (f, g) — fg can be extended to a continuous linear map from BZIT:qu X Bﬁ’z',bq"

to Bi:;“. Moreover there exists a constant C such that

* < ’ AI .
I £8 gy < ClL gy gl e

Proof. The proof is similar to that of [19, Corollary 3.21]. [

We also include the following extension of Gronwall’s Lemma taken from [9, Lemma 15]
which will be required in order to show existence of our solution.

Lemma 3.10. Let g : [0,T] — Ry be a non-negative function such that fOT g(s)ds < oo.
Let (f,,n € N) be a sequence of non-negative functions on [0, T| and ki, ky be non-negative
numbers such that for 0 <t < T,

Ja®) = Ky +/0 (kz + fa-1(s)g(t — s)ds. (30)

IfsupOSsg Jo(s) < oo, then SUP,, >0 SUPo<;<T Ja(t) < 00, and if ky =k, = 0, then ano Ja(®)
converges uniformly on [0, T].

We are ready to state our main result about existence and uniqueness of solution for our
abstract heat equation (28).

Proposition 3.11. Let # be a distribution as in Hypothesis 3.1. Consider A > 0 and q > 1.
Then there exists a unique solution to Eq. (29) lying in Cg"'“’ where k, € (k, 1) and where
Cw*? is defined in Notation 2.7.

Proof. We will follow a standard Picard iteration scheme to prove our result. Consider a small
time interval [0, t] where 7 is to be fixed later. We restrict all spaces and corresponding norms
on this time interval. Define @ = u and for n > 0 set

t
U = / Pi_s DA )ds. (31)
0

Fix k, € (k, 1) and consider su'” = u"*" — 4

Lemma 3.6 we obtain

. Observe that from (31) and then applying
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t
+1
60Vl s < fo 121G g

t
sc/|
0

where here and in the following C is a generic constant which may change in subsequent steps.
Now applying Lemmas 3.7 and 3.8 we get

t
”(Sugn—t-l)”B,(u.vt < C/
9,00 o

Using v = 1 in Lemma 3.9 and observing «, > «, we find

(m) . (n) .
L e [ T P (g e

gn)y/”B;';g’t ds.

6u™W || e
q,00

Consequently,

18 g

t
(n+1)
v < —Kk, W
I g < g [ = ()

|(Ku+f<)/2+(f

Observe that
sup ||6u’® )||BK., w = sup [ul) — (O)HBKM w = sup |[psuto — uollggus
0<s<rt 0<s<rt 0<s<t

Also recall that vy = w; 44y, Where the weight w, 4, has been defined in Definition 2.1 above.
Consequently ||p5u0||Bmggx < ||psu0||BKu,vo. Thus, owing to Lemmas 3.6 and 3.7, we have

©) )
oilfgf 18057 prues =< oilfgf | psuo — M0||B;tf;0 < C”“O”g?fg‘?
which is finite by our assumption on the initial condition. We can thus apply Gronwall’s Lemma
as stated in Lemma 3.10 to Eq. (32). As a consequence we find Zn>0 ||5u( || By Converges
uniformly on [0, 7] and thus u™ converges uniformly in Gy - This proves existence of a
solution on [0, 7] (observe that we do not need t to be small for this step).
In order to prove uniqueness, we can resort to the same techniques. Consider two solutions

u' and u? in Cywh? and set u'? = uy — uy. We have to show u'? = 0. Since we have

u? = / PisW*W)ds,

we obtain similarly to (32)

N R I
< " PR L —
el < CI N v, /O ; s|m,+x>/z+od (33)

Therefore, choosing o small enough we get:

12
g = (CIH lyeino =) sup Nl s

0<s<t
where n = 1 — (“4* + o). Then choosing 7 small enough so that U710, ity ) < 1, we

find ||u‘2||3'<u v = ( for all ¢ € [0, t]. This achieves uniqueness on the small 1nterva1 [0, 7).

In order o get global existence and uniqueness we observe that our considerations above
do not depend on the initial condition of the solution. Hence one can repeat the proof on
subsequent intervals of size 7 to get the result. [
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The proof for uniqueness of solution in Proposition 3.11 can also be achieved through Picard
iterations applied to (33) in order to get ||ut12|| = 0. This alternative proof would thus avoid
the need to consider a small . We thank one of the reviewers for drawing our attention to this
fact.

We can now apply our general Proposition 3.11 in order to solve our original equation (1).

Theorem 3.12. Let W be the centered Gaussian noise defined by (11), with H € (O, %) and

consider k € (1—H, 1). Let ug € Bg,“gg”* for a given A > 0 and k, € (k, 1), where w; = e

is defined in Definition 2.1. Consider the space Cg‘“**“ introduced in Notation 2."]. Then Eq. (1)
admits a solution which is unique in C:;“”\"’.

4. Feynman-Kac representation

In this section we shall establish a Feynman—Kac representation for the solution of (1),
which will be at the heart of our Lyapounov computations. We first introduce some additional
notations about random environments.

Notation 4.1. Let B be a Brownian motion defined on a probability space (f), F, P),
independent of the space ({2, F,P) on which W is defined. In the sequel we denote by E
(resp. E) the expectation on (12, F,P) (resp. (f?, F, P)). We will also write E, when we want
to highlight the initial value x of the Brownian motion B.

We now introduce the Feynman—Kac functional we shall use in order to represent the
solution of (1).

Notation 4.2. Let W be the Gaussian noise defined by (11). For ¢ > 0 we set

Vf(X)=/ /la(Bf—y)W(dy)dr, (34)
0 JR

where [, stands for the e-mollifier generated from the standard bump function | as given in the
general notation of the Introduction. We will also write, somehow informally,

Vz(X)=/ W(5B§)dS=/ /50(Bf—y)W(dy)dn (35)
0 0 JR

which will be seen as a L*-limit of the random variables V.
We state the following lemma taken from [6, Theorem 1.3.5] which will be used in the

proof for Proposition 4.4

Lemma 4.3. For any non-decreasing sub-additive process Z; defined on (fZ, F. P) with
continuous path and with Zy = 0, the following inequality holds true for all 6 > 0 and
t>0:

E[exp(0Z)] <oo V0,1 > 0.
In addition,
o1
tlirgo n log (IE [exp (QZ,)]) = ¥ (0),

where U is a function from [0, 00) to [0, 00).
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We now give a rigorous meaning to the quantity V,(x) by showing that it can be seen
as a L2-limit of V#(x). We also include some exponential bounds which are crucial for the
Feynman—Kac representation of (1).

Proposition 4.4. Fore > 0,1t > 0 and x € R, let VF(x) be defined by (34). Then

(i) {Vi(x); e > 0} is a convergent sequence in L2(2 x fZ). We call its limit V;(x), where
Vi(x) is defined by (35).
(ii) For all g > 1 we have

ImEQE Heqvf — eVt
el0

]:o.

Proof. We divide this proof in several steps.

Step 1: Proof of (i). Observe that Vf(x) can be written as fot W (B} — -))dr, where
W(.(B; — -)) has to be understood as a Wiener integral conditionally on B (see (13)). In
the following we try to find lim,, ;, .o E ® E [Vf1 (x)V,? (x)], which is enough to ensure the
L? convergence of V£(x). To this aim, we invoke the isometry (11) in order to get

EQE[V'(x)Vx)] =EQE [/ / W(le, (B — NW(ley(B — -)du dv:|
0 JO

:E/o fo /Rf le,(By — )E)Fley(BY — )(E)u(dE) du dv.

Taking into account the expression for FI,(B;, — -) we thus get

E®E[V (0)V,*(x)] =E [ / t f l / FlerE)e 50 Fi(es6)e! 5 1u(dg) du dv]
0 JOo JR

=" U ( / e EBi=Bi) gy dv) Wlf)fl(é‘zg)l/«(df)} .
R 10,212

(36)
We can now use the fact that B} — B} ~ N(0, v — u) to write
E®RE[V/'(0)V2(x)] = / < . Ve, e0 (U, V; g)dudv> w(dg), 37
R [0,¢]

where V¥, ¢, (1, v; &) is defined by
Yy on(t, v3 §) = ¢ 2 EP VU T (g 8) Fl(e,8).
Moreover, setting ¥ (u, v; &) = e’%‘é‘z‘“’“‘, it is readily seen that

1i§1101//a],52(u, viE) =Y, v ), and [P e, v 6)| < [P, v E).

