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Abstract

In this note we consider the parabolic Anderson model in one dimension with time-independent
ractional noise Ẇ in space. We consider the case H < 1

2 and get existence and uniqueness of solution.
In order to find the quenched asymptotics for the solution we consider its Feynman–Kac representation
and explore the asymptotics of the principal eigenvalue for a random operator of the form 1

2∆ + Ẇ .
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The non trivial effects of random perturbations on the spectrum of the Laplace operator
ave been a fascinating object of research in the recent past. While a direct spectral analysis
f perturbed Laplacians is possible in simple and regular enough cases [13,16], the problem
s often addressed through the large time behavior of the so-called parabolic Anderson model.

ore specifically the parabolic Anderson model is a stochastic heat equation of the following
orm:

∂ut (x)
∂t

=
1
2
∆ut (x) + ut (x) Ẇ (x), (1)
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here the noise Ẇ is a stationary spatial random field. Because of the linear form of the noise
erm, it is possible under certain regularity conditions to express the solution of (1) using a
eynman–Kac representation. Related to this representation, the asymptotic behavior of ut (x)
s t goes to ∞ gives some insight on the spectrum of the operator 1

2∆ + Ẇ .
In the spatially discrete setting with a discrete Laplacian, asymptotic equivalents for the

olution of Eq. (1) have been studied at length in [4] and [17]. In particular, if ut (x) is the
olution under the discrete setup in Zd and U (t) =

∑
z∈Zd ut (x) is the total mass, then it

as been proven that both 1
t log(ut (x)) and 1

t log(U (t)) converge almost surely under certain
regularity assumptions. Any information about those limits can then be translated into an
information about the principal eigenvalue of 1

2∆ + Ẇ .
In the spatially continuous setting, the picture is not as clear. Indeed, the large time behavior

f the solution u to Eq. (1) has been analyzed in [5] and [12]. In particular, when the noise
s Gaussian with a smooth covariance structure given by γ (x) = Cov(Ẇ (0)Ẇ (x)) satisfying
im|x |→∞ γ (x) = 0, then we have for x ∈ Rd

lim
t→∞

1

t
√

log t
log ut (x) =

√
2dγ (0) a.s. (2)

he fact that the renormalization in (2) is of the form t
√

log t suggests that the principal
eigenvalue of 1

2∆ + Ẇ is divergent, which is confirmed in [3,18] by asymptotics on large
oxes performed for the white noise.

Motivated by the examples above, non-smooth cases of Eq. (1) under the setting of
eneralized Gaussian fields have been analyzed in [8]. Namely, the reference [8] handles the
ase of a centered Gaussian noise W whose covariance function Λ is defined informally (see

Section 2.2 for more precise definition) by

E [W (φ)W (ψ)] =

∫
Rd
φ(x)ψ(y)Λ(x − y)dxdy, (3)

or all infinite differentiable functions φ with compact support. The class of functions Λ
onsidered in [8] are continuous on Rd

\ {0}, bounded away from 0 with a singularity at 0
easured by Λ(x) ∼ c(Λ)|x |

−α with α ∈ (0, 2 ∧ d) as x ↓ 0. In this framework, the following
lmost sure renormalization result is proved in [8] for any x ∈ Rd :

lim
t→∞

1

t(log t)
2

4−α

log ut (x) = cα a.s., (4)

ith an explicit constant cα . Notice that this result is also applicable under a fractional white
oise with Hurst parameter H > 1

2 . Namely, considering d = 1 for simplicity, relation (4)
holds for a fractional Brownian noise W with α = 2 − 2H (that is a renormalization of the
form t(log t)

1
1+H ).

In this note we aim to carry forward the asymptotic result (4) to very singular environments.
pecifically, we consider a fractional noise W as in [8], but we allow the Hurst parameter to
e less than 1

2 (so that our noise is rougher than white noise). Going back to expression (3), we
ssume that Λ is a positive definite distribution whose Fourier transform FΛ = µ is a tempered
easure given by µ(dξ ) = CH |ξ |1−2H dξ . That is for test functions φ and ψ we have

E [W (φ)W (ψ)] =

∫
R
Fφ(ξ )Fψ(ξ )µ(dξ ). (5)

Let us first notice that Eq. (1) driven by a fBm with H < 1
2 is not explicitly solved in

he literature. As we will see, one can give a pathwise meaning, in a Young type sense, to
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he solution of Eq. (1). Namely we show that t ↦→ ut can be seen as a continuous function
ith values in a weighted Besov space (we refer to [19] for a complete definition of weighted
esov spaces). We will set up a fixed point argument in those weighted spaces and obtain the

ollowing result (see Theorem 3.12 for a more precise formulation).

heorem 1.1. Let W be the Gaussian noise considered in (5) with H ∈
(
0, 1

2

)
. Let u0 be an

initial condition lying in a weighted Besov Hölder space (see Definition 2.5 or a more detailed
description). Then there exists a unique solution to (1) in a space of continuous functions with
values in Besov spaces, and where the integral with respect to W is understood in the Young
sense.

Once we have solved (1) , we will give a property of the (formal) operator 1
2∆+ Ẇ which

is reminiscent of the density of states results contained e.g. in [13,16]. The result we obtain
can be summarized informally in the following theorem:

Theorem 1.2. Let λẆ (Qt ) be the principal eigenvalue of the random operator 1
2∆+ Ẇ over

restricted space of functions having compact support on Qt :=(−t, t). Then the following
imit holds:

lim
t→∞

λẆ (Qt )

(log t)
1

1+H
= (2cHE)

1
1+H a.s, (6)

with a strictly positive constant E defined by

E = sup
g∈G(R)

∫
R

⏐⏐⏐⏐∫
R

eıλx g2(x)dx
⏐⏐⏐⏐2|λ|1−2H dλ (7)

where G(R) is the space of all Schwartz functions satisfying ∥g∥
2
2 +

1
2∥g′

∥
2
2 = 1.

Using a Feynman–Kac representation for the solution u of (1), our next step will be to relate
the logarithmic behavior of ut to the principal eigenvalue λẆ (Qt ). This is the content of the
following theorem:

Theorem 1.3. Let W be the Gaussian noise defined by (5) for H < 1
2 , and consider the

unique solution u to (1). Then for all x ∈ R we have

lim
t→∞

1
t log(ut (x))
λẆ (Qt )

= 1, a.s.

As the reader might conceive, our main asymptotic result will be a simple consequence of
heorems 1.2 and 1.3. It gives a generalization of (4) to the case H < 1

2 .

Theorem 1.4. Under the same conditions as in Theorem 1.3 and for H < 1
2 we have

lim
t→∞

log(ut (x))

t(log t)
1

1+H
= (2cHE)

1
1+H , a.s. (8)

Remark 1.5. Let us draw the reader’s attention to the fact that formula (8) has already been
proved in [8] for H ∈ [1/2, 1) and hence our contributions in this paper imply that formula
(8) holds for all H ∈ (0, 1).
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Let us say a few words about the methodology we have resorted to in order to get our main
esults.

(i) Theorem 1.2 is obtained by splitting the eigenvalue problem into small intervals, similarly
o what is performed in other parabolic Anderson model studies (see e.g. [17] and [8]). Then
n each subdomain we combine some variational arguments with supremum computations for
aussian processes. Extra care is required in our case, due to the singularity of our noise.
(ii) Theorem 1.3 relies on a Feynman–Kac representation of ut (x), whose main ingredient

is an integrability property established thanks to a subtle sub-additive argument (see Proposi-
tion 4.4 below). Once this Feynman–Kac representation (involving a Brownian motion B) is
given, a probabilistic cutoff procedure on the underlying Brownian motion B allows to reduce
the logarithmic behavior of ut (0) to the quantity λẆ (Qt ).

(iii) As mentioned above, Theorem 1.4 is an easy consequence of Theorems 1.2 and 1.3.
Eventually let us highlight the fact that Theorem 1.4 provides a rather complete description

of the asymptotic behavior of log(ut (x)) in dimension 1. A very challenging situation would be
to handle the case of a rough noise in dimension 2 or higher. In this case it is a well known fact
that a renormalization procedure is needed to define the solution u of (1), as shown e.g. in [10].
The effect of this kind of renormalization procedure on the principal eigenvalue of 1

2∆ + Ẇ
has been partially investigated for the space white noise when d = 2 in [3].

This paper is organized as follows. Section 2 contains some preliminaries on Besov spaces
and the structure of our noise. In Section 3 we prove the existence and uniqueness of our
solution as outlined in Theorem 1.1. The Feynman–Kac representation of the solution is
obtained in Section 4. The upper and lower bounds to the long-time asymptotics of the principal
eigenvalue of the operator 1

2∆ + Ẇ are obtained in Sections 5.2 and 5.3 respectively. The
symptotic relation between the solution and the principal eigenvalue of the previous section
s completed in Section 6.

Notations. We denote by pt (x) the one-dimensional heat kernel pt (x) = (2π t)−1/2 e−|x |
2/2t ,

or any t > 0, x ∈ R. The space of real valued infinitely differentiable functions with compact
upport is denoted by D(R). The space of Schwartz functions is denoted by S (R). Its dual,

the space of tempered distributions, is S ′(R). The Fourier transform is defined as

Fu(ξ ) = û(ξ ) =

∫
R

e−ι⟨x,ξ⟩u(x)dx .

The inverse Fourier transform is F−1u(ξ ) = (2π )−1Fu(−ξ ). Denote by l the following
robability density function in S(R):

l(x) = c exp
(

−
1

1 − x2

)
1(|x |<1),

where c is a normalizing constant such that
∫
R l(x)dx = 1. For every ε > 0, let the set of

mollifiers generated by l be given by lε(x) = ε−1l(ε−1x). Observe that, owing to the fact that
is a probability measure, we have limξ→0 Fl(ξ ) = 1 and Fl(ξ ) ≤ 1 for all ξ ∈ R.

2. Preliminaries

This section is devoted to introduce the basic Besov spaces notions which will be used in
the remainder of the paper. Observe that since we are dealing with a variable x in the whole
space R, we will need to deal with weighted Besov spaces. The definitions and main properties
of those spaces are borrowed from [19].
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.1. Besov spaces

In this subsection we define some classes of weights which are compatible with our heat
q. (1). Two scales of weights will be used: stretched exponential weights and polynomial
eights.

efinition 2.1. Let |x |∗ =

√
1 + |x |

2 and fix δ ∈ (0, 1). Denote by W the class of weights
consisting of:

(i) the weights wγ of the form wγ (x) = e−γ |x |
δ
∗ , with γ > 0.

(ii) the weights ŵσ of the form ŵσ (x) = |x |
−σ
∗

, with σ > 0.

The definition of our Besov spaces depends heavily on a dyadic partition of unity. In order
to handle weights as in Definition 2.1 we have to work (as done in [19]) with functions in the
so-called Gevrey class, that we now proceed to define.

Definition 2.2. Let θ ≥ 1. We call Gθ , the set of infinitely differentiable functions f : R → R
satisfying

f or every compact K , there exists C < ∞ such that f or every n ∈ N,
sup

K
|∂n f | ≤ Cn+1(n!)θ .

We let Gθc be the set of compactly supported functions in Gθ .

We are now ready to state the existence of a partition of unity in the Gevrey class Gθc .

Proposition 2.3. One can construct two functions χ̃ , χ ∈ Gθc , taking values in [0, 1] and such
that

(i) Supp χ̃ ⊆
[
0, 4

3

]
and Supp χ ⊆

[ 3
4 ,

8
3

]
.

(ii) For all ξ ∈ R, we have χ̃ (ξ ) +
∑

∞

k=0 χ (2−kξ ) = 1.

n the sequel we also set χk(ξ ) = χ (2−kξ ) for k ≥ 0.

With the partition of unity in hand, the blocks ∆ku of the Besov type analysis can be defined
s follows.

efinition 2.4. Set χ−1 = χ̃ , and define for k ≥ −1 and u ∈ S(R),

∆ku = F−1(χk û).

Our analysis will rely on Besov spaces defined through the weighted blocks introduced in
efinition 2.4.

efinition 2.5. Let χ and χ̃ be the functions introduced in Proposition 2.3. For any κ ∈ R,
w ∈ W , p, q ∈ [1,∞] and f ∈ S(R), we define weighted norms of f in the following way:

∥ f ∥Bκ,wp,q
:=

⎡⎣ ∞∑ (
2κ j

∥∆ j f ∥L p
w

)q

⎤⎦ 1
q

, (9)

j=−1
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here L p
w is the weighted space L p(R, w(x)dx). Denote the weighted Besov space Bκ,wp,q as

Bκ,wp,q =

{
f ∈ S(R); ∥ f ∥Bκ,wp,q

< ∞

}
.

Remark 2.6. Notice that as in [20], we define ∥ f ∥L p(Rd ;w(x)dx) as ∥ fw∥L p(Rd ). This is slightly
different from [19], but yields similar results.

In the next section we will solve the heat equation in a weighted Besov space whose weight
is varying with time. We now define this kind of space.

Notation 2.7. Let λ and σ be two strictly positive constants. For t ≥ 0 we define v as the
function vt = wλ+σ t , where we recall that wγ is introduced in Definition 2.1. We consider an
additional parameter κu > 0 and q ∈ [1,∞). Then the space Cκu ,λ,σ

q is defined by

Cκu ,λ,σ
q =

{
f ∈ C([0, T ] × R); ∥ ft∥Bκu ,vt

q,∞
≤ c f

}
.

2.2. Description of the noise

The noise driving equation (1) is considered as a centered Gaussian family {W (φ), φ ∈ D
(R)} on a complete probability space (Ω ,F,P) with the following covariance structure:

E [W (φ)W (ψ)] =

∫
R2
φ(x)ψ(y)Λ(x − y)dxdy, (10)

where Λ : R ↦→ R+ is a non-negative definite distribution. In fact the covariance structure of
W is better described in Fourier modes. Indeed, the distribution Λ can be seen as the inverse
Fourier transform of a measure µ on R defined by

µ(dξ ) = cH |ξ |1−2H dξ.