£1,80—

In addition, the reader can check that
n(dé§)
Wi vi € dudo () < [ <o

/R [0.112 R 1+ €]
Therefore, a standard application of the dominated convergence theorem to relation (37) proves
that for every sequence &, converging to zero, V,”(x) converges in L to a limit denoted by
V:(x) as mentioned before.
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Step 2: Conditional law of V;(x). We will next show that V; is conditionally Gaussian for
all r > 0 with conditional variance given by

t
E[Vf]:/}R /(; e'sBids

This will follow from similar calculations as before. First observe that V? is conditionally
Gaussian, with conditional variance given by

t 2
E[V/] =E {( / W(l.(Bf — ~>>dr) } (39)
0

The right hand side of (39) can be simplified by using the covariance structure of our noise as
follows, using the same computations as for (36):

2
w(d§). (38)

E[(v)] = fo /0 E[W(.(BF — YW((B} — )] drds

t
/ B ds
0

Since V; is the L? limit of V, and L? limits of Gaussian processes remain Gaussian, we now
have that conditioned on the Brownian motion, V; is Gaussian with zero mean and variance
given by (38).

Step 3: Exponential moments of V,. Our next aim is to show that V, entertains exponential
moments. Specifically we will prove that for all ¢ > 0 we have

2

u(dé§).

_ / \Fl(et)
R

E®]E[e‘1vf] < 0. (40)

Since we have already shown that V; is conditionally Gaussian, we have

7 ‘
E[e?"] = exp —/ / e'*Bsds
2 JrlJo

Hence, the unconditional expectation of 7" is given by

2 t 2
EQE(e?") =E |:exp (% / / et Bsds M(d§)>:| .
R |Jo

To see that this quantity is finite let us define the following random variable

1 t
Z, = —/ / e Budy
tJriJo

Observe that we can write:
;s 2
Zs+t — ;/ /H_t ezABudu /.L(d)\)
s+t (S + t)z R 0

1 s t 1 s+t
=/‘ s <_/ el,\Bl,du> + (_/ e’w“du>
RIS+E\S Jo s+t \t Jg

2

M(d§)> : (41)

2
u(dA).

2
p(d). (42)
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Using Jensen’s inequality in (42) we now obtain:

s 2 s+t 2
ﬁ </ 5 l/ eBudy ! l/ e*Bugu| ) w(dr)
s+t 7 Jrp\s+r1|s )y s+ttt J
ZV Z/ 1 s+t 2
=-;$7l where Z::gji/’ e Budu| pw(dh).
s R IJs

We have thus obtained that Z satisfies the following sub-additive property:

Ziw <Z;+ Z,. (43)
Moreover, notice that Z; above can be written as
1 s+t 2
Z = —/ f e BBy | 1(dr),
t R /s

due to the fact that |e"‘“5’S|2 = 1. Hence, it is readily checked that Z; is independent of
{By,; 0 <u <5} and thus also independent of {Z,;0 < u < s}. In addition, Z; % Z;. Let
us now slightly generalize those considerations. Namely, consider a new process Z defined
as

ZT = max Z,. 44)

t<T

It is easily seen that the new process Z; is also sub-additive in nature. In other words, for all
T, T, > 0, we have

4 Z 7!
ZT1+T2 = ZT] + ZTQ’

where Z/Tz is independent of (Z,:0 <t < Ty} with Z/Tz 4 ZT2~ In addition, since Z, = 0
and Z has continuous paths, we can apply Lemma 4.3 in order to obtain for all & > 0 and
t >0

E [exp [QZ,H < 00,
and as a direct consequence we also have:
E [exp {GZ,}] < 00.

This proves the boundedness of the unconditional expectation of the exponential moments of
V, as expressed in (40).

Step 4: Conclusion. Observe that using the mean value theorem in its integral form and then
Cauchy—Schwarz inequality one can write:

1
:I =E®E Hq (V, — VZS)/ e)an,8+(l—A)lthd)L’:|
0

1 1 27\ 2
Sq(E®E[|V’_Vz€}2])2(E®E|:/O e)\qV,s-r(l—A)thd)L‘ :|> .

(45)

EQE He”vf — "t
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Using Cauchy—Schwarz inequality on two consecutive occasions separated by Fubini, the object
on the right hand side in (45) can be further decomposed as:

1 2 1
/ equf-&-(l—)»)qV;d)\‘ :| S/ E®E[62Athg+2(l—)\)qV,i|d)\'

E®E
0 0

1

< fl (IE ®F [e‘“qvf]) FEQE[HM1])1ax
' (46)

Observe from the variance of V? calculated earlier in (41) that

& q2 2 d
E [eqvt] = exp 7/ e % / e'$Bsds
R 0

and consequently

EQE || <EQE[e""].

2
M(dé)] ,

Plugging this observation into (46) we obtain

A
E ® E / equtS-‘r(l—k)qud}L
0

2
:|§E®E[e4”vf], (47)
which is finite by our considerations in Step 3 (see (40)). Using (47) in (45) we have

1 1
|za(EeE[lvi-vi[]) (EeE[)):.

Since {V?(x); ¢ > 0} is a convergent sequence in L2(2 x f)), our conclusion now follows by
taking limits. [J

B 3
EQE ’eqvf — et

With the exponential moments of V;(x) in hand, we can now obtain the announced
Feynman—Kac representation of u.

Proposition 4.5. Consider the Gaussian noise W defined by (11). Let u be the unique solution
of Eq. (1) with initial condition uo(x) = 1, written in its mild form as:

t
u(x) =1 +/ pr—s(usW)ds. (48)
0
Then u can be represented as

ui(x) = By [exp (V,(x)], (49)
where Vi(x) is the Feynman—Kac functional defined by (35).

Proof. For & > 0, let [ be the approximation of the identity given in the Introduction. We
define a smoothed noise W® by W® = W x [, as well as the approximation u® of u as the
solution of

ut(x) =1+ / Pi_su W)ds. (50)
0

Along the same lines as for Proposition 3.11 we can prove that

limu® = u in C™°
€10 q
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where «,, A and g are defined in Proposition 3.11. In addition, since u® solves (50) in the strong
sense, it also admits a Feynman—Kac representation of the form

u;(x)=E [evfg(")] ,

where V?(x) is defined by (34). For any p > 1, we are now claiming that for all # > 0 we
have

limE [|uf (x) — u,(x)|"] = 0. s
el0
In order to get (51), notice that
E [[u; ) — 0| ] = B[ [E [0 — 0] "]
<EQE[|[Vi(x) - Vi) (e 4 eri®)].

An elementary application of Cauchy—Schwarz inequality and the fact that V;(x), V/(x) are
conditionally Gaussian yield

1
2

E[|uf(x) —u,(0)|"] < c,,(E ®QFE [|Vt(x) _ Vf(x)|2])g |:(E S F I:e2pV’5(x)]>

1
+(E QFE [EZPV,(x)]) 2i| )
We can now apply directly Proposition 4.4 in order to get
: £ p
limE [uf (x) = u,(x)|"] = 0.

The proof of (49) is now achieved. [

5. Principal eigenvalues

Recall that we have shown in Proposition 4.5 that the unique solution u# of our stochastic
heat equation (48) can be written as

ui(x) = E, [exp(Vi(x))] = E, [GXP </r W(aB_v)dS>j| )
0

where the second identity stems from (35).

Furthermore, W being a homogeneous noise, the asymptotic behavior of # does not depend
on the space parameter x € R. For sake of simplicity we will thus consider x = 0 and
investigate the quantity

u;(0) = Ey |:exp (/ W(fSBS)dS)i| .
0

As we will see later on the following equivalence holds true as r — co:

E, |:exp (fo W(«SBS)ds>] ~ exp (1A (Qr,)) (52)

for a given region R, and a principal eigenvalue type quantity Ay, defined as

1
Ly (D) = sup {W(gz)—zf |g’(x)|2dx}- (53)
geK(D) D
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In (53), K(D) is a set of functions defined by
K(D)={g € S(D): llgl, =1 and g’ € L*(R)}, (54)

where S(D) is the space of infinitely smooth functions that vanish at the boundary of an open
domain D. Notice that K(D) can be seen as a subset of the classical Sobolev space W!'2(R). In
addition, observe that the set KC(D) is not compact, so that the reader might think that the sup
defining Ay, (D) in (53) is ill-defined. However, as we will see in the proof of Proposition 5.9,
our optimization can be reduced by scaling to a compact set G(D) defined by

1
g(D) = {g e S(D): llgl3 + Ellg’llg = 1}' (55)

Before establishing relation (52), we will try to get some information about the limiting
behavior of Ay (D) as the size of the box D becomes large.

5.1. Basic results

In this section we establish some Gaussian and analytic results which will be building blocks
in the asymptotics (52). We start by noting that W(g) is a well-defined Gaussian field on the
space (D) defined by (54).
Lemma 5.1. Let g € K(D) for any D C R. Then

1 2
W(g?) — Eug’n2 <00 as.

Proof. Note that the variance of W(g?) is given by

Var [W(g?)] = ex /R F2@ el de. (56)

Also observe that for g € (D) we have

|FgX®)| = ’ /R e 2 (x)dx

< / |g2(x)|dx =1.
R

In addition, an elementary integration by parts argument shows that

’ 1 dg? )
/ e g (x)dx = —i/ (—i> e % dx.
R r \§ dx

Hence for any £ € R and g € (D) we get

d 2
Fg2®)| < |s|*1/ ’dim
R X

dx = 2|s|*1/R|g<x)||g’(x>|dx <2E17M1g N,

where the last inequality follows from Cauchy—Schwarz inequality and observing that || g||, = 1
for g € K(D). Let us now break up the variance in two parts by utilizing the two bounds just
established.

1
/lé|fg2<s>\2|s|l—”’ds < /1 ISI“Z”dS+4IIg/II§/|

&=

_ 1 4gl;
(+2H) e _ 2
1 €] S=1—gt g

(57)
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We thus get that the variance of W(g?) is bounded and consequently W(g?) is finite almost
surely. Coupled with the fact that ||g’|l, < oo whenever g is an element of (D), we get that

1
W)= Slglh <oo as O

Remark 5.2. The following variational quantity will play a prominent role in our limiting
results (see also (7) in Theorem 1.2):

E= sup / /.e“\"gz(x)dx
¢e6®) JR [JR

The computations of Lemma 5.1 imply that £ is a finite quantity. Moreover, if we denote
E = E(W), then it is easily seen from relation (56) that

E(pW) = p*E(W) (59)

2
A= 3., where G is defined by (55) 9

The first result we need on Gaussian processes is an entropy type bound.

Lemma 5.3. Let W be the noise defined by (11), and recall that G(—e, ¢) is given by (55)
for all € > 0. Then we have:

lim E|: sup W(gz):| =0.

e—0t 2€G(—¢.¢)

Proof. The beginning of the proof is similar to [8, Lemma 2.2], and we will skip the
details for sake of conciseness. Indeed, one can mimic the entropy arguments developed in
[8, Proposition 2.1] and show that

imEsup {W(g"): g € G(Q1) and E[W (¢")]" = 6} = 0,

where we remind the reader of the notation Q, = (—t, t). Then, still following the steps of
[8, Lemma 2.2], it suffices to show that

lim sup E[W(g)]’ =0. (60)
10 ¢eG(0:)

To establish (60) we use the alternate expression for our covariance function as in (12), which
yields the following expression for all functions g € G(Q;):

2 2002
E[W ()]’ =CH/RfR lg7x TyTz)—ZHg O 4 xdy. 61)

Since the domain of any function g € G(Q,) is contained in Q,, let us break the right hand
side of (61) into three parts by integrating over three regions {R;};_; , 3, Where

Ri={x,y): x| <e|x+yl <s},
Ry ={(x,y): x| <e |x+y|l > ¢},
Ry ={(x,y):|x| >¢&,|x+yl <e}.

Consequently,

E[WEHP =L+ hLe + L.,
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where

lg°(x +y) — &)
lie = CH/ 220 dxd
R; N

Let us now work with each integral I; , in succession. In order to upper-bound I, ., observe
that

|2 + ) — 2(0)| = Ig(x + ¥) + g [g(x + y) — ()|,

and that
x+y
lglx +y) — g)| = / g'(2)dz

x+y
< / g ()1dz

by an application of the Cauchy-Schwarz inequality. Thus the integrand in /;, can be
upper-bounded as follows:

MY FRPVANIR (62)

2@+ =20 gl + ) + g0l +y) — g0
|y B |y

(RX+y)+g%mMMHIﬂ
|y|2 2H

where we have used (62) and the fact that |a + b|> < 2(a? + b?). Plugging (63) in I; . and
using the fact that ||g’||§ < 2 for every g € G(Q,), we obtain:

2 2
I, <%Hf gurﬁtyum
y

2()C-i-y) g% (x)
_4CH[/ dx/ T12H / / IZH]
—¢ —e— [y —¢ —e—x |)’|
2
Iy Ny P

Let us now recall some basic analytlc facts taken from [1, Chapter 4]: the Sobolev space W2
is embedded in any L¥(R) for all k > 2. More specifically, for all k > 2 we have

(63)

dxdy

gl Lkm) < cllgllwizg) (65)

where ¢ is a positive constant independent of g.
We shall invoke (65) in order to bound the first integral on the right hand side of (64).
Namely, apply Holder’s inequality with two conjugate numbers p and ¢, which gives

2 1 1

g (2) (/ 5 » dxdz i

——— 5y dxdz = lg(2)|*Pdxdz e S
/(_8’8)2 7 — x|\ 72 ey 8 oo |2 — x|0-2H

We now take a small constant § > 0 and ¢ = fﬁ, which means that p =

inequality (65) plus some elementary computations show that for ¢ < 1

SH5 H . Then

82(2)
AT <cusllgli, 2w)€ = 3ChsEs
(—¢.8) -
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where we resort to the fact that ||g||%w2 ® = 3 whenever g € G(Q,) for the last inequality.

Using this information in (64) and noting that the second term in (64) is bounded thanks to
elementary considerations, we obtain:

Iie <cp (Bense + lglze®™) < cuse. (66)

Let us now work with I, and I5 .. Observe that I, can be expressed as follows:

2 2 2
gx+y —gkx)
b :CH/ | Ry | dxdy
Ry [y
4
g (x)
ZCH/ e dxdy
Ry [yl

&€ —E&—X dy o0 dy
4
=CH/8(X)[/ —,+/ —}dx
e oo |y|2 2H ey |y|2 2H

CH € 4 1 1
= dx.
1—2H L §') [(e o g |
We let the patient reader check that the same kind of identity holds for /3 .. Thus, we find that

2en (¢, 1 1
12,8 + 13,8 =< 1_2H 78g ()C) |:(8 _x)l—ZH + (:9 +x)1_2H:| dx. (67)

In order to bound the right hand side of (67), we use the same strategy as for I; .. Namely, for
P, q > 1 satisfying % + é = 1, Holder’s inequality imply

1 1
26‘[.] ¢ 4p P € dx a
hethe=170g (f_s g — (& —x)(1=2MDa

€ dx 7
+</—s (e +X)(12H)q> '

As before, let us now fix ¢ = 75%. This implies that the integrals [, (¢ +x)~17>")dx are
finite and each is equal to cse'~? for a universal constant c;. Putting together this information,

we find

b+ I < cusliglt et
Moreover, a second usage of Eq. (65) plus the fact that ||glly12@) < V3 yield:

lgllap < cpllgliyrz < epV/3.
Thus, we obtain:

Lo+ Iy, < cusei (68)
Combining the inequalities (66) and (68) we find that

hetbe+ e <cuse’,

for a given v > 0, uniformly for all g € G(Q,). Therefore we get

limllﬁg +he+ 15, = 0.
el0

We have thus proved (60). O
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We now introduce the scalings which will be needed in our future computations.

Notation 5.4. For fixed u > 0 and t > 0 we introduce a scaling coefficient h; defined as:

hy = /u(log 1) T (69)
Then for each g € S(R), we define a L*(R)-rescaled function g, as follows:
&(x) = Vhig(hx). (70)

Also, denote by Q, the open interval (—r, r).

We now see how to rescale the principal eigenvalues related to W in boxes of the form Q,.