Then for φ,ψ ∈ D(R) we have

E [W (φ)W (ψ)] =

∫
R
Fφ(ξ )Fψ(ξ )µ(dξ ). (11)

t can be shown that (11) defines an inner product on D(R). We call H the completion of
(R) with this inner product. It also holds that the variance of our noise W has an alternate

irect-coordinate representation (see e.g. [14, relation (2.8)]) in addition to the one suggested
y (11). Namely for φ ∈ H, we have

E[W (φ)]2
= cH

∫
R

∫
R

|φ(x + y) − φ(x)|2

|y|
2−2H dxdy. (12)

The mapping φ ↦→ W (φ) defined in D(R) extends to a linear isometry between H and the
Gaussian space spanned by W . This isometry will be denoted by

W (φ) =

∫
R
φ(x)W (dx). (13)

Remark 2.8. Notice that the measure µ(dξ ) = cH |ξ |1−2H dξ satisfies the following
condition∫

µ(dξ )
2(1−α) < ∞, for α < H. (14)
R 1 + |ξ |
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his relation will be crucial in order to see that W belongs to a weighted Besov space in the
roposition below.

Before a complete description of our noise regularity, we state below a Besov embedding
esult for weighted Besov spaces. Notice that this embedding result is part of the folklore in
he analysis literature. However, we include a complete proof here since we have not been able
o spot a precise reference. In particular our result (20) does not hold true in the setting of [19],
or which the weights behave differently from ours. We start off with a version of Bernstein’s
emma for our weighted spaces.

emma 2.9. Let B be a ball. For every p ≥ q ∈ [1,∞] and non-negative integer k, there
exists C < ∞ such that for every λ ≥ 1 and f ∈ S(R) we have

Supp f̂ ⊂ λB ⇒ ∥∂k f ∥L p
ŵσ

≤ Cλk+( 1
q −

1
p )

∥ f ∥Lq
ŵσ

, (15)

where the weight ŵσ is given in Definition 2.1

Proof. The proof is similar to that in [19]. Due to the differences in definition of weighted
Besov space it is still provided here. Moreover we will only consider the situation where p, q
re finite, the proof when at least one of them is infinite being similar.

Let φ ∈ Gc
θ be such that φ = 1 on B. Define φλ = φ

(
·

λ

)
. Observe that

f = F−1
(

f̂ φλ
)

= gλ ⋆ f, (16)

where the function gλ is defined by gλ = F−1φλ = λg1(λ·). Writing g(k)
λ := (∂k g1)λ =

(∂k g1)(λ·), we can differentiate (16) in order to get

∂k f = λk g(k)
λ ⋆ f.

otice that our weight ŵσ satisfies ŵσ (x + y) ≲ ŵ−σ (x)ŵσ (y). Using this and the weighted
oung inequality [19, Theorem 2.4] we have:

λ−k
∥∂k f ∥L p

ŵσ

= ∥(g(k)
λ ⋆ f )ŵσ∥L p ≲ ∥g(k)

λ ŵ−σ∥Lr ∥ f ŵσ∥Lq , (17)

here r is such that 1 +
1
p =

1
r +

1
q . Since g(k)

λ = λ(∂k g1)(λ·) and ∂k g1 is the inverse Fourier
ransform of a function in Gθc we have due to [19, Proposition 2.2]:⏐⏐⏐g(k)

λ (x)
⏐⏐⏐ ≲ λe−c|λx |

1/θ
≤ λe−c|λx |

δ
.

onsequently, recalling the norm | · |∗ introduced in Definition 2.1, we obtain

∥g(k)
λ ŵ−σ∥Lr ≲ λ

(∫
e−cr |λx |

δ
|x |

σr
∗

dx
) 1

r

= λ1−1/r
(∫

e−cr |x |
δ
⏐⏐⏐ x
λ

⏐⏐⏐σr

∗

dx
) 1

r

. (18)

Observe that λ ≥ 1 implies |x/λ|∗ ≤ |x |∗. Thus the integral in (18) can be bounded above by
constant independent of λ. In addition, it holds that 1 −

1
r =

1
q −

1
p . We thus end up with the

ollowing relation:

∥g(k)
λ ŵ−σ∥Lr ≤ Cλ( 1

q −
1
p )
. (19)

Using (19) in (17) yields our desired result (15). □
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The Besov embedding result we need in order to quantify our noise regularity is now a
irect consequence of Lemma 2.9 and is provided below.

roposition 2.10. Let κ > κ ′ > 0. There exist K < ∞ and q large enough such that

∥ f ∥B−κ,ŵσ
∞,∞

≤ K∥ f ∥B−κ′,ŵσ
2q,2q

. (20)

Proof. From the definition of ∆k f , observe that the support of its Fourier transform is
contained in 2k B for some ball B in R. Thus we may apply Lemma 2.9 with k = 0 and
p = ∞ to obtain:

∥∆k f ∥L∞

ŵσ
≤ C2

k
q ∥∆k f ∥Lq

ŵσ

.

Replacing q by 2q and premultiplying by 2−κk we obtain:

2−κk
∥∆k f ∥L∞

ŵσ
≤ C2(−κ+ 1

2q )k
∥∆k f ∥L

ŵ
2q
σ

= C2(κ ′
−κ+ 1

2q )k2−κ ′k
∥∆k f ∥L

ŵ
2q
σ

. (21)

ix a q large enough such that ω := κ − κ ′
−

1
2q is positive. Denoting 2−κk

∥∆k f ∥L∞

ŵσ
by xk

and 2−κ ′k
∥∆k f ∥

L2q
ŵσ

by yk , Eq (21) can be restated as:

2ωk xk ≤ Cyk .

This implies that

∥y∥ℓ2q =

(
∞∑

k=−1

y2q
k

)1/2q

≥
1
C

(
∞∑

k=−1

22qωk x2q
k

)1/2q

.

ince 22qωk
≥

1
22qω for k ≥ −1 we obtain

∥y∥ℓ2q ≥
1
C

(
∞∑

k=−1

1
22qω

x2q
k

)1/2q

=
1

C2ω

(
∞∑

k=−1

x2q
k

)1/2q

≥
1

C2ω
∥x∥ℓ∞ , (22)

here in the last inequality we have used the fact that ∥x∥ℓ2q ≥ ∥x∥ℓ∞ for any sequence
x ∈ RN. Applying inequality (22) to the sequences x and y given in (21), we now arrive
t (20). □

roposition 2.11. For all κ ∈ (1 − H, 1) and every arbitrary σ > 0, W has a version in
B−κ,ŵσ

∞,∞ , where ŵσ is given in Definition 2.1 and B−κ,ŵσ
∞,∞ is introduced in Definition 2.5. In

addition the random variable ∥W∥B−κ,ŵσ
∞,∞

has moments of all orders.

Proof. Consider κ , κ ′ such that κ > κ ′ > 1 − α, where α is defined by (14). Due to (14)
observe that this implies that we can consider any κ > 1−H . For q ≥ 1, denote the Besov space

−κ ′,ŵσ by A . Invoking Proposition 2.10 observe that for large enough q , A is continuously
2q,2q q q
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mbedded in B−κ,ŵσ
∞,∞ , i.e.,

∥Ẇ∥B−κ,ŵσ
∞,∞

≲ ∥Ẇ∥Aq . (23)

Hence it is enough to work with ∥Ẇ∥Aq .
Let us now evaluate the quantity ∥Ẇ∥Aq . To this aim, notice that ∆ j f (x) =

[
K j ∗ f

]
(x)

where K j (z) = 2 jF−1χ (2 j z). Therefore, using the notation K j,x (y) = K j (x − y) we obtain:

E
[
∥Ẇ∥

2q
Aq

]
=

∑
j≥−1

2−2q jκ ′

∫
R

E
[
|W (K j,x )|2q] ŵ2q

σ (x)dx . (24)

Using the fact that W (K j,x ) is Gaussian we thus have

E
[
|W (K j,x )|2q]

≤ cqEq [
|W (K j,x )|2

]
.

Consequently, (24) can be recast as:

E
[
∥Ẇ∥

2q
Aq

]
≤ cq

∑
j≥−1

2−2q jκ ′

∫
R

Eq [
|W (K j,x )|2

]
ŵ2q
σ (x)dx . (25)

Now let us work with E
[
|W (K j,x )|2

]
. According to (10) we have

E
[
|W (K j,x )|2

]
=

∫
R

|FK j,x (ξ )|2µ(dξ ).

Let us introduce a new measure ν on R defined by ν(dξ ) =
µ(dξ )

1+|ξ |2(1−α) . Notice that due to (14),
is a finite measure. Since K j = F−1χ j and the support of χ is in a closed interval, say

a, b], we obtain:

E
[
|W (K j,x )|2

]
=

∫
R

⏐⏐χ (2− jξ )
⏐⏐2µ(dξ ) ≤

∫
R

1[0,2 j b](|ξ |)
(
1 + |ξ |2(1−α)) ν(dξ )

≤ ν
([

0, 2 j b
])

(1 + (2 j b)2(1−α)) ≤ cµ22(1−α) j . (26)

Therefore plugging (26) into (25) and recalling that 1 − α < κ ′ < κ , we get:

E
[
∥Ẇ∥

2q
Aq

]
≤ cq

∑
j≥−1

2−2q jκ ′

∫
R

cq
µ2(1−α) jqŵ2q

σ (x)dx

= Cq,µ

(∫
R
ŵ2q
σ (x)dx

) ∑
j≥−1

22q j(1−α−κ ′). (27)

wing to Definition 2.1 of ŵσ , it is now readily checked that the right hand side of (27) is
onvergent whenever q is large enough.

Similar calculations as the ones leading to (27) also show that the random variable
W∥B−κ,ŵσ

∞,∞
has moments of all orders. □

. Pathwise solution

Now that we have proved that our noise Ẇ is almost surely an element of B−κ,ŵσ
∞,∞ , we

ill transform our stochastic Eq. (1) into a deterministic one, which will be solved in the
iemann–Stieltjes sense. We first label an assumption on a general distribution driving the heat

quation.
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ypothesis 3.1. Let δ ∈ (0, 1) be a fixed constant and σ > 0 be an arbitrarily small constant.
e consider a distribution W on R such that W ∈ B−κ,ŵσδ

∞,∞ with κ ∈ (0, 1).

emark 3.2. The constant δ ∈ (0, 1) in Hypothesis 3.1 is related to the exponential weights
n Definition 2.1.

We now introduce the notion of solution for Eq. (1) which will be considered in the sequel.

efinition 3.3. Let W be a distribution satisfying Hypothesis 3.1. Let u ∈ Cκu ,λ,σ
q for λ, σ > 0

nd κu ∈ (κ, 1), where Cκu ,λ,σ
q is introduced in Notation 2.7. Consider an initial condition

0 ∈ Bκu ,v0
q,p where we recall vt = wλ+σ t . We say that u is a mild solution to equation

∂u
∂t

=
1
2
∆u + uW (28)

ith initial condition u0, if it satisfies the following integral equation

ut = pt u0 +

∫ t

0
pt−s(usW )ds. (29)

emark 3.4. Observe that the Dirac delta initial condition δ0 falls beyond the scope of our
onsiderations, as κu needs to be negative in order to have δ0 ∈ Bκu ,wλ

q,p .

emark 3.5. In (29), we implicitly assume that the product of distributions u · W is well
efined. This will be treated in Lemma 3.9.

Before we can solve equation (29), we list a few results which would prove useful later.
he first one recalls the action of the heat semigroup on weighted Besov spaces.

emma 3.6. The following smoothing effect of the heat flow is valid in Besov spaces: Let
ˆ ≥ κ be real numbers, γ0 > 0 and q ∈ [1,∞]. Then there exists C < ∞ such that uniformly
ver γ ≤ γ0 and t > 0,

∥pt f ∥
Bκ̂,wγq,∞

≤ Ct−
κ̂−κ

2 ∥ f ∥Bκ,wγq,∞

Proof. See [19, Proposition 3.11]. □

We now give a result on comparison of Besov norms for different weights w.

Lemma 3.7. Let w1, w2 ∈ W be such that w1 ≤ w2. Then for every f ∈ Bκ,w2
p,q we have

∥ f ∥Bκ,w1
p,q

≤ ∥ f ∥Bκ,w2
p,q

Proof. Follows easily from Definition 2.5. □

Our next preliminary lemma is an elementary comparison between the weights correspond-
ng to Definition 2.1.

emma 3.8. Recall that the weight vt = wλ+σ t has been defined for t ≥ 0 in Notation 2.7.
hen for 0 ≤ s < t and for all σ > 0, there exists a constant cσ such that

vt ≤ cσ |t − s|−σvsŵδσ .
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roof. For 0 ≤ s < t , observe that vt = vse−σ (t−s)|x |
δ
∗ . Then we use the fact that there exists

constant cα such that

0 ≤ xαe−sx
≤

cα
sα

for x, α, s ∈ R+

onsequently e−σ (t−s)|x |
δ
∗ ≤ cσ |t − s|−σ |x |

−σδ
∗

which implies vt ≤ cσ |t − s|−σvsŵσδ . □

Let us recall the definition of products of distributions within the weighted Besov spaces
ramework.

emma 3.9. Let α < 0 < β be such that α+β > 0. In addition, consider p, q ∈ [1,∞] and
∈ [0, 1]. Let p1, p2 ∈ [1,∞] be such that

1
p1

=
ν

p
,

1
p2

=
1 − ν

p
and w = wγ ŵσ .

Then the mapping ( f, g) ↦→ f g can be extended to a continuous linear map from Bα,wγp1,q ×Bβ,ŵσp2,q

to Bα,wp,q . Moreover there exists a constant C such that

∥ f g∥Bα,wp,q
≤ C∥ f ∥Bα,wγp1,q

∥g∥Bβ,ŵσp2,q
.

Proof. The proof is similar to that of [19, Corollary 3.21]. □

We also include the following extension of Gronwall’s Lemma taken from [9, Lemma 15]
which will be required in order to show existence of our solution.

Lemma 3.10. Let g : [0, T ] ↦→ R+ be a non-negative function such that
∫ T

0 g(s)ds < ∞.
Let ( fn, n ∈ N) be a sequence of non-negative functions on [0, T ] and k1, k2 be non-negative
numbers such that for 0 ≤ t ≤ T ,

fn(t) ≤ k1 +

∫ t

0
(k2 + fn−1(s))g(t − s)ds. (30)

If sup0≤s≤T f0(s) < ∞, then supn≥0 sup0≤t≤T fn(t) < ∞, and if k1 = k2 = 0, then
∑

n≥0 fn(t)
converges uniformly on [0, T ].