Lemma 5.5. Let W be the Gaussian noise defined by (11). For a box Q; = (—t,t), recall
that Ay, (Q) is given by formula (53). Then the following relation holds true:

1 1
Mp(Q) =h sup  §5W(gh)— 3 / g/ (0)Pdx ¢ (71)
gek(Qu,) | i Qi

where the quantities h, and the function g, are introduced in Notation 5.4.

Proof. Notice that the map g + g when defined from K(Q,;,) to K(Q,) is a L*(R)-
isomorphism between the two spaces. As a consequence, sup,.xo,) A(g) = SUPgekc(Qup,) A(gr)

for any general functional A defined on a domain included in L*(R). Hence,

1
Ap(Q)) = sup {W(gz)—i fQ |g/(x>|2dx}

gek(Qr)

1
= sup 1 W(g) -5

2
5 lg;(x)|"dx } .
2eK(Q1ny) O

Also, since g/(x) = h,>*g'(h,x), we get
2 2 L2
[ leiolax = [ wlghofar=u [ gl
o} Or Oth

1

where the second identity is due to an elementary change of variable. Consequently,

1 /
Ai(Q) = sup {W<g2>—§ |g<x>|2dx}
gek(Qr) (o}
2 1 2 1 / 2
=h; sup —ZW(g,)—E 1g'(xX)|"dx ¢, (72)
gekK(Qu,) | i O,

which is our claim. [

Remark 5.6. One can justify the scaling by 4, given by (69) in the following way: let
us start with the rescaled version (71) of Ay (Q,), which is valid for any weight A4,. In
addition, we will see in Section 5.2 that the main quantity we should handle in (71) is the
family {ht’2W(gt2); t> O} and we want this family of Gaussian random variables to remain
stochastically bounded in ¢ as ¢t — oo. Next an elementary computation (see (86) for more
details) reveals that for all g € IC we have

of, = Var [ 2W(gh)] = cpgh; . (73)
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Due to the Gaussian nature of ht’zW(glz), we thus have (for all x > 0)
P(h 2 |W(g2)| > x) < e /o, o

A natural way to have the family {h;2W(g?); t > 0} stochastically bounded is thus to pick the
minimal /4, such that one can use Borel-Cantelli in the right hand side of (74). It is readily
checked that this is achieved as long as a,_gz is of order log . Recalling the expression (73) for

a,%g, this yields /4, of order (logt)l/z(”H).‘

In the following two subsections we explore the long-time asymptotics of Ay, (Q;). More
precisely, we will try to prove the following:

Ay (Q1) _ 1/(14+-H)
ti}n(;lo W = (ZCH(C;) a.s. (75)

5.2. Upper bound

In order to get the upper bound part of (75) we rely on the general idea that principal
eigenvalues over a large domain can be essentially bounded by the maximum value among
the principal eigenvalues on some sub-domains. See [11, Proposition 1] where this result is
proved when the potential is defined pointwise. In [8] the same result is stated to be true for
generalized functions as well. We start with an elementary lemma whose proof is very similar
to the aforementioned references.

Lemma 5.7. Let r > 0. There exists a non-negative continuous function ®(x) on R whose
support is contained in the 1-neighborhood of the grid 2rZ, such that for any R > r and any
generalized function &,

Ae—oy(Qr) < max  Ag(z+ Qri1), forall'y € Q,, (76)
2€2rZNQR

where ®Y(x) = @(x + y). In addition D(x) is periodic with period 2r, namely

d(x +2rz) = P(x), x€R, z€Z, )
and there is a constant K > 0 independent of r such that

1 K

— O(x)dx < —. (78)

2r Jo, r

We now show how to split the upper bound for the principal eigenvalue Ay, (Q,) into small
subsets.

Lemma 5.8. Let W be the noise defined by (10) and Q, = (—t, t). We consider the principal
eigenvalue Ay, (Q,) given by (53). Recalling that h, is given by (69), the following inequality
holds true:

i (Q1) < By <£ + max Xz(t)> ; (79)

r ZEZrZﬁcht
where the random field {X (t); z € 2rZ,t > 0} is defined by:
W(gh 1
X()=  sup ) 1 | gwrar. (80)
8eK(z+ Q1) hl 2 (7
In (80), the set K(z + Q,41) is given by (54) and the function g, is defined by (70).
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Proof. Let {W;(y), ¥ € D(R)} be the generalized Gaussian field defined as W,(y) = W(y;)

where 1/}t(x) = h;¥(h,x). Then with the definition (70) of g, in mind, notice that W(glz) =
Wt(gz). Thus invoking Lemma 5.5 we have:

2 2
h; gk, | i 2

1 1 )

= sup {oWied - / ') dx

geK Q) | i Ouny
= sup {<iW,— i/ dy g2>+<i/ &7 (x)dy g2>

ek L\A7 2r Jo, ’ 2r Jo, ’

1
—5/ lg’(x)lzdx},
(7

where (W,, g?) is understood in the distribution sense. Hence inequality (78) and the fact that
(g2 1 =1ifge K(Q:p,) yields

1 K 1. 1 1 )
Lo =54 wp <—W——f ¢>’dy,g2>——/ g (0)Pdx L.
p2= ro gekion) | \R7 "o2r 2 Jo,,

Therefore bounding sup [ by | sup and invoking the definition (53) of the principal eigenvalue,
we end up with:

1 K 1 1 . y 2 1 / 2
Shi@)= ko [ s How— @) 2 [ jgrdx fay
hi 2r Jo, gekou,) | \hi 2 Jou,

o (Qun)dy.

1
AW<Q>— sup { W(g)——/Q |g’(x>|2dx}
thy

- K + 1 .
2r %—
t
We can now resort to (76) in order to get:
1

—A < — max Ay r .
h2 Ww(Qr) < - +zeermQ,,,, hm,?t @+ Qrs1)

Recall again that W, is defined by W;(yr) = W(Iﬂ,) where &,(x) = h, ¥ (h,x). Thus we have

1 K
—A <— + X (1),
h2 W(Q ) EZ?ZI%)(Q,ht Z( )

where the random fields {X,(¢); z € 2rZ, t > 0} are defined by (80). Our claim (79) is thus
easily deduced. [UJ

We are ready to state the desired upper bound on our principal eigenvalue.

Proposition 5.9. Let 1y (Q;) be the principal eigenvalue of the random operator %A + W
over the restricted space K(Q,) of functions having compact support on (—t, t), defined by (55).
Then the following limit holds:
A’ .
lim sup —W(Qtl)
t—00 (log I)W
where we recall that £ is defined by (58).

< Qep)FE,  as.
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Proof. We shall rely on relation (79) and bound max;e2,zng,,, X (f) thanks to Gaussian entropy
methods. We divide the proof in several steps.

Step 1: Reduction to a Gaussian supremum. By homogeneity of the Gaussian field
{W(@); » € D(R)}, the random variables {Xz(t)}zleZmQ,h, are identically distributed. Con-
sequently we have

P[ max  X.(t) > 1} <#{2rZ N Qu, } P[Xo(1) > 1]

2€2rZNQyp,
th;
<|— | P[Xo(®) > 1]. (1)
r
Recalling the definition (80) of Xy(#), we thus get
lh,) 1 ) 1 / , 2
P max X)) >1|{<[—|P su —W - = )| dxy >1].
[zezrzmgm, e }_ ( r Le;qgrim:h? ®)73 iy g
(32)

Notice that in (82) the Gaussian supremum for the family (W(g,z)) is taken over the set K given
by (54). However, this set is not compact, which is not suitable for Gaussian computations
(see e.g. the discussion after [2, Lemma 1.3.1]). In the following steps we will reduce our
computations to an optimization over a compact set of the form G (see Eq. (55)). To this aim,
for any g € K(Q,+1), set

8
¢ =
I+ 51g'l5
Notice that since || g|l, = 1, we have
8t

J1+ g1

where the notation ¢, is given by (70). Therefore the following rough estimate holds true for
the parameter &, defined by (69):

¢ €G(Qr41), and ¢, =

1 1
—W(p}) < — sup W(D.
h? T R peco,ny

1
Moreover, recalling that ¢? = (1 + 1 g/||§) g2, we find

1
1 (1+5000)
—W(gh) < ~——2% sup  W(fD.
h2o h} Fe6WQre

Thus, subtracting ||g’||§ on both sides of the above equation we get the following relation for
all g € K(Qr11):

1
1+ —||g’||%)

Lwy- 1 f 1g'Co)| dx <<2— sup WD) — 2118112
2t 2o, - h} fegn 202
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Taking supremum over g € K (Q,41), this yields
1
2
1+ Sl

1 2
Xo(t) = sup ———>—— sup WA - =lg'l
2ek(0,41) h; F€G(Qry1) 2

Consequently, if Xo(¢) > 1, we also have

sup ; W(f3) 1
sup feg(Qr;l) o 1 (1 + 5”8/“%) >0,
2eK(0,11) h;

or otherwise stated:

W(f? 1
sup ({’ ) _ 1 sup <1 + —I|g'||§) > 0.
1e6(0pn) i geK(Q,11) 2

It is readily checked that the above condition is met iff sup reg o, , ) W( £ > h?. Summarizing,
we have shown that

{Xo(l)Zl}C{ sup W(ff)zh?},
f€G(Qry1)

which implies

P(Xo(t)> 1) <P| sup W(g)>h;|. (83)
8€G(Qr+1)
We are now reduced to the desired sup over a compact set.
Step 2: Gaussian concentration. We now evaluate the right hand side of (83) by standard
Gaussian supremum estimates. Namely, some elementary scaling arguments show that for each

g€G(0r11),

s —ip2
(ht 1) 2
I+ — llg"llz & € G(Q¢+1y/m)-

Moreover by the linearity of Gaussian fields and due to the fact that ||g’ ||§ < 2 whenever
g € G(Qr41), we get

E|: sup W(gtz)] < th[ sup  W( fz):| = h%5,. (84)
2€G(Qry1) £€GQu+1)/n;)

In addition, Lemma 5.3 asserts that lim,_, o, §; = O (notice that the fact of working on a box
with finite size r 4+ 1 is crucial for this step). We are now in a position to invoke Borell-TIS
concentration inequality for Gaussian fields (see [2, Theorem 2.1.2]) and our inequality (84),
which yields

P| sup W(g))>h;
8€G(Qr11)

=P| sup W(EH—E[| sup W(H|=hr1-4)
geg(Q;‘+l) gEQ(QH-])
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hA(1 — §,)?
<exp| -5 |, (85)
207

where o is a parameter defined by 67 = sup,cgo,, ) Var [W(g?)].
We now find an upper bound for the term o in (85). This is achieved as follows: Owing
to the definition (11) of the covariance of W, we have

2 _
o =cy sup /|fg$(g)y A2 d
R

geg(Qr+l)
=cyg sup //e’“gtz(x)dx
8€9(Qr4+1) YR [JR

Therefore, recalling the definition (70) of g; and invoking some easy scaling arguments we
obtain:

2
A 2H d.

2
o} =cyh?™"  sup / / e g?(x)dx| [T d)
8€9(Qr4+1) YR IJR
2
ScHh,Z_ZH sup / /e’}‘xgz(x)dx |A|1_2Hdk=cHht2_2H8, (86)
geg@®) JR /R

where we recall that £ is a finite quantity according to (58). We can plug our upper bound (86)
for the item o7 in (85) and replace h, by its value /u(log n)V/CU+H) We end up with:

) ) (1 _ 8t)2u1+H
P sup W(g)>h;| <exp|———=7——1logr]).
$€G(0rs1) 2cn

We wish the series ), P (supgeg(gm) W(g%k) > h%k) to be convergent. To this aim, owing
to the fact that lim,_, », §; = 0O, for ¢ sufficiently large we get

1

P sup W(g)>h!) <exp[—(1+v)logt] = = (87)
geg(Qr+l) t

where v > 0 is a small enough constant, provided the following condition is met:

u> Q2cy&)V/I+H), (88)

Here we highlight the fact that t=(+") is obtained in the right hand side of (87). This exponent
lead to our choice of scaling by h, = \/u(log)20+™ in our computations (see Remark 5.6).

Step 3: Conclusion. Now, we summarize our steps so far. Thanks to (81), (83) and (87) we
have

P[ max X.(t) > 1:| < (&>P[Xo(l) > 1]
r

2€2rZNQsp,
th
s<—’>P sup W(g?) = h?
r 2€G(Qr41)

th, h; 1
<|— )exp(—(1 +v)log?t) = ——.
,

rtv
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Take the sequence #; = 2X. Then we have

1
log £,) 20+
p|: max  X.(4) > 1:| < ﬂ% — \/_E(k log 2)2(1111) 2k,
r k r

z€2rZnN Q’k”tk

and the right hand side of the above inequality is the general term of a convergent series. By
Borel-Cantelli Lemma, we thus have
limsup max X, (%) < 1, a.s. (89)
k—o00 ZEZ”ZQthh,k
We now draw conclusions on the principal eigenvalue itself. Indeed, from (79) and (89), it is
readily checked that
Ayi K
lim sup LQI"I) < (— + 1) u, a.s.
oo (logr) ™M \T
Thus some elementary monotonicity arguments show that
Ay K
W(Qzl) - (

lim sup — + 1) u o as. (90)

=% (logt)T+m
Since the constant K in (90) is independent of r, and r can be arbitrarily large, we also get

)“W(Qt)

limsup ———— <u as.
t—>00 (logt)m

Eventually recall that we had to impose the condition (88) on u. However u can be taken
1
as close as we wish to the value (2cg &)+ . As a consequence we get

A’ .
lim sup —W(Qtl)
1= (logt)d+H)

r

< Qexg&VHH as. 0O

5.3. Lower bound

This section is devoted to a lower bound counterpart of Proposition 5.9. We start by a lemma
asserting that A,;(Q,) cannot get too small with respect to an order of magnitude of h?2.

Lemma 5.10. Let Ay (Q;) be the principal eigenvalue of the random operator %A + W over
the restricted space K(Q,) of functions having compact support on (—t,t). Then we have the
following upper bound:

w 2
Py(@) < i) <P| sup ) <], oD
8€G(Qrn,) h;
Proof. Observe that from (71),
W) 1
P(hi(Q) <hi)=P| sup (f’)—— / lg)[fdxt <1]. 92)
gekQu | Pi 2 Jou,
Moreover,

W) 1 W(g>
P| sup (f’)—-[ g dx} <1 <P| sup (ff)gl . (93)
eek(Qum) | N 2 Jou, 960, N
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This is proved similarly to our considerations in Step 1 of the proof of Proposition 5.9, details
are included here for sake of clarity.

Namely, in order to prove (93), notice that for g € G (Qy,), we have ¢ = m € K(Qun,)-
Consequently
W@ 1 W(ihH 1
(‘f‘) - —/ 6'00)’dx < sup (J;’ 20 —/ | /@) Pdx
hi 2 Jom, Fek@Qup | B 2 Jou,

Thus the bound

W3 1
sup (ff)—— / |f'@))dx < 1 (94)
fek@m | hi 2 Jo,,

implies, still with ¢ = g/lIgll2,

W(¢12) 1 / 2
2 E/cht |¢'(0)|"dx < 1.

This in turn gives the following inequality when we write down ¢ in terms of g:

Wigh 1

’ 2 2
— = g’ dx < lIgll3-
h? 2/Q

Therefore we have obtained, for every g € G(Qy,),

W(g?)
hi
where the last equality follows from the fact that g € G(Q,p,). Taking supremum and recalling
that we have assumed (94), we get

W) 1 W(g?
sup (‘g’) - —/ ]g’(x)‘zdx <1;cC sup (f’) <l1i.
geKu) | Hi 2 Joy, §€G(Qm,) i

Thus, (93) is proved and (92) can be further reduced to

1
< lghs+ 58l =1,

2
P [1(Q) < h{] §P|: sup 8r) 1],

2eG(Qu,) i
which proves our result (91). O
Our next lemma is a general bound for Gaussian vectors with nontrivial covariance structure.

It is borrowed from [8, Lemma 4.2] and will be used in a discretization procedure which is
part of our strategy for the lower bound on Ay, (Q;).