We are ready to state our main result about existence and uniqueness of solution for our
abstract heat equation (28).

Proposition 3.11. Let W be a distribution as in Hypothesis 3.1. Consider λ > 0 and q ≥ 1.
Then there exists a unique solution to Eq. (29) lying in Cκu ,λ,σ

q where κu ∈ (κ, 1) and where
Cκu ,λ,σ

p is defined in Notation 2.7.

Proof. We will follow a standard Picard iteration scheme to prove our result. Consider a small
time interval [0, τ ] where τ is to be fixed later. We restrict all spaces and corresponding norms
on this time interval. Define u(0)

≡ u0 and for n ≥ 0 set

u(n+1)
t =

∫ t

0
pt−s(u(n)

s W )ds. (31)

Fix κu ∈ (κ, 1) and consider δu(n)
t = u(n+1)

t − u(n)
t . Observe that from (31) and then applying
Lemma 3.6 we obtain
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∥δu(n+1)
t ∥Bκu ,vt

q,∞
≤

∫ t

0
∥pt−s(δu(n)

s W )∥Bκu ,vt
q,∞

≤ C
∫ t

0
|t − s|−

κu+κ
2 ∥δu(n)

s W ∥B−κ,vt
q,∞

ds.

where here and in the following C is a generic constant which may change in subsequent steps.
ow applying Lemmas 3.7 and 3.8 we get

∥δu(n+1)
t ∥Bκu ,vt

q,∞
≤ C

∫ t

0
(t − s)−

κu+κ
2 −σ

∥δu(n)
s W ∥

B−κ,vs ŵδσ
q,∞

ds.

Using ν = 1 in Lemma 3.9 and observing κu > κ , we find

∥δu(n)
s W ∥

B−κ,vs ŵδσ
q,∞

≤ ∥δu(n)
s ∥Bκu ,vs

q,∞
∥W ∥

B−κ,ŵδσ
∞,∞

.

onsequently,

∥δu(n+1)
t ∥Bκu ,vt

q,∞
≤ C∥W ∥

B−κ,ŵδσ
∞,∞

∫ t

0

∥δu(n)
s ∥Bκu ,vs

q,∞

|t − s|(κu+κ)/2+σ
ds. (32)

Observe that

sup
0≤s≤τ

∥δu(0)
s ∥Bκu ,vs

q,∞
= sup

0≤s≤τ
∥u(1)

s − u(0)
s ∥Bκu ,vs

q,∞
= sup

0≤s≤τ
∥psu0 − u0∥Bκu ,vs

q,∞
.

Also recall that vs = wλ+σ s , where the weight wλ+σ s has been defined in Definition 2.1 above.
Consequently ∥psu0∥Bκu ,vs

q,∞
≤ ∥psu0∥Bκu ,v0

q,∞
. Thus, owing to Lemmas 3.6 and 3.7, we have

sup
0≤s≤τ

∥δu(0)
s ∥Bκu ,vs

q,∞
≤ sup

0≤s≤τ
∥psu0 − u0∥Bκu ,v0

q,∞
≤ C∥u0∥Bκu ,v0

q,∞

hich is finite by our assumption on the initial condition. We can thus apply Gronwall’s Lemma
s stated in Lemma 3.10 to Eq. (32). As a consequence we find

∑
n≥0 ∥δu(n)

s ∥Bκu ,vs
q,∞

converges
niformly on [0, τ ] and thus u(n) converges uniformly in Cκu ,λ,σ

q . This proves existence of a
olution on [0, τ ] (observe that we do not need τ to be small for this step).

In order to prove uniqueness, we can resort to the same techniques. Consider two solutions
1 and u2 in Cκu ,λ,σ

q and set u12
= u1 − u2. We have to show u12

≡ 0. Since we have

u12
t =

∫ t

0
pt−s(u12

s W )ds,

e obtain similarly to (32)

∥u12
t ∥Bκu ,vt

q,∞
≤ C∥W ∥

B−κ,ŵδσ
∞,∞

∫ t

0

∥u12
s ∥Bκu ,vs

q,∞

|t − s|(κu+κ)/2+σ
ds. (33)

Therefore, choosing σ small enough we get:

∥u12
t ∥Bκu ,vt

q,∞
≤

(
C∥W ∥

B−κ,ŵδσ
∞,∞

τ η
)

sup
0≤s≤τ

∥u12
s ∥Bκu ,vs

q,∞
.

here η = 1 −
(
κu+κ

2 + σ
)
. Then choosing τ small enough so that (∥W ∥

B−κ,ŵδσ
∞,∞

τ η) < 1, we

nd ∥u12
t ∥Bκu ,vt

q,∞
= 0 for all t ∈ [0, τ ]. This achieves uniqueness on the small interval [0, τ ).

In order to get global existence and uniqueness we observe that our considerations above
o not depend on the initial condition of the solution. Hence one can repeat the proof on
ubsequent intervals of size τ to get the result. □
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The proof for uniqueness of solution in Proposition 3.11 can also be achieved through Picard
terations applied to (33) in order to get ∥u12

t ∥ = 0. This alternative proof would thus avoid
he need to consider a small τ . We thank one of the reviewers for drawing our attention to this
act.

We can now apply our general Proposition 3.11 in order to solve our original equation (1).

heorem 3.12. Let W be the centered Gaussian noise defined by (11), with H ∈
(
0, 1

2

)
and

consider κ ∈ (1− H, 1). Let u0 ∈ Bκu ,wλ
q,∞ for a given λ > 0 and κu ∈ (κ, 1), where wλ = e−λ|x |

δ
∗

is defined in Definition 2.1. Consider the space Cκu ,λ,σ
q introduced in Notation 2.7. Then Eq. (1)

admits a solution which is unique in Cκu ,λ,σ
q .

4. Feynman–Kac representation

In this section we shall establish a Feynman–Kac representation for the solution of (1),
which will be at the heart of our Lyapounov computations. We first introduce some additional
notations about random environments.

Notation 4.1. Let B be a Brownian motion defined on a probability space (Ω̂ , F̂ ,P),
independent of the space (Ω ,F ,P) on which W is defined. In the sequel we denote by E
(resp. E) the expectation on (Ω ,F ,P) (resp. (Ω̂ , F̂ ,P)). We will also write Ex when we want
to highlight the initial value x of the Brownian motion B.

We now introduce the Feynman–Kac functional we shall use in order to represent the
solution of (1).

Notation 4.2. Let W be the Gaussian noise defined by (11). For ε > 0 we set

V ε
t (x) =

∫ t

0

∫
R

lε(Bx
r − y)W (dy)dr, (34)

where lε stands for the ε-mollifier generated from the standard bump function l as given in the
general notation of the Introduction. We will also write, somehow informally,

Vt (x) =

∫ t

0
W (δBx

s )ds =

∫ t

0

∫
R
δ0(Bx

r − y)W (dy)dr, (35)

which will be seen as a L2-limit of the random variables V ε
t .

We state the following lemma taken from [6, Theorem 1.3.5] which will be used in the
proof for Proposition 4.4

Lemma 4.3. For any non-decreasing sub-additive process Z t defined on (Ω̂ , F̂ ,P) with
continuous path and with Z0 = 0, the following inequality holds true for all θ ≥ 0 and
t > 0:

E
[
exp (θ Z t )

]
< ∞ ∀θ, t > 0.

In addition,

lim
t→∞

1
t

log
(
E
[
exp (θ Z t )

])
= Ψ (θ ),

where Ψ is a function from [0,∞) to [0,∞).
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We now give a rigorous meaning to the quantity Vt (x) by showing that it can be seen
s a L2-limit of V ε

t (x). We also include some exponential bounds which are crucial for the
eynman–Kac representation of (1).

roposition 4.4. For ε > 0, t ≥ 0 and x ∈ R, let V ε
t (x) be defined by (34). Then

(i) {V ε
t (x); ε > 0} is a convergent sequence in L2(Ω × Ω̂ ). We call its limit Vt (x), where

Vt (x) is defined by (35).
(ii) For all q ≥ 1 we have

lim
ε↓0

E ⊗ E
[⏐⏐⏐eqV εt − eqVt

⏐⏐⏐] = 0.

roof. We divide this proof in several steps.
Step 1: Proof of (i). Observe that V ε

t (x) can be written as
∫ t

0 W (lε(Bx
r − ·))dr , where

W (lε(Bx
r − ·)) has to be understood as a Wiener integral conditionally on B (see (13)). In

he following we try to find limε1,ε2→0 E ⊗ E
[
V ε1

t (x)V ε2
t (x)

]
, which is enough to ensure the

L2 convergence of V ε
t (x). To this aim, we invoke the isometry (11) in order to get

E ⊗ E
[
V ε1

t (x)V ε2
t (x)

]
= E ⊗ E

[∫ t

0

∫ t

0
W (lε1 (Bx

u − ·))W (lε2 (Bx
v − ·))du dv

]
= E

∫ t

0

∫ t

0

∫
R
Flε1 (Bx

u − ·)(ξ )Flε2 (Bx
v − ·)(ξ )µ(dξ ) du dv.

aking into account the expression for Flε(Bx
u − ·) we thus get

E ⊗ E
[
V ε1

t (x)V ε2
t (x)

]
= E

[∫ t

0

∫ t

0

∫
R
Fl(ε1ξ )e−ι⟨ξ,Bx

u ⟩Fl(ε2ξ )eι⟨ξ,B
x
v ⟩µ(dξ ) du dv

]
= E

[∫
R

(∫
[0,t]2

e−ι⟨ξ,Bx
u −Bx

v ⟩du dv
)
Fl(ε1ξ )Fl(ε2ξ )µ(dξ )

]
.

(36)

e can now use the fact that Bx
u − Bx

v ∼ N (0, v − u) to write

E ⊗ E
[
V ε1

t (x)V ε2
t (x)

]
=

∫
R

(∫
[0,t]2

ψε1,ε2 (u, v; ξ )dudv
)
µ(dξ ), (37)

here ψε1,ε2 (u, v; ξ ) is defined by

ψε1,ε2 (u, v; ξ ) = e−
1
2 |ξ |2|v−u|Fl(ε1ξ )Fl(ε2ξ ).

oreover, setting ψ(u, v; ξ ) = e−
1
2 |ξ |2|v−u|, it is readily seen that

lim
ε1,ε2→0

ψε1,ε2 (u, v; ξ ) = ψ(u, v; ξ ), and
⏐⏐ψε1,ε2 (u, v; ξ )

⏐⏐ ≤ |ψ(u, v; ξ )| .

In addition, the reader can check that∫
R

∫
[0,t]2

ψ(u, v; ξ ) du dv µ(dξ ) ≤ c
∫
R

µ(dξ )
1 + |ξ |2

< ∞.

herefore, a standard application of the dominated convergence theorem to relation (37) proves
hat for every sequence εn converging to zero, V εn

t (x) converges in L2 to a limit denoted by
V (x) as mentioned before.
t
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Step 2: Conditional law of Vt (x). We will next show that Vt is conditionally Gaussian for
all t ≥ 0 with conditional variance given by

E
[
V 2

t

]
=

∫
R

⏐⏐⏐⏐∫ t

0
eıξ Bs ds

⏐⏐⏐⏐2µ(dξ ). (38)

This will follow from similar calculations as before. First observe that V ε
t is conditionally

Gaussian, with conditional variance given by

E
[
V ε

t

]2
= E

[(∫ t

0
W (lε(Bx

r − ·))dr
)2
]

(39)

The right hand side of (39) can be simplified by using the covariance structure of our noise as
follows, using the same computations as for (36):

E
[(

V ε
t

)2
]

=

∫ t

0

∫ t

0
E
[
W (lε(Bx

r − ·))W (lε(Bx
s − ·))

]
drds

=

∫
R

|Fl(εξ )|2
⏐⏐⏐⏐∫ t

0
eıξ Bs ds

⏐⏐⏐⏐2µ(dξ ).

Since Vt is the L2 limit of V ε
t and L2 limits of Gaussian processes remain Gaussian, we now

ave that conditioned on the Brownian motion, Vt is Gaussian with zero mean and variance
iven by (38).

Step 3: Exponential moments of Vt . Our next aim is to show that Vt entertains exponential
moments. Specifically we will prove that for all q > 0 we have

E ⊗ E
[
eqVt

]
< ∞. (40)

Since we have already shown that Vt is conditionally Gaussian, we have

E
[
eqVt

]
= exp

(
q2

2

∫
R

⏐⏐⏐⏐∫ t

0
eıξ Bs ds

⏐⏐⏐⏐2µ(dξ )

)
. (41)

Hence, the unconditional expectation of eqVt is given by

E ⊗ E
(
eqVt

)
= E

[
exp

(
q2

2

∫
R

⏐⏐⏐⏐∫ t

0
eıξ Bs ds

⏐⏐⏐⏐2µ(dξ )

)]
.

o see that this quantity is finite let us define the following random variable

Z t =
1
t

∫
R

⏐⏐⏐⏐∫ t

0
eıλBu du

⏐⏐⏐⏐2µ(dλ).

bserve that we can write:

Zs+t

s + t
=

1
(s + t)2

∫
R

⏐⏐⏐⏐∫ s+t

0
eıλBu du

⏐⏐⏐⏐2µ(dλ)

=

∫ ⏐⏐⏐⏐ s
s + t

(
1
s

∫ s

eıλBu du
)

+
t

s + t

(
1
t

∫ s+t

eıλBu du
)⏐⏐⏐⏐2µ(dλ). (42)
R 0 s
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Zs+t

s + t
≤

∫
R

(
s

s + t

⏐⏐⏐⏐1s
∫ s

0
eıλBu du

⏐⏐⏐⏐2 +
t

s + t

⏐⏐⏐⏐1t
∫ s+t

s
eıλBu du

⏐⏐⏐⏐2
)
µ(dλ)

=
Zs + Z ′

t

s + t
where Z ′

t =
1
t

∫
R

⏐⏐⏐⏐∫ s+t

s
eıλBu du

⏐⏐⏐⏐2µ(dλ).