Lemma 5.11. Let (&1, ...,&,) be a mean-zero Gaussian vector with identically distributed
components. Write R = maXx;; !Cov(é,-, & j)| and assume that Var(&,) > 2R. Then for any
A, B > 0, the following inequality holds true:

pfpuce = 4] = ([ = PRI, "+P[U>i}
k<n T - - Var() ~ V2R

where U is a standard normal random variable.
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We can now state our lower bound on the principal eigenvalue Ay, (Q;).
Proposition 5.12. Under the same conditions as for Lemma 5.10, the following lower bound
is fulfilled:
)‘W(Qz)
1
(logt) T+

lim inf > Qep€)TE as.
—>00

Proof. We divide the proof in several steps.

Step 1: Reduction to a discrete Gaussian supremum. Let the constant » > 0 be fixed but
arbitrary and set N; = 2rZ N Q,_,. When ¢ is large enough (namely ¢t > r and h; > 1), it is
readily checked that i,z + Q, C Qy, for each z € N;. Hence,

sup W(g))>=max sup  W(g).
$€G(Oiny) 2Nt geGhiz+0r)

and thus owing to (91),

P[hy(Q) <h?]<P[max sup W(gd) <h?|.
2N geGhiz+0)

For any ¢ € G(Q,) and z € N, notice that g°(-) = g(- — h;z) € G(h,z + Q,). Hence
MAaXze N, SUPgeg(hy2+0;) W(gf) > maxgen, W((gf)z), for any ¢ € G(Q,). The consequent
inequality is therefore:

P[hi(Q) < h2] <P (mi‘v" W((g) < h?) : (95)

for any given (but arbitrary) g € G(Q,).

Step 2: Control of covariance. For ease of presentation let us denote W((gf)z) by &.(r). We
will try to control the covariance Cov(&,(¢), £,(t)) for z,z' € N; in order to show that the
assumptions of Lemma 5.11 are met. First notice that F ((gz),z) can be also expressed as:

2
F (&) ® = A; e i) dx = /R e Vg )| ax

- / e "5, g% (hy(x — 2))dx.
R

Therefore, with change of variable s = h,(x — z) we get:

F (@) @) =e /R e ¥ g (s)ds = e Fg? (5) (96)

Hence, the covariance of the random field &,(¢) is given by

Cov (&.(1), £.(1)) = /1; Fg)2 &) F @R EndE)

:CH/ ezé(z—z/) ]:gZ <£)
R hy

where the last equality follows by using (96) and by plugging in the value of u. Changing
variable, we can rewrite the covariance as

Cov (,(t), £/(1)) = cyh;" ™™ / ethiu=2)
R

2
lgI' 2 dg,

F2@)|’lul' " du. 97)
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In particular, we have
Var (0(1) = cuhy' "o (g) (98)

where 0%(g) = [ |J—'g2(u)|2|u|1_2Hdu, which is a finite quantity when g € G(Q,) according
to (57). ]

Recall that i, = \/u(logt) ™™ and thus h, — oo as t — oo. In addition, h;|z — z'| > 2h,r
uniformly for z # 7’ in N;. Also observe again that ¢ € G(Q,) and hence G(u) =
|.7-'g2(u)|2|u|1’2H is in L' thanks to (57). By Riemann—Lebesgue lemma, we get the following
assertion uniformly for z # 7’ in N;:

. o 20 -
lim | G Z)}]—'gz(u)| lu|'*du = 0.
11— 00 R

Therefore, plugging this information into (97), we end up with

Ry = max |Cov (£.(1), & ()] = o(hy" "), (99)
m;;z/ !
Furthermore observe that (98) implies lim,_, o[ Var(£0(1))/h>' =] = cyo*(g) > 0. Thus we
also get Var(§y(t)) > 2R, for ¢ sufficiently large. Summarizing our considerations so far, we
have proved that the family {£,(7); z € N;} satisfies the conditions of Lemma 5.11 if ¢ is large
enough. We now introduce an additional parameter v > 0 (to be chosen small enough later on)
and we resort to Lemma 5.11 with A = h? and B = vh? in order to write:

P [max £.(1) < hf} <Vv'+v?2 (100)
2eN;

where R; is defined by (99), and

N
L » | 2R, + Var(§y(1)) ) vh? j|
V) = (P |:§o(l) < +vhn /—Var(éo(t)) D .V —P[U > N

We now bound these two terms separately.
Step 3: Bound on V7. First, we bound the term V? on the right hand side in (100). By a
classical bound on the normal tail probabilities:

P[U L vkt } oL V2R ( vzh?) (101)
xp [ — .
= 2R T Vam vz P\ TR,
Since by (99), % — 0 as t — oo we have for ¢ sufficiently large
1 V2R
— <1 (102)
A/ 27'[ Uh[

1
As for the term inside the exponential in (101), observe that (recall #, = /u(logt)2T+% again)
vzh? B vzht2(1+H) hIZ(l_H) v2ul+H h?(l—H)

= = logt,
and that for ¢ sufficiently large
R, 4 1

20 p2 1+ <3 (103)
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Plugging (102) and (103) into (101), for ¢ sufficiently large we have

V2 P[U - vh? ] - 1 /2R, ( vzh;*) - (—21og ) 1 (104)
= exp| — exp(—<10 = 5-
! = 2R Vax o TP\ Tagr, ) =P s t*

Step 4: Bound on V,'. Let us now bound V,' in (100), which can be written as

Ni
v (pl_B0 (04 vrd 2RV T\
r = = . (105)
A/ Var(&y(1) Var(&o(1))
Therefore according to relation (98), we have
V! =@[U < hN
where we have set
1+ v)ht“”H R; 5
= kg | T ene®)
In order to work with this last term we can rewrite it as:
vi=®Ww < h)™M =1 -Pw > ,pM!
1 [N IPLU>It]
= ——log (1 —P[U > 1 . 106
[exp (P[U —log (1 —PIU > J))] (106)

Owing to (99) and the fact that lim,_, ., h; = 00, it is easily checked that lim,_,»/, = oo.
Therefore,

1
lim exp | ————
1—00 PlU > ;]
Let us now concentrate on |[N;|P[U > [,] in (106). We use the following elementary facts
about /;:

log (1 — P[U > 1,])) —e! (107)

(1) lim; -, 0 % =0, and thus
'

1
lim (1 — cogh! ™) = 0, where ¢,y = (108)
t—00 ch o(g)

(i) Since lim, .o, [, = oo, we have lim, o, L, /?P[U > [,] = —L

f

Using this information it is easy to see that

g 1 204+H)
P l ot o <_Tght
[U>1]~ ~
Ty V2, ghi

1
With the expression h; = /u(log(¢))2™+® in mind, this yields

1+H

2 u
exp (—L”””z 10g(t)>
PlU > [;] ~
T VImey, [t log(n)] 2

and thus

1
PlU > ;] ~

1+H

]1/2 ‘%w%'u

V27 ey o[u+H log(n)] "t 2
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In addition, we also have || ~ £, which yields

17[,%&“1#1

t 2

V2mey o[u+H log(t)]l/zr

Recall now that ¢,  is given by expression (108). Hence, choosing v small enough and provided

WNAPLU > [] ~

u < (2eno’(@)", (109)
2 l+H
we can check that —£5— < 1. Consequently, for ¢ large enough we obtain:
IMPIU > [,] > t#, for some B > 0. (110)

Plugging (107) and (110) into (106), we get the following relation for ¢ sufficiently large:

N
1 _ 2 2R, + Var(éo(f)) B
Vi = (P [Eo(t) < (1 +vh; | NG ]) <e . (111)

Step 5: Conclusion. Reporting inequalities (104) and (111) into (100), we find:

P | max W((g%)?) < h? <i+L
zeN; &0 =M 12 efﬂ’

for some B > 0 whenever
u < (2CH02(g))ﬁ.

Now appealing to (95) and using Borel-Cantelli Lemma:
1iklggfh,;2,\W(Q,k) >1 as.

i
for some increasing sequence f#; of integers. Thus the expression h;, = /u(logt)2+% and
some elementary monotonicity arguments show that

liminf)LW(Q,)(logt)_l/(HH) >u as.
t—00

1
Now thanks to (109) and taking u % (ZcHaz(g))W, we have for every g € G(Q,),
1
litminf)\W(Q,)(logt)_l/(“’m > (2cyo®(9)) *7 as.
—00

Recall that £ = sup g, 02(g). Hence taking supremum over g € G(Q,) and letting r — 0o
gives the needed lower bound

liminf A (Q)(log )™ V1) > Qe &)™ as. O
—>00

6. Lyapounov exponent

In this section we will combine the Feynman—Kac representation of # and our preliminary
study of the principal eigenvalue A,;(Q,) in order to get the logarithmic behavior of u,(x),
achieving the proof of our main Theorem 1.4.
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6.1. Preliminary results
Recall that V¢ is defined by (34), and observe that one can also write
t .
VEx) = / WE(By)ds,
0
where W* is the regularized noise given by

W () = /}R L(x — YW (dy). (112)

The following lemma will allow us to extend the domains on which principal eigenvalues
are computed. The interested reader is referred to [8, Lemma 2.2] for a proof.

Lemma 6.1. Let W be the Gaussian noise whose covariance is defined by (10), and let W¢
be defined by relation (112). For a bounded measurable set D C R we write D, = (—¢,¢)+ D
and define for positive 0 the eigenvalue type quantity )‘;_W(D) by:

Ay (D) = 18%1 hgvir(De)
Then Mdyyye(D) is bounded as follows:
Ao (D) < lirg%nfkewg(D) < hr?foup Agyre(D) < A;W(D) a.s.
The second lemma below is a first relation between Feynman—Kac representations of Eq. (1)

and principal eigenvalues. It is stated for a general potential £ which is pointwise defined but
not necessarily bounded.

Lemma 6.2. Let £ : R — R be a potential, not necessarily bounded. Let tp be the stopping
time defined by tp = inf{t > 0: B, ¢ D} for a measurable bounded set D C R. Then the
following inequalities hold where Lz(D) is defined similarly to (53):

(i) We have:
/ IEX exp {f &(B,)ds rD>,} dx < |D|exp {tkg (D)}. (113)
D

1 and Aga)e(D) < 00 we have for 0 < § < t:

":l:l»—

(ii) For any o, B > 1 satisfying +

f E, exp{ / £(By)ds tD>l} dx > (27)%/281/2¢%/2B) | p|~2/B %
D

exp {—8(/ B)A (/i (D)}
x exp {a(t + A, -1:(D)} . (114)

Proof. The proof of (113) relies on classical Feynman—Kac representations of semigroups.
Namely if 7,g is the semigroup on L?(D) defined by

Tig(x) = E [CXP {f E(Bs)ds} g(Bz)l{er}} , 1=0,x€eD, (115)
0

it can be shown that the generator A of 7, admits a Dirichlet form defined by

1
(g. Ag) = f §(0g(0dx — 5 / Ve(oldx.
D D
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One can prove that

A = sup (g, Ag) = sup (g, Ag) = Ar:(D).
g@‘ﬁg) geK(D)

Then (113) is obtained thanks to some spectral representation techniques. The reader is referred
to [6] for further details and to [7] for the lower bound (114). [

The following lemma holds as a consequence of the Markov property for the Brownian
motion B, and will yield a second relation between Lyapounov exponent and our principal
eigenvalue. It is borrowed from [7, Section 4].

Lemma 6.3. Let &: R +— R be a not necessarily bounded potential and D be a measurable
bounded set. Let 0 < 6 < t and assume 0 € D. Let é + % =1

(i) The following upper bound holds true:

' 5 1/8
Eo [exp {/ E(Bx)ds} I{th}] < (Eoexp {ﬂ/ g(BS)dSD %
’ 0
1 -8
<W /D]Ex [exp{a fo S(Bs)ds}

1/a
X l{szt_g}i| dx) .

(ii) We also have the corresponding lower bound:

t ﬁ § —a/p
Eo |:exp {/(; E(Bs)dsH > <E0 exp {_E/O é(Bst}) X
1 t—6 o
(/ ps(X0)E, [CXP {—/ E(Bs)ds} l{TD>[—5}i|dx> )
D o Jo

where we recall that ps designates the heat kernel in R (see Notations in the Introduction).
6.2. Upper bound

We can now apply the preliminary results on exponential functionals of B recalled in the
last section, in order to get a first comparison between log(u,(0)) and the principal eigenvalue
Ay (Q¢). The logarithmic asymptotic behavior of u,(x) can be upper bounded thanks to the
following result.

Proposition 6.4. Let {u,(x);t > 0,x € R} be the field defined by (49). Then the following
holds:

. 7 log(u(0))
limsup ——— <
t—00 )\W(Ql)
where Q; = (—t,t) and Ay (D) is defined by (53) for a domain D.

L (116)

Proof. Step 1: Decomposition of u;(0). To implement the upper bound (116), let us introduce
a constant M to be specified later on and for k > 1 let R; be defined by

1 k
R, = [Mt(log 1) Ty } . (117)
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Also recall that, according to (49), we have u,(x) = E, [exp (V,(x))], where V;(x) and V?(x)
are defined by (35). We now set V;(0) = V; and V?(0) = V. With these notations in hand,
we decompose u,(0) as:

u,(0) = Eg [exp (V)]

=Ey |:eXP V) I[TQR1 Zt]] + ZEO |:exp V) I{TQRk <I=Top.., }:| (118)

k=1
In order to upper bound the terms in our decomposition (118), we apply Holder’s inequality
to each term in the sum. We get:

o0
w(0) < Uro+ Y Polrg, < 0'Usx (119)
k=1
where
U =E [EVII{TQR, Zt}] , (120)
and for k > 1
Uy =E)? |:62V’1 } . (121)
{TQRHI Zt]

We will now bound the terms U, ; separately.

Step 2: Regularization. Let us replace the quantities V; by V/ in the definition of U, ; for
k > 0. The corresponding random variables are denoted by Uy, . We start by getting a uniform
bound for Uy ,. Namely using Lemma 6.3(i) write

& __ Vtg = [ Ve
Uiy =Eo |:e IErQRl >t]:| Ko |:exp </(; w (Br)dr) l{tQR1 >z}]
1 . 1/q 1 =1 .
< (IEO [exp(q/O W*?(Bs)ds)]) <E on E, |:eXp (p A WE(Bs)ds>
1/p
X I{IQR| zt—l}:| dx)

1/p
_ v\ 1 e
- (Eo [eq 1]) (m/QRI E, |:eP | 1’rQR1 1) dx | . (122)

We can now apply Lemma 6.2(i) to the right hand side of the above equation. This yields
/ E, I:epV’El(X)l{r >tl}} dx < \QRl | 28 [(t - l)kag(QRl)] :
O, Or =

Computing the volume |Q R | and plugging into (122) we obtain:

L (2R2\ % -1
i = Eolese @) (1) o[£ 00 | "

We now take limits in Eq. (123). In order to handle the left hand side of (123), we observe
that the random variable E [eVre] converges in LI({2) to E [evf] for ¢ > 1 thanks to
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Proposition 4.4. Therefore for all ¢ > 1, an easy application of Holder’s inequality shows

that
L) —limEo | "1 =F,|e"1
D=1 0[3 {w] 0[6 [rgm]’

where L7({2) is the space of L? random variables on ({2, F, P), see Notation 4.1. It follows
that there exists a subsequence {¢,; n > 0} such that P — a.s. we have

nlin;o EO [e t 1{ QRI >I}:| = ]EQ [erIETQRl >t}:| . (124)

Similarly there exists a subsequence {e/; n > 0} of {&,; n > 0} such that P — a.s. we have

lim Eq [eqvf"} = o [e""] (125)

Incorporating (124), (125) and Lemma 6.1 into the left and right hand sides of (123), we obtain
the following relation P — a.s. (recall that U, g = Eo[erI{IQR >11] according to (120)):
1

1
2\ 2p
Uro < (Eo [gqvl])é<zjrﬁ) ’ exp|:(t ; Dy (QR])j| (126)

We can proceed similarly in order to bound the terms U,; in (121). Indeed applying
Cauchy-Schwarz inequality and following the same steps as for (122)—(123) we get, for all
k>1

1
(2R, \*
Eo |:exp(2Vz)1[TQ >t]:| < (Eo [exp(4Vl)])% (%) €xXp |:(t ) ) (QRk+1):|
Riep1~

127)
Consequently plugging (126) and (127) into (119), we end up with:
u(0) < ay pgMp: + @Ry, (128)

where
t—-1) 1)
M, = exp < » Apw (QR] ) and R, = Zak exp ( (QRk+1)) , (129)

and where we also recall that Ry is defined by (117), and the constants a;,, , and a; are given by

2R? % 1 L
apa = (20) " Elewav)t a = Eofepari]).