We have thus obtained that Z satisfies the following sub-additive property:

Zs+t ≤ Zs + Z ′

t . (43)

Moreover, notice that Z ′
t above can be written as

Z ′

t =
1
t

∫
R

⏐⏐⏐⏐∫ s+t

s
eıλ(Bu−Bs )du

⏐⏐⏐⏐2µ(dλ),

due to the fact that |e−iλBs |
2

= 1. Hence, it is readily checked that Z ′
t is independent of

{Bu; 0 ≤ u ≤ s} and thus also independent of {Zu; 0 ≤ u ≤ s}. In addition, Z ′
t

d
= Z t . Let

us now slightly generalize those considerations. Namely, consider a new process Z̃ defined
as

Z̃T = max
t≤T

Z t . (44)

It is easily seen that the new process Z̃ t is also sub-additive in nature. In other words, for all
T1, T2 ≥ 0, we have

Z̃T1+T2 ≤ Z̃T1 + Z̃ ′

T2
,

where Z̃ ′

T2
is independent of {Z̃ t ; 0 ≤ t ≤ T1} with Z̃ ′

T2

d
= Z̃T2 . In addition, since Z̃0 = 0

nd Z̃ has continuous paths, we can apply Lemma 4.3 in order to obtain for all θ > 0 and
> 0:

E
[
exp

{
θ Z̃ t

}]
< ∞,

nd as a direct consequence we also have:

E
[
exp {θ Z t }

]
< ∞.

his proves the boundedness of the unconditional expectation of the exponential moments of
Vt as expressed in (40).

Step 4: Conclusion. Observe that using the mean value theorem in its integral form and then
auchy–Schwarz inequality one can write:

E ⊗ E
[⏐⏐⏐eqV εt − eqVt

⏐⏐⏐] = E ⊗ E
[⏐⏐⏐⏐q (Vt − V ε

t

) ∫ 1

0
eλqV εt +(1−λ)qVt dλ

⏐⏐⏐⏐]

≤ q
(
E ⊗ E

[⏐⏐Vt − V ε
t

⏐⏐2]) 1
2

(
E ⊗ E

[⏐⏐⏐⏐∫ 1

0
eλqV εt +(1−λ)qVt dλ

⏐⏐⏐⏐2
]) 1

2

.

(45)
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sing Cauchy–Schwarz inequality on two consecutive occasions separated by Fubini, the object
n the right hand side in (45) can be further decomposed as:

E ⊗ E

[⏐⏐⏐⏐∫ 1

0
eλqV εt +(1−λ)qVt dλ

⏐⏐⏐⏐2
]

≤

∫ 1

0
E ⊗ E

[
e2λqV εt +2(1−λ)qVt

]
dλ

≤

∫ 1

0

(
E ⊗ E

[
e4λqV εt

]) 1
2 (E ⊗ E

[
e4(1−λ)qVt

]) 1
2 dλ

(46)

Observe from the variance of V ε
t calculated earlier in (41) that

E
[
eqV εt

]
= exp

[
q2

2

∫
R

e−εξ2
⏐⏐⏐⏐∫ t

0
eıξ Bs ds

⏐⏐⏐⏐2µ(dξ )

]
,

and consequently

E ⊗ E
[
eqV εt

]
≤ E ⊗ E

[
eqVt

]
.

Plugging this observation into (46) we obtain

E ⊗ E

[⏐⏐⏐⏐∫ 1

0
eλqV εt +(1−λ)qVt dλ

⏐⏐⏐⏐2
]

≤ E ⊗ E
[
e4qVt

]
, (47)

which is finite by our considerations in Step 3 (see (40)). Using (47) in (45) we have

E ⊗ E
[⏐⏐⏐eqV εt − eqVt

⏐⏐⏐] ≤ q
(
E ⊗ E

[⏐⏐Vt − V ε
t

⏐⏐2]) 1
2 (E ⊗ E

[
e4qVt

]) 1
2 .

Since {V ε
t (x); ε > 0} is a convergent sequence in L2(Ω × Ω̂ ), our conclusion now follows by

taking limits. □

With the exponential moments of Vt (x) in hand, we can now obtain the announced
eynman–Kac representation of u.

roposition 4.5. Consider the Gaussian noise Ẇ defined by (11). Let u be the unique solution
f Eq. (1) with initial condition u0(x) = 1, written in its mild form as:

ut (x) = 1 +

∫ t

0
pt−s(us Ẇ )ds. (48)

hen u can be represented as

ut (x) = Ex
[
exp (Vt (x))

]
, (49)

here Vt (x) is the Feynman–Kac functional defined by (35).

roof. For ε > 0, let lε be the approximation of the identity given in the Introduction. We
efine a smoothed noise Ẇ ε by Ẇ ε

= Ẇ ∗ lε, as well as the approximation uε of u as the
olution of

uεt (x) = 1 +

∫ t

0
pt−s(uεs Ẇ ε)ds. (50)

long the same lines as for Proposition 3.11 we can prove that

lim uε = u in Cκu ,λ,σ
q ,
ε↓0
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here κu, λ and q are defined in Proposition 3.11. In addition, since uε solves (50) in the strong
sense, it also admits a Feynman–Kac representation of the form

uεt (x) = E
[
eV εt (x)

]
,

where V ε
t (x) is defined by (34). For any p ≥ 1, we are now claiming that for all t > 0 we

have

lim
ε↓0

E
[⏐⏐uεt (x) − ut (x)

⏐⏐p]
= 0. (51)

n order to get (51), notice that

E
[⏐⏐uεt (x) − ut (x)

⏐⏐p]
= E

[⏐⏐⏐E [eVt (x)
− eV εt (x)

]⏐⏐⏐p]
≤ E ⊗ E

[⏐⏐Vt (x) − V ε
t (x)

⏐⏐p
(

epVt (x)
+ epV εt (x)

)]
.

n elementary application of Cauchy–Schwarz inequality and the fact that Vt (x), V ε
t (x) are

onditionally Gaussian yield

E
[⏐⏐uεt (x) − ut (x)

⏐⏐p]
≤ cp

(
E ⊗ E

[⏐⏐Vt (x) − V ε
t (x)

⏐⏐2]) p
2
[(

E ⊗ E
[
e2pV εt (x)

]) 1
2

+
(
E ⊗ E

[
e2pVt (x)]) 1

2

]
.

e can now apply directly Proposition 4.4 in order to get

lim
ε↓0

E
[⏐⏐uεt (x) − ut (x)

⏐⏐p]
= 0.

he proof of (49) is now achieved. □

. Principal eigenvalues

Recall that we have shown in Proposition 4.5 that the unique solution u of our stochastic
eat equation (48) can be written as

ut (x) = Ex
[
exp(Vt (x))

]
= Ex

[
exp

(∫ t

0
W (δBs )ds

)]
,

here the second identity stems from (35).
Furthermore, W being a homogeneous noise, the asymptotic behavior of u does not depend

n the space parameter x ∈ R. For sake of simplicity we will thus consider x = 0 and
nvestigate the quantity

ut (0) = E0

[
exp

(∫ t

0
W (δBs )ds

)]
.

As we will see later on the following equivalence holds true as t → ∞:

E0

[
exp

(∫ t

0
W (δBs )ds

)]
≈ exp

(
tλẆ

(
Q Rt

))
(52)

or a given region Rt and a principal eigenvalue type quantity λẆ defined as

λẆ (D) = sup
{

W (g2) −
1
∫ ⏐⏐g′(x)

⏐⏐2dx
}
. (53)
g∈K(D) 2 D
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n (53), K(D) is a set of functions defined by

K(D) =
{
g ∈ S(D) : ∥g∥2 = 1 and g′

∈ L2(R)
}
, (54)

here S(D) is the space of infinitely smooth functions that vanish at the boundary of an open
omain D. Notice that K(D) can be seen as a subset of the classical Sobolev space W 1,2(R). In
ddition, observe that the set K(D) is not compact, so that the reader might think that the sup
efining λẆ (D) in (53) is ill-defined. However, as we will see in the proof of Proposition 5.9,
ur optimization can be reduced by scaling to a compact set G(D) defined by

G(D) :=

{
g ∈ S(D) : ∥g∥

2
2 +

1
2
∥g′

∥
2
2 = 1

}
. (55)

Before establishing relation (52), we will try to get some information about the limiting
behavior of λẆ (D) as the size of the box D becomes large.

.1. Basic results

In this section we establish some Gaussian and analytic results which will be building blocks
n the asymptotics (52). We start by noting that W (g) is a well-defined Gaussian field on the

space K(D) defined by (54).

Lemma 5.1. Let g ∈ K(D) for any D ⊂ R. Then

W (g2) −
1
2
∥g′

∥
2
2 < ∞ a.s.

Proof. Note that the variance of W (g2) is given by

Var
[
W (g2)

]
= cH

∫
R

⏐⏐Fg2(ξ )
⏐⏐2|ξ |1−2H dξ. (56)

Also observe that for g ∈ K(D) we have⏐⏐Fg2(ξ )
⏐⏐ =

⏐⏐⏐⏐∫
R

e−ıξ x g2(x)dx
⏐⏐⏐⏐ ≤

∫
R

⏐⏐g2(x)
⏐⏐dx = 1.

In addition, an elementary integration by parts argument shows that∫
R

e−ıξ x g2(x)dx = −i
∫
R

(
1
ξ

dg2

dx

)
e−iξ x dx .

Hence for any ξ ∈ R and g ∈ K(D) we get⏐⏐Fg2(ξ )
⏐⏐ ≤ |ξ |−1

∫
R

⏐⏐⏐⏐dg2

dx
(x)
⏐⏐⏐⏐dx = 2|ξ |−1

∫
R

|g(x)||g′(x)|dx ≤ 2|ξ |−1
∥g′

∥2,

here the last inequality follows from Cauchy–Schwarz inequality and observing that ∥g∥2 = 1
or g ∈ K(D). Let us now break up the variance in two parts by utilizing the two bounds just
stablished.∫

R

⏐⏐Fg2(ξ )
⏐⏐2|ξ |1−2H dξ ≤

∫ 1

−1
|ξ |1−2H dξ+4∥g′

∥
2
2

∫
|ξ |≥1

|ξ |−(1+2H )dξ =
1

1 − H
+

4∥g′
∥

2
2

H

(57)
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e thus get that the variance of W (g2) is bounded and consequently W (g2) is finite almost
urely. Coupled with the fact that ∥g′

∥2 < ∞ whenever g is an element of K(D), we get that

W (g2) −
1
2
∥g′

∥
2
2 < ∞ a.s. □

emark 5.2. The following variational quantity will play a prominent role in our limiting
esults (see also (7) in Theorem 1.2):

E ≡ sup
g∈G(R)

∫
R

⏐⏐⏐⏐∫
R

eıλx g2(x)dx
⏐⏐⏐⏐2|λ|1−2H dλ, where G is defined by (55). (58)

The computations of Lemma 5.1 imply that E is a finite quantity. Moreover, if we denote
E = E(Ẇ ), then it is easily seen from relation (56) that

E(pẆ ) = p2E(Ẇ ) (59)

The first result we need on Gaussian processes is an entropy type bound.

emma 5.3. Let Ẇ be the noise defined by (11), and recall that G(−ε, ε) is given by (55)
or all ε > 0. Then we have:

lim
ε→0+

E

[
sup

g∈G(−ε,ε)
W (g2)

]
= 0.

roof. The beginning of the proof is similar to [8, Lemma 2.2], and we will skip the
etails for sake of conciseness. Indeed, one can mimic the entropy arguments developed in
8, Proposition 2.1] and show that

lim
δ↓0

E sup
{
W (g2); g ∈ G(Q1) and E[W (g2)]2

≤ δ
}

= 0,

here we remind the reader of the notation Qt = (−t, t). Then, still following the steps of
8, Lemma 2.2], it suffices to show that

lim
ε↓0

sup
g∈G(Qε)

E
[
W (g2)

]2
= 0. (60)

o establish (60) we use the alternate expression for our covariance function as in (12), which
ields the following expression for all functions g ∈ G(Qε):

E
[
W (g2)

]2
= cH

∫
R

∫
R

|g2(x + y) − g2(x)|2

|y|
2−2H dxdy. (61)

ince the domain of any function g ∈ G(Qε) is contained in Qε, let us break the right hand
ide of (61) into three parts by integrating over three regions {Ri }i=1,2,3, where

R1 = {(x, y) : |x | ≤ ε, |x + y| ≤ ε} ,

R2 = {(x, y) : |x | ≤ ε, |x + y| > ε} ,

R3 = {(x, y) : |x | > ε, |x + y| ≤ ε} .

onsequently,

E[W (g2)]2
= I + I + I ,
1,ε 2,ε 3,ε
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here

Ii,ε = cH

∫
Ri

|g2(x + y) − g2(x)|2

|y|
2−2H dxdy.

et us now work with each integral Ii,ε in succession. In order to upper-bound I1,ε, observe
hat ⏐⏐g2(x + y) − g2(x)

⏐⏐ = |g(x + y) + g(x)| |g(x + y) − g(x)| ,

and that

|g(x + y) − g(x)| =

⏐⏐⏐⏐∫ x+y

x
g′(z)dz

⏐⏐⏐⏐
≤

√⏐⏐⏐⏐∫ x+y

x
|g′(z)|2dz

⏐⏐⏐⏐ |y| ≤ ∥g′
∥2

√
|y|, (62)

by an application of the Cauchy–Schwarz inequality. Thus the integrand in I1,ε can be
upper-bounded as follows:⏐⏐g2(x + y) − g2(x)

⏐⏐2
|y|

2−2H =
|g(x + y) + g(x)|2|g(x + y) − g(x)|2

|y|
2−2H

≤
2
(
g2(x + y) + g2(x)

)
∥g′

∥
2
2|y|

|y|
2−2H , (63)

where we have used (62) and the fact that |a + b|
2

≤ 2(a2
+ b2). Plugging (63) in I1,ε and

sing the fact that ∥g′
∥

2
2 ≤ 2 for every g ∈ G(Qε), we obtain:

I1,ε ≤ 4cH

∫
R1

g2(x + y) + g2(x)
|y|

1−2H dxdy

= 4cH

[∫ ε

−ε

dx
∫ ε−x

−ε−x
dy

g2(x + y)
|y|

1−2H +

∫ ε

−ε

dx
∫ ε−x

−ε−x
dy

g2(x)
|y|

1−2H

]
≤ 4cH

[∫ ε

−ε

dx
∫ ε

−ε

dz
g2(z)

|z − x |
1−2H +

∫ ε

−ε

dx g2(x)
∫ 2ε

−2ε
dy

1
|y|

1−2H

]
. (64)

Let us now recall some basic analytic facts taken from [1, Chapter 4]: the Sobolev space W 1,2

is embedded in any Lk(R) for all k ≥ 2. More specifically, for all k ≥ 2 we have

∥g∥Lk (R) ≤ ck∥g∥W 1,2(R), (65)

where ck is a positive constant independent of g.
We shall invoke (65) in order to bound the first integral on the right hand side of (64).

Namely, apply Hölder’s inequality with two conjugate numbers p and q, which gives∫
(−ε,ε)2

g2(z)
|z − x |

1−2H dxdz ≤

(∫
(−ε,ε)2

|g(z)|2pdxdz
) 1

p
(∫

(−ε,ε)2

dxdz
|z − x |

(1−2H )q

) 1
q

.

We now take a small constant δ > 0 and q =
1−δ

1−2H , which means that p =
1−δ

2H−δ
. Then

nequality (65) plus some elementary computations show that for ε < 1∫
g2(z)

1−2H ≤ cH,δ∥g∥
2
W 1,2(R)ε ≤ 3cH,δε,
(−ε,ε)2 |z − x |
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here we resort to the fact that ∥g∥
2
W 1,2(R) ≤ 3 whenever g ∈ G(Qε) for the last inequality.

sing this information in (64) and noting that the second term in (64) is bounded thanks to
lementary considerations, we obtain:

I1,ε ≤ cH
(
3cH,δε + ∥g∥

2
2ε

2H )
≤ cH ,δε

2H . (66)

Let us now work with I2,ε and I3,ε. Observe that I2,ε can be expressed as follows:

I2,ε = cH

∫
R2

⏐⏐g2(x + y) − g2(x)
⏐⏐2

|y|
2−2H dxdy

= cH

∫
R2

g4(x)
|y|

2−2H dxdy

= cH

∫ ε

−ε

g4(x)
[∫

−ε−x

−∞

dy
|y|

2−2H +

∫
∞

ε−x

dy
|y|

2−2H

]
dx

=
cH

1 − 2H

∫ ε

−ε

g4(x)
[

1
(ε − x)1−2H

+
1

(ε + x)1−2H

]
dx .

We let the patient reader check that the same kind of identity holds for I3,ε. Thus, we find that

I2,ε + I3,ε ≤
2cH

1 − 2H

∫ ε

−ε

g4(x)
[

1
(ε − x)1−2H

+
1

(ε + x)1−2H

]
dx . (67)

n order to bound the right hand side of (67), we use the same strategy as for I1,ε. Namely, for
p, q ≥ 1 satisfying 1

p +
1
q = 1, Hölder’s inequality imply

I1,ε + I2,ε ≤
2cH

1 − 2H

(∫ ε

−ε

g4p(x)dx
) 1

p
[(∫ ε

−ε

dx
(ε − x)(1−2H )q

) 1
q

+

(∫ ε

−ε

dx
(ε + x)(1−2H )q

) 1
q
]
.

s before, let us now fix q =
1−δ

1−2H . This implies that the integrals
∫ ε
−ε

(ε ± x)−(1−2H )qdx are
nite and each is equal to cδε1−δ for a universal constant cδ . Putting together this information,
e find

I2,ε + I3,ε ≤ cH,δ∥g∥
4
4pε

δ
q .

oreover, a second usage of Eq. (65) plus the fact that ∥g∥W 1,2(R) ≤
√

3 yield:

∥g∥4p ≤ cp∥g∥W 1,2 ≤ cp
√

3.

hus, we obtain:

I2,ε + I3,ε ≤ cH,δε
δ
q . (68)

ombining the inequalities (66) and (68) we find that

I1,ε + I2,ε + I3,ε ≤ cH,δε
ν,

for a given ν > 0, uniformly for all g ∈ G(Qε). Therefore we get

lim
ε↓0

I1,ε + I2,ε + I3,ε = 0.

e have thus proved (60). □
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We now introduce the scalings which will be needed in our future computations.

otation 5.4. For fixed u > 0 and t > 0 we introduce a scaling coefficient ht defined as:

ht =
√

u(log t)
1

2(1+H ) . (69)

Then for each g ∈ S(R), we define a L2(R)-rescaled function gt as follows:

gt (x) =

√
ht g(ht x). (70)

Also, denote by Qr the open interval (−r, r ).

We now see how to rescale the principal eigenvalues related to Ẇ in boxes of the form Qr .

Lemma 5.5. Let Ẇ be the Gaussian noise defined by (11). For a box Qt = (−t, t), recall
hat λẆ (Qt ) is given by formula (53). Then the following relation holds true:

λẆ (Qt ) = h2
t sup

g∈K(Qtht )

{
1
h2

t
W (g2

t ) −
1
2

∫
Qtht

|g′(x)|2dx

}
, (71)

where the quantities ht and the function gt are introduced in Notation 5.4.

Proof. Notice that the map g ↦→ gt when defined from K(Qtht ) to K(Qt ) is a L2(R)-
somorphism between the two spaces. As a consequence, supg∈K(Qt ) A(g) = supg∈K(Qtht ) A(gt )
or any general functional A defined on a domain included in L2(R). Hence,

λẆ (Qt ) = sup
g∈K(Qt )

{
W (g2) −

1
2

∫
Qt

|g′(x)|2dx
}

= sup
g∈K(Qtht )

{
W (g2

t ) −
1
2

∫
Qt

|g′

t (x)|2dx
}
.

Also, since g′
t (x) = ht

3/2g′(ht x), we get∫
Qt

⏐⏐g′

t (x)
⏐⏐2dx =

∫
Qt

h3
t

⏐⏐g′(ht x)
⏐⏐2dx = h2

t

∫
Qtht

⏐⏐g′(y)
⏐⏐2dy,

where the second identity is due to an elementary change of variable. Consequently,

λẆ (Qt ) = sup
g∈K(Qt )

{
W (g2) −

1
2

∫
Qt

|g′(x)|2dx
}

= h2
t sup

g∈K(Qtht )

{
1
h2

t
W (g2

t ) −
1
2

∫
Qtht

|g′(x)|2dx

}
, (72)

which is our claim. □

Remark 5.6. One can justify the scaling by ht given by (69) in the following way: let
us start with the rescaled version (71) of λẆ (Qt ), which is valid for any weight ht . In
addition, we will see in Section 5.2 that the main quantity we should handle in (71) is the
family

{
h−2

t W (g2
t ); t ≥ 0

}
and we want this family of Gaussian random variables to remain

stochastically bounded in t as t → ∞. Next an elementary computation (see (86) for more
details) reveals that for all g ∈ K we have

2 [
−2 2 ] −2(1+H )
σt,g ≡ Var ht W (gt ) = cH,ght . (73)
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ue to the Gaussian nature of h−2
t W (g2

t ), we thus have (for all x > 0)

P
(
h−2

t

⏐⏐W (g2
t )
⏐⏐ > x

)
≤ c1e−c2x2/σ 2

t,g . (74)

A natural way to have the family {h−2
t W (g2

t ); t ≥ 0} stochastically bounded is thus to pick the
minimal ht such that one can use Borel–Cantelli in the right hand side of (74). It is readily
checked that this is achieved as long as σ−2

t,g is of order log t . Recalling the expression (73) for
σ 2

t,g , this yields ht of order (log t)1/2(1+H ).

In the following two subsections we explore the long-time asymptotics of λẆ (Qt ). More
precisely, we will try to prove the following:

lim
t→∞

λẆ (Qt )
(log t)1/(1+H ) = (2cHE)1/(1+H ) a.s. (75)

5.2. Upper bound

In order to get the upper bound part of (75) we rely on the general idea that principal
eigenvalues over a large domain can be essentially bounded by the maximum value among
the principal eigenvalues on some sub-domains. See [11, Proposition 1] where this result is
proved when the potential is defined pointwise. In [8] the same result is stated to be true for
generalized functions as well. We start with an elementary lemma whose proof is very similar
to the aforementioned references.

Lemma 5.7. Let r > 0. There exists a non-negative continuous function Φ(x) on R whose
support is contained in the 1-neighborhood of the grid 2rZ, such that for any R > r and any
generalized function ξ ,

λξ−Φy (Q R) ≤ max
z∈2rZ∩Q R

λξ (z + Qr+1), for all y ∈ Qr , (76)

here Φ y(x) = Φ(x + y). In addition Φ(x) is periodic with period 2r , namely

Φ(x + 2r z) = Φ(x), x ∈ R, z ∈ Z, (77)

nd there is a constant K > 0 independent of r such that
1
2r

∫
Qr

Φ(x)dx ≤
K
r
. (78)

We now show how to split the upper bound for the principal eigenvalue λẆ (Qt ) into small
ubsets.

emma 5.8. Let W be the noise defined by (10) and Qt = (−t, t). We consider the principal
igenvalue λẆ (Qt ) given by (53). Recalling that ht is given by (69), the following inequality
olds true:

λẆ (Qt ) ≤ h2
t

(
K
r

+ max
z∈2rZ∩Qtht

X z(t)
)
, (79)

where the random field {X z(t); z ∈ 2rZ, t ≥ 0} is defined by:

X z(t) = sup
g∈K(z+Qr+1)

{
W (g2

t )
h2

t
−

1
2

∫
Qtht

|g′(x)|2dx

}
. (80)

In (80), the set K(z + Q ) is given by (54) and the function g is defined by (70).
r+1 t
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roof. Let {Wt (ψ), ψ ∈ D(R)} be the generalized Gaussian field defined as Wt (ψ) = W (ψ̂t )
here ψ̂t (x) = htψ(ht x). Then with the definition (70) of gt in mind, notice that W (g2

t ) =

Wt (g2). Thus invoking Lemma 5.5 we have:

1
h2

t
λẆ (Qt ) = sup

g∈K(Qtht )

{
1
h2

t
W (g2

t ) −
1
2

∫
Qtht

|g′(x)|2dx

}

= sup
g∈K(Qtht )

{
1
h2

t
Wt (g2) −

1
2

∫
Qtht

|g′(x)|2dx

}

= sup
g∈K(Qtht )

{⟨
1
h2

t
Ẇt −

1
2r

∫
Qr

Φ ydy, g2
⟩
+

⟨
1
2r

∫
Qr

Φ y(x)dy, g2
⟩

−
1
2

∫
Qtht

|g′(x)|2dx

}
,

here ⟨Ẇt , g2
⟩ is understood in the distribution sense. Hence inequality (78) and the fact that

g2, 1⟩ = 1 if g ∈ K(Qtht ) yields

1
h2

t
λẆ (Qt ) ≤

K
r

+ sup
g∈K(Qtht )

{⟨
1
h2

t
Ẇt −

1
2r

∫
Qr

Φ ydy, g2
⟩
−

1
2

∫
Qtht

|g′(x)|2dx

}
.

Therefore bounding sup
∫

by
∫

sup and invoking the definition (53) of the principal eigenvalue,
we end up with:

1
h2

t
λẆ (Qt ) ≤

K
r

+
1
2r

∫
Qr

sup
g∈K(Qtht )

{⟨
1
h2

t
Ẇt − Φ y, g2

⟩
−

1
2

∫
Qtht

|g′(x)|2dx

}
dy

≤
K
r

+
1
2r

∫
Qr

λ Ẇt
h2

t
−Φy (Qtht )dy.

e can now resort to (76) in order to get:
1
h2

t
λẆ (Qt ) ≤

K
r

+ max
z∈2rZ∩Qtht

λ Ẇt
h2

t

(z + Qr+1) .

Recall again that Ẇt is defined by Wt (ψ) = W (ψ̂t ) where ψ̂t (x) = htψ(ht x). Thus we have
1
h2

t
λẆ (Qt ) ≤

K
r

+ max
z∈2rZ∩Qtht

X z(t),

here the random fields {X z(t); z ∈ 2rZ, t ≥ 0} are defined by (80). Our claim (79) is thus
asily deduced. □

We are ready to state the desired upper bound on our principal eigenvalue.

roposition 5.9. Let λẆ (Qt ) be the principal eigenvalue of the random operator 1
2∆ + Ẇ

ver the restricted space K(Qt ) of functions having compact support on (−t, t), defined by (55).
hen the following limit holds:

lim sup
t→∞

λẆ (Qt )

(log t)
1

1+H
≤ (2cHE)

1
1+H , a.s.

here we recall that E is defined by (58).
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roof. We shall rely on relation (79) and bound maxz∈2rZ∩Qtht
X z(t) thanks to Gaussian entropy

ethods. We divide the proof in several steps.
Step 1: Reduction to a Gaussian supremum. By homogeneity of the Gaussian field

W (φ);φ ∈ D(R)}, the random variables {X z(t)}z∈2rZ∩Qtht
are identically distributed. Con-

equently we have

P
[

max
z∈2rZ∩Qtht

X z(t) > 1
]

≤ #
{
2rZ ∩ Qtht

}
P [X0(t) > 1]

≤

(
tht

r

)
P [X0(t) > 1] . (81)

ecalling the definition (80) of X0(t), we thus get

P
[

max
z∈2rZ∩Qtht

X z(t) > 1
]

≤

(
tht

r

)
P

[
sup

g∈K(Qr+1)

{
1
h2

t
W (g2

t ) −
1
2

∫
Qtht

⏐⏐g′(x)
⏐⏐2dx

}
> 1

]
.