In (128), the constants oy for kK > 1 are also defined by:

1
o = (Po (ror, <1))’ (ZR;“) . (130)

We will now treat the terms in (128) separately.
Step 3: Bound on u,(0). Let us first bound the constants «; in (130). To this aim, we can in-
voke the reflection principle for Brownian motions (see e.g. [15, section 2.6]), which asserts that

P ( t 7 d 4vi *l;i
o(To < e Tdy < e 2.
Oy «/271 R NT
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Furthermore when ¢ is large enough, it is readily checked from the expression (117) of Ry
that

A

V2R, T
uniformly in k > 1. Therefore we get

K

Py (TQRI( < t) <e 2,
Plugging this inequality in Eq. (130) and designating by ¢ a universal constant which can
change from line to line, we get

1 RZ

a < R e (131)

We now prove the convergence of the weighted sum defining R, in (129). To this aim, recall-
ing the asymptotic relation proved in Proposition 5.9, we can say that for ¢ sufficiently large:

1 -1
xp[( " (QRk+l)]sexp[(t4 )(16<2cH5>1+1H+1)<log<Rk+1>)1+1H].

(132)
Consequently, using our bound (131) on «; and the expression (117) for R, we have the

following:

[0¢]
Ri <Y AwiBiiCr, (133)
k=1

where

Ay, = CR = cM (log 1) S+ < cM2t2 (logt) 4<1+H) (134)

R 1
By =exp <—4—;‘) = exp I:_ZMZkIZk—l(log [)HH:| 7

[t =1
e (2n)|.

Furthermore, thanks to (132) for ¢ large enough we have:

Cr: = exp

Cr.i < exp|ct(log RkH)l%H] ,

Thus, plugging the value (117) of Ry into the above inequality we get

1 T
Crr <exp|ctk+ l)ﬁ <logM + logt + mloglogt) i| .

It is then readily checked for large enough ¢, that

Crr < exp -c(k + l)ﬁt(log t)ﬁ] .

In addition, it is easily seen that for any arbitrary constant ¢ > 0, there exists M large enough
1
such that M* > 8c(k 4+ 1)7+# uniformly in k. Therefore for this value of M, for all k > 1
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and t large enough, we have

1 B A SR 2%k
By :Cr; <exp|ctk + 1)=H¢t(logt)+H — é_lM t (log t)20+H)

1 : 1
< exp |:—§M2"t2k_'(log t)wzim] < exp |:—§Mktk(log t)wﬁm] . (135)

Combining (134) and (135) we have thus obtained

2k 1
Ap B i Crr < cmfe_””’f , where n, =/ Mt(log )21+,

Furthermore, we have that ntzk > kn, for all positive integers k if 1, > +/2. Thus, for sufficiently
large ¢:

k —cok
Akt Bi i Cry < cimfe 2,

Recalling (133), the following bound holds true for the term R, defined by (128)—(129):
oo
Ri<ar . (e m)' <2 (136)
k=1

for all sufficiently large ¢ such that n,e=2" < %
Now let us work with the term M, ; in the expression (128). Observe that using Theorem 1.2
we have:

i 228 (C) _ i () (log(1)) #71 (log(Rl))ll%H
t—o0 Ay (Qy) =% (Jog(R) ™ M@ (log(r)) ™7
ey €)1+
= (2c &)V/+H)

2

=pUH, 137)

where we have also used the form of R; from (117) to show that the limit of log(R;)/ log(t)
as ¢ goes to infinity is 1. Plugging this identity into the definition (129), we get that

1 1=H
;log(Mp,z) ~ pTFH A (Qy), (138)
as t goes to infinity. In particular, owing to Theorem 1.2 we have
.1
lim —log(M,;) =00 as.
t—oo

Finally, going back to (128) we write

1 1 1 R,
" log (u;(0)) < " log (Mp,,) + " log (alqp,q + azM;J> . (139)
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Due to (136) and the fact that lim,_, o, M, ; = 0o, we have
.1 R,
tl_lglo " log <a1,p,q + azM—m> =0.

Therefore, thanks to (138), relation (139) entails the following upper bound:

. Hog(u,(0) _ 1u
limsup —— < p1+#,
t—00 )MW(Qz)

At the very end, notice that the parameter p > 1 in (140) can be chosen arbitrarily close to 1.
Therefore, taking limits as p | 1 in (140), we end up with
. Hlog(u,(0))
limsup —— <
t—00 )\W(Ql)
which is our claim (116). [

|

(140)

, S.,

6.3. Lower bound

This section is devoted to finding a lower bound for log (u#,(0)) matching the upper bound
(116). Specifically we will get the following result.

Proposition 6.5. Let u, be the field defined by (49). Then the following holds:

1
liminfw > 1, (141)
t—>o0 Ay (0y)

where we recall that Q; = (—t, t) and Ay, (D) is introduced in (53).

Proof. Let p,q > 1 satisfy % + é =1 with p close to 1 and let 0 < b < 1 be close to 1.
From Lemma 6.3(ii), taking « = p, g = B, § = t? and &= Ws, we get

t b
Ut (0) = Ky [exp < f Ws(Bx)ds>:| > (EO |:exp (-% f Ws(BS)ds>:|)
0 0
1 t—tb p
x f p(XE, | exp [ — f We(By)ds | 1 a1 ldxy . (142)
Qb pJo {tthzt_t }

where we recall that ps is the heat kernel in R. Hence some elementary bounds on ps over
Q,» yield

uf(O) = Ds,b,p,th,b,p,t» (143)

_r
q

where

q o -4
Ds,b,p,t = (EO exXp <_Ef WS(B&)dS) > s
0

e*lb/Z 1 t—tb . P
Feppr = — E, | exp —/ WEé(By)ds | |dx ¢ .
&,b,p,t Zﬂtb th X o




6730 P. Chakraborty, X. Chen, B. Gao et al. / Stochastic Processes and their Applications 130 (2020) 66896732

We will now bound D;, ,, and F;, ,, separately. In order to bound Fy, ,; we apply
Lemma 6.2(ii), taking « = p, B=¢q,t =t — t? and § = °:

1—t?
/ E, |:exp (f Ws(Bs)ds>j| dx
Qb 0
> em5id (e — "%y T exp (—tbgmwg (Q,b)> exp <pm we (Q,b)> .
q 1 e

b
Using (143) and replacing e 7 by e~ for a larger C to absorb all bounded-by-polynomial
quantities, we thus get

2.b
b t
Febpi = e eXp <_ b
q

hryie (Q,b)) exp (t’\”'?f (Q,;,)) . (144)

We now take limits as ¢ | O in relation (143). Invoking Proposition 4.4, we use our bound
(144) and Lemma 6.1 which gives

1;(0) > Dy pi Fp p s (145)

with
P

b Tq
oo ] )
pJo

2:b

p’t
Fy pi = exp (-THW (Q,b)> exp (n\w (Q,;,)) .
q P
We will now prove that
1
lim —log(Dp p) =0 (146)
t—oo t

Indeed, it is easily seen that

c ) log <E0 |:exp {—% fotb W(‘SB.V)‘””)

1
" log(Dy,p.1) = T T g v ) (147)

Moreover combining (116) and Proposition 5.9 we get the following bound for ¢ large enough:

log (EO |:exp {—% foth W((SBS)ds”)

tb

< c(logt)lJ%H

Plugging this information into (147), we obtain (140).
Let us now analyze the term F}, ,, in (145). We have
1 P2 )‘;W (th)
; 10g(Fb,p,t) = —?th + )uﬂ (th) .
2

Taking into account the behavior of Ay (Q;) given by Proposition 5.9, we get
P

1
lim inf £ 2 bre)

mIn W = a.s. (148)
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In conclusion, plugging (148) and (146) into (145), we end up with

1 0
liminf 08U O (149)
t—00 )‘E(th)

P

Now taking b 1 1 and then p | 1 in (149), and observing that A is monotonic under both
maneuvers, we get our desired lower bound (141):
1
~log(u,(0
Jim inf 08O
=00 Ay (Qr)

as. O
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