(82)

Notice that in (82) the Gaussian supremum for the family
(
W (g2

t )
)

is taken over the set K given
y (54). However, this set is not compact, which is not suitable for Gaussian computations
see e.g. the discussion after [2, Lemma 1.3.1]). In the following steps we will reduce our
omputations to an optimization over a compact set of the form G (see Eq. (55)). To this aim,

for any g ∈ K(Qr+1), set

φ =
g√

1 +
1
2∥g′∥

2
2

.

otice that since ∥g∥2 = 1, we have

φ ∈ G(Qr+1), and φt =
gt√

1 +
1
2∥g′∥

2
2

,

here the notation φt is given by (70). Therefore the following rough estimate holds true for
he parameter ht defined by (69):

1
h2

t
W (φ2

t ) ≤
1
h2

t
sup

f ∈G(Qr+1)
W ( f 2

t ).

oreover, recalling that φ2
t =

(
1 +

1
2∥g′

∥
2
2

)−1
g2

t , we find

1
h2

t
W (g2

t ) ≤

(
1 +

1
2
∥g′

∥
2
2

)
h2

t
sup

f ∈G(Qr+1)
W ( f 2

t ).

hus, subtracting ∥g′
∥

2
2 on both sides of the above equation we get the following relation for

ll g ∈ K(Qr+1):

(
1
2 W (g2

t ) −
1
2

∫ ⏐⏐g′(x)
⏐⏐2dx

)
≤

(
1 +

1
2
∥g′

∥
2
2

)
2 sup W ( f 2

t ) −
1
2
∥g′

∥
2
2
ht Qr+1 ht f ∈G(Qr+1)
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aking supremum over g ∈ K (Qr+1), this yields

X0(t) ≤ sup
g∈K(Qr+1)

⎧⎪⎪⎨⎪⎪⎩
(

1 +
1
2
∥g′

∥
2
2

)
h2

t
sup

f ∈G(Qr+1)
W ( f 2

t ) −
1
2
∥g′

∥
2
2

⎫⎪⎪⎬⎪⎪⎭ .
onsequently, if X0(t) ≥ 1, we also have

sup
g∈K(Qr+1)

(
sup f ∈G(Qr+1) W ( f 2

t )

h2
t

− 1

)(
1 +

1
2
∥g′

∥
2
2

)
≥ 0,

r otherwise stated:[
sup

f ∈G(Qr+1)

W ( f 2
t )

h2
t

− 1

]
sup

g∈K(Qr+1)

(
1 +

1
2
∥g′

∥
2
2

)
≥ 0.

t is readily checked that the above condition is met iff sup f ∈G(Qr+1) W ( f 2
t ) ≥ h2

t . Summarizing,
e have shown that

{X0(t) ≥ 1} ⊂

{
sup

f ∈G(Qr+1)
W ( f 2

t ) ≥ h2
t

}
,

hich implies

P (X0(t) ≥ 1) ≤ P

[
sup

g∈G(Qr+1)
W (g2

t ) ≥ h2
t

]
. (83)

e are now reduced to the desired sup over a compact set.
Step 2: Gaussian concentration. We now evaluate the right hand side of (83) by standard

aussian supremum estimates. Namely, some elementary scaling arguments show that for each
g ∈ G (Qr+1),(

1 +

(
h2

t − 1
)

2
∥g′

∥
2
2

)−1/2

gt ∈ G(Q(r+1)/ht ).

oreover by the linearity of Gaussian fields and due to the fact that ∥g′
∥

2
2 ≤ 2 whenever

g ∈ G(Qr+1), we get

E

[
sup

g∈G(Qr+1)
W (g2

t )

]
≤ h2

t E

[
sup

f ∈G(Q(r+1)/ht )
W ( f 2)

]
≡ h2

t δt . (84)

n addition, Lemma 5.3 asserts that limt→∞ δt = 0 (notice that the fact of working on a box
ith finite size r + 1 is crucial for this step). We are now in a position to invoke Borell-TIS

oncentration inequality for Gaussian fields (see [2, Theorem 2.1.2]) and our inequality (84),
hich yields

P

[
sup

g∈G(Qr+1)
W (g2

t ) ≥ h2
t

]

= P

[
sup W (g2

t ) − E

(
sup W (g2

t )

)
≥ h2

t (1 − δt )

]

g∈G(Qr+1) g∈G(Qr+1)
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≤ exp

[
−

h4
t (1 − δt )

2

2σ 2
t

]
, (85)

where σ 2
t is a parameter defined by σ 2

t = supg∈G(Qr+1) Var
[
W (g2

t )
]
.

We now find an upper bound for the term σ 2
t in (85). This is achieved as follows: Owing

o the definition (11) of the covariance of W , we have

σ 2
t = cH sup

g∈G(Qr+1)

∫
R

⏐⏐Fg2
t (ξ )

⏐⏐2|λ|1−2H dλ

= cH sup
g∈G(Qr+1)

∫
R

⏐⏐⏐⏐∫
R

eıλx g2
t (x)dx

⏐⏐⏐⏐2|λ|1−2H dλ.

Therefore, recalling the definition (70) of gt and invoking some easy scaling arguments we
obtain:

σ 2
t = cH h2−2H

t sup
g∈G(Qr+1)

∫
R

⏐⏐⏐⏐∫
R

eıλx g2(x)dx
⏐⏐⏐⏐2|λ|1−2H dλ

≤ cH h2−2H
t sup

g∈G(R)

∫
R

⏐⏐⏐⏐∫
R

eıλx g2(x)dx
⏐⏐⏐⏐2|λ|1−2H dλ = cH h2−2H

t E, (86)

where we recall that E is a finite quantity according to (58). We can plug our upper bound (86)
for the item σ 2

t in (85) and replace ht by its value
√

u(log t)1/(2(1+H )). We end up with:

P

[
sup

g∈G(Qr+1)
W (g2

t ) ≥ h2
t

]
≤ exp

(
−

(1 − δt )2u1+H

2EcH
log t

)
.

We wish the series
∑

k P
(

supg∈G(Qr+1) W (g2
2k ) ≥ h2

2k

)
to be convergent. To this aim, owing

o the fact that limt→∞ δt = 0, for t sufficiently large we get

P

(
sup

g∈G(Qr+1)
W (g2

t ) ≥ h2
t

)
≤ exp

[
− (1 + ν) log t

]
=

1
t1+ν

, (87)

here ν > 0 is a small enough constant, provided the following condition is met:

u > (2cHE)1/(1+H ). (88)

ere we highlight the fact that t−(1+ν) is obtained in the right hand side of (87). This exponent
ead to our choice of scaling by ht =

√
u(log t)

1
2(1+H ) in our computations (see Remark 5.6).

Step 3: Conclusion. Now, we summarize our steps so far. Thanks to (81), (83) and (87) we
ave

P
[

max
z∈2rZ∩Qtht

X z(t) ≥ 1
]

≤

(
tht

r

)
P [X0(t) ≥ 1]

≤

(
tht

r

)
P

[
sup

g∈G(Qr+1)
W (g2

t ) ≥ h2
t

]

≤

(
tht

r

)
exp (−(1 + ν) log t) =

ht

r
1
tν
.
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ake the sequence tk = 2k . Then we have

P

[
max

z∈2rZ∩Qtk htk

X z(tk) ≥ 1

]
≤

√
u

r
(log tk)

1
2(1+H )

tνk
=

√
u

r
(k log 2)

1
2(1+H ) 2−kν,

nd the right hand side of the above inequality is the general term of a convergent series. By
orel–Cantelli Lemma, we thus have

lim sup
k→∞

max
z∈2rZ∩Qtk htk

X z(tk) < 1, a.s. (89)

e now draw conclusions on the principal eigenvalue itself. Indeed, from (79) and (89), it is
eadily checked that

lim sup
k→∞

λẆ (Qtk )

(log tk)
1

(1+H )
<

(
K
r

+ 1
)

u, a.s.

Thus some elementary monotonicity arguments show that

lim sup
t→∞

λẆ (Qt )

(log t)
1

(1+H )
<

(
K
r

+ 1
)

u a.s. (90)

ince the constant K in (90) is independent of r , and r can be arbitrarily large, we also get

lim sup
t→∞

λẆ (Qt )

(log t)
1

(1+H )
≤ u a.s.

Eventually recall that we had to impose the condition (88) on u. However u can be taken
as close as we wish to the value (2cHE)

1
1+H . As a consequence we get

lim sup
t→∞

λẆ (Qt )

(log t)
1

(1+H )
≤ (2cHE)1/1+H a.s. □

5.3. Lower bound

This section is devoted to a lower bound counterpart of Proposition 5.9. We start by a lemma
asserting that λẆ (Qt ) cannot get too small with respect to an order of magnitude of h2

t .

emma 5.10. Let λẆ (Qt ) be the principal eigenvalue of the random operator 1
2∆+ Ẇ over

the restricted space K(Qt ) of functions having compact support on (−t, t). Then we have the
ollowing upper bound:

P
[
λẆ (Qt ) ≤ h2

t

]
≤ P

[
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

]
. (91)

Proof. Observe that from (71),

P
(
λẆ (Qt ) ≤ h2

t

)
= P

[
sup

g∈K(Qtht )

{
W (g2

t )
h2

t
−

1
2

∫
Qtht

⏐⏐g′(x)
⏐⏐2dx

}
≤ 1

]
. (92)

oreover,

P

[
sup

{
W (g2

t )
2 −

1
2

∫ ⏐⏐g′(x)
⏐⏐2dx

}
≤ 1

]
≤ P

[
sup

W (g2
t )

2 ≤ 1

]
. (93)
g∈K(Qtht ) ht Qtht g∈G(Qtht ) ht
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his is proved similarly to our considerations in Step 1 of the proof of Proposition 5.9, details
re included here for sake of clarity.

Namely, in order to prove (93), notice that for g ∈ G
(
Qtht

)
, we have φ =

g
∥g∥2

∈ K(Qtht ).
Consequently

W (φ2
t )

h2
t

−
1
2

∫
Qtht

⏐⏐φ′(x)
⏐⏐2dx ≤ sup

f ∈K(Qtht )

{
W ( f 2

t )
h2

t
−

1
2

∫
Qtht

⏐⏐ f ′(x)
⏐⏐2dx

}
.

Thus the bound

sup
f ∈K(Qtht )

{
W ( f 2

t )
h2

t
−

1
2

∫
Qtht

⏐⏐ f ′(x)
⏐⏐2dx

}
≤ 1 (94)

mplies, still with φ = g/∥g∥2,

W (φ2
t )

h2
t

−
1
2

∫
Qtht

⏐⏐φ′(x)
⏐⏐2dx ≤ 1.

his in turn gives the following inequality when we write down φ in terms of g:

W (g2
t )

h2
t

−
1
2

∫
Qtht

⏐⏐g′(x)
⏐⏐2dx ≤ ∥g∥

2
2.

herefore we have obtained, for every g ∈ G(Qtht ),

W (g2
t )

h2
t

≤ ∥g∥
2
2 +

1
2
∥g′

∥
2
2 = 1,

here the last equality follows from the fact that g ∈ G(Qtht ). Taking supremum and recalling
hat we have assumed (94), we get{

sup
g∈K(Qtht )

{
W (g2

t )
h2

t
−

1
2

∫
Qtht

⏐⏐g′(x)
⏐⏐2dx

}
≤ 1

}
⊂

{
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

}
.

hus, (93) is proved and (92) can be further reduced to

P
[
λẆ (Qt ) ≤ h2

t

]
≤ P

[
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

]
,

hich proves our result (91). □

Our next lemma is a general bound for Gaussian vectors with nontrivial covariance structure.
t is borrowed from [8, Lemma 4.2] and will be used in a discretization procedure which is
art of our strategy for the lower bound on λẆ (Qt ).

emma 5.11. Let (ξ1, . . . , ξn) be a mean-zero Gaussian vector with identically distributed
omponents. Write R = maxi ̸= j

⏐⏐Cov(ξi , ξ j )
⏐⏐ and assume that Var(ξ1) ≥ 2R. Then for any

A, B > 0, the following inequality holds true:

P
[

max
k≤n

ξk ≤ A
]

≤

(
P

[
ξ1 ≤

√
2R + Var(ξ1)

Var(ξ1)
(A + B)

])n

+ P
[

U ≥
B

√
2R

]
here U is a standard normal random variable.
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We can now state our lower bound on the principal eigenvalue λẆ (Qt ).

Proposition 5.12. Under the same conditions as for Lemma 5.10, the following lower bound
is fulfilled:

lim inf
t→∞

λẆ (Qt )

(log t)
1

(1+H )
≥ (2cHE)

1
1+H a.s.

roof. We divide the proof in several steps.
Step 1: Reduction to a discrete Gaussian supremum. Let the constant r > 0 be fixed but

rbitrary and set Nt = 2rZ ∩ Qt−r . When t is large enough (namely t > r and ht > 1), it is
eadily checked that ht z + Qr ⊂ Qtht for each z ∈ Nt . Hence,

sup
g∈G(Qtht )

W (g2
t ) ≥ max

z∈Nt
sup

g∈G(ht z+Qr )
W (g2

t ).

nd thus owing to (91),

P
[
λẆ (Qt ) ≤ h2

t

]
≤ P

(
max
z∈Nt

sup
g∈G(ht z+Qr )

W (g2
t ) ≤ h2

t

)
.

or any g ∈ G(Qr ) and z ∈ Nt , notice that gz(·) ≡ g(· − ht z) ∈ G(ht z + Qr ). Hence
axz∈Nt supg∈G(ht z+Qr ) W (g2

t ) ≥ maxz∈Nt W ((gz
t )2), for any g ∈ G(Qr ). The consequent

nequality is therefore:

P
[
λẆ (Qt ) ≤ h2

t

]
≤ P

(
max
z∈Nt

W ((gz
t )2) ≤ h2

t

)
. (95)

or any given (but arbitrary) g ∈ G(Qr ).
Step 2: Control of covariance. For ease of presentation let us denote W ((gz

t )2) by ξz(t). We
ill try to control the covariance Cov(ξz(t), ξz′ (t)) for z, z′

∈ Nt in order to show that the
ssumptions of Lemma 5.11 are met. First notice that F((gz)2

t ) can be also expressed as:

F
(
(gz)2

t

)
(ξ ) =

∫
R

e−ıξ x{gz
t (x)

}2dx =

∫
R

e−ıξ x
{√

ht gz(ht x)
}2

dx

=

∫
R

e−ıξ x ht g2(ht (x − z))dx .

herefore, with change of variable s = ht (x − z) we get:

F
(
(gz)2

t

)
(ξ ) = e−ıξ z

∫
R

e−ıξ s
ht g2(s)ds = e−ıξ zFg2

(
ξ

ht

)
(96)

Hence, the covariance of the random field ξz(t) is given by

Cov (ξz(t), ξz′ (t)) =

∫
R
F(gz)2

t (ξ )F(gz′ )2
t (ξ )µ(dξ )

= cH

∫
R

eıξ (z−z′)
⏐⏐⏐⏐Fg2

(
ξ

ht

)⏐⏐⏐⏐2|ξ |1−2H dξ,

here the last equality follows by using (96) and by plugging in the value of µ. Changing
ariable, we can rewrite the covariance as

Cov (ξz(t), ξz′ (t)) = cH h2(1−H )
t

∫
eıht u(z−z′)

⏐⏐Fg2(u)
⏐⏐2|u|

1−2H du. (97)

R
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n particular, we have

Var (ξ0(t)) = cH h2(1−H )
t σ 2(g) (98)

where σ 2(g) =
∫
R
⏐⏐Fg2(u)

⏐⏐2|u|
1−2H du, which is a finite quantity when g ∈ G(Qr ) according

to (57).
Recall that ht =

√
u(log t)

1
2(1+H ) and thus ht → ∞ as t → ∞. In addition, ht |z − z′

| ≥ 2htr
niformly for z ̸= z′ in Nt . Also observe again that g ∈ G(Qr ) and hence G(u) =

Fg2(u)
⏐⏐2|u|

1−2H is in L1 thanks to (57). By Riemann–Lebesgue lemma, we get the following
ssertion uniformly for z ̸= z′ in Nt :

lim
t→∞

∫
R

eıht u(z−z′)
⏐⏐Fg2(u)

⏐⏐2|u|
1−2H du = 0.

herefore, plugging this information into (97), we end up with

Rt = max
z,z′∈Nt

z ̸=z′

|Cov (ξz(t), ξz′ (t))| = o(h2(1−H )
t ). (99)

urthermore observe that (98) implies limt→∞[Var(ξ0(t))/h2(1−H )
t ] = cHσ

2(g) > 0. Thus we
lso get Var(ξ0(t)) ≥ 2Rt for t sufficiently large. Summarizing our considerations so far, we
ave proved that the family {ξz(t); z ∈ Nt } satisfies the conditions of Lemma 5.11 if t is large
nough. We now introduce an additional parameter v > 0 (to be chosen small enough later on)
nd we resort to Lemma 5.11 with A = h2

t and B = vh2
t in order to write:

P
[

max
z∈Nt

ξz(t) ≤ h2
t

]
≤ V 1

t + V 2
t (100)

here Rt is defined by (99), and

V 1
t =

(
P

[
ξ0(t) ≤ (1 + v)h2

t

√
2Rt + Var(ξ0(t))

Var(ξ0(t))

])|Nt |

, V 2
t = P

[
U ≥

vh2
t

√
2Rt

]
.

We now bound these two terms separately.
Step 3: Bound on V 2

t . First, we bound the term V 2
t on the right hand side in (100). By a

classical bound on the normal tail probabilities:

P
[

U ≥
vh2

t
√

2Rt

]
≤

1
√

2π

√
2Rt

vh2
t

exp
(

−
v2h4

t

4Rt

)
. (101)

ince by (99), Rt

h2(1−H )
t

→ 0 as t → ∞ we have for t sufficiently large

1
√

2π

√
2Rt

vh2
t
< 1. (102)

s for the term inside the exponential in (101), observe that (recall ht =
√

u(log t)
1

2(1+H ) again)

v2h4
t

4Rt
=
v2h2(1+H )

t

4
h2(1−H )

t

Rt
=
v2u1+H

4
h2(1−H )

t

Rt
log t,

and that for t sufficiently large

Rt
2(1−H )

4
2 1+H

<
1
. (103)
ht v u 2
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lugging (102) and (103) into (101), for t sufficiently large we have

V 2
t = P

[
U ≥

vh2
t

√
2Rt

]
≤

1
√

2π

√
2Rt

vh2
t

exp
(

−
v2h4

t

4Rt

)
≤ exp (−2 log t) =

1
t2 . (104)

Step 4: Bound on V 1
t . Let us now bound V 1

t in (100), which can be written as

V 1
t =

(
P
[

ξ0(t)
√

Var(ξ0(t))
≤

(1 + v)h2
t
√

2Rt + Var(ξ0(t))
Var(ξ0(t))

])|Nt |

. (105)

herefore according to relation (98), we have

V 1
t = (P [U ≤ lt ])|Nt |

here we have set

lt =
(1 + v)h1+H

t

cHσ 2(g)

√
2

Rt

h2(1−H )
t

+ cHσ 2(g).

n order to work with this last term we can rewrite it as:

V 1
t = (P [U ≤ lt ])|Nt | = (1 − P [U > lt ])|Nt |

=

[
exp

(
1

P[U > lt ]
log (1 − P[U > lt ])

)]|Nt |P[U>lt ]

. (106)

wing to (99) and the fact that limt→∞ ht = ∞, it is easily checked that limt→∞ lt = ∞.
herefore,

lim
t→∞

exp
(

1
P[U > lt ]

log (1 − P[U > lt ])
)

= e−1 (107)

et us now concentrate on |Nt | P[U > lt ] in (106). We use the following elementary facts
bout lt :

(i) limt→∞
Rt

h2(1−H )
t

= 0, and thus

lim
t→∞

(
lt − cv,gh1+H

t

)
= 0, where cv,g =

(1 + v)

c1/2
H σ (g)

. (108)

(ii) Since limt→∞ lt = ∞, we have limt→∞ lt el2
t /2P[U > lt ] =

1
√

2π
.

Using this information it is easy to see that

P[U > lt ] ∼
e−

l2t
2

lt
∼

exp
(

−
c2
v,g
2 h2(1+H )

t

)
√

2πcv,gh1+H
t

With the expression ht =
√

u(log(t))
1

2(1+H ) in mind, this yields

P[U > lt ] ∼

exp
(

−
c2
v,gu1+H

2 log(t)
)

√
2πcv,g

[
u1+H log(t)

]1/2

nd thus

P[U > lt ] ∼
1

√ [
1+H

]1/2 c2
v,gu1+H
2πcv,g u log(t) t 2
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n addition, we also have |Nt | ∼
t
r , which yields

|Nt |P[U > lt ] ∼
t1−

c2
v,gu1+H

2

√
2πcv,g

[
u1+H log(t)

]1/2r

ecall now that cv,g is given by expression (108). Hence, choosing v small enough and provided

u <
(
2cHσ

2(g)
)1/1+H

, (109)

we can check that
c2
v,gu1+H

2 < 1. Consequently, for t large enough we obtain:

|Nt |P[U > lt ] ≥ tβ, for some β > 0. (110)

lugging (107) and (110) into (106), we get the following relation for t sufficiently large:

V 1
t =

(
P

[
ξ0(t) ≤ (1 + v)h2

t

√
2Rt + Var(ξ0(t))

Var(ξ0(t))

])|Nt |

≤ e−tβ . (111)

Step 5: Conclusion. Reporting inequalities (104) and (111) into (100), we find:

P
[

max
z∈Nt

W ((gz)2
t ) ≤ h2

t

]
≤

1
t2 +

1
etβ
,

or some β > 0 whenever

u <
(
2cHσ

2(g)
) 1

1+H .

ow appealing to (95) and using Borel–Cantelli Lemma:

lim inf
k→∞

h−2
tk λẆ (Qtk ) > 1 a.s.

for some increasing sequence tk of integers. Thus the expression ht =
√

u(log t)
1

2(1+H ) and
ome elementary monotonicity arguments show that

lim inf
t→∞

λẆ (Qt )(log t)−1/(1+H ) > u a.s.

ow thanks to (109) and taking u ↑
(
2cHσ

2(g)
) 1

1+H , we have for every g ∈ G(Qr ),

lim inf
t→∞

λẆ (Qt )(log t)−1/(1+H )
≥
(
2cHσ

2(g)
) 1

1+H a.s.

ecall that E = supg∈G(R) σ
2(g). Hence taking supremum over g ∈ G(Qr ) and letting r → ∞

gives the needed lower bound

lim inf
t→∞

λẆ (Qt )(log t)−1/(1+H )
≥ (2cHE)

1
1+H a.s. □

6. Lyapounov exponent

In this section we will combine the Feynman–Kac representation of u and our preliminary
study of the principal eigenvalue λẆ (Qt ) in order to get the logarithmic behavior of ut (x),
achieving the proof of our main Theorem 1.4.
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.1. Preliminary results

Recall that V ε is defined by (34), and observe that one can also write

V ε
t (x) =

∫ t

0
Ẇ ε(Bs)ds,

here Ẇ ε is the regularized noise given by

Ẇ ε(x) =

∫
R

lε(x − y)W (dy). (112)

The following lemma will allow us to extend the domains on which principal eigenvalues
re computed. The interested reader is referred to [8, Lemma 2.2] for a proof.

emma 6.1. Let W be the Gaussian noise whose covariance is defined by (10), and let Ẇ ε

e defined by relation (112). For a bounded measurable set D ⊂ R we write Dε = (−ε, ε)+ D
nd define for positive θ the eigenvalue type quantity λ+

θ Ẇ
(D) by:

λ+

θ Ẇ
(D) := lim

ε↓0
λθ Ẇ (Dε)

hen λθ Ẇ ε (D) is bounded as follows:

λθ Ẇ (D) ≤ lim inf
ε↓0

λθ Ẇ ε (D) ≤ lim sup
ε↓0

λθ Ẇ ε (D) ≤ λ+

θ Ẇ
(D) a.s.

The second lemma below is a first relation between Feynman–Kac representations of Eq. (1)
nd principal eigenvalues. It is stated for a general potential ξ which is pointwise defined but
ot necessarily bounded.

emma 6.2. Let ξ : R ↦→ R be a potential, not necessarily bounded. Let τD be the stopping
ime defined by τD = inf {t ≥ 0 : Bt /∈ D} for a measurable bounded set D ⊂ R. Then the
ollowing inequalities hold where λξ (D) is defined similarly to (53):

(i) We have:∫
D
Ex

[
exp

{∫ t

0
ξ (Bs)ds

}
1{τD≥t}

]
dx ≤ |D| exp

{
tλξ (D)

}
. (113)

(ii) For any α, β > 1 satisfying 1
α

+
1
β

= 1 and λ(β/α)ξ (D) < ∞ we have for 0 < δ < t:∫
D
Ex

[
exp

{∫ t

0
ξ (Bs)ds

}
1{τD≥t}

]
dx ≥ (2π )α/2δ1/2tα/(2β)

|D|
−2α/β

×

exp
{
−δ(α/β)λ(β/α)ξ (D)

}
× exp

{
α(t + δ)λα−1ξ (D)

}
. (114)

roof. The proof of (113) relies on classical Feynman–Kac representations of semigroups.
amely if Tt g is the semigroup on L2(D) defined by

Tt g(x) = Ex

[
exp

{∫ t

0
ξ (Bs)ds

}
g(Bt )1{τD≥t}

]
, t ≥ 0, x ∈ D, (115)

t can be shown that the generator A of Tt admits a Dirichlet form defined by

⟨g, Ag⟩ =

∫
ξ (x)g2(x)dx −

1
∫

|∇g(x)|2dx .

D 2 D
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ne can prove that

λ0 ≡ sup
g∈D(A)
∥g∥=1

⟨g, Ag⟩ = sup
g∈K(D)

⟨g, Ag⟩ = λξ (D).

hen (113) is obtained thanks to some spectral representation techniques. The reader is referred
o [6] for further details and to [7] for the lower bound (114). □

The following lemma holds as a consequence of the Markov property for the Brownian
otion B, and will yield a second relation between Lyapounov exponent and our principal

igenvalue. It is borrowed from [7, Section 4].

emma 6.3. Let ξ : R ↦→ R be a not necessarily bounded potential and D be a measurable
ounded set. Let 0 < δ < t and assume 0 ∈ D. Let 1

α
+

1
β

= 1.

(i) The following upper bound holds true:

E0

[
exp

{∫ t

0
ξ (Bs)ds

}
1{τD≥t}

]
≤

(
E0 exp

{
β

∫ δ

0
ξ (Bs)ds

})1/β

×(
1

(2πδ)d/2

∫
D
Ex

[
exp

{
α

∫ t−δ

0
ξ (Bs)ds

}
× 1{τD≥t−δ}

]
dx
)1/α

.

(ii) We also have the corresponding lower bound:

E0

[
exp

{∫ t

0
ξ (Bs)ds

}]
≥

(
E0 exp

{
−
β

α

∫ δ

0
ξ (Bs)ds

})−α/β

×(∫
D

pδ(x)Ex

[
exp

{
1
α

∫ t−δ

0
ξ (Bs)ds

}
1{τD≥t−δ}

]
dx
)α
,

where we recall that pδ designates the heat kernel in R (see Notations in the Introduction).

6.2. Upper bound

We can now apply the preliminary results on exponential functionals of B recalled in the
last section, in order to get a first comparison between log(ut (0)) and the principal eigenvalue
λẆ (Qt ). The logarithmic asymptotic behavior of ut (x) can be upper bounded thanks to the
following result.

Proposition 6.4. Let {ut (x); t ≥ 0, x ∈ R} be the field defined by (49). Then the following
holds:

lim sup
t→∞

1
t log(ut (0))
λẆ (Qt )

≤ 1, (116)

here Qt = (−t, t) and λẆ (D) is defined by (53) for a domain D.

roof. Step 1: Decomposition of ut (0). To implement the upper bound (116), let us introduce
constant M to be specified later on and for k ≥ 1 let Rk be defined by

Rk =

{
Mt(log t)

1
2(1+H )

}k
. (117)
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lso recall that, according to (49), we have ut (x) = Ex
[
exp (Vt (x))

]
, where Vt (x) and V ε

t (x)
are defined by (35). We now set Vt (0) = Vt and V ε

t (0) = V ε
t . With these notations in hand,

we decompose ut (0) as:

ut (0) = E0
[
exp (Vt )

]
= E0

[
exp (Vt ) 1{

τQ R1
≥t
}]+

∞∑
k=1

E0

[
exp (Vt ) 1{

τQ Rk
<t≤τQ Rk+1

}
]

(118)

In order to upper bound the terms in our decomposition (118), we apply Hölder’s inequality
to each term in the sum. We get:

ut (0) ≤ Ut,0 +

∞∑
k=1

P0(τQ Rk
< t)1/2Ut,k (119)

where

Ut,0 = E0

[
eVt 1{

τQ R1
≥t
}] , (120)

and for k ≥ 1

Ut,k = E1/2
0

[
e2Vt 1{

τQ Rk+1
≥t
}
]
. (121)

We will now bound the terms Ut,k separately.
Step 2: Regularization. Let us replace the quantities Vt by V ε

t in the definition of Ut,k for
≥ 0. The corresponding random variables are denoted by U ε

t,k . We start by getting a uniform
ound for U ε

t,0. Namely using Lemma 6.3(i) write

U ε
t,0 = E0

[
eV εt 1{

τQ R1
≥t
}] = E0

[
exp

(∫ t

0
Ẇ ε(Br )dr

)
1{
τQ R1

≥t
}]

≤

(
E0

[
exp(q

∫ 1

0
Ẇ ε(Bs)ds)

])1/q ( 1
√

2π

∫
Q R1

Ex

[
exp

(
p
∫ t−1

0
Ẇ ε(Bs)ds

)
× 1{

τQ R1
≥t−1

}] dx
)1/p

=

(
E0

[
eqV ε1

])1/q
(

1
√

2π

∫
Q R1

Ex

[
epV εt−1(x)1{

τQ R1
≥t−1

}] dx

)1/p

. (122)

We can now apply Lemma 6.2(i) to the right hand side of the above equation. This yields∫
Q R1

Ex

[
epV εt−1(x)1{

τQ R1
≥t−1

}] dx ≤
⏐⏐Q R1

⏐⏐ exp
[
(t − 1)λpẆ ε (Q R1 )

]
.

Computing the volume
⏐⏐Q R1

⏐⏐ and plugging into (122) we obtain:

U ε
t,0 ≤

(
E0
[
exp

(
qV ε

1

)]) 1
q

(
2R2

1

π

) 1
2p

exp
[

(t − 1)
p

λpẆ ε (Q R1 )
]
. (123)

We now take limits in Eq. (123). In order to handle the left hand side of (123), we observe
that the random variable E

[
eV εt

]
converges in Lq (Ω ) to E

[
eVt
]

for q ≥ 1 thanks to
0 0
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roposition 4.4. Therefore for all q ≥ 1, an easy application of Hölder’s inequality shows
hat

Lq (Ω ) − lim
ε↓0

E0

[
eV εt 1{

τQ R1
≥t
}] = E0

[
eVt 1{

τQ R1
≥t
}] ,

here Lq (Ω ) is the space of Lq random variables on (Ω ,F ,P), see Notation 4.1. It follows
hat there exists a subsequence {εn; n ≥ 0} such that P − a.s. we have

lim
n→∞

E0

[
eV εnt 1{

τQ R1
≥t
}] = E0

[
eVt 1{

τQ R1
≥t
}] . (124)

imilarly there exists a subsequence {ε′
n; n ≥ 0} of {εn; n ≥ 0} such that P − a.s. we have

lim
n→∞

E0

[
eqV

ε′n
1

]
= E0

[
eqV1

]
(125)

ncorporating (124), (125) and Lemma 6.1 into the left and right hand sides of (123), we obtain
he following relation P − a.s. (recall that Ut,0 = E0[eVt 1{τQ R1

≥t}] according to (120)):

Ut,0 ≤
(
E0
[
eqV1

]) 1
q

(
2R2

1

π

) 1
2p

exp
[

(t − 1)
p

λ+

pẆ

(
Q R1

)]
. (126)

e can proceed similarly in order to bound the terms Ut,k in (121). Indeed applying
auchy–Schwarz inequality and following the same steps as for (122)–(123) we get, for all
≥ 1

E0

[
exp(2Vt )1{

τQ Rk+1
≥t
}
]

≤
(
E0
[
exp(4V1)

]) 1
2

(
2R2

k+1

π

) 1
4

exp
[

(t − 1)
2

λ+

4Ẇ

(
Q Rk+1

)]
.

(127)

Consequently plugging (126) and (127) into (119), we end up with:

ut (0) ≤ a1,p,qMp,t + a2Rt , (128)

here

Mp,t = exp
(

(t − 1)
p

λpẆ

(
Q R1

))
and Rt =

∞∑
k=1

αk exp
(

(t − 1)
4

λ+

4Ẇ

(
Q Rk+1

))
, (129)

nd where we also recall that Rk is defined by (117), and the constants a1,p,q and a2 are given by

a1,p,q =

(
2R2

1

π

) 1
2p (

E
[
exp(qV1)

]) 1
q , a2 =

(
E0
[
exp(4V1)

]) 1
4 .

In (128), the constants αk for k ≥ 1 are also defined by:

αk =

(
P0

(
τQ Rk

< t
)) 1

2

(
2R2

k+1

π

) 1
8

. (130)

e will now treat the terms in (128) separately.
Step 3: Bound on ut (0). Let us first bound the constants αk in (130). To this aim, we can in-

oke the reflection principle for Brownian motions (see e.g. [15, section 2.6]), which asserts that

P0

(
τQ Rk

< t
)

≤
4

√

∫
∞

e−
y2
2t dy ≤

4
√

t
√ e−

R2
k

2t .

2π t Rk 2πRk
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urthermore when t is large enough, it is readily checked from the expression (117) of Rk

hat

4
√

t
√

2πRk
≤ 1,

uniformly in k ≥ 1. Therefore we get

P0

(
τQ Rk

< t
)

≤ e−
R2

k
2t .

Plugging this inequality in Eq. (130) and designating by c a universal constant which can
change from line to line, we get

αk ≤ cR
1
4
k+1e−

R2
k

4t . (131)

We now prove the convergence of the weighted sum defining Rt in (129). To this aim, recall-
ng the asymptotic relation proved in Proposition 5.9, we can say that for t sufficiently large:

exp
[

(t − 1)
4

λ+

4Ẇ

(
Q Rk+1

)]
≤ exp

[
(t − 1)

4

(
16(2cHE)

1
1+H + 1

)
(log(Rk+1))

1
1+H

]
.

(132)

Consequently, using our bound (131) on αk and the expression (117) for Rk we have the
ollowing:

Rt ≤

∞∑
k=1

Ak,t Bk,t Ck,t , (133)

here

Ak,t = cR
1
4
k+1 = cM

k+1
4 t

k+1
4 (log t)

k+1
8(1+H ) ≤ cM

k
2 t

k
2 (log t)

k
4(1+H ) , (134)

Bk,t = exp
(

−
R2

k

4t

)
= exp

[
−

1
4

M2k t2k−1(log t)
k

1+H

]
,

Ck,t = exp
[

(t − 1)
4

λ+

4Ẇ

(
Q Rk+1

)]
.

urthermore, thanks to (132) for t large enough we have:

Ck,t ≤ exp
[
c t(log Rk+1)

1
1+H

]
.

hus, plugging the value (117) of Rk into the above inequality we get

Ck,t ≤ exp

[
c t(k + 1)

1
1+H

(
log M + log t +

1
2(1 + H )

log log t
) 1

1+H
]
.

It is then readily checked for large enough t , that

Ck,t ≤ exp
[
c(k + 1)

1
1+H t(log t)

1
1+H

]
.

n addition, it is easily seen that for any arbitrary constant c > 0, there exists M large enough
such that M2k > 8c(k + 1)

1
1+H uniformly in k. Therefore for this value of M , for all k ≥ 1



6728 P. Chakraborty, X. Chen, B. Gao et al. / Stochastic Processes and their Applications 130 (2020) 6689–6732

a

C

F

f

w

w
a

a

nd t large enough, we have

Bk,t Ck,t ≤ exp
[

c(k + 1)
1

1+H t(log t)
1

1+H −
1
4

M2k t2k−1(log t)
2k

2(1+H )

]
≤ exp

[
−

1
8

M2k t2k−1(log t)
2k

2(1+H )

]
≤ exp

[
−

1
8

Mk tk(log t)
k

2(1+H )

]
. (135)

ombining (134) and (135) we have thus obtained

Ak,t Bk,t Ck,t ≤ c1η
k
t e−c2η

2k
t , where ηt =

√
Mt(log t)

1
2(1+H ) .

urthermore, we have that η2k
t > kηt for all positive integers k if ηt >

√
2. Thus, for sufficiently

large t :

Ak,t Bk,t Ck,t ≤ c1η
k
t e−c2kηt .

Recalling (133), the following bound holds true for the term Rt defined by (128)–(129):

Rt ≤ c1

∞∑
k=1

(
ηt e−c2ηt

)k
< 2 (136)

or all sufficiently large t such that ηt e−c2ηt < 1
2 .

Now let us work with the term Mp,t in the expression (128). Observe that using Theorem 1.2
e have:

lim
t→∞

λpẆ

(
Q R1

)
λẆ (Qt )

= lim
t→∞

λpẆ

(
Q R1

)
(log(R1))

1
1+H

(log(t))
1

1+H

λẆ (Qt )
(log(R1))

1
1+H

(log(t))
1

1+H

=
(2cH p2E)1/(1+H )

(2cHE)1/(1+H )

= p
2

1+H , (137)

here we have also used the form of Rk from (117) to show that the limit of log(R1)/ log(t)
s t goes to infinity is 1. Plugging this identity into the definition (129), we get that

1
t

log(Mp,t ) ∼ p
1−H
1+H λẆ (Qt ), (138)

s t goes to infinity. In particular, owing to Theorem 1.2 we have

lim
t→∞

1
t

log(Mp,t ) = ∞ a.s.

Finally, going back to (128) we write

1
t

log (ut (0)) ≤
1
t

log
(
Mp,t

)
+

1
t

log
(

a1,p,q + a2
Rt

Mp,t

)
. (139)
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ue to (136) and the fact that limt→∞ Mp,t = ∞, we have

lim
t→∞

1
t

log
(

a1,p,q + a2
Rt

Mp,t

)
= 0.

herefore, thanks to (138), relation (139) entails the following upper bound:

lim sup
t→∞

1
t log(ut (0))
λẆ (Qt )

≤ p
1−H
1+H . (140)

t the very end, notice that the parameter p > 1 in (140) can be chosen arbitrarily close to 1.
herefore, taking limits as p ↓ 1 in (140), we end up with

lim sup
t→∞

1
t log(ut (0))
λẆ (Qt )

≤ 1, a.s.,

hich is our claim (116). □

.3. Lower bound

This section is devoted to finding a lower bound for log (ut (0)) matching the upper bound
116). Specifically we will get the following result.

roposition 6.5. Let ut be the field defined by (49). Then the following holds:

lim inf
t→∞

1
t log(ut (0))
λẆ (Qt )

≥ 1, (141)

here we recall that Qt = (−t, t) and λẆ (D) is introduced in (53).

roof. Let p, q > 1 satisfy 1
p +

1
q = 1 with p close to 1 and let 0 < b < 1 be close to 1.

rom Lemma 6.3(ii), taking α = p, q = β, δ = tb and ξ = Ẇ ε, we get

uεt (0) = E0

[
exp

(∫ t

0
Ẇ ε(Bs)ds

)]
≥

(
E0

[
exp

(
−

q
p

∫ tb

0
Ẇ ε(Bs)ds

)])−
p
q

×

{∫
Qtb

ptb (x)Ex

[
exp

(
1
p

∫ t−tb

0
Ẇ ε(Bs)ds

)
1{
τQtb

≥t−tb
}
]

dx

}p

, (142)

where we recall that pδ is the heat kernel in R. Hence some elementary bounds on pδ over
Qtb yield

uεt (0) ≥ Dε,b,p,t Fε,b,p,t , (143)

where

Dε,b,p,t =

(
E0

[
exp

(
−

q
p

∫ tb

0
Ẇ ε(Bs)ds

)])−
p
q

,

Fε,b,p,t =

{
e−tb/2

√
2π tb

∫
Qtb

Ex

[
exp

(
1
p

∫ t−tb

0
Ẇ ε(Bs)ds

)]
dx

}p

.
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w

T

e will now bound Dε,b,p,t and Fε,b,p,t separately. In order to bound Fε,b,p,t we apply
Lemma 6.2(ii), taking α = p, β = q, t = t − tb and δ = tb:∫

Qtb

Ex

[
exp

(∫ t−tb

0
Ẇ ε(Bs)ds

)]
dx

≥ (2π )
p
2 t

b
2 (t − tb)

p
2q (2tb)−

2p
q exp

(
−tb p

q
λ p

q Ẇ ε

(
Qtb

))
exp

(
ptλ Ẇε

p

(
Qtb

))
.

Using (143) and replacing e−
tb
2 by e−Ctb

for a larger C to absorb all bounded-by-polynomial
quantities, we thus get

Fε,b,p,t ≥ e−Ctb
exp

(
−

p2tb

q
λ p

q Ẇ ε

(
Qtb

))
exp

(
tλ Ẇε

p

(
Qtb

))
. (144)

We now take limits as ε ↓ 0 in relation (143). Invoking Proposition 4.4, we use our bound
144) and Lemma 6.1 which gives

ut (0) ≥ Db,p,t Fb,p,t (145)

ith

Db,p,t = e−Ctb

(
E0

[
exp

{
−

q
p

∫ tb

0
W (δBs )ds

}])−
p
q

,

Fb,p,t = exp
(

−
p2tb

q
λ+

p
q Ẇ

(
Qtb

))
exp

(
tλ Ẇ

p

(
Qtb

))
.

We will now prove that

lim
t→∞

1
t

log(Db,p,t ) = 0 (146)

Indeed, it is easily seen that

1
t

log(Db,p,t ) = −
C

t1−b
−

p
qt1−b

log
(
E0

[
exp

{
−

q
p

∫ tb

0 W (δBs )ds
}])

tb
. (147)

Moreover combining (116) and Proposition 5.9 we get the following bound for t large enough:

log
(
E0

[
exp

{
−

q
p

∫ tb

0 W (δBs )ds
}])

tb
≤ c(log t)

1
1+H

Plugging this information into (147), we obtain (146).
Let us now analyze the term Fb,p,t in (145). We have

1
t

log(Fb,p,t ) = −
p2

q

λ+
p
q Ẇ

(
Qtb

)
t1−b

+ λ Ẇ
p

(
Qtb

)
.

aking into account the behavior of λ Ẇ
p

(Qt ) given by Proposition 5.9, we get

lim inf
t→∞

1
t log(Fb,p,t )
λ Ẇ (Qtb )

≥ 1 a.s. (148)

p
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In conclusion, plugging (148) and (146) into (145), we end up with

lim inf
t→∞

1
t log(ut (0))
λ Ẇ

p
(Qtb )

≥ 1 a.s. (149)

Now taking b ↑ 1 and then p ↓ 1 in (149), and observing that λ is monotonic under both
maneuvers, we get our desired lower bound (141):

lim inf
t→∞

1
t log(ut (0))
λẆ (Qt )

≥ 1 a.s. □
